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Abstract. We study some restrictions associated with the mechanisms
for structuring and modularising specifications in the B abstract machine
notation. We propose an extension of the language that allows one to
specify machines whose constituent modules (other abstract machines)
may change dynamically, i.e., at run time. In this way, we increase the
expressiveness of B by adding support for a common activity of the
current systems design practice.
The extensions were made without having to make considerable changes
in the semantics of standard B. We provide some examples to show
the increased expressive power, and argue that our proposed extensions
respect the methodological principles of the B method.
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1 Introduction

Formal methods support precise and rigorous specifications of those aspects of
a computer system capable of being expressed in a formal language. One of the
main advantages of formal methods is that, in addition to aiding in the elimi-
nation of ambiguities in specification, they allow for analysis and verification of
system properties prior to implementation. Since defining what a system should
do and understanding the implications of these decisions are amongst the most
troublesome problems in software engineering, the use of formal methods has
major benefits.

However, formal methods are hard and expensive to use, and they may re-
quire a strong background in formal reasoning in order to perform the analysis
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and verification tasks. In the formal specification process, and even more so in
the formal analysis process, appropriate tool support is then a necessity. In order
to be able to provide tool support, it is generally required that the semantics
underlying formal languages have to be simple. Simpler semantics usually leads
to having restricted expressive power. So, a balance has to be found in order to
achieve what is considered important for the take-up of a formal method (and its
successful use in the development of systems), namely, simple but sufficiently ex-
pressive semantics, tool support, structure and relevance to the current systems
engineering practice, etc.

Model based formal methods such as B [1], VDM [14] and Z [15] are among
the few formal methods currently in use by industry and supported by commer-
cial tools. They have been used in a variety of industrial case studies for the
specification and verification of mission critical systems, in application domains
varying from the rail industry to smart cards. Using such formal methods in
the development of an information system is about: eliminating all ambiguity
beginning right from the interpretation of the need, constructing a specification
which is both coherent and conformant with the need (the model), and elabo-
rating the software system which realises the specification, in successive stages.
The coherence of the model and the conformity of the final program in relation
to this model are guaranteed by mathematical proofs.

The languages referred to above are considerably less expressive than many
object-oriented formalisms, but also considerably simpler, better structured, and
in some cases with important tool support and proof assistance [9][4][12], due
to their simpler semantics. One of these languages, the B language, has an as-
sociated method, described in [1], and commercial tool support [9][4]. A useful
feature present in object-oriented languages is the possibility of dynamically
creating or deleting modules or components (objects in the object-oriented ter-
minology). In fact, dynamic object management has now become a common task
in systems design practice. The B language and its associated method lack this
useful feature of object-oriented languages: having it in the specification lan-
guage of the B method would be equivalent to being able to dynamically create
or delete abstract machines. The work in [16] and the different object-oriented
variants of model-oriented specification languages provide evidence of the need
for this feature.

In this paper, we make a first attempt to provide an extension of the B
language and its semantics, in order to support dynamic management of abstract
machine populations. In recognition of the fact that maintaining compatibility
with the existing tool support for the B method is very important, we concentrate
on “extending” (conservatively) the current language and semantics, rather than
“changing” it. In effect, we ensure that:

1. one can possibly reduce the semantics associated with the proposed extension
of the B specification language to the standard semantics of the B method,

2. the proposed extension does not affect the semantics of the core specification
language of B.
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The resulting language is in some aspects clearly more expressive than stan-
dard B, without being in the realm of object-oriented languages. We therefore in-
crease the expressiveness of B by building into the language support for common
activities of the current systems design practice, while avoiding the introduction
of the complexity that is often associated with the semantics of fully-fledged
object-oriented languages, including the object-oriented variants of the above-
mentioned model oriented formal methods.

2 Adding Dynamism to B

In B, the declaration of an abstract machine corresponds to the declaration of
a kind of “template” of a component. An abstract machine is not a component
itself, since it might prescribe the way many different components work. The
creation of a number of different specification components corresponding to a
single abstract machine declaration can be achieved by means of renaming and
inclusion, using some of the structuring mechanisms available, of the renamed
machines in some “super” machine M , in a way similar to what is called cloning
in some object-oriented languages. However, the machines included in a super
machine M are fixed : clearly, during the run time of M , neither the modular
structure of M , in terms of the submachines it is built out of, nor the number
of included machines can change. So, abstract machines cannot be considered
as objects in an object-oriented sense, but instead they are closer to standard
modules of traditional imperative programming languages. The advantages of
the concept of object over that of primitive module are well-known; many of
them could be considered differences between traditional imperative and object-
oriented languages.

We extend the notation of abstract machines to allow for dynamic manage-
ment of abstract machine populations. The notation of single, basic abstract
machines is preserved. The changes are in the way we build bigger machines
in terms of more primitive ones, i.e., in the structuring notation. In this paper,
we restrict ourselves to studying a particular type of INCLUDES, the one charac-
terised by the EXTENDS clause. For the sake of simplicity, we also ignore for the
moment the issues related to the use of parameterised machines, and explain
the concepts for machines without parameters, although it will be clear how the
same concepts apply to parameterised machines straightforwardly.

3 Population Management: The Standard B Approach

To motivate our work, let us introduce an example that shows how a specification
might be structured in B. This example is shown in Figure 1, and consists of an
extension of a variant of the primitive machine Scalar, found in pages 320 and
321 of [1]. Machine Scalar consists only of an integer variable, and operations to
update and return the value of the variable.

A structured machine built on top of Scalar is proposed in [1] as well, as
machine TwoScalars. We show the definition of TwoScalars in Figure 2. As seen
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MACHINE
Scalar

VARIABLES
var

INVARIANT
var ∈ INT

INITIALIZATION
x :∈ INT

OPERATIONS
chg(v) =̂ PRE v ∈ INT THEN var := v END
v ←− val =̂ BEGIN v := var END

END

Fig. 1. Abstract machine Scalar.

there, multiple copies of Scalar are “imported” in TwoScalars, by means of copy
and renaming of (some of) the language elements of the original Scalar machine
definition [1]. An extra operation swap is declared in this machine, calling in
parallel the chg operations of machines xx and yy.

MACHINE
TwoScalars

EXTENDS
xx.Scalar, yy.Scalar

OPERATIONS
swap =̂ BEGIN xx.chg(yy.var) || yy.chg(xx.var) END

END

Fig. 2. Abstract machine TwoScalars.

Now, suppose we decided we need a generalisation of this previous machine,
one in which the number of scalars varies over time by creating or deleting dy-
namically new scalars, and where the swap operation might be applied to any
two machines. The standard way of dealing with this problem in B, as shown in
several examples of Chapter 8 in [1] and also in [13], is by defining a new machine,
which includes both the operations of Scalar, relativised to names for the “in-
stances”, and the population management operations. Machine SeveralScalars,
described in Figure 3, is defined using this approach. For this new machine, ma-
chine definition Scalar had to be discarded, and all the operations corresponding
to it had to be adapted and included in SeveralScalars. A set, scalars, is used to
denote the names of the active scalar instances. Operations chg and val , orig-
inally defined in Scalar, had to be rewritten in this machine specification, now
relativised to the corresponding instances (see the extra parameter in each of
these operations). Variable var was also incorporated to SeveralScalars, now rep-
resenting the values of the original var for each of the active instances of scalar.
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The initialisation substitution of Scalar became an assignment (in fact, part of
a parallel assignment) in add sc, the operation that adds a new scalar in this
machine.

MACHINE
SeveralScalars

SETS
SCALARSET

VARIABLES
var , scalars

INVARIANT
(var ∈ scalars→ INT) ∧ (scalars ⊆ SCALARSET )

INITIALIZATION
var , scalars := ∅, ∅

OPERATIONS
chg(v, p) =̂

PRE v ∈ INT ∧ p ∈ scalars
THEN var := (dom(var)− {p}) � var) ∪ {(p, v)}
END

v ←− val(p) =̂ PRE p ∈ scalars THEN v := var(p) END

swap(p, q) =̂
PRE p ∈ scalars ∧ q ∈ scalars
THEN var := var <+{(p, var(q)), (q, var(p))}
END

add sc(p) =̂
PRE p ∈ (SCALARSET − scalars)
THEN (scalars := scalars ∪ {p}) ||
(ANY v WHERE v ∈ INT THEN var := var ∪ {(p, v)} END)
END

rem sc(p) =̂
PRE p ∈ scalars
THEN scalars := scalars − {p} ||

var := (dom(var)− {p}) � var
END

END

Fig. 3. Abstract machine SeveralScalars.

This is a standard approach to the management of multiple instances of
certain objects. It is, certainly, a problem, since the whole specification of a scalar
had to be rewritten. Imagine a case in which the machine whose population we
need to manage, say M , is not as simple as our Scalar machine, and instead
consists of a complex structure in terms of “submachines”; if we want to specify
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a machine that manages the population of M , then the whole specification of M
must be rewritten. Therefore, specifications cannot be modularised into natural
conceptual entities, proofs cannot be “localised” to relevant specification parts,
etc.

4 A Notation for Dynamic Creation of Machines

We suggest that it is possible to provide B with a richer notation, that allows us
to dynamically manage the population of abstract machines, partly overcoming
the problems mentioned in the previous section. The general form of our notation
is not difficult to understand. The AGGREGATES M1 clause in a machine M
indicates that multiple machines of type M1 are available in M , in the same style
as for EXTENDS, i.e., promoting all operations of the included machine. Included
machines are declared to belong to an instance set, whose name is M1Set (in our
case ScalarSet). Instance sets are used to characterise live instances of machine
types.

A machine equivalent to the SeveralScalars machine in Figure 3 is written in
our proposed extended notation as follows:

MACHINE
SeveralScalars’

AGGREGATES
Scalar

OPERATIONS
swap(p, q) =̂

PRE p ∈ ScalarSet ∧ q ∈ ScalarSet
THEN p.chg(q.var) ||| q.chg(p.var)
END

END

In contrast to machine SeveralScalars, machine SeveralScalars’ is indeed de-
fined in terms of the primitive machine Scalar. It does not include the decla-
ration of a set of instances (scalars in machine SeveralScalars), since it is de-
clared implicitly, by the AGGREGATES clause. Two operations, called add Scalar
and del Scalar , are automatically generated and implicitly included by the AG-

GREGATES clause. These operations are meant to manipulate the population of
instances of scalar. For our example, they are defined in the following way:

add Scalar(p) =̂
PRE p ∈ (NAME− ScalarSet)
THEN ScalarSet := ScalarSet ∪ {p} || p.init
END

del Scalar(p) =̂
PRE p ∈ scalars
THEN ScalarSet := ScalarSet − {p} ||

var := (dom(var)− {p}) � var
END
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The set NAME is assumed to be predefined in some way in B (see the sec-
tion regarding the semantics of the extension). It denotes the set of all names
of machines (more than one machine type might be aggregated by a particu-
lar machine). It is assumed that the graph corresponding to the AGGREGATES

dependency between machines is acyclic; in other words, no recursive (either
direct or indirect) aggregation is allowed. The notation p.chg(x) is in fact just
a convenient more readable way (borrowed from object orientation) of writing
chg(x, p), i.e., p is simply an extra argument of chg .

The substitution init used in the definition of operation add Scalar is not
explicitly declared in the aggregated machine as an operation, but corresponds
to the substitution defined in the INITIALIZATION clause, now relativised to an
instance. For example, for the case of scalars, the initialisation was:

var :∈ INT

Then, p.init is defined as:

ANY v WHERE v ∈ INT THEN var := var ∪ {(p, v)} END

This expression is rather complicated, because we need to maintain the nonde-
terminism in the original substitution. We can use the syntax sugaring defined
in pages 266 and 267 of [1] to express the above substitution in the following
more readable form:

var(p) :∈ INT

To better understand the meaning of p.init , consider a simpler initialisation
assignment, such as:

var := 0

Then, p.init would be simply defined as:

var := var ∪ {(p, 0)}

In case any of the automatically generated operations of the aggregating
abstract machine should not be exported, a wrapper machine promoting the
interface operations could be declared, as is usual in the B method.

Note that a new combination of substitutions, that we call interleaving par-
allel composition (denoted by the triple bar), is used in the above machine. We
describe below the semantics of this operator in detail, and our need for it.

5 Providing Semantics to the Extension

A straightforward way to provide semantics to the proposed syntax extension to
B would be to simply indicate that specifications like SeveralScalars’ are syntax
sugaring for an equivalent flat specification, like SeveralScalars. We could in
this way take advantage of the already well-defined semantics and consistency
checking of standard B for the syntax extension.
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However, we wish to treat AGGREGATES as a proper structuring mechanism.
Certainly, the above straightforward way of giving semantics to the extension
does not treat AGGREGATES as a proper structuring mechanism. For instance,
it would be necessary to flatten the specification in order to perform the con-
sistency checking of a specification structured using AGGREGATES, and therefore
there would not be, as for the other structuring mechanisms, a way of checking
consistency of the structured machine in terms of the consistency of the simpler
composing submachines.

On the contrary, the way we provide semantics for the AGGREGATES clause
relies on the generation of a population manager for each aggregated machine.
Given a basic (or flat) machine M , we construct a machine MManager , in such
a way that its internal consistency is guaranteed, provided that M is inter-
nally consistent. We define the clause AGGREGATES M to mean simply EXTENDS

MManager .
The generation of the population manager is described below.

5.1 Generating Population Managers

Let M be a generic basic abstract machine, of the form:

MACHINE
M

SETS
s

CONSTANTS
c

PROPERTIES
PROP(s, c)

VARIABLES
v

INVARIANT
I (s, c, v)

INITIALIZATION
INIT (v) = PINIT (v) |@x′ · (QINIT (x′, v) =⇒ v := x′)

OPERATIONS
r ←− op(p) =̂ P (p, v) |@x′ · (Q(x′, p, v) =⇒ v, r := x′)
...

END

Note that we have written the substitutions corresponding to the initialisation
and the operations in the most general form (according to Theorem 6.1.1 in
page 284 of [1], all substitutions are reducible to this normal form). Also, for the
sake of simplicity, we have considered a generic machine without parameters,
although it will be clear that our techniques can be straightforwardly extended
to cope with parameterised machines.
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Let us assume that M is internally consistent, i.e., it satisfies its proof obli-
gations, and that T are the types assigned to its variables v 1. The population
manager MManager for the abstract machine specification M has the following
form:

MACHINE
MManager

SETS
s

CONSTANTS
c

PROPERTIES
PROP(s, c)

VARIABLES
MSet , v

INVARIANT
(∀n·n ∈MSet ⇒ I (s, c, v(n)))∧(MSet ⊆ NAME)∧(v ∈MSet → T )

INITIALIZATION
MSet , v := ∅, ∅

OPERATIONS
add M(n) =̂
PRE n ∈ (NAME−MSet)
THEN MSet := MSet ∪ {n} || INIT (v(n))
END
del M(n) =̂
PRE n ∈MSet
THEN MSet := MSet − {n} || v := (dom(v)− {n}) � v
END
r ←− op(p, n) =̂
P (p, v(n)) ∧ (n ∈MSet) |@x′ · (Q(x′, p, v(n)) =⇒ v(n), r := x′)
...

END

We can describe then the construction of the population manager of M as
follows:

– The sets, constants and properties defined in M are included without any
change in MManager ,

– An extra variable MSet , representing the set of live instances of M , is de-
clared,

– all variables defined in M are included as variables of MManager , relativised
to names of live instances, i.e., each variable V of type T becomes a mapping
from MSet to T ,

– the invariant M is relativised to names of instances, and incorporated as a
conjunct of the invariant of MManager ,

1 Recall that in the B method, it is a requeriment for the invariant to imply that all
variables are assigned, directly or indirectly, a corresponding type.



Towards Dynamic Population Management of Abstract Machines 537

– all operations defined in M are included as operations of MManager , adding
an extra parameter of type MSet , which indicates in which instance the
operation should be executed,

– population management operations add M and del M , which are automati-
cally generated from the definition of M , are defined.

To clarify the generation of population managers, consider the machine in
Figure 4. It is the result of the generation of a population manager for machine
Scalar, given in Figure 1.

MACHINE
ScalarManager

VARIABLES
var ,ScalarSet

INVARIANT
(∀n · n ∈ ScalarSet ⇒ var(n) ∈ INT) ∧ (ScalarSet ⊆ NAME)∧
(var ∈ ScalarSet → INT)

INITIALIZATION
ScalarSet , var := ∅, ∅

OPERATIONS
add Scalar(n) =̂
PRE n ∈ (NAME− ScalarSet)
THEN (ScalarSet := ScalarSet ∪ {n}) || var(n) :∈ INT
END

del Scalar(n) =̂
PRE n ∈ ScalarSet
THEN ScalarSet := ScalarSet − {n} ||
var := (dom(var)− {n}) � var
END
chg(v, n) =̂
PRE v ∈ INT ∧ n ∈ ScalarSet
THEN var(n) := v
END

v ←− val(n) =̂ PRE n ∈ ScalarSet THEN v := var(n) END

END

Fig. 4. Abstract machine ScalarManager.

There are just a few very basic differences between the meaning of machine
SeveralScalars’ (as an extension of ScalarManager) and the meaning of machine
SeveralScalars; we use a general sort, called NAME, as the domain of names for
machine instances (recall that in the flat specification SeveralScalars, a special
local set named SCALARSET is used). It is easy to extend the core of B with
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a definition of a set NAME, and a sufficiently large number of constants of this
sort; in fact, it is even not necessary to incorporate this to B’s core, but instead
a stateless abstract machine containing the definition might be declared, and
implicitly used in all other machine declarations.

5.2 Consistency of Generated Population Managers

As we mentioned before, if the abstract machine M is internally consistent, i.e., it
satisfies its proof obligations, then we guarantee that the generated MManager
is also internally consistent, by construction. We justify this claim here.

Let us consider then the generic abstract machine specification M described
above. Adapting the style used in [10] to the more general form of substitutions,
we express the proof obligations corresponding to M as follows:

IC1 ∃s0, c0 : PROP(s0, c0)
IC2 PROP ⇒ ∃v0 : I (v0)
IC3 PROP ⇒ [INIT ]I (v)
IC4 (PROP ∧ I (v) ∧ P (p, v) ∧ Q(x′, p, v)) ⇒ [v, r := x′]I (v)

The proof obligations for machine MManager would then be:

M-IC1 ∃s0, c0 : PROP(s0, c0)
M-IC2 PROP ⇒ ∃v′

0, MSet0 : I Man(v′
0, MSet0)

M-IC3 PROP ⇒ [MSet , v := ∅, ∅]I Man(v, MSet)
M-IC4a (PROP ∧ I Man(v, MSet) ∧ (n ∈ (NAME − MSet)) ⇒

[INIT (v(n)) || MSet := MSet ∪ {n}]I Man(v, MSet)
M-IC4b (PROP ∧ I Man(v, MSet) ∧ (n ∈ MSet) ⇒

[MSet := MSet − {n} || v := (dom(v) − {n}) � v]I Man(v, MSet)
M-IC4c (PROP ∧I Man(v, MSet)∧P (p, v(n))∧(n ∈ MSet)∧Q(x′, p, v(n))) ⇒

[v(n), r := x′]I Man(v, MSet)

where IMan(X, Y ) represents the invariant of MManager for X and Y , i.e., the
formula:

(∀n · n ∈ Y ⇒ I (X(n))) ∧ (Y ⊆ NAME) ∧ (X ∈ Y → T )

Let us assume that the proof obligations of machine M have already been
discharged. We prove that this implies the satisfaction of each of the proof obli-
gations of MManager :

M-IC1: Trivial, due to the validity of IC1.
M-IC2: Let us consider MSet0 = ∅ and v′

0 = ∅. We have to prove that
I(v′

0, MSet0) is satisfied:
– ∀n · n ∈ ∅ ⇒ I (v0(n)): Trivially true (the antecedent of the implication

is false).
– ∅ ⊆ NAME: Trivially true, since NAME is defined to be a set.
– ∅ ∈ ∅ → T : Trivially true, since (∅ → T ) = {∅}.

M-IC3: valid (see proof for M-IC2).
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M-IC4a: This proof obligation indicates that operation add M preserves the
invariant. So, under the hypothesis:

PROP∧
(∀n · n ∈ MSet ⇒ I (s, c, v(n))) ∧ (MSet ⊆ NAME) ∧ (v ∈ MSet → T )∧
(n ∈ (NAME − MSet))

we have to prove that the invariant is re-established after the assignment:

INIT (v(n)) || MSet := MSet ∪ {n}

Let us assume PINIT (v(n)) (the precondition of INIT ), and let x′ be an
arbitrary expression such that QINIT (x′, v(n)). We prove that each of the
conjuncts of the invariant is preserved:
– ∀n0 · n0 ∈ MSet ∪ {n} ⇒ I (s, c, (v <+{n 
→ x′})(n0)): If n0 is distinct

from n, then this holds due to the hypothesis. It remains to be proved
then that this also holds when n0 = n, i.e., that I (s, c, x′) holds. we know
this is true, because the initialisation of M preserves I (IC3).

– MSet ∪ {n} ⊆ NAME: Trivially true, due to the hypothesis MSet ⊆
NAME and n ∈ (NAME − MSet).

– (v < +{n 
→ x′}) ∈ (MSet ∪ {n}) → T : Holds trivially, due to our
hypothesis

v ∈ MSet → T

and x′ being of type T (enforced because INIT is well-formed).
M-IC4b: This proof obligation indicates that operation del M preserves the

invariant. So, under the hypothesis:

PROP∧
(∀n · n ∈ MSet ⇒ I (s, c, v(n))) ∧ (MSet ⊆ NAME) ∧ (v ∈ MSet → T )∧
(n ∈ MSet)

we have to prove that the invariant is re-established after the assignment

MSet := MSet − {n} || v := (dom(v) − {n}) � v

i.e., that the following holds:

(∀n0 · n0 ∈ MSet − {n} ⇒ I (s, c, ((dom(v) − {n}) � v)(n0)))∧
(MSet − {n} ⊆ NAME)∧
((dom(v) − {n}) � v) ∈ (MSet − {n}) → T

The first conjunct reduces to

∀n0 · n0 ∈ MSet − {n} ⇒ I (s, c, v(n0))

because n0 is distinct from n. Due to our hypothesis, the above holds. The
second and third conjuncts follow immediately from the hypothesis.
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M-IC4c: This proof obligation indicates that the operations that were originally
defined in M preserve the invariant when adapted and incorporated into the
manager of M . So, under the hypothesis:

(PROP ∧ I Man(v, MSet) ∧ P (p, v(n)) ∧ (n ∈ MSet) ∧ Q(x′, p, v(n)))

the invariant is re-established, i.e., that I Man(x′, MSet) holds. The second
conjunct of the invariant is trivially preserved, since the substitution does
not write on MSet . The first conjunct of the invariant is also preserved,
since according to IC4, an assignment based on relation Q preserves I under
hypothesis P . The third conjunct of the hypothesis is trivially preserved,
according to the definition of assignments of the form f(x) := E (page 267
of [1]).

5.3 Proof Obligations for AGGREGATES

Using the extension described above, we would be provided with a more suitable
notation for dynamic population management of components in B. To check for
consistency of a machine M1 aggregating an internally consistent machine M , we
just need to check the proof obligations corresponding to EXTENDS MManager ,
according to the semantics described above for the proposed extension. In this
way, we are treating AGGREGATES as a proper structuring mechanism, and not
just as a short-hand for an unstructured flat specification; in other words, we
do not need to flatten specifications involving AGGREGATES in order to check for
consistency.

6 Using Aggregated Machines: Interleaving Parallel
Composition

In the abstract machine TwoScalars that we described in Figure 2, an operation
swap was defined. This operation simultaneously called two other operations,
namely xx.chg and yy.chg . This is allowed because these two operations belong
to different extended machines. If two (or more) operations belong to the same
abstract machine, then they cannot be called in parallel. Several researchers no-
ticed this restriction, and proposed different extensions to B and languages with
similar characteristics, incorporating write frames, modifying the semantics of
parallel composition, etc [6][5][11]. A common restriction on the parallel com-
position of statements, which is reasonable, is that composed statements should
not write on the same variables.

In the case of our machine SeveralScalars’, which aggregates Scalar, we would
like to be able to call in parallel operations p.chg(q.var) and q.chg(p.var), which,
at least when p and q are different, naturally seem to belong to different ma-
chines. However, because of the way we provide meaning to the AGGREGATES

clause, even when p are q are different, they will be writing on the same vari-
able, namely the mapping var . Therefore, according to the definitions of parallel
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composition we know of, we cannot define an operation similar to the swap oper-
ation in SeveralScalars when, instead of redefining scalar in a flat specification,
we aggregate scalars.

Due to this problem, we are forced to introduce an extra operator for com-
bining substitutions, in order to be able to use combinations of operations of
aggregated machines. The operation we provide is different from the extensions
or alternatives to parallel substitution we are aware of. For all substitutions S
and T , and formula P , we define the interleaving parallel composition of S and
T as follows:

[S ||| T ]P =̂ ([S][T ]P ) ∧ ([T ][S]P )

In the presence of a sequencing operator (not present in the set of oper-
ations at the specification stage in the B method), S ||| T can be described as
(S; T )[](T ; S). There are good reasons for the absence of sequencing at the specifi-
cation stage in B; methodologically, it forces the specifier to describe behaviour in
an abstract way, without allowing one to enforce a particular order in the substi-
tutions that define an operation. We believe our interleaving parallel composition
respects this philosophy, since the order in which the substitutions are applied in
unknown. In fact, the interesting case is when [S][T ] = [T ][S], which, intuitively,
leads to a definition of non-interference between S and T [7]2. Note that the
definition of swap in SeveralScalars’ is a case of a use of ||| with non-interfering
substitutions: (p.chg(q.var); q.chg(p.var)) and (q.chg(p.var); p.chg(q.var)) both
give the same result, i.e., they are non-interferent.

There are no side conditions for the well-formedness of (S |||T ). In particular,
as we wanted, two substitutions S and T can be combined using ||| even when
they write on the same variables.

It is important to say that it is not our aim to provide an alternative to
parallel composition. As we indicated before, we need to introduce this extra
substitution operator to be able to express in a natural way operations defined
in terms of other operations in aggregated machines. In fact, substitutions of the
form

x := y || y := x

for instance, are not equivalently defined using ||| instead. Note that

x := y ||| y := x

does not swap the values of x and y, but instead lets variables x and y with the
same value (either the original value of x or the original value of y).

An interesting special case of the use of interleaving parallel composition
is the one in which the composing substitutions write on the same mapping
variable, as, for instance, in the following substitution:

f(x) := E1 ||| f(y) := E2.
2 Our definition of interleaving parallel composition is related but not equivalent to

the interleaving semantics of parallel composition: in our interleaving parallel com-
position, non-interference of the composed statements is not a requirement for the
well-formedness of the composite statement.
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Here, if x and y are distinct elements of the domain of f , the substitution changes
the image of x by E1 and the image of y by E2. This clearly is not possible if
we use || instead of |||, since both composing substitutions write on the same
variable (the mapping f).

The reader might argue that an equivalent substitution can be expressed,
without the use of parallel composition (for our case, f := f <+{(x, E1), (y, E2)}
would be an equivalent substitution without the use of parallel composition).
However, this is just an alternative when defining substitutions in a flat spec-
ification. On the other hand, when the composing substitutions correspond to
operations defined in “submachines”, this alternative is no longer possible. So, for
instance, we cannot define the swap operation using this approach in a machine
extending ScalarManager.

We need to justify that the introduction of this new combination of sub-
stitutions does not affect the standard semantics of B. The following Theorem
complements the result of Theorem 6.1.1 in page 284 of [1]. It proves that substi-
tutions built using interleaving parallel composition reduce to the normal form,
thus indicating that our extension is within B’s standard semantics.

Theorem 1. Let S and T be two substitutions which reduce to the normal form
defined in 284 of [1]. Then, the substitution

S ||| T

also reduces to the normal form.

Proof. Let S and T be two substitutions, which reduce to the normal form. If
we prove that both S; T and T ; S reduce to normal form, then S|||T will also
reduce to normal form, due to Theorem 6.1.1, since nondeterministic choice of
reducible substitutions reduces to normal form.

Since S and T are reducible to normal form, they can be expressed respec-
tively as follows:

PS | @x′ · (QS =⇒ x := x′)
PT | @x′′ · (QT =⇒ x := x′′)

We prove that S; T also reduces to normal form. The proof for T ; S is similar.
We refer to the basic properties of “;”, given in pages 375 and 376 of [1], as “BP
;”. We also refer to the laws of substitutions given in pages 284 and 285 of [1].

(PS |@x′ · (QS =⇒ x := x′)) ; (PT |@x′′ · (QT =⇒ x := x′′)) = {BP ; (2)}
PS | (@x′ · (QS =⇒ x := x′)) ; (PT |@x′′ · (QT =⇒ x := x′′)) = {BP ; (8)}
PS | ([@x′ · (QS =⇒ x := x′)]PT |

@x′ · (QS =⇒ x := x′) ; @x′′ · (QT =⇒ x := x′′)) = {Law 3}
PS ∧ ([@x′ · (QS =⇒ x := x′)]PT ) | (@x′ · (QS =⇒ x := x′) ; @x′′ · (QT =⇒ x := x′′))
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We now go on reducing (@x′ · (QS =⇒ x := x′) ; @x′′ · (QT =⇒ x := x′′)).

(@x′ · (QS =⇒ x := x′) ; @x′′ · (QT =⇒ x := x′′)) = {BP ; (11)}
@x′′ · (@x′ · (QS =⇒ x := x′) ; (QT =⇒ x := x′′)) = {BP ; (5)}
@x′′ · @x′ · ((QS =⇒ x := x′) ; (QT =⇒ x := x′′)) = {BP ; (3)}
@x′′ · @x′ · QS =⇒ ((x := x′) ; (QT =⇒ x := x′′)) = {BP ; (9)}
@x′′ · @x′ · QS =⇒ ([x := x′]QT =⇒ x := x′; x := x′′) = {Law 6}
@x′′ · @x′ · (QS ∧ [x := x′]QT ) =⇒ (x := x′; x := x′′) = {Def. ;}
@x′′ · @x′ · (QS ∧ [x := x′]QT ) =⇒ x := [x := x′]x′′

So, as we wanted to prove, S; T reduces to normal form, which implies (to-
gether with T ; S reducing to normal form) that S|||T also reduces to normal
form.

6.1 Relating Parallel Composition and Interleaving Parallel
Composition

It is interesting to compare the use of parallel substitution and interleaving
parallel substitution. In [11], S. Dunne compares

(skip || x := x + 1) and (x := x || x := x + 1),

illustrating that skip and x := x are not absolutely equivalent. Surprisingly,
substitutions

(skip ||| x := x + 1) and (x := x ||| x := x + 1)

are well-formed, and indeed equivalent, since both reduce to x := x + 1. In fact,
they are also equivalent to (skip || x := x + 1).

To finish our introduction to the interleaving parallel composition, we state
a Proposition, which gives a sufficient condition for the equivalence between ||
and |||.
Proposition 1. Let S and T be two substitutions, of the form:

PS | @x′ · (QS =⇒ x := x′)
PT | @x′′ · (QT =⇒ y := x′′)

respectively. If x ∩ y = ∅, x\PT , QT and y\PS , QS, then

(S||T ) = (S|||T )

7 Conclusions

We have argued for the benefits of extending the notation of the B language to
support dynamic management of abstract machine populations. We proposed a
preliminary notation, in which we generalise the EXTENDS clause (by defining a
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new clause AGGREGATES) to support dynamic creation and deletion of machines.
The semantics of standard B is preserved by the extension, and just very simple
machinery had to be built on top of B’s core.

The mechanisms via which we can extend the B language have been used
in [8], in the context of object-oriented modelling languages, and in [2][3], in
the context of axiomatic specifications of reconfigurable architectures. Other
concepts introduced in this previous work, such as the use of associations and
inheritance, remain to be studied in the context of model-oriented specifications.

Among our priorities for future research in this direction are:

– to generalise the concept of aggregate to support associations between dy-
namic sets of instance machines;

– to study similar concepts to aggregate supporting specification structuring
within the IMPLEMENTATION construct of the B method;

– to study the generalisation of the REFINEMENT construct to accomodate re-
finement between aggregates of dynamically managed instances;

– to provide a mechanism that allows instances and associations to be com-
posed into a subsystem instance.

All the above are necessary for acheiving a general theory of dynamic manage-
ment of component populations within specifications in the B language. A simi-
lar approach should also be possible for a larger group of similar model-oriented
specifications such as Z and the module version of VDM.

An interesting new combination of substitutions, the interleaving parallel
composition, emerged as a consequence of the use of machine aggregations. We
plan to explore in more detail the implications of introducing this new operation
in the B method.
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