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Abstract. Bounded verification is a technique associated with the Alloy
specification language that allows one to analyze Alloy software models
by looking for counterexamples of intended properties, under the as-
sumption that data type domains are restricted in size by a provided
bound (called the scope of the analysis). The absence of errors in the
analyzed models is relative to the provided scope, so achieving verifia-
bility in larger scopes is necessary in order to provide higher confidence
in model correctness. Unfortunately, analysis time usually grows expo-
nentially as the scope is increased. A technique that helps in scaling
up bounded verification is parallelization. However, the performance of
parallel bounded verification greatly depends on the particular strategy
used for partitioning the original analysis problem, which in the context
of Alloy is a boolean satisfiability problem. In this article, we present
a novel technique called tranScoping, that consists of examining alter-
native partitions of a SAT problem resulting from an Alloy model for
small scopes, and extrapolating this information to select an adequate
partition for larger scopes. As our experiments show, tranScoping allows
us to find suitable partitions that make the parallel analysis feasible, and
in particular lead to analyzing models on scopes that have been elusive
for years.
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1 Introduction

Software specification is a crucial activity for software development. It consists
of describing software and its intended properties without the operational details
of implementations. By specifying software, and especially if one does so prior to
implementation, one is able to better understand the software to be developed,
and even validate requirements, which would save time and development costs
compared to finding flaws in them in later stages of development. The vehicle
to specify software is the specification language. Some important characteristics
of specification languages are declarativeness, expressiveness and analyzability.
Declarativeness and expressiveness allow one to capture requirements more natu-
rally and precisely, while analyzability allows one to better exploit specifications
by more effectively finding flaws, inconsistencies, etc.

Due to their intrinsic well-defined formal semantics, formal approaches to
specification are usually better suited for analysis. Representatives of formal
specification languages are, for instance, B [1], Z [9], the Object Constraint Lan-
guage (OCL), the Java Modeling Language (JML) [3], and Alloy [14]. Some of
these languages, B and Alloy in particular, have been designed with analysis as a
main concern. A main difference between these two languages is that the analysis
underlying B’s design is heavyweight (semi automated theorem proving, essen-
tially), while Alloy favors fully automated analysis. The main analysis technique
behind Alloy is lightweight, based on boolean satisfiability (SAT). This analysis
turned out to be extremely useful in making subtle modeling errors visible, as is
evidenced by approaches to the analysis of all the aforementioned specification
languages (or, more precisely, fragments thereof) that translate to Alloy in order
to profit from the latter’s analysis mechanism.

The analysis mechanism implemented by Alloy Analyzer, the tool associated
with Alloy, is bounded verification. Bounded verification is a lightweight formal
analysis technique that consists of looking for assertion violations of a model, un-
der the assumption that the data domains in the model are bounded by a user
provided bound (called the scope of the analysis). Thus, the absence of errors
in the analyzed models is relative to the provided scope, and errors might be
exposed in larger scopes. Consequently, confidence in the correctness of models
depends on the scope: the larger the scope, the more confident we will be that
the specification is correct. That is, achieving verifiability in larger scopes is nec-
essary in order to provide higher confidence on model correctness. Unfortunately,
analysis time usually grows exponentially as the scope increases, so approaches
to increase the scalability of bounded verification are essential. A technique that
helps to increase the scalability of bounded verification is parallelization. Essen-
tially, this consists of partitioning the original SAT problem into a number of
different independent smaller problems, which can be solved in parallel.

Typically, the speed up obtained by parallelization strongly depends on how
the original problem is partitioned. Unfortunately, finding an adequate partition
for a problem is difficult; for problems whose sequential analysis takes hundreds
of hours, most partitions of the original problem often lead to parallel analyses
that still exhaust the available resources (time or memory). In this article, we



study the problem of choosing an appropriate partition of a SAT problem, in
order to analyze it in parallel. We present a novel technique called tranScoping,
which consists of examining alternative partitions for small scopes, and extrap-
olating this information to select an adequate partition for larger scopes. As the
experiments presented in Section 5 show, tranScoping indeed allows us to find
suitable partitions that make the parallel analysis feasible. Moreover, the exper-
iments in Section 5 deal with problems whose sequential analyses take hundreds
of hours, and whose parallel analyses most often timeout as well, but by extrap-
olating analysis information via tranScoping we can efficiently analyze them. In
particular, tranScoping allows us to analyze models on scopes that have been
elusive for years. In Section 6 we discuss related work, and finally, in Section 7
we conclude and present some ideas for further work.

2 Bounded Verification: Alloy and the Alloy Analyzer

Alloy is a formal language based on a simple notation, with a simple relational
semantics, which resembles the modelling constructs of less formal object ori-
ented notations, and therefore is easier to learn and use for developers without
a strong mathematical background. In addition to being a relevant specification
language, Alloy has also received attention as an intermediate language: there
exist many translations from other languages into Alloy. For instance, a transla-
tion from JML (a formal language for behavioral specification of Java programs)
to Alloy is implemented as part of the TACO tool [11]. A number of tools have
also been developed for translating OCL-annotated UML models into Alloy (e.g.,
[2, 15]). Alloy has also been the target of translations from Event-B [17] and Z
[16].

There is a good reason for the existence of the above mentioned translations
from other languages into Alloy: Alloy offers a completely automated SAT based
analysis mechanism, implemented in the Alloy Analyzer [13]. Basically, given a
system specification and a statement about it, the Alloy Analyzer exhaustively
searches for a counterexample of this statement (under the assumptions of the
system description), by reducing the problem to the satisfiability of a propo-
sitional formula. Since the Alloy language features quantifiers, the exhaustive
search for counterexamples has to be performed up to certain bound in the
number of elements in the universe of the interpretations, called the scope of
the analysis. Thus, this analysis procedure cannot be used in general to guaran-
tee the absence of counterexamples for a model. Nevertheless, it is very useful
in practice, since it allows one to discover subtle counterexamples of intended
properties, and when none is found, gain confidence in the validity of our specifi-
cations. The existence of the many translations from other languages into Alloy
provides evidence of the usefulness of the Alloy Analyzer’s analysis in practice.

Let us introduce the Alloy language by means of an example, which will also
serve the purpose of explaining how the Alloy Analyzer performs its analyses.
Consider the address book example from [14, Fig. 5.1], presented in Fig. 1. In this
example, an Alloy model of an address book, consisting of a set of known people



module addressBook

abstract sig Target {}

sig Addr extends Target {}

sig Name extends Target {}

sig Book {addr: Name -> Target}

fact Acyclic {all b: Book | no n: Name | n in n.^(b.addr)}

pred add [b, b’: Book, n: Name, t: Target] {

b’.addr = b.addr + n -> t }

fun lookup [b: Book, n: Name]: set Addr {n.^(b.addr) & Addr}

assert addLocal {

all b,b’: Book, n,n’: Name, t: Target |

add [b,b’,n,t] and n != n’ => lookup [b,n’] = lookup [b’,n’]

}

// This command should produce a counterexample

check addLocal for 3 but 2 Book

Fig. 1. An Alloy example: the addressBook sample model from [14, Fig. 5.1].

and their corresponding addresses, is proposed. Let us go through the elements
of an Alloy model. Alloy is a rich declarative language. It allows one to define
data domains by means of signatures, using the keyword “sig”. An abstract

signature is one whose underlying data set contains those objects belonging to
extending signatures. In the example, the data domain associated with signa-
ture Target is composed of the union of the (disjoint) domains Addr and Name.
Signatures are, in some sense, similar to classes, and may have fields. For in-
stance, signature Book has a field named addr, which represents the mapping
from names to targets (other names or addresses) that constitutes an address
book. According to Alloy semantics, fields are relations. In this case, since “->”
stands for Cartesian product, addr ⊆ Book × Name × Target. Axioms are pro-
vided in Alloy as facts, while predicates (defined using the keyword “pred”) and
functions (defined using the keyword “fun”), offer mechanisms for defining pa-
rameterized formulas and expressions, respectively. Formulas are defined using a
Java-like notation for connectives. Alloy features quantifiers: “all” denotes uni-
versal quantification, while “some” is existential quantification. Terms are built
from set-theoretic/relational operators. They include constants (like “univ”, de-
noting the set of all objects in the model, or “none”, which denotes the empty
set). Unary relational operators include transposition (which flips tuples from
relations) and is denoted by “~”. Alloy also includes transitive closure (noted
by “^”) and reflexive-transitive closure (noted by “*”), which apply to binary



relations. Relational union is noted by “+”, intersection by “&”, and composition
by “.”.

Fact Acyclic in the model specifies that there are no cyclic references in
address books (formula “no n: Name | ...” is equivalent to “all n: Name |

not ...”). Predicate add, on the other hand, is used to capture an operation of
the model – the one corresponding to adding a new entry into an address book.
The formula corresponding to this predicate indicates which is the relationship
between the pre- and post-states of the address book (referred to as b and b’ in
the predicate).

In addition to the described elements, an Alloy model may also have asser-
tions. An assertion represents an intended property of a model, i.e., a model that
is expected to hold as a consequence of the specification. Assertions can be ana-
lyzed, by checking their validity in all possible scenarios within a provided scope.
The “check” command is used to instruct the Alloy Analyzer on how to ana-
lyze an assertion, in particular by specifying the corresponding scope. The Alloy
Analyzer translates the model and the assertion of interest to a propositional
formula. Notice that the model may include explicit facts (the model axioms),
implicit facts (properties that follow from the typing of fields and “subtyping”
between signatures), and the assertion to be analyzed. The Analyzer then pro-
duces a propositional formula representing the conjunction:

Explicit Facts && Implicit Facts && !Assert .

The translation is made possible due to the finitization information provided
by the scopes in the check statement. Notice that if the resulting propositional
formula is satisfiable, then the Alloy Analyzer can retrieve a valuation that
satisfies the facts, yet violates the assertion (a counterexample showing that the
property of interest does not hold in the model). Since the analysis is performed
relative to the prescribed scope, a verdict of unsatisfiability only implies that
counterexamples do not exist within the scope. The assertion under analysis
may be false but larger domains may be necessary to exhibit counterexamples.

3 Parallel SAT-Solving

Parallel SAT solving corresponds to the problem of deciding the satisfiability of
a propositional formula, by dividing the original problem into smaller instances,
and then solving these independently. Parallelization approaches to SAT solv-
ing use a divide-and-conquer pattern: problems that are too hard to be tack-
led directly are split into several (hopefully easier) subproblems, by choosing n
propositional variables, and splitting the problem into the 2n disjoint smaller
subproblems, where the chosen propositional variables are instantiated with all
possible combinations of boolean values. As we will see, how many non trivial
subproblems are obtained, whether they are in fact easier, or how much easier
than the parent problem these turn out to be, all strongly depend on the branch-
ing variables chosen to partition the search space into disjoint subproblems.



In our case, the splitting process is achieved by means of a mechanism sim-
ilar to guiding paths [25], with some differences that are worth noting. While
one could simply choose n branching variables to split a problem into 2n dis-
joint smaller ones, our experience working with CNF formulas arising from the
translation of Alloy specifications suggests that the actual number of nontrivial
subproblems is usually small compared to the number of subproblems, and often
significantly smaller. It is worth then to try to filter out subproblems that can
easily shown to be trivially unsatisfiable during the splitting process, without
ever producing or enqueueing them. For instance, if the n branching variables
happen to be part of the same “row” within the representation of a functional
Alloy relation, a quick round of boolean constraint propagation will easily dis-
card most combinations, and only the n + 1 subproblems where at most one of
the variables is true will “pass the filter” and become new subproblems. This is
the approach we follow.

Two separate parameters control how problems are split. One of them is
a source of branching variables, i.e., a criterion determining which sequence of
decision variables should be considered (but not how many). The second one is a
limit on the number of subproblems to be spawned, i.e., how many new tasks the
system is willing to accept. The actual number of nontrivial subproblems may
greatly vary depending on which variables are chosen. So, an a priori limit on
the number of variables to branch is hard to determine. We therefore generate
subproblems and solve the trivial ones as part of the same process. The following
pseudocode illustrates our resulting approach to splitting a satisfiability problem
into subproblems:

children = [[]]

while varSource.hasMore() and len(children) < children_limit:

var = varSource.next()

newchildren = []

for litlist in children:

for newlit in (-var, +var):

newlitlist = litlist + [newlit]

if not trivially UNSAT(newlitlist):

newchildren.append(newlitlist)

children = newchildren

The above described approach to parallel SAT solving is implemented in our
prototype distributed solving tool ParAlloy. The parallel analysis experiments
featured in this article were run using the latest prototype of ParAlloy, which
runs on any cluster of independent commodity PCs. Its main system require-
ments are a working MPI [6] implementation, a C++ compiler and a Python
interpreter. The latest version of the Minisat [5] solver is used at the core of each
worker process. Python and mpi4py [7] are used to glue the dynamic aspects of
the system together.



The implementation constantly monitors the subproblem solving rate, i.e.,
the average number of tasks that are proved UNSAT (thus closing a branch of
the search space) per unit of time. At regular intervals, said rate is inspected
and compared with a threshold, in order to take action if not enough progress
is taking place. If the rate is below the threshold, the oldest worker process
(whichever has been solving its subproblem for the longest amount of time) is
instructed to split that subproblem. In order to keep efficiency rates high, this
is also done if the UNSAT rate is above the threshold but there are idle workers
(which implies that all pending task queues are empty). In the current version
of the ParAlloy tool, inspection of the UNSAT rate (and possibly corrective
action) takes place every 5 seconds, and the UNSAT rate threshold is set at
0.15 per second per worker. For the 68-worker setup used in the parallel analysis
experiments shown in Section 5, this means that a progress threshold of 10.2
UNSATs per second is enforced.

4 TranScoping

In this section we present TranScoping, the main contribution of the article.
TranScoping is a new technique for improving the scalability of parallel bounded
exhaustive analysis. As it will be explained later on, this technique takes into
account the performance of different alternative ways of splitting a SAT problem
for small scopes, and extrapolates this information to select an adequate splitting
approach to be used with larger scopes.

Let us start by introducing the notion of splitter, corresponding to a criterion
for selecting propositional variables to split a propositional satisfiability problem.

Definition 1. Given an Alloy model A whose translation to conjunctive normal
form (CNF) is a proposition P , and a bound b on the number of expected sub-
problems, a splitter is an algorithm for selecting propositional variables from P
in such a way that the number n of produced subproblems satisfies n ≤ b.

Not every variable-selecting algorithm is an appropriate splitter. We require a
splitter S to satisfy the following properties:

– tranScopability : there has to be an algorithm that allows one to extrapolate
a partition generated by S in a scope i to a scope k > i.

– predictability in a class C of splitters: if S is the best (the one that yields a
partition that can be solved in parallel faster) splitter from C to be used in
scope k, then there exists a scope i (i < k), such that S is the best splitter
in C for all scopes j such that i ≤ j ≤ k.

While tranScopability is in general easy to guarantee (we will discuss this prop-
erty later on, when the splitters are presented), predictability may, on the other
hand, be more intricate. In order to understand why, consider, as an example,
the model of the mark and sweep garbage collection algorithm provided as part
of the Alloy Analyzer’s distribution, and the assertion Soundness2 in it. The se-
quential analysis times (in seconds) for this assertion are 1, 23, 217 and 2855, for



scopes 7, 8, 9 and 10, respectively. Notice that for scope 7 the sequential analysis
takes only 1 second. Therefore, all the splitters will generate partitions whose
problems in general will have a very low analysis time, which prevents us from
perceiving a clear order if one exists. So, we must consider larger scopes in which
the differences between analysis times are easier to perceive. Unfortunately, the
analysis time grows quite fast. Already for scope 10, applying all the available
splitters (that will be presented in Section 4.1) and analyzing the generated sub-
problems in order to define an adequate ordering, is too costly. Therefore, we
will be limited to the conclusions that we can reach by mining the data obtained
for the smallest scopes that are large enough to allow us to differenciate splitters
(e.g., for Soundness2, scopes 8 and 9). As we will show in Section 5, in the case
of Soundness2, this is enough to arrive at valuable conclusions.

4.1 A Portfolio of Splitters

Let us now describe an initial collection of splitters, that we assume that satisfy
tranScopability and predictability. We will present evidence to this effect when
the tranScoping technique is evaluated, in Section 5.

The VSIDS Splitter. VSIDS is a particular decision heuristic that many
modern SAT-solvers (including MiniSat) use in order to select the next variable
to decide, i.e., to be used for splitting (by instantiating it with true and false).
The heuristic keeps track of the number of occurrences of a given literal in the
formula under analysis, a value that is incremented by a fixed amount whenever
new clauses containing the literal are learnt. When a new variable is selected
to be decided, the one with the largest VSIDS ranking is chosen. Given k, the
maximum number of subproblems to be generated, the VSIDS splitter is defined
as follows:

Once the underlying SAT-solver is interrupted, select branching variables
by considering the ranking of the variable activity score in the solving
process, until the number of nontrivial subproblems reaches k.

For the evaluation in Section 5, in order to compute the VSIDS rank we will
analyze the problem sequentially and use the ranking resulting at the end of the
sequential analysis. This forces us to use small scopes during the mining phase
(otherwise the complete sequential analysis becomes infeasible). Alternatively,
we could use an intermediate ranking (for example, the ranking obtained after
10 seconds of analysis), but that would add another dimension to the evaluation,
making it too complex for our purposes. For those scopes in which the complete
sequential analysis is infeasible, we will use the ranking produced after 5 seconds
of SAT-solving (this is the case when analyzing a problem for large scopes after
the mining phase). As we will see in Section 5, this limitation does not affect
the quality of the analysis of the presented examples (or any other example we
used for assessment).



TranScopability is clearly satisfied by VSIDS, since lifting variables from the
VSIDS ranking is algorithmic. Notice that there is no direct relationship between
the variables selected using VSIDS in a small scope, and the variables selected
in larger scopes. As the experiments in Section 5 show, predictability is achieved
just by using the same technique.

The “Field” Family of Splitters. Alloy models include signature fields. Dur-
ing the process of translating a model to a propositional formula, fields are mod-
eled as matrices of propositional variables. Matrix dimensions are determined
by the field typing and the analysis scopes. As an example, consider an Alloy
specification containing the following signature declaration:

sig Source {

field : Target

}

Suppose we want to analyze the command check assertion for k but 4 Source,

5 Target. If the assertion has counterexamples, each counterexample must pro-
vide domains S = {S0, S1, S2, S3} and T = {T0, T1, T2, T3, T4} for signatures
Source and Target, respectively, as well as a binary relation field ⊆ S×T , that
make the formula corresponding to the assertion satisfiable. The relation field is
characterized by the following matrix:

Mfield :=

pS0,T0 pS0,T1 pS0,T2 pS0,T3 pS0,T4

pS1,T0
pS1,T1

pS1,T2
pS1,T3

pS1,T4

pS2,T0
pS2,T1

pS2,T2
pS2,T3

pS2,T4

pS3,T0 pS3,T1 pS3,T2 pS3,T3 pS3,T4

whose entries are propositional variables, and where pSi,Tj
= true ⇐⇒ 〈Si, Tj〉 ∈

field . Different fields have different degrees of relevance on a satisfiability prob-
lem, depending on how the fields are involved in the model. So one may consider
different fields, to choose variables from these fields’ representations in order to
partition the SAT problem. Each model field f gives rise to a different splitter.
The “Field” family of splitters is defined as follows:

select variables from those in matrix Mf , from the bottom-right entry,
and towards the top-left, while the number of subproblems does not sur-
pass the given bound k.

For the above matrix, the order in which variables would be selected is:

pS3,T4
, pS3,T3

, pS3,T2
, . . . , pS0,T1

, pS0,T0
.

Other Candidate Splitters. Various other splitters have been devised. How-
ever, for the case studies assessed so far, the Field family and VSIDS are the
most promising ones. The parallel SAT-solver PMSat [12] uses as its variable-
selecting heuristic those variables that occur in more clauses. This could give



origin to a new splitter by selecting those variables that are more frequently
found in the formula. Similarly, one can determine, for a given variable, which
are the variables whose decision propagate the value of more literals. A splitter
is then defined by selecting those variables that propagate the most.

4.2 Selecting the Right Splitter

Given an Alloy model containing an assertion A to be checked, a splitter S and a
bound b on the number of subproblems to generate, S provides an algorithm to
select variables to be used in an initial splitting of the (CNF translation of the)
model. The splitting produces CNF subproblems sp1, . . . , spk, with k ≤ b, which
can be SAT-solved sequentially (sp1; · · · ; spk), or in parallel (sp1|| · · · ||spk).

Once all the splitters are run on scopes i, i + 1, . . . , j, we must decide which
splitter is going to be used in scopes larger than j. In order to make an informed
decision we will store, for each splitter S and scope l (i ≤ l ≤ j), the following
information:

NUMS,l: Given a problem on scope l, the number of subproblems generated by
splitter S.

MAXS,l: Given a problem on scope l, the maximum analysis time incurred by
any of the subproblems generated by splitter S.

AVGS,l: Given a problem on scope l, the average analysis time required by the
subproblems generated by splitter S.

SUMS,l: Given a problem on scope l, the sum over all the analysis times of the
subproblems generated by splitter S.

DEVS,l: Given a problem on scope l, the standard deviation of the analysis
times of the subproblems generated by splitter S.

MEDS,l: Given a problem on scope l, the median of the analysis times of the
subproblems generated by splitter S.

Our goal is to convey our insight on how the information about how splitters
behave for small scopes has to be interpreted in order to decide which splitter
to use for larger scopes (as opposed to defining a unique mechanism for ranking
splitters based on this information). As we will see in Section 5, based on this
information it is often possible to choose a good splitter.

Of the above listed parameters, MAX is the most important. A high value
of MAX (close to the time required to analyze the source problem before being
splitted), shows that a child subproblem (the one that has MAX as its analysis
time) is likely to be nearly as hard to be analyzed as its parent, deeming the
splitting performed not useful. On occasion, MAX alone is not enough in order
to appropriately comparing splitters. This can be observed in Table 1 (see Sec-
tion 5), where splitters VSIDS and Domain2.dstBinding alternate their order
with respect to MAX, as the scope is increased. By looking at the value of the
SUM parameter in scope 8, one can see that VSIDS has a much lower value than
Domain2.dstBinding (218.29” versus 1678.88”), allowing us to decide between
these splitters. A high sum (compared to the other splitters) usually indicates



a bad splitting, where subproblems share complex portions of the SAT-solving
search space. Therefore, splitters with a high sum are usually demoted to lower
positions in the ordering. The most appropriate ordering in this case would then
be VSIDS < Domain2.dstBinding.

It is important to remark that the heuristics just presented allow us to predict
the best splitter (within the available set) for each of the case studies to be
discussed in Section 5. Moreover, computing the parameters MAX, SUM, etc.
for each splitter in a small scope is inexpensive. We have both a sequential
prototype and parallel prototype that can be used interchangeably depending
on the availability of the cluster infrastructure, in order to compute these values.

An alternative to the use of the above heuristics for ordering the splitters
is to carry out the actual parallel analysis in smaller scopes. This would allow
us to rank the splitters according to the parallel analysis times they induce,
yielding an ordering that is usually more precise. We will nevertheless stick to
the heuristics presented, resorting to parallel analysis in small scopes only if
required. Although the latter will not be necessary in this article for detecting
the best splitter, we will show in Section 5.5 that performing the parallel analyses
yields a better ordering on the whole set of splitters.

5 Experimental Results

In this section we evaluate the heuristics for choosing an appropriate splitter for
larger scopes, by analyzing the performance of splitters for smaller scopes. Our
evaluation is performed for a number of case studies. For each case study we
discuss how the VSIDS and the Field splitters can be ordered, and show that by
using the best splitter according to the defined ordering we achieve analyzability
in larger scopes. In Section 5.1 we describe the computing infrastructure used in
the evaluation; in Sections 5.2–5.5 we present our case studies, and in Section 5.6
we discuss some possible threats to the validity of our experimental results. Since
the parallel analysis times depend on the actual scheduling of the queued jobs,
we run each experiments 3 times and report the average analysis time. All the
times are given in seconds. In all the experiments we set the maximum number
of generated subproblems to 256. For each experiment we will report the time
required for computing the tranScoping data. This time is almost negligible
when compared to the analysis time in the largest scopes. In all the reported
experiments we were able to analyze assertions in scopes that before tranScoping
were infeasible (analysis would invariable diverge).

5.1 The Computing Infrastructure

All experiments were run on the CeCAR [26] cluster, which consists of 17 identi-
cal quad-core PCs, each featuring two Intel Dual Core Xeon 2.67 GHz processors
with 2 MB of L2 cache per core and 2 GB main memory per host. Parallel anal-
yses were run as 17x4 jobs, i.e., 17 nodes running one process per core (1 master
+ 68 workers). Sequential analyses were run on a single dedicated CeCAR node.



assert StructureSufficientForPairReturnability {
all g: Agent, a1, a2: Address, d1, d2: Domain3 |

StructuredDomain[d1] &&
MobileAgentMove[g,a1,a2,d1,d2]
=> ReturnableDomainPair[d1,d2]

}
check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 4 Agent, 7 Identifier -- checked
check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 8 Identifier -- checked
check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 9 Identifier -- this one is too big also
check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 11 Identifier
-- attempted but not completed at MIT; formula is not that large; results
-- suggest that the problem is very hard, and that the formula is almost
-- certain unsatisfiable [which means that the assertion holds]

Fig. 2. Assertion StructureSufficientForPairReturnability and its companion
checks.

5.2 A Model of Routing in Heterogeneous Networks

In [24], a model of routing in heterogeneous networks is presented. A compan-
ion Alloy model can be downloaded from the author’s web page. This model is
equipped with an assertion, shown in Fig. 2, that could not be checked for some
relatively small scopes. As explained before, it is important to analyze model
properties on larger scopes, since the larger the analyzed scope, the greater our
confidence will be in the validity of the model. This model is very difficult to an-
alyze; its sequential analysis time grows very steeply, from 308 seconds in scope 8
to over 15 days in scope 10 (cf. Table 4). Problems like this one require strategies
for scaling up bounded analysis, and parallelization could be a valuable tool for
it. Still, the parallel analysis technique presented in Section 3 only allowed us to
complete the analysis for scopes 1 to 10. In fact, before tranScoping, our repeated
attempts to analyze this assertion for scope 11 were unsuccessful. As shown in
Table 4, tranScoping allowed us to select splitter Domain3.srcBinding, and to
analyze successfully the assertion using this splitter.

In order to evaluate which splitter to choose, we started by mining informa-
tion about the performance of all splitters, for scopes 6 to 8, shown in Table 1.
Using this information, we discarded for scope 9 those splitters that stand no
chance of becoming best candidates. The possibility of separating viable from
inviable splitters is a good quality of tranScoping, since it allows us to reduce the
time invested in the data computing phase. It took 868.27 seconds to compute
this table. We start by sorting splitters according to MAX, as shown in Table 1.
This is insufficient to decide an adequate splitter. In particular, observe the or-
dering between splitters Domain2.dstBinding and VSIDS (the same applies to
the ordering between splitters Domain2.dstBinding and Domain.routing). For
scope 8, Domain2.dstBinding < VSIDS with respect to MAX, but by looking
at value SUM, we see that Domain2.dstBinding has a SUM that is 7.7 times
larger than VSIDS’ SUM. The difference is large enough to justify promoting
VSIDS above Domain2.dstBinding. This decision is backed up by Table 2, which



Scope Splitter NUM MAX AVG SUM DEV MED
6 Domain3.srcBinding 77 0.08 0.02 1.45 0.02 0.01

Domain3.BdstBinding 77 0.09 0.02 1.50 0.02 0.01
Domain2.dstBinding 192 0.18 0.04 7.67 0.03 0.03
Domain.routing 102 0.21 0.02 1.98 0.03 0.01
VSIDS 228 0.49 0.01 3.55 0.05 0.00
Domain3.AdstBinding 192 1.22 0.05 9.78 0.10 0.02
Identifier remainder 64 2.31 0.73 46.94 0.52 0.59

7 Domain3.BdstBinding 136 0.84 0.12 17.00 0.18 0.08
Domain3.srcBinding 141 0.90 0.10 14.60 0.19 0.06
VSIDS 140 3.39 0.13 19.18 0.38 0.01
Domain2.dstBinding 192 3.71 0.49 94.74 0.42 0.32
Domain.routing 192 4.46 0.14 27.51 0.40 0.04
Domain3.AdstBinding 192 13.05 0.53 101.28 1.04 0.23
Identifier remainder 128 25.97 7.45 953.82 6.41 4.93

8 Domain3.srcBinding 136 8.09 1.13 154.17 1.37 0.51
Domain3.BdstBinding 136 18.06 1.28 173.48 1.95 0.72
Domain2.dstBinding 192 36.25 8.74 1678.88 7.45 5.78
VSIDS 174 63.62 1.25 218.29 6.27 0.05
Domain.routing 192 89.41 2.18 418.04 7.66 0.39
Domain3.AdstBinding 192 288.79 10.18 1954.07 22.36 2.46
Identifier remainder 256 376.70 86.03 22024.53 81.98 56.98

9 Domain3.srcBinding 365 7.57 163.47 2764.89 15.53 3.68
Domain3.BdstBinding 272 13.25 360.04 3603.38 27.38 5.89

Table 1. Routing: mined tranScoping information, scopes 6 to 9, sorted by MAX.

shows the performance of each of the splitters in the parallel analysis of the asser-
tion. A timeout (TO) was set at 600 seconds. Notice that the best two splitters
(according to tranScoping) performed better than the others. At first sight the
two best splitters seem to have performed similarly. In fact, Domain3.srcBinding
performed better than Domain3.BdstBinding, as we expected. Not because the
former took 1 second less to finish the analysis (that difference might even be
reverted if more analyses were made before averaging the results), but because
the number of subproblems that it had to generate (see the UNSATs column
in Table 2) is definitely smaller than the number of subproblems generated by
the latter. This has a direct correlation with the MAX value: a larger MAX
value implies that there are some subproblems that are more complex and have
to be split more times (thus causing a larger number of UNSATs) in order to be
tamed. In this case this is not reflected in the analysis times because the hard-
ware available was able to cope with the number of subproblems generated by
both splitters. Table 3 reports the parallel analysis times for these two splitters
in scope 10, where the better performance of Domain3.srcBinding can be clearly
appreciated.

By using tranScoping we are able to analyze the assertion for scopes 1 through
11, as Table 4 shows. We set a timeout (indicated as TO when reached) of 15
days. The sequential analysis for scope 10 did not finish in 15 days. Looking at
the progression of sequential values, it is clear that the sequential analysis for
scope 11 may take most probably over a year. Therefore, we use the notation
� to indicate that the actual speed-up is most probably much larger than the
indicated speed up. We do not report parallel analysis times for scopes 6 and 7



Splitter Time Pending UNSATs
Domain3.srcBinding 171.30 0 1562
Domain3.BdstBinding 172.23 0 2117
VSIDS 350.39 0 5974
Domain.routing 562.74 0 4534
Domain2.dstBinding TO 11709 735
Domain3.AdstBinding TO 17268 475
Identifier remainder TO 7682 32

Table 2. Routing: parallel analysis time, scope 9, all splitters. Timeout (TO) set to
600 seconds.

Splitter Time Pending UNSATs
Domain3.srcBinding 1053.48 0 10231
Domain3.BdstBinding 1129.49 0 10884

Table 3. Routing: comparing splitters Domain3.srcBinding and Domain3.BdstBinding
during parallel analysis, scope 10.

because the sequential time is too small and the problem is solved before even
being split.

5.3 A Model of the Mark and Sweep Garbage Collection Algorithm

Mark and Sweep is a garbage collection algorithm that, as its name conveys, tra-
verses the memory marking those objects reachable from the memory heap, and
then sweeping those objects that are no longer reachable. An Alloy model of the
mark and sweep algorithm comes as a sample model with the Alloy Analyzer’s
distribution. Among the assertions to be checked we have Soundness2. Unlike
assertion Soudness1 in the same model (whose analysis time grows slowly as
the scope increases), assertion Soundness2 is hard to analyze (Table 7 shows a
growth in the analysis time of at least 10 times from a scope to the next).

We also start with this case study by mining information about the per-
formance of all splitters, for scopes 7 to 9, ordered by MAX, and reported in
Table 5. It took 1007.41 seconds to compute this table. While splitter VSIDS ap-
pears to be the best option in scope 7, splitter HeapState.marked takes a clear
lead in scopes 8 and 9. Moreover, as shown in Table 6, the information mined
extrapolates to the parallel analysis: HeapState.marked is the best splitter and
VSIDS comes in second place. Table 7 shows that, resorting to the tranScoped
splitter HeapState.marked, we are able to analyze assertion Soundness2 for
scopes 1 to 10, obtaining significant speed-ups.

5.4 A Model of the Mondex Electronic Purse

Mondex is a smart card electronic cash system owned by Master Card. A Mondex
smart card allows its owner to perform secure commercial transactions and offers
features similar to those provided by ATM machines (albeit with greater mobil-
ity). An Alloy model of the Mondex electronic purse is provided and analyzed



Scope 6 7 8 9 10 11
Sequential time 1.60 18.34 308.26 76168.16 TO TO
Parallel time - - 26.55 171.30 1053.48 10949.72
Speed-up 11X 444X >1230X � 118X

Table 4. Sequential versus parallel analysis time, and speed-up obtained by using the
best tranScoped splitter: Domain3.srcBinding. Timeout (TO) = 15 days.

Scope Splitter NUM MAX AVG SUM DEV MED
7 VSIDS 154 0.12 0.03 4.14 0.02 0.02

HeapState.marked 252 1.75 0.03 8.50 0.11 0.03
HeapState.left 192 3.36 0.43 82.97 0.41 0.31
HeapState.freeList 164 4.39 1.49 245.29 0.57 1.38
HeapState.right 192 4.44 0.46 87.94 0.49 0.32

8 HeapState.marked 254 0.30 0.07 17.67 0.06 0.05
VSIDS 200 2.32 0.19 38.90 0.25 0.12
HeapState.right 162 34.54 5.65 914.84 7.13 2.78
HeapState.left 162 45.38 5.42 877.34 7.17 2.73
HeapState.freeList 146 50.06 24.45 3570.58 8.32 22.68

9 HeapState.marked 254 1.73 0.21 54.65 0.28 0.12
VSIDS 181 7.78 0.85 154.07 1.06 0.41
HeapState.freeList 182 260.93 131.26 23890.37 42.94 131.95
HeapState.right 200 272.34 32.42 6483.97 42.99 14.96
HeapState.left 200 301.02 31.43 6285.75 42.22 15.32

Table 5. Mark&Sweep: mined tranScoping information, scopes 7 to 9, sorted by MAX.

in [19]. Among the many assertions to be verified, there is assertion Rab archive.
Table 8 displays the tranScoping information for this assertion. It took 1145.74
seconds to compute this table. The sequential time required to analyze the asser-
tion in scope 4 is 3.62 seconds. Such short time compresses all the information
for the different splitters, preventing us from ordering the splitters precisely.
Still, we can at least separate those splitters whose application is bound to be
expensive. For instance, out of the 16 splitters in Table 8, only 5 seem to have a
chance of producing good parallel analyses. The tranScoping data collected for
these 5 splitters in scopes 5 and 6, allows us to conclude that the best candidate
to use in larger scopes is VSIDS. In effect, in scope 6 VSIDS has a substantially
lower SUM than the other 4 splitters, while having a comparable (even smaller)
MAX as well. The results in Table 9 confirm our prediction, by showing that for
scope 6 VSIDS produces a better parallel analysis. Table 10 shows that, resorting
to the tranScoped splitter VSIDS, we are able to analyze assertion Rab archive

for scopes 1 to 7. Notice that while the speed-up obtained is modest, it is the
best speed-up that can be obtained with these splitters. Better analyses are per-
haps possible, but they require to devise new splitters that perform better than
VSIDS.

5.5 An Alloy Specification of the XPath Data Model

XPath [23] is a language for querying XML documents. In [22], an Alloy model
for the XPath 1.0 data model is presented. Subelements inside an XML element



Splitter Time Pending UNSATs
HeapState.marked 9.95 0 128
VSIDS 184.88 0 2472
HeapState.left TO 16491 726
HeapState.right TO 17064 699
HeapState.freeList TO 7201 1575

Table 6. Mark&Sweep: parallel analysis time, scope 9, all splitters. Timeout (TO) set
to 600 seconds.

Scope 6 7 8 9 10
Sequential time 0.25 1.37 22.98 217.31 2855.30
Parallel time - - 10.13 9.95 28.35
Speed-up 2X 21X 100X

Table 7. Mark&Sweep: parallel analysis time and speed-up obtained by using the best
tranScoped splitter, HeapState.marked.

cannot be duplicated. As part of the model, assertion nodup injective, states
the equivalence between two distinct ways of expressing this fact.

Table 11 reports the values computed for the different parameters in scopes
6 and 7, for the XPath case study. It took 609.02 seconds to compute this data.
Based on the retrieved information, some of the splitters can be immediately
ruled out as best candidates in larger scopes. This is the case for instance for split-
ters Name.NSName, Node.stringvalue, Name.Localname, PI.expanded name and
PI.target, whose SUM value is much larger than those for the other splitters.
The remaining splitters (those that were not discarded) are listed in Table 12,
and their parallel analysis times are reported along other useful information. In
this table, splitters are listed in the order inferred from Table 11, following the
heuristics discussed in Section 4.2. Notice that the ordering thus determined is
flawed; splitter VSIDS appears in a better place than it should. At the end of Sec-
tion 4.2 we proposed to perform the parallel analysis in a small scope in order to
tranScope the ordering more accurately. We performed the corresponding anal-
yses for scope 7, and VSIDS now falls behind splitter NodeWithChildren.chseq,
which is consistent with the ordering expected from observing the results re-
ported in Table 12. The results obtained with the selected splitter, and the
corresponding speed-up with respect to sequential analysis, are reported in Ta-
ble 13.

5.6 Threats to Validity

TranScoping is a heuristic for deciding which splitter to use along the analysis of
an assertion in a large scope. While we perceive the technique as a breakthrough
that allowed us to analyze assertions in scopes in which the analysis (even the
parallel one) was previously infeasible, tranScoping is so far only supported ex-
perimentally. As such, it requires more experiments. We tried tranScoping in
the assertions packed within the sample problems distributed with the Alloy



Scope Splitter NUM MAX AVG SUM DEV MED
4 common/TransferDetails.from 149 1.20 0.38 56.58 0.26 0.31

common/TransferDetails.to 149 1.82 0.84 124.58 0.41 0.85
a/AbPurse.abLost 256 2.80 0.35 88.82 0.27 0.29
common/TransferDetails.value 256 2.84 1.86 475.69 0.41 1.92
c/ConPurse.status 256 3.04 0.69 176.87 0.93 0.17
cw/ConWorld.archive 256 3.19 0.12 30.81 0.31 0.02
c/ConPurse.nextSeqNo 256 4.00 0.69 177.98 1.00 0.16
cw/ConWorld.ether 128 4.21 0.91 117.11 1.00 0.52
c/PayDetails.toSeqNo 149 4.39 1.44 215.03 1.08 1.33
c/PayDetails.fromSeqNo 149 4.46 1.72 255.81 1.14 1.62
c/ConPurse.pdAuth 256 4.55 2.15 549.94 0.38 2.08
a/AbPurse.abBalance 256 4.61 0.56 144.19 0.61 0.42
VSIDS 184 4.84 0.14 25.50 0.43 0.01
cw/ConWorld.conAuthPurse 224 5.57 0.28 63.38 0.60 0.05
c/ConPurse.exLog 256 6.16 0.80 204.89 1.02 0.35
c/ConPurse.balance 256 9.92 1.34 342.87 1.06 1.18

5 common/TransferDetails.from 131 16.05 7.52 984.80 3.46 7.04
VSIDS 138 28.08 1.77 244.26 4.44 0.09
cw/ConWorld.conAuthPurse 200 36.92 1.94 388.25 5.46 0.12
a/AbPurse.abLost 256 39.81 2.90 742.30 5.66 1.50
cw/ConWorld.archive 256 49.69 2.72 696.12 5.39 0.79

6 VSIDS 176 202.18 2.83 498.34 21.12 0.048
common/TransferDetails.from 151 206.73 89.23 13473.59 38.86 90.19
a/AbPurse.abLost 256 423.67 20.37 5215.74 62.26 5.02
cw/ConWorld.conAuthPurse 164 506.25 12.34 2024.09 51.73 0.35
cw/ConWorld.archive 256 559.32 40.79 10442.80 66.75 16.36

Table 8. Mondex: mined tranScoping information, scopes 4 to 6, sorted by MAX.

Splitter Time Pending UNSATs
VSIDS 170.18 0 2185
cw/ConWorld.conAuthPurse TO 5551 4385
common/TransferDetails.from TO 5499 4619
cw/ConWorld.archive TO 13160 2233
a/AbPurse.abLost TO 9627 2576

Table 9. Mondex: parallel analysis time, scope 6. Timeout (TO) = 600 seconds.

Analyzer as well as in selected interesting models downloaded from the Internet.
For assertions whose analyses in large scopes are beyond the capabilities of the
Alloy Analyzer, tranScoping gave us useful insights into how to choose a splitter,
usually leading to parallel analyzability in larger scopes.

The information compiled in Tables 1, 5, 8 and 11 is based on splitting
the root problem just once (with each splitter). Our hypothesis is that a good
initial splitting propagates its advantages to the rest of the parallel analysis
(or, conversely put, that a bad initial splitting will ruin the parallel analysis
altogether). This is confirmed in our case studies, since we were always able to
predict the best splitter amongst the ones available in each experiment. But, as
discussed in Section 5.5, a more accurate ordering (one not just focusing on the
best splitter) is obtained if the complete parallel analysis is performed on the
smaller scopes.

The variables selected by the VSIDS splitter strongly depend on how long
is the analysis allowed to run before observing the ranking. Therefore, different



Scope 6 7
Sequential time 456.33 8111.65
Parallel time 170.18 1643.91
Speed-up 2X 5X

Table 10. Mondex: parallel analysis time and speed-up obtained by using the best
tranScoped splitter: VSIDS. Timeout (TO) = 36000 seconds (10 hours).

Scope Splitter NUM MAX AVG SUM DEV MED
6 Node.parent 150 0.56 0.18 26.42 0.09 0.17

VSIDS 166 1.42 0.04 8.02 0.19 0.01
NodeWithChildren.ch 144 2.99 0.13 18.94 0.28 0.06
NodeWithChildren.chseq 129 4.12 0.05 6.75 0.36 0.01
Attribute.name 98 4.51 0.12 11.51 0.48 0.01
Element.nss 134 4.68 0.10 14.01 0.42 0.02
PI.expanded name 135 4.83 0.64 87.65 0.55 0.45
Element.gi 133 5.24 4.12 548.67 0.83 4.28
PI.target 135 5.44 0.69 93.61 0.56 0.51
Name.Localname 150 5.84 2.77 416.77 2.20 4.19
Node.stringvalue 150 5.88 4.72 708.71 1.03 4.95
Name.NSName 147 6.22 5.01 735.98 0.38 4.94

7 Node.parent 155 8.51 1.43 222.15 1.38 1.11
VSIDS 168 53.34 0.84 141.39 4.23 0.02
NodeWithChildren.ch 192 67.32 0.95 182.98 5.00 0.15
Attribute.name 99 92.43 1.38 136.37 9.33 0.05
PI.target 178 109.93 7.40 1317.73 8.70 5.25
NodeWithChildren.chseq 171 129.51 0.80 137.17 9.90 0.03
PI.expanded name 178 134.24 8.24 1466.69 10.21 6.36
Element.nss 140 201.73 1.73 241.64 17.05 0.02
Name.Localname 153 235.16 83.57 12786.90 65.44 110.10

Table 11. XPath: mined tranScoping information, scopes 6 and 7, sorted by MAX.

query times may produce quite distinct sequences of variables. This did not
prevent tranScoping from predicting the best splitter in the case studies in this
article and other examples we ran. Yet we noticed that the different runs of the
VSIDS splitter (whose times are averaged when reported in the tables), yielded
analysis times with significant variation.

Finally, we are presenting a very limited, albeit useful, set of general purpose
splitters. Further research has to be conducted in order to identify other general
purpose splitters, or new domain-specific ones.

6 Related Work

Parallel bounded verification has been used mainly in the context of program
static analysis. For example, [21] proposes to split the program control flow
graph and use JForge [10] (a tool for program bounded verification) to analyze
each slice. An approach to parallelizing scope-bounded program analysis based
on data-flow analysis was presented in [20].

An alternative to tranScoping is the use of a large-scale parallel SAT-solver.
Unfortunately, while multi-core tools are starting to take off, distributed parallel
SAT-solvers are still scarce. CryptoMiniSat2 [8] is an award-winning open source



Splitter Time Pending UNSATs
Node.parent 98.61 0 1231
VSIDS TO 13160 5698
NodeWithChildren.ch 227.09 0 4456
Attribute.name 286.32 0 1384
NodeWithChildren.chseq 548.66 0 7947
Element.nss 419.45 0 1926

Table 12. XPath: parallel analysis time, scope 8, only splitters that are viable candi-
dates according to tranScoping. Timeout (TO) set to 600 seconds.

Scope 6 7 8 9
Sequential time 5.15 140.90 2560.17 19559.49
Parallel time – 23.95 98.61 1473.32
Speed-up 6X 26X 13X

Table 13. XPath: parallel analysis time and speed-up obtained by using the best
tranScoped splitter: Node.parent.

solver with sequential and parallel operation modes. The author also mentions
distributed solving among its long-term goals. No public release or other news
about this have been announced. GrADSAT [4] reported experiments showing an
average 3.27X and a maximum 19.9X speed-up using various numbers of workers
ranging between 1 and 34. C-sat [18] is a SAT-solver for clusters. It reports linear
speed-ups, but the tool is not available for experimentation. PMSat [12], an MPI-
based, cluster-oriented SAT-solver is indeed available for experimentation, but
reports generally small speed-ups.

7 Conclusions and Further Work

We presented TranScoping, a technique for principled selection of splitting heuris-
tics in parallel bounded verification. This approach exploits information from
simple analyses in small scopes of a model under analysis, in order to give the
user of the technique the insight necessary to infer an adequate splitter for larger
scopes. We evaluated this approach on a number of case studies, showing that
by tranScoping we are able to analyze assertions in scopes where we failed be-
fore many times. As these experiments show, for many problems the enormous
growth of the analysis times causes them to have a bad initial splitting, resulting
in diverging analysis. We believe tranScoping is a useful tool, that helps us make
an informed decision about the most critical point in the parallel SAT solving
analysis process.

TranScoping opens a new research line, namely, the search for new splitters
that may produce better speed-ups than the general purpose splitters we pre-
sented in this article. Also, it may be possible to find splitters tailored to specific
domains (SAT based program analysis, parallel test generation using SAT, etc.).
We plan to work on defining and evaluatiing such new splitters.
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