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A Study of the Electrum and DynAlloy Dynamic
Behavior Notations
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Abstract—Alloy is a formal specification language, which
despite featuring a simple syntax and relational semantics, is
very expressive and supports efficient automated specification
analysis, based on SAT solving. While the language is sufficiently
expressive to accommodate both static and dynamic properties
of systems within specifications, the latter kind of properties
require intricate, ad-hoc, constructions to encode system exe-
cutions. Thus, extensions to the language have been proposed,
that internalize these encodings and provide analysis techniques,
specifically tailored to properties of executions. In this paper
we study two particular extensions to Alloy that incorporate
elements for the specification of properties of executions. These
are DynAlloy, whose syntax and semantics are inspired by
dynamic logic, and Electrum, based on linear-time temporal
logic and inspired by languages such as TLA+. We analyze
and compare the syntactic characteristics of the languages, their
corresponding expressiveness, and the effectiveness and efficiency
of their associated analysis tools. The comparison is based on a
set of Alloy specifications that are taken from the literature and
demand dynamic behavior analysis, including an Alloy model of
the Chord ring-maintenance protocol, that drives our qualitative
comparison of the notations.

Index Terms—Formal methods, software specification, alloy,
automated analysis.

I. INTRODUCTION

SOFTWARE modeling is an important activity of many
software development processes. The reason is simple:

by building models of the software to be developed (and its
environment), engineers can anticipate potential flaws in their
designs, through various activities. Software models enable,
among other tasks, the early communication and discussion of
design decisions, and the identification of assumed constraints
of the problem domain, at a higher level of abstraction than that
provided by the software’s source code, and before such code
is even produced [7], [28]. This importance is recognized by
the broad availability of software modeling notations, among
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which formal notations have a distinctive position [8]. The
relevance of formal approaches to modeling lies, among various
reasons, in the fact that notations with a formal semantics
lead to specifications with unambiguous interpretations, that
are better suited for analysis [32]. This is generally achieved
at the expense of diminishing specification understandability
(compared to informal notations), since formal specifications
tend to be more detailed, and require a knowledge of the logical
or mathematical foundations behind the notations [63]. Thus,
finding appropriate abstractions for capturing software behavior
and its intended properties, and internalizing them into simple
(but precise) notations or notation patterns, is an important task
in the design of formal specification languages.

A particular example of the above-described situation arises
in the context of Alloy [38]. Alloy is a formal specification
language that features a simple syntax and relational seman-
tics, incorporates abstractions similar to common concepts from
object oriented design, and is designed with an emphasis in
automated analysis, provided through a SAT-based instance
finding mechanism [37]. The versatility of Alloy, and its fully
automated analysis mechanism, has led to its use in a wide
range of applications [6], [16], [29], [40]. The notation is very
expressive, allowing one to straightforwardly capture, in a for-
mal way, the typical static modeling constructions for modules,
module operations and properties. Moreover, the language is
sufficiently expressive to also characterize dynamic behavioral
properties, i.e., properties of system executions [39]. The ability
of encoding dynamic behavioral properties into the language
enables one to use Alloy’s automated analysis support to analyze
dynamic properties too, without the need for additional analysis
tools and techniques for this kind of properties.

Capturing dynamic behavior and properties of execution
traces is highly relevant in the context of Alloy. For various
application domains, many properties of interest involve system
executions [11], [16], [26], and some tools and notations that
use Alloy for analysis require expressing and analyzing such
properties. Some relevant examples are tools for bounded ver-
ification of annotated code [16], [26]; languages for class and
feature modeling with support for dynamism [53]; encodings
of notations for dynamic behavior, such as activity diagrams or
business process modeling, into Alloy [43], [62]; among others.

Although, as we mentioned, Alloy is sufficiently expressive to
capture properties of system executions, such properties require
intricate ad-hoc characterizations, that reduce model under-
standability. The issue here has to do with having to explicitly
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capture execution traces as part of an Alloy formal model (i.e.,
capture traces “statically”), as opposed to these being implied
by the semantics of trace-related constructs in the language. In
an attempt to improve this situation, some extensions to Alloy
have been proposed, to allow modelers to better capture system
execution properties. Two particular notations that extend Alloy
to characterize dynamic properties of systems are DynAlloy
[21] and Electrum [44]. While these notations are similar in
spirit, they also have some substantial differences, that may
make them particularly appropriate for different application
domains, for specifications with different characteristics, or for
different analysis purposes. This motivates the present article,
where we perform a study of these notations, with the aim
of understanding the languages’ characteristics, and providing
modelers and developers of other tools and techniques em-
ploying Alloy with guidelines that may make one choose the
most appropriate notation, according to their specific needs,
or characteristics of their modeling intentions. Thus, in this
paper we perform a detailed comparison of DynAlloy and
Electrum, their corresponding expressive powers, and general
language characteristics. As we previously mentioned, model
analyzability is a primary concern in the context of Alloy. Both
languages acknowledge this fact, and are accompanied by tool
support for automated model analysis, that resort to SAT-based
analysis through Alloy via different encodings (and in the case
of Electrum, can also exploit alternative verification engines
[44]). Then, we also assess the effectiveness and efficiency
of these analysis tools. The comparison is driven by a set of
well-known Alloy specifications demanding dynamic behavior
analysis, taken from the literature.

II. ALLOY AND THE MODELING OF DYNAMIC BEHAVIOR

Alloy is a model-oriented formal specification language,
whose underlying formalism is of a relational nature, and is
called relational logic [38]. While, technically, Alloy is not
object-oriented, it features a number of modeling constructions
that resemble abstractions known to developers, making its
syntax intelligible and elegant, while at the same time hav-
ing a precise meaning. Specifications in Alloy are expressed
around signatures, which define data domains, fields, that are
associated with specific signatures and define relations, predi-
cates, parameterized formulas in relational logic, and functions,
parameterized relational expressions. Finally, formulas can be
used to establish facts, constraints that are assumed valid in
specifications (and thus constrain models), and assertions, in-
tended properties of the model that need to be analyzed for
validity (typically, only in bounded contexts).

As a very simple model illustrating Alloy’s syntax, consider
the (partial) specification of the river crossing puzzle [54], in
Fig. 1. This is a classic puzzle, where a farmer carrying three
objects, a fox, a chicken, and a sack of grain, needs to cross
a river using a boat that can hold the farmer and at most one
other object. The farmer cannot leave the fox and chicken alone,
because the fox would eat the chicken; nor the chicken alone
with the grain, since the chicken would eat the grain. How can
the farmer take the objects one at a time, guaranteeing that he

Fig. 1. (Partial) Alloy specification for the river crossing puzzle.

will reach the other side of the river with all the objects? In
the Alloy specification for the puzzle, an Object data domain
(captured through an abstract signature, i.e., a signature whose
only associated elements are those of its extending signatures)
is composed of 4 particular elements, namely Farmer, Fox,
Chicken and Grain (each captured through a one signature,
i.e., a signature forced to contain just a single element, and
thus used to represent particular elements through singleton
sets). A fact in this model defines the eats field of Object
(itself a binary relation between objects). Finally, predicate
crossRiver can be understood as an operation of the model,
allowing it to change state. The state is characterized by param-
eters of the predicate. Primed parameters (in this case double-
primed parameters, to distinguish them from primed variables
in Electrum and Alloy) are used as a convention to model
“post-states”. The parameters of this predicate indicate that the
state of the system is composed of two sets of objects (the
objects on each side of the river). According to the predicate’s
definition, to cross from side from to side to, the farmer needs
to be present in the former; when the farmer crosses the river
to the to side, he can take an item with him, and items in
the resulting “unsupervised” side eat each other (according to
what eats prescribes). As it can be seen from this example,
signatures can be used to capture state, and predicates to capture
operations, as well as properties, of a formal model in Alloy. In
particular, predicates can be used to characterize state changing
operations (i.e., to capture operations that modify the system
state), as is the case with crossRiver.

Through the above described constructions, Alloy models
can be equipped with a wide variety of static properties of
systems (i.e., properties that refer to the system description
but not its implied execution traces). These can be captured
as predicates, as constraints of models (facts), or assertions
(intended properties), exploiting the expressive power of rela-
tional logic. It is worth remarking that relational logic is strictly
more expressive than first-order logic (essentially, first-order
logic with transitive closure) [38]. Moreover, Alloy has, from
its inception, put an emphasis in automated analysis: predicates
can be checked for bounded satisfiability, and assertions for
validity within bounded contexts, by resorting to SAT solving
[37]. Of course, Alloy’s expressiveness makes the analysis of
specifications based on SAT solving necessarily incomplete:
one may find counterexamples of intended properties and in-
stances of specified models in bounded scenarios, but the ab-
sence of such counterexamples or instances does not imply their
nonexistence in a larger or unbounded scenario [35] (i.e., the
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SAT-based decision procedures for relational logic satisfiability
and validity that Alloy Analyzer implements are incomplete,
according to the terminology in [41]).

Using predicates and simple combinations of these, one can
capture single operations as well as operation compositions
(e.g., sequential composition), and state properties regarding
their execution. Moreover, Alloy is also sufficiently expressive
to capture dynamic properties of systems, i.e., properties regard-
ing system executions, i.e., traces of successive state changes
achieved by system operations [38], [39]. This is achieved
through an explicit model of execution traces, as shown in
Fig. 2. This model extends the model presented in Fig. 1 with
a definition of signature State, that makes explicit the fact
that there are two sets of objects, one at each side of the river,
a model of sequences of these states (ordering1, imported
from a library), and constraints indicating how the initial state
of the system is configured (all objects on the near side of
the river), and how successive states in every trace are related
(through predicate crossRiver). Finally, a predicate defines
a property of the last state of a trace, asking it to have all objects
on the far side of the river, so that querying for the satisfiability
of the predicate makes the solver to “solve” the puzzle (i.e., to
produce a trace that satisfies all constraints, and leads all objects
to the far side of the river).

While this mechanism to capture dynamic properties is un-
deniably powerful, it involves ad-hoc characterizations of state
and state change, realized through explicit models of execution
traces. This issue reduces model understandability, due to the
fact that execution traces need to be manually modeled as
part of the specification. These “manual” models of traces can
also have, in many cases, a significant impact in analyzability,
calling for intricate model optimizations that may reduce their
readability even further [21], [22], [23].

These issues had led to proposals for extensions to Alloy, to
better capture dynamic behavior. We describe these extensions
in the next section.

III. EXTENSIONS TO SUPPORT DYNAMIC BEHAVIOR IN ALLOY

The need to capture and analyze properties regarding sys-
tem execution traces is a recurrent issue for Alloy users. This
situation led to the emergence of extensions to the language,
to support the specification and analysis of dynamic proper-
ties of systems. Two particular extensions are Electrum and
DynAlloy. We describe these extensions through an example,
using the river crossing puzzle as a means for comparison.

A. Electrum

Electrum [44] is an extension of Alloy, which enriches
Alloy’s syntax to allow for the specification of execution traces
and their properties, maintaining Alloy’s declarative style. More
specifically, Electrum incorporates temporal logic operators
into Alloy, in order to prescribe the system behavior as well

1The ordering model defines total orders over a given (finite) domain.
Among other ingredients, it defines: first as a function that returns the first
element in a total order; last as a function that returns the last element in
a total order (over a finite domain); and next, that given an element of the
domain, returns its next element in the order.

Fig. 2. Alloy specification of execution traces for the river crossing puzzle.

as intended system properties. Electrum is inspired by the
temporal logic of actions (TLA) [42], and in order to indicate
which signatures or fields of a signature are “mutable”, i.e.,
can change over time, it decorates these with a specific var
modifier. Electrum captures dynamic behavior through an im-
plicit notion of time, associated with trace states, where var
expressions may receive different values.

In order to define how a model may evolve over time, users
can write formulas and enforce them in facts, using linear-time
temporal logic (LTL) (all the typical operators are supported),
and resorting to the use of variables and “primed variables”, to
refer to values of fields or signatures before and after executing
a transition, respectively.

The analysis of Electrum specifications is enabled by en-
coding these specifications in a number of different verification
tools, including Alloy and nuXmv [12]. As described in [9],
[44], the encoding in Alloy essentially uses the “local state”
idiom [15], a generalization of the approach to capturing dy-
namic behavior within Alloy introduced in the previous section
[38]. The “local state” idiom introduces an additional Time
(or State) signature, and a “time” column in relations that
change over time, making the values of these relations relative
to a time instant. The time signature is constrained to form a
total order, leading to traces of time instants, as in the State
signature in Fig. 2. Since the time signature is used to represent
time instants, its scope represents the maximum trace length
that is considered for analysis. It is important to remark that,
since Electrum supports LTL formulas, including in particular
liveness properties, its trace model is adapted to capture lasso
traces [50]. A lasso trace is a finite state sequence that repre-
sents an infinite run, via a loop from the final state to some
previous state in the sequence. Although lasso traces do not
capture all possible infinite state sequences, it is known that
invalid LTL formulas necessarily have lasso-shaped counterex-
amples [50]. In fact, Electrum implements a “complete” LTL
bounded model checker (i.e., given a bound n, Electrum will
verify an LTL formula α over an Alloy model if and only if
no counterexample of size at most n exists for α). The bound
considered for the implicit time signature in an Electrum model
is expressed using the steps keyword, as we describe below.
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Fig. 3. Electrum specification for the river crossing puzzle.

As an example of the Electrum approach, consider the river
crossing puzzle model, this time specified using Electrum,
as shown in Fig. 3. Notice how, in this model, signatures near
and far are defined as mutable (through var), avoiding the use
of an explicit additional signature State. Recall that according
to the local state idiom, this implies the introduction, in the
Alloy model generated from the Electrum model, of a Time
signature and a time column for relations near and far (i.e.,
instead of being unary relations, these become binary relations
from Time to Object). Also, a fact describes state transitions
of this system using the linear-time temporal operator al-
ways (forcing what is essentially the crossRiver predicate
in the original Alloy specification, to hold in all consecutive
states in execution traces). Finally, the solutions to the puzzle
are specified using the temporal logic operator eventually,
characterizing traces where at some future instant in time all
objects are on the far side of the river. Notice how, in the
analysis command (run solvePuzzle for 8 steps),
we indicate the lasso trace length to consider for analysis via
the scope for steps.

B. DynAlloy

The DynAlloy language, originally introduced in [22] and
further developed in [21], [23], [24], extends Alloy’s syntax
with a particular idiom for dynamic behavior, inspired by dy-
namic logic [31]. DynAlloy borrows from dynamic logic its ab-
stract programming constructions, incorporating atomic actions
and program composition operators such as nondeterministic
choice, sequential composition, and unbounded iteration, to
define dynamic behavior as sequences of states (program runs)
over Alloy models. As opposed to the modal nature of dynamic

Fig. 4. DynAlloy specification for the river crossing puzzle.

logic [31] (which features diamond/box modalities for program
terms), properties associated with the execution of programs are
specified in DynAlloy just using partial correctness assertions,
defined with pre and postconditions written in relational logic.

DynAlloy captures the parts of a system model that are
state changing (i.e., mutable), through parameters. Indeed, both
atomic actions and more complex program constructions de-
fine the program state they operate on, via the correspond-
ing program’s parameters. Similar to Electrum (and contrary
to standard Alloy), primed parameters are not a convention,
they have an actual semantics associated with state transforma-
tion: a primed variable refers to the value of a variable in the
“post” state, i.e., the state after the execution of the action or
program (primed variables can only appear in assertions, not
within programs).

As an example of a DynAlloy model, consider the river cross-
ing puzzle in Fig. 4. The atomic state change captured in Alloy
via a predicate crossRiver is now captured using an atomic
action; notice how the crossRiver atomic action (defined
with the act keyword) is defined via pre and postconditions.
It is worth observing how primed expressions only participate
in postconditions, to refer to “post states”. The crossRiver
atomic action is then employed in a program solvePuzzle
(defined with the program keyword) that sequentially com-
poses three main parts: an assumption characterizing the initial
state; an iteration (Kleene star *, denotes the iteration of the
corresponding program expression zero or more times) of the
non-deterministic choice (denoted by +) between crossing the
river from the near to the far side and vice versa; and a “test”
action (denoted by [ ]?) that allows the execution to continue
only if all objects are on the far side of the river.

As opposed to Alloy and Electrum, the analysis of DynAl-
loy specifications is based on verifying a program against its
partial correctness assertion, by computing a bounded version
of weakest liberal precondition [18] for the program and its
postcondition [21], [52]. Besides the scope for signatures in a
model, DynAlloy also requires a bound for iteration. This is
indicated in assertion checking commands, via the lurs (for loop
unrolls) keyword (notice how 7 iterations, i.e., 8 states including
the initial one, are sufficient to solve the puzzle).
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IV. COMPARING THE DYNAMIC BEHAVIOR NOTATIONS

We now start with a qualitative analysis of the two introduced
alternatives, Electrum and DynAlloy, to capture dynamic be-
havior over Alloy specifications. The comparison is performed
around various dimensions, namely, language style in relation
to the specification of dynamism (Section IV-C), expressiveness
and analysis (Section IV-D), and tool support usability (Section
IV-E). The motivation here is to provide a comparison that may
be informative to the modeler, and may serve as a guideline
towards the most convenient notation for a specific modeling
and analysis task.

To better compare the two different approaches, we will
consider a more complex case study, namely an Alloy model
[64] of the Chord ring-maintenance protocol [57]. Although
in [64] Chord is modeled in standard Alloy, it is a model that
inherently requires dynamic behavior specification, and thus it
is an excellent case to assess how conveniently our compared
dynamic extensions can improve specification. Moreover, as we
discuss below, some limitations of Alloy in relation to the analy-
sis of dynamic properties required more involved modeling, as
well as the use of complementary analysis techniques. These
are also interesting to discuss in the context of the dynamic
extensions studied in this paper.

Regarding Chord, it is a protocol that allows peer to peer
communication via efficient lookup, by maintaining a ring-
shaped structure in which each peer has a predecessor and a
list of successors. The ring topology information is distributed
across the peers (members of the ring); these then need to peri-
odically update their information, to reflect changes in the ring.
A non-member node joins the ring by contacting an existing
member, and building its successor list from the contacted node
and its own list of successors. This change spreads across the
ring via stabilization operations in member nodes (that stabilize
local member information) followed by notifications to their
corresponding successors. Of course, some member nodes may
fail, losing connection to the network and forcing the remaining
members to reconfigure the ring via modifications to their own
local information. This is achieved in the protocol via reconcile,
update, and flush operations, which are executed periodically by
the members of the ring.

A. Zave’s Models of Chord

Chord is a very practical protocol, whose simplicity and per-
formance made it the default choice for lookup implementation
in peer-to-peer networks. Chord was the subject of study by
P. Zave, who modeled the protocol and found subtle flaws in it,
contradicting previous claims on the protocol being provable
correct [64]. Alloy was a key modeling and analysis tool both
in Zave’s study of the protocol, and her subsequent proposal
for fixes to the protocol [66]. More precisely, Zave’s study
involved a formalization of the Chord protocol and its intended
properties in Alloy, and the analysis of these properties using
Alloy Analyzer. In this section, we will focus on Zave’s cor-
rected version of Chord, specified both in Alloy and Promela
(Spin’s specification language) [65], [66]. Both specifications
are intrinsically dynamic. In particular, the Alloy specification

captures the protocol operations (fail, join, reconcile, etc.) as
events associated with network nodes, using the “time” idiom.
It is important to remark that the term event here is taken from
the terminology used by P. Zave in [64] to refer to the network
operations. Events may interleave arbitrarily, but the overall
analysis of the protocol’s main safety property (the network
is always in a “valid” state, meaning that there is exactly one
ring connecting the ring members, and all the appendages are
linked to the ring too) is greatly simplified by the provision of a
stronger inductive safety property [65]. This inductive invariant
allows one to verify the “validity” property by verifying that all
protocol events preserve it. Thus, despite the need for dynamism
to reason about Chord executions, analysis is limited to traces
of size 2 (for pre and post states of each event, whose invariant
preservation is checked independently).

Chord also has an important liveness property: if at some
point no new node joins the network nor any member node fails,
then eventually the network reaches an ideal state (meaning
that all joined nodes are members of the ring, and the node
predecessor/successor pointers are consistent). This property
is not analyzed in Alloy, but in Spin [34]. Spin’s Chord model
is truly dynamic, and is used to verify the invariance of the
“validity” property (in its original, non-inductive, form) as well
as the previously mentioned “eventually ideal” liveness
property [65].

B. Our Target Chord Models

We will consider two different models of Chord, both orig-
inating from Zave’s work, to be captured in Electrum and
DynAlloy. Firstly, we will take Zave’s elaborate Alloy model
from [65], which verifies the inductive invariance of the validity
property with respect to Chord’s events; the model requires
state change, but this is moderately exploited for analysis (with
all analysis commands requiring traces of size 2). For easier
reference, we will call this model the “inductive model”. Sec-
ondly, we will take the essential parts of Zave’s Promela model
from [65], in which the events of each node are nondetermin-
istically chosen, iterated and interleaved to form the system
traces, and to verify a non-inductive invariant and a liveness
property. We will call this model the “non-inductive model”.
In each language (DynAlloy and Electrum), the inductive and
non-inductive models will share the same core part, where the
state of the system is captured, and the individual events are
specified. What will change from the inductive case to the
non-inductive case is how the system traces are built; in the
inductive case, the “system” will be individual events/actions.
In the non-inductive case, the system will be, essentially, an
infinite iteration of the non-deterministic choice of different
actions/events.

C. Language Style Comparison

1) The System State: In Zave’s model of Chord, the network
consists of a set of nodes (for simplicity, we will not discuss the
size-related base information). The relevant topological data
associated with a node are its pointers to successor nodes (first
successor and second successor, as for simplicity, the successor
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Fig. 5. Electrum specification of the Chord network and node state (partial).

Fig. 6. DynAlloy specification for Chord (partial).

list is assumed to be of size at most two), the pointer to its
predecessor, and a pointer to the best of the successors (all of
these can be “empty” pointers). Since this node information can
change during execution, all the corresponding node fields have
a “time” component in Alloy, following the time idiom. This is
greatly simplified in Electrum, where the mutable portions of
the state are straightforwardly declared using the var modifier,
as shown in Fig. 5. It is worth remarking here that the best
successor is mutable, as it is defined in terms of conditions
on the current first and second successors; a fact allows one to
capture the immediate “update” of the best successor according
to how the first and second successors change over time, as
shown in the figure.

DynAlloy’s definition of the network is the same as for Al-
loy and Electrum, as this part of the state is unmutable. The
state changing part of a system, on the other hand, is given in
DynAlloy through the parameters of a program. Fig. 6 illus-
trates this style. The Node signature has now no fields (since all
its original fields are mutable), and the program that represents
the system state change declares as parameters the mutable
parts. Notice how, in this case, the explicit type of relations
succ, succ2, prdc and bestSucc is given, reducing read-
ability compared to Electrum. It is also worth remarking that
constraints as the one defining the “dynamic” relation best-
Succ in terms of other dynamic relations, cannot be straight-
forwardly achieved in DynAlloy; instead, relation bestSucc
will have to be explicitly updated, whenever one of the relations
it depends on changes (we will illustrate this issue later on in
the paper).

2) System Events/Actions: Let us now move on to how the
basic state changing events, or actions, are defined. Zave’s char-
acterization of the Chord protocol defines signatures associated
with the protocol’s events (with signature fields representing the
parameters of the event), and facts that indicate how two system
states are related, when a given event is the cause of the change.

Fig. 7. Alloy specification for Chord’s join event (partial).

Fig. 8. Join event in Electrum.

In Electrum, this can be more conveniently captured using
predicates (which will also better serve to compose events),
in a more declarative way, without the explicit use of Time.
To better contrast the gain in convenience, consider the Alloy
specification of JoinEvent, taken verbatim from [65], shown
in Fig. 7. The specification of this same event in Electrum, now
using predicates, is shown in Fig. 8. Notice how the need for
explicit time is eliminated; this simplifies the way one refers to
the pre and post states, which in Electrum are referred to via the
“unprimed” and “primed” expressions involving mutable fields.

It is also important to notice that specifications involving
system state and state-changing actions often require so called
frame conditions. A frame condition for a system action a is
simply a constraint that indicates that the part of the state that
does not concern a, will not change when a takes place. Zave’s
model of Chord describes the frame conditions centered on
each part of the mutable state (i.e., for each mutable relation, it
indicates via a corresponding fact which actions of the system
may change it, or similarly, which actions will not alter the
corresponding field). Additionally, since Chord events model
node actions, and the mutable relations capture state for the
whole system, it is also necessary to indicate a finer grained
kind of frame condition: only the state that refers to the involved
node changes, but not the rest. These “local” constraints are, in
Zave’s model, within each event definition. In our Electrum
model, both coarser-grained (“global”) and finer-grained (“lo-
cal”) frame conditions are defined within each event predicate,
as shown at the bottom of Fig. 8.

DynAlloy is, in this respect, slightly different. Basic state
changing events can be specified via DynAlloy’s atomic ac-
tions; their relevant mutable state is explicitly mentioned as

Authorized licensed use limited to: Nazareno Aguirre. Downloaded on May 11,2024 at 14:20:14 UTC from IEEE Xplore.  Restrictions apply. 



4952 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 11, NOVEMBER 2023

Fig. 9. Join event via an atomic action in DynAlloy.

the parameters of the corresponding atomic actions, and the
changes to the state are specified in the postcondition. The de-
notational semantics of DynAlloy’s actions/programs (as man-
ifested in the weakest precondition computation that DynAlloy
Analyzer performs) establishes that the mutable state that is not
referred to as part of the post-state (primed expressions in the
post-condition) or is not part of the parameters of the action/pro-
gram, does not change when the corresponding action/program
is executed. This characteristic of DynAlloy makes it simpler
to define actions in relation to frame conditions, as these con-
ditions do not need to be explicitly stated. This can be seen
in the DynAlloy specification of JoinEvent shown in Fig. 9
(see in particular the action’s postcondition, in contrast with
the JoinEvent predicate in Electrum). At the same time,
as it can be seen in this figure, the explicit mention of the
mutable state as action/program parameters, as well as having
to refer to mutable state as relational expressions (as opposed to
indirectly using mutable fields as is done in Electrum), make
DynAlloy actions more verbose. In particular, notice how state
updates are expressed in DynAlloy as updates on whole rela-
tions, since updates on “projected” parts of the relation would
be, in accordance with Alloy’s relational semantics, weaker
constraints. For instance, expression n.succ’ = newSucc
as the postcondition of JoinEvent (as opposed to succ’ =
succ + (n -> newSucc)) would leave relation succ’
unconstrained for all nodes except n.

3) Dynamic Property Specification and Checking: We now
turn our attention on how the two languages being compared
specify dynamic properties, and how these are checked in the
languages. We will see that the languages also have different
styles in this respect. As mentioned previously, we will consider
two kinds of dynamic properties, for the “inductive” and “non-
inductive” models, respectively.

Let us start with dynamic property specification and verifi-
cation for the inductive model. If a property to be verified as
an invariant is assumed to be inductive, then the verification
is simpler, as one can check it by proving that the initial state
of the system satisfies it, and all system events preserve it.
As mentioned earlier, this is the case of the main invariant
property of Chord, in Zave’s specification [65]. This “validity”
property states that there is exactly one ring connecting the
ring members, and all the appendages are linked to the ring.
Assuming that the validity property is captured using an Alloy

predicate Valid (details on how this is achieved can be found
in the accompanying site [1]), one can specify, and check,
in Electrum the preservation of validity by the Join event,
as follows:

assert JoinPreservesValidity {
(Valid[] && (some n, newSucc: Node | JoinEvent[n,newSucc])

=> after Valid[])
}

check JoinPreservesValidity for 8 but exactly 2 steps

The assertion is simple: if validity holds and JoinEvent
occurs (at the initial state), then validity also holds in the next
state. This assertion uses the linear-time temporal logic “next”
operator (after). Since only two states are necessary (first and
second trace states), the verification command can use a larger
scope for the remaining signatures (in particular, the number of
nodes), but uses exactly two steps, as shown above.

In the case of DynAlloy, assertions on program (including
atomic actions) executions are captured using standard par-
tial correctness assertions. The assertion here will capture the
fact that the atomic action JoinEvent preserves validity,
as follows:

assertCorrectness JoinPreservesValidity[
succ: Node -> lone Node,
succ2: Node -> lone Node,
prdc: Node -> lone Node,
bestSucc : Node -> lone Node,
n: Node,
newSucc: Node]

{
pre { Valid[succ, succ2, prdc, bestSucc] }
program
{

JoinEvent[succ, succ2, prdc, n, newSucc];
bestSuccUpdate[succ, succ2, prdc, bestSucc]

}
post { Valid[succ', succ2', prdc', bestSucc'] }

}

check JoinPreservesValidity for 8

The notation is rather straightforward. The same issues with
state-dependent parameters apply to program correctness asser-
tions. An issue to notice here, that has been mentioned earlier
on, is that we cannot use a fact to define a changing state-
dependent relation, as is done with Alloy featuring explicit
time, and in Electrum, with the bestSucc node information.
Instead, we need to define an action that “updates” the state
of bestSucc whenever any of the relations it depends on
changes (in this case, relations succ, succ2 and prdc). This
is achieved via an additional atomic action, bestSuccUp-
date, that updates the contents of bestSucc, and must be ex-
plicitly called after all actions affecting the depended-on fields.
Finally, the check commands does not need to express a limit
for loop unrolls, as the program of the partial correctness
assertion has no loops.

In the above case, the inductiveness of Valid is obtained by
introducing an additional, important assumption: at every pro-
gram state, every node either has a successor, or does not have
any successor nor a predecessor (these are called Member and
NonMember properties of a node, respectively, in Zave’s model
[65]). This can be either added to the definition of Valid, or
forced through a fact, for analysis.
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Fig. 10. Chord system of nodes in Electrum.

Now let us move to the non-inductive model for Chord.
The construction of strengthened inductive assertions from non-
inductive ones for verification is a valuable approach, but also
a very difficult one in many cases. Thus, in many contexts, one
often resorts to verifying a given invariant by checking that it
holds in all reachable states of the system. this is, in fact, the ap-
proach of model checking, that allows one to deal with property
verification fully automatically. It is also worth mentioning that
liveness properties may be dealt with using inductive reasoning
too [46], although typically not in a fully automated way (e.g.,
variant functions need to be crafted), making the approach also
difficult to use for liveness properties (cf. Section 4 in [65] for
comments on this issue).

Zave’s analysis of Chord, as presented in [65], limits the use
of Alloy for the inductive model. The non-inductive model is
captured in Promela, the specification language of Spin [34].
We take this model and reproduce it in Electrum and DynAlloy,
which contrary to Alloy, provide the syntax to more conve-
niently capture this non-inductive model.

The non-inductive model of Chord models the system as a
collection of nodes, that run concurrently, and each of which can
perform certain actions, that correspond to the system events
(fail, join, reconcile, etc.). However, for each node, these actions
have certain dependencies. For instance, before performing a
Join action, the node needs to perform a JoinLookup,
which will define the ring node the joining node will append
to; these two actions are non-atomic, in the sense that they may
interleave with other node actions, and thus are modeled as
two separate, but related, events. Similarly, the update of node
information is performed in two steps, first a stabilization, “non-
atomically” followed by a rectification step. All these event
associations need to be modeled as the behavior of the system,
and a usual approach is to consider an abstract form of program
counter, that will maintain the internal mode state of a node,
and only enable the corresponding events in each mode. Fig. 10
shows how this is achieved in Electrum. A mutable field pc is
added to a node, whose value is used as part of the guard for
events, and is appropriately updated when an event is triggered,
to move the node to its corresponding target mode (using the
primed expression notation). For instance, a node needs to be
“ready” to perform a join lookup, and after it, it moves to
“joining” mode; this in turn enables the “join” event, after which
the node returns to a “ready” state.

As shown in Fig. 10, the whole system is constructed using
the always temporal operator: the system always progresses by
performing a step (triggering an event) in one of the nodes of the
system. This is enforced with a fact, as it defines the behavior of
the system. The system prevents two nodes to perform a step at
the same time (i.e., to correctly interleave node events) thanks
to the frame constraints that are explicitly provided within each
node event definition, as described earlier.

The verification of the validity property is, for this system,
simply specified as follows:

assert validIsInvariant {
always Valid[]

}

We also mentioned before that Chord has an important live-
ness property associated: if at some point nodes stop failing and
no new nodes join the network, then the network will eventually
reach a continuous “ideal” situation. To model this property, we
need to slightly modify the system, adding a “flag” (in the Spin
model, this is called “churnStopped”), that can be arbitrarily
enabled, and once enabled, prevents joining and failing from
happening:

one sig churnStopped {
var flag: Boolean

}

pred runNode[n: Node]{
((n.pc = Ready) and (churnStopped.flag = False) and
(FailEvent[n]) and n.pc' = Ready) ||

. . .
}

pred setChurnStopped[] {
churnStopped.flag' = True

}

fact main{
(churnStopped.flag = False) and
always ((some n: Node | runNode[n]) || setChurnStopped[])

}

Of course, now churnStopped.flag needs to be added
to the frame constraints of all node events, as it becomes part
of the mutable system state. The liveness property can now be
captured as follows:

assert liveness{
(eventually churnStopped.flag = True)

=> eventually (always Ideal[])
}

check liveness for 6 but exactly 10 steps

The non-inductive model can be captured in DynAlloy using
program constructions, in particular test actions (for guards),
sequential composition, non-deterministic choice, and iteration.
The main difference with the Electrum model is that it has a
more programmatic style. Fig. 11 shows how the non-inductive
Chord model is captured in DynAlloy. Again, a node progresses
by executing one of its events, appropriately guarded, and cor-
respondingly updating the node’s mode; sequential composi-
tion takes care of the “chaining” of actions for each event.
Finally, the system is an unbounded iteration (Kleene star *) of
nondeterministically choosing a node, and performing an event
in it.

The non-inductive verification of the invariance of Valid is
captured as follows:
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Fig. 11. Composition of system specification in DynAlloy.

assertCorrectness validIsInvariant[succ: Node -> lone Node,
succ2: Node -> lone Node,
prdc: Node -> lone Node,
bestSucc: Node -> lone Node]

pre { Init[succ, succ2, prdc] }
program
{

main[succ, succ2, prdc];
bestSuccUpdate[succ, succ2, prdc, bestSucc]

}
post { Valid[succ', succ2', prdc', bestSucc'] }

}

Notice that, since the Chord events do not need to query
the bestSucc information (only the Valid needs this in-
formation), it suffices to update the bestSucc mutable state
just once, before checking the postcondition. Another important
difference with Electrum arises at this point: DynAlloy’s partial
correctness assertions can only express safety properties. These
are insufficiently expressive to capture liveness properties.

D. Expressiveness and Model Analysis Comparison

Both Electrum and DynAlloy have been motivated by an
inconvenience in the direct use of Alloy to express proper-
ties of executions, rather than on a concrete expressiveness
limitation. In fact, from a theoretical point of view, neither
Electrum nor DynAlloy are more expressive than Alloy as a log-
ical language: first-order relational logic with closure operators
is sufficiently expressive to encode both linear-time temporal
logic, and dynamic logic [25], [31]. The expressive power is in
fact enhanced by the extensions, only in relation to particular

analysis approaches, and this is what we discuss below. We
refer to analysis from a qualitative point of view (quantitative
analysis is performed later on in this paper), and limit ourselves
to capturing properties of executions through the mechanisms
proposed by each extension.

In the case of DynAlloy, unbounded finite iteration (Kleene
star) leads to state sequences of arbitrary length, that cannot be
directly captured using Alloy’s finite sequences. This expres-
siveness enhancement provided by DynAlloy cannot however
be exploited when the mechanism for DynAlloy analysis is SAT
solving, which in fact makes all iterations and execution traces
bounded. It is worth remarking that, using alternative analysis
approaches, in particular deductive proof systems, it is possible
to reason about DynAlloy specifications with unbounded traces
[23] (via a sound and complete deductive proof system); this
approach has also been adapted to deal with Alloy itself [48].
However, these systems obviously sacrifice automation, i.e.,
deductive verification for these languages can be assisted but
are not fully automated. Thus, DynAlloy Analyzer, which con-
centrates in automated analysis, only supports bounded analysis
via SAT solving [52].

In the case of Electrum, the approach is based on extending
Alloy with temporal logic operators. This approach leads to
a strictly more expressive language, compared to DynAlloy,
for specifying properties of executions. This is so due to the
fact that DynAlloy does not employ dynamic logic formulas
for specifying properties of executions, only partial correctness
assertions (which correspond to a specific pattern of use of the
box modality of dynamic logic [31]). In particular, Electrum is
capable of capturing liveness properties [4], whereas DynAlloy
is restricted to safety properties (through partial correctness
assertions). Moreover, Electrum has been designed with the
motivation of making specifications analyzable by alternative
technologies. Its analysis tool supports not only SAT-based
bounded model checking through Alloy, but also the use of
model checkers, such as nuXmv [12], for unbounded analysis
[9]. This makes the expressiveness enhancement, in relation
to fully automated analysis, an actual improvement. It should
be nevertheless noted that there is currently only partial sup-
port for the use of nuXmv in the analysis Electrum models,
since the current implementation cannot yet handle Electrum’s
full syntax.

In conclusion, in terms of expressiveness, Electrum is a
strictly more expressive language than DynAlloy, in relation to
the analysis mechanisms associated with their corresponding
automated analysis tools. A concrete example was given previ-
ously in this section, with the “eventually ideal” property of the
Chord protocol, which can be specified in Electrum’s notation
but not as a DynAlloy partial correctness assertion.

E. Tool Usability

The tools associated with both extensions have been devel-
oped, in their latest versions, as extensions to Alloy Analyzer
(in fact, Electrum is now being adopted as part of the official
Alloy Analyzer release). Tools are therefore straightforward to
be used by Alloy users, both from the point of view of the tool
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itself, or by accessing their provided APIs (in both cases, these
extend Alloy Analyzer’s). There is some distinction in how
witnessing instances (counterexamples of properties, runs of
systems) can be explored, when these correspond to properties
of executions. Electrum integrates the standard visualizer in Al-
loy Analyzer and a navigation bar, to “explore” a trace through
time instants. Electrum also offers some more sophisticated
“next instance” queries, that allow the user to ask for further
instances associated to the one being currently explored, e.g.,
by asking for one with a different initial state. DynAlloy, on the
other hand, offers a debugger-like visualizer, that allows users
to navigate traces, highlighting the corresponding parts of the
program in the model, set “watched” expressions as in IDEs,
and observe intermediate values of the involved expressions.
These visualization mechanisms fit well the specification styles
of each of the notations, as trace visualizations are more appro-
priate for transition-system like specifications, and watch/debug
view is appropriate for abstract sequential programs. Overall,
the usability experience is very good with both extensions.

F. Summary

The two extensions share some common characteristics: they
attempt to be faithful to Alloy, and provide kind of conservative
extensions of the original language. That is, valid Alloy speci-
fications are valid Electrum and DynAlloy specifications too,
and the semantics is preserved for the Alloy fragments of the
extensions. Both notations also try to be declarative in nature.
Electrum chooses a higher level language for transition system
specification, defined via LTL constraints, while DynAlloy uses
an abstract sequential programming language approach. These
two alternative styles are also present in other analysis contexts,
model checking in particular. LTL is the specification language
for various model checkers at design level (e.g., [33], [45]),
while partial correctness assertions are used in software model
checkers (e.g., [13], [14], [61]). This is an important distinction
of the two languages, that may serve potential users in deciding
which extension to use, depending on the properties of interest,
and the level of abstraction at which the transition system is
defined. More precisely, for more abstract system models, with
relatively simple control flow, Electrum is in principle a better
choice; for system models that have more complex control
flow, the programming language constructs that DynAlloy uses,
makes it a better choice. Finally, if the properties of interest
are liveness properties, then Electrum is the only alternative
that offers direct support for their analysis. For instance, for the
formal models that we will consider for assessing efficiency in
the following section, for the most algorithmic (InsertionSort,
Dijkstra, Firewire), DynAlloy is the most appropriate; on the
other hand, for SpanTree, RingElection and Chord, Electrum
is better suited (coincidently, these three models have liveness
properties, enforcing the fact that Electrum is the language to
use). Simpler dynamic models, such as RiverCross, FileSystem,
Hotel and CacheMemory, are equally easy to be captured in
both notations.

Regarding how state is captured, the two languages em-
ploy different approaches. Electrum uses the var annotations,
which make the identification of the state dependent parts more

TABLE I
CHARACTERISTICS OF THE EXTENSIONS

Electrum DynAlloy
Expressiveness Equivalent to Alloy’s Equivalent to Alloy’s
Trace analysis Bounded/Unbounded Bounded

Syntax Declarative Imperative
(LTL) (abstract programs)

Instance visualization Trace visual. style Program debugging style

direct, compared to DynAlloy, which uses program parameters
for this task. Electrum leads, in this respect, to more compact
specifications, as the explicit mutable state as parameters in
DynAlloy makes that notation more verbatim. If the model
requires a complex control flow, on the other hand, having to
manually define a sort of program counter, to enforce the control
flow, would make Electrum more cumbersome. DynAlloy also
has frame constraints built-in in the semantics of programs,
whereas these constraints need to be manually specified in the
case of Electrum. It is worth remarking that, especially with
the Chord model, the need for concurrency constructs becomes
apparent; none of the notations directly support it, although both
have the expressive power to allow for it, as it was shown in
the models in this section. Finally, in relation to tool support,
both notations are very good, and have features that match the
characteristics of the notation. We found DynAlloy Analyzer’s
instance exploration more convenient for debugging models,
solely because it is easier to match which event (when multiple
events are enabled) are the ones involved in specific transitions.
This of course can be achieved in Electrum too, at the cost of
adding some history information as part of the “mode” each
node is in, implemented as a sort of program counter in our
running case study.

The main characteristics of the extensions, without consid-
ering efficiency, are summarized in Table I.

V. PERFORMANCE EVALUATION

This section concentrates in empirically evaluating DynAlloy
and Electrum, as well as Alloy, from the point of view of
the efficiency and effectiveness of their corresponding analysis
tools. This empirical evaluation is driven by a set of well-
known Alloy specifications demanding dynamic behavior anal-
ysis, taken from the literature. Each case study is accompanied
by a brief description of the model and the intended properties
to be verified (except when explicitly stated, models are correct
and thus the properties should not lead to counterexamples).
The experimental analyses are detailed in Tables II and III,
which compare the performance of the tools. More precisely,
the tables describe:

• The property being analyzed.
• The scope used for analysis (each property is checked for

increasingly larger scopes). This is separated between the
trace length (which is captured differently by the different
tools, loop unrolls (lurs) in DynAlloy, steps in Elec-
trum, scope for sequences in Alloy2), and the scope for the

2In Electrum and Alloy, the steps and Time’s scope refer to the maximum
number of different trace states to be considered in the analysis. In DynAlloy,
on the other hand, lurs refer to the maximum number of times that iterations
(*) will be unrolled.
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TABLE II
EXPERIMENTAL RESULTS PERFORMANCE TABLE

Model Traces Verification Time(ms) Speed up
scopes lurs/steps Alloy DynAlloy Electrum Exts. (Alloy)

River Cross
property: No Quantum Objects, model scopes = fixed (number of objects)

4 7 4 12 8 1x (-2x)
4 30 43 96 53 2x (-1x)
4 50 158 160 121 1x (1x)
4 100 492 480 484 1x (1x)

property: Farmer Always There, model scopes = fixed (number of objects)
4 7 0 0 1 3x (2x)
4 30 3 1 7 6x (3x)
4 50 13 1 19 14x (10x)
4 100 40 3 74 22x (12x)

property: No Resurrection, model scopes = fixed (number of objects)
4 7 4 0.8 5.1 6x (6x)
4 30 47 2 18 7x (18x)
4 50 83 4 42 10x (20x)
4 100 343 10 173 17x (34x)

Chord protocol
property: Safety, model scopes = #Nodes

6 10 - 901 2608 3x
6 30 - 8802 25491 3x
6 50 - 28783 77592 3x

SpanTree
property: Good Safety, model scopes = #Processes

5 10 40 2 670 261x (15x)
5 50 323 13 36648 2804x (25x)
8 5 69 2 534 271x (35x)
8 10 8459 3 219763 70891x(2729x)
8 50 110226 14 TO - (7655x)

10 5 147 4 2251 567x (37x)
10 10 803128 6 TO - (139190x)
10 20 2179296 9 TO - (253407x)
10 30 TO 13 TO - (-)
10 50 TO 18 TO - (-)

Hotel
property: Good Safety, model scopes = #Guests/#Rooms

2/2 5 3 20 7 3x (-2x)
2/2 30 227 360 295 1x (-1x)
3/3 5 13 166 58 3x (-5x)
3/3 30 4920 19682 7599 3x (-2x)
4/4 5 21 469 330 1x (-16x)
4/4 10 1552 12677 5974 2x (-4x)
4/4 30 128206 2621684 368751 7x (-3x)

property: Bad Safety, model scopes = #Guests/#Rooms
3/3 5 5 20 21 1x (-4x)
3/3 8 34 54 49 1x (-1x)
5/5 5 29 16 123 8x (2x)
5/5 8 35 53 160 3x (-2x)

10/10 5 87 40 931 23x (2x)
10/10 8 22 93 1467 16x (-4x)

Ring Election
property: Safety, model scopes = #Process

3 10 2.8 51.4 21 2x (-8x)
3 50 7 1233 232 5x (-31x)
3 100 14 5513 1322 4x (-92x)
5 10 84 220 203 1x (-2x)
5 50 1050 22938 3402 7x (-3x)
5 100 3559 152359 20302 8x (-6x)

Dijkstra
property: Prevents Deadlocks, model scopes = #Processes/#Mutexes

3/2 5 5 42 8 5x (-2x)
3/2 25 954 1007 1206 1x (-1x)
3/2 50 3086 3215 3479 1x (-1x)
4/3 5 12 109 37 3x (-3x)
4/3 25 12284 5439 12391 2x (2x)
4/3 50 32972 21603 35433 2x (2x)
5/4 5 56 272 74 4x (-1x)
5/4 25 206935 56753 474028 8x (4x)
5/4 50 522356 277046 484716 2x (2x)

rest of the model (referenced as “Model scopes” in tables).
When, besides the trace length, other aspects of the scope
are increased in the experiments, we indicate in the corre-
sponding table what part of the scope is being increased
and how. Since Alloy models use “ordering” on Time,

TABLE III
EXPERIMENTAL RESULTS PERFORMANCE TABLE (CONTINUED)

Model Traces Verification Time(ms) Speed up
scopes lurs/steps Alloy DynAlloy Electrum Exts. (Alloy)

Firewire
property: At Most One Elected, model scopes = #Nodes

4 5 31 2 38 14x (12x)
4 25 31488 5 885 184x (6560x)
5 5 75 2 441 201x (34x)
6 5 429 3 426 141x (141x)
6 15 1740026 7 3921 521x (231079x)
6 25 TO 10 12021 1248x (-)

property: One Eventually Elected, model scopes = #Nodes
4 5 18 9 29 3x (2x)
4 25 141 17 651 39x (8x)
5 5 34 63 138 2x (-2x)
5 25 275 29 5376 184x (9x)
6 5 19 104 162 2x (-5x)
6 25 424 37 6912 187x (11x)

property: No Overflow, model scopes = #Nodes
4 10 441 3 222 61x (121x)
4 25 3614 6 1532 242x (571x)
5 10 551 4 1188 270x (125x)
5 25 7291 10 7364 708x (701x)
6 10 2432 8 1824 229x (305x)
6 25 27686 26 28160 1093x (1074x)

Cache memory
property: DirtyInv, model scopes = memory and data size

4 10 27 74 1133 15x (-3x)
4 25 253 583 7681 13x (-2x)
5 10 32 136 80471 592x (-4x)
5 25 372 1167 1439226 1232x (-3x)
6 10 80 248 TO - (-3x)
6 25 873 2993 TO - (-3x)

property: FreshDir, model scopes = memory and data size
4 5 21 13 15 1x (2x)
4 15 40. 54 30 2x (1x)
5 5 123 6 11 2x (2x)
5 15 611 35 46 1x (17x)
6 5 226 9 16 2x (25x)
6 15 396 59 87 1x (7x)

property: CacheInMain, model scopes = memory and data size
4 5 202 39 339 9x (5x)
4 20 3157 141 3706 26x (22x)
5 5 2261 144 8493 59x (16x)
5 20 342739 463 289202 625x (741x)
6 5 6934 371 102408 276x (19x)
6 10 57972 455 1862589 4096x (127x)
6 20 TO 798 TO - (-)

File System
property: Read Matches Prior Write, model scopes = #inodes and data

4 10 1 1 1 1x (1x)
4 50 3 2 18 8x (2x)
6 10 1 2 2 1x (-1x)
6 50 8 3 22 7x (2x)
8 10 3 3 4 1x (-1x)
8 30 8 3 13 4x (2x)
8 50 16 4 32 8x (4x)

Insertion Sort
property: Sort Works, model scopes = sequence size

4 5 4 5 2 2x (2x)
4 25 23 19 22 1x (1x)
4 100 115 81 1165 14x (1x)
6 5 5 5 2 2x (2x)
6 25 28 26 27 1x (1x)
6 50 64 79 160 2x (-1x)
6 100 137 136 1182 9x (1x)

property: Find Min Works, model scopes = sequence size
4 5 4 30 169 6x (-8x)
4 50 68 142 48058 338x (-2x)
4 100 218 374 623541 1666x (-2x)
6 5 3 26 253 10x (-8x)
6 25 25 50 1244 248x (-2x)
6 50 75 126 92077 733x (-2x)
6 100 237 426 458268 1077x (-2x)

and this forces the analysis to be strict on trace length,
we report the results of DynAlloy and Electrum analysis
commands using “exact” scopes for the trace length too.
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More detailed analysis results (including performance for
“non-strict” analyses on trace length), can be found in the
accompanying site [1].

• The time taken by each tool, in milliseconds (we highlight
in boldface the fastest of the three tools). Timeout (TO) is
set at 60 minutes.

• The speed-up of the fastest extension with respect to the
other extension, and with respect to Alloy. When Alloy is
the fastest tool, the speed-up with respect to Alloy shows
instead the slow down rate of the fastest extension, with
respect to Alloy. Also, when one of the tools times out, we
do not report the corresponding speed-up rates.

It is worth remarking that these tables only refer to SAT-
based bounded analysis, and therefore this part of the anal-
ysis is restricted to bounded properties only. Moreover, the
Alloy dynamic models consider non-looping traces (as opposed
to Electrum), since for safety properties, looping traces do
not provide stronger analysis results: a safety property has a
k-length lasso-trace counterexample iff it has a k-length non-
looping trace counterexample. All tools were configured to use
MiniSAT as the underlying solver, since this was the solver that
in general achieved better performance. All the experiments
were run on a Intel Core i7 with 8 threads and 16GB RAM.
Further details and experiments, including results regarding
different versions of the tools, different underlying solvers for
the three tools, and model checkers for Electrum, can be found
in the experiments site [1].

River cross: The classic river crossing puzzle. In this model,
we check three properties, namely:

• No Quantum Objects, that specifies that no object can be
in two places at the same time;

• Farmer Always There, which states that the river crossing
puzzle transitions cannot make the farmer disappear, and

• No Resurrection, which states that, once an object is lost,
it cannot be recovered.

For this case study, the scope is fixed (4 objects, farmer,
grain, fox and chicken), except for the trace length. As it can
be noticed from Table II, in the first property Alloy outperforms
both of the extensions, and DynAlloy outperforms Electrum. In
the other two properties, DynAlloy is the most efficient tool.

Notice that we do not consider the satisfiable predicate
solvePuzzle, because it finds a solution for a relatively small
scope (8). Details about solvePuzzle can be found in the exper-
iments site.

Chord: The peer-to-peer lookup protocol discussed at large
in the previous section. In this model, we check two properties:

• Safety: states that the validity property is an invariant of
the Chord system.

• Progress: states that if at some point no new nodes join,
and no existing nodes fail, then eventually the system
reaches a continuously ideal situation.

Since the second property cannot be checked using Alloy or
DynAlloy, the tables will only mention Safety. Liveness is as-
sessed later on in this section. The evaluation is for increasingly
longer traces. As it can be seen from the Table II, DynAlloy is
faster than Electrum for this property.

Span Tree: A specification of a distributed spanning tree
algorithm over arbitrary network topologies. The properties of
interest accompanying this model are the following:

• Bad Liveness/Good Liveness, that show how important it
is to consider fairness in order to ensure that the algorithm
progresses, and

• Good Safety, that specifies that all nodes are covered by
the algorithm.

As for the Chord model, only Good Safety is assessed
for comparison (liveness delayed to later on in this section).
Notice that, for this case study, we are able to increase the
“static” scope of the model, as well as the trace length. The
evaluation is for increasing number of processes, and increas-
ingly longer traces. As it can be seen from the Table II, Dy-
nAlloy outperforms, by an important margin, both Alloy and
Electrum.

Hotel: This model specifies the assignment of electronic
keys to guests in a hotel. Essentially, the assignment works
as follows: the hotel issues a new key to the next occupant
of a room, which upon first use will recode the lock, so that
previous keys for that room will no longer work. In this model,
the properties of interest are the following:

• Bad Safety, expected to fail, if it is not a requirement that
every guest must enter the room immediately after check-
in, and

• Good Safety that holds if the mentioned requirement
is met.

Also, in this case study, the “static” scope of the model
and trace length are increased. The evaluation is for increas-
ing number of guests and rooms, and increasingly longer
traces. As it can be seen from the Table II, the three tools
reach a similar performance in the first predicate, and Alloy
outperforms the other tools for most scopes in the second
property.

Ring Election: The model of a well-known distributed al-
gorithm for leader election, for processes connected in a ring
topology. This model proposes the following three properties
for analysis:

• Liveness1: it states that, if there exist processes in the
system, then eventually one will become elected. This
property is expected to fail, since progress is not assumed
in the assertion,

• Liveness2: same as the previous property, but assum-
ing progress,

• Safety: it specifies that once a process is elected leader, it
will always remain the leader.

As for Chord and Span Tree, only the efficiency for Safety
property was compared. In this case study, we increase the
number of processes and the trace length. Experimental results
are shown in Table II; Alloy shows the best performance in
this model, with DynAlloy being the fastest between the two
extensions.

Dijkstra: A model of Dijkstra’s algorithm for mutual exclu-
sion. The property of interest associated with this model is:

• Dijkstra Prevents Deadlocks: it states that if the mu-
tex ordering criterion is satisfied, then deadlocks are
prevented.
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TABLE IV
EXPERIMENTAL RESULTS ON LIVENESS WITH BOUNDED TRACES

Verification Time (ms)
#Model scope #steps Ring Election Span Tree Chord

4 5 104 16 1209
5 6 593 245 11836
6 7 3488 3229 108350
7 8 19283 33412 1151701
8 9 173813 342392 TO
9 10 2542928 TO TO

10 11 TO TO TO

The experimental results are shown in Table II. For this case
study, we increase the number of processes and mutexes, as well
as trace length. As it can be seen from the Table, DynAlloy
outperforms the other tools for most scopes in the analysis of
this property.

Firewire: A model adapted from [17], describing a leader
election protocol used in Firewire, an IEEE standard for con-
necting consumer electronic devices. Three properties are pro-
posed with this model:

• One Eventually Elected, stating that the algorithm should
guarantee that a leader is eventually elected (it is expected
to produce counterexamples),

• No Overflow, which asserts that link queues do not over-
flow, and

• At Most One Elected, asserting that at most one leader is
eventually elected.

The first property is actually a liveness property. But the
original Alloy model considers it, checking for reachability (it
finds counterexamples though). We have then considered this
property, as a reachability property, both in DynAlloy and Elec-
trum too. The evaluation is for increasing scopes (messages,
requests, nodes, links) and trace length. DynAlloy is in this case
the fastest tool, and for a very large margin.

Cache Memory: A model of cache memories, with opera-
tions for writing (through cache) and flushing dirty addresses
to main memory. The original “static” model is described in
[38], and the dynamic version of the model is the one driving
the presentation in [21]. The properties of interest in this model
are the following:

• DirtyInv, which states that, for non-dirty addresses in
the cache, the contents of the cache and main memory
coincide

• CacheInMain, which states that, if there are no dirty ad-
dresses, then the cache is contained in main memory.

• FreshDir, which asserts that there is always an address
that has not been written to (it is expected to produce
counterexamples).

The third property is an invalid property, so counterexamples
are found for it. The experimental results for this case study
are shown in Table III. The evaluation is for increasingly larger
memories (more addresses and data values), and increasingly
longer traces. As the experiments show, in the first two proper-
ties DynAlloy and Alloy reach a similar performance; DynAlloy
is faster than the other tools in the third predicate.

FileSystem: A model of a file system where an inode is either
a directory node or a file node; a directory node maps names
of files and directories to other inodes, and a file node contains

TABLE V
EXPERIMENTAL RESULTS ON LIVENESS WITH

UNBOUNDED TRACES

Verification Time (ms)
#Model Scope Ring Election Span Tree Chord

3 2243 2327 -
4 28531 3492 1159
5 TO 31531 11349
6 TO 523563 30564
7 TO TO 81966
8 TO TO 193477
9 TO TO TO

some mutable data. The model, taken from [49], also defines
operations on a file system, including navigation, writing and
reading to/from a file system, considering specific locations.
The property of interest associated with this model is:

• Read Matches Prior Write: which states that once a write
operation is applied to a file system, reading operations
will not change the information until the next write.

For this case study, we increase the number of objects, as
well as trace length. As it can be seen from Table III, DynAlloy
outperforms the other tools for most scopes in the analysis of
this property.

InsertionSort: A model of the well-known Insertion Sort
algorithm, taken from [49]. The properties of interest associated
with this model are:

• Sort Works: which checks that the algorithm correctly sorts
a given sequence.

• Find Min Works: which checks that the algorithm uses the
index of the minimum element.

The experimental results are shown in Table III. For this
case study, we increase the number of sequences, as well
as trace length. In the first property DynAlloy outperforms
the other tools and in the second property Alloy achieves a
better performance.

A. Liveness Properties

As we mentioned in the previous section, Electrum can han-
dle liveness properties in a way that the other tools cannot, by
resorting to model checkers as opposed to Alloy for unbounded
analysis. Moreover, the trace characterization behind Electrum
also allows the tool to check liveness properties in a bounded
fashion. We have mentioned a few liveness properties present
in some of the models, that we did not consider for perfor-
mance comparison, since Electrum is the only tool that can
directly handle them with bounded traces as well as unbounded
traces. In this section we first report analysis times for liveness
properties over bounded lasso traces. The results are shown in
Table IV, for liveness properties in the Ring Election, Span Tree
and Chord models. We also report analysis times for liveness
properties over unbounded traces, using nuXmv as the model
checker underlying Electrum. The results are shown in Table V.
As for the previous experiments, times in these tables are shown
in milliseconds.

The Electrum language for capturing system state is signif-
icantly richer than that of other (lower level) model checkers:
since it extends Alloy, it directly supports relations, and the use
of relational operators including closure operators. It is then
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TABLE VI
EXPERIMENTAL RESULTS ON CHORD

WITH ELECTRUM AND SPIN

Verification Time (ms)
#Model scope Electrum SPIN

4 728 0
5 6567 0
6 17314 80
7 41847 200
8 92935 310
9 TO 670
10 TO 1850
14 TO 129200
15 TO TO

to be expected that model checking Electrum models would
be more expensive than model checking lower level models.
To put the analysis numbers in context, without risking being
unfair due to differences in modeling decisions, we compared
Electrum with Spin, on Zave’s Chord models (with the Alloy
model being adapted to Electrum, as shown earlier in this
paper). Zave’s Spin model starts from a specific initial ring con-
figuration [65], so we mimicked this behavior in Electrum too.
The comparison of Spin and Electrum is shown in Table VI. In
terms of efficiency, Spin is significantly more efficient; in terms
of scalability, Spin scales to almost twice the scope that Elec-
trum can handle when analyzing this property. These numbers
provide a reference of the analysis efficiency that is currently
sacrificed, in order to use a higher-level, richer specification
language. There may be significant room for improvement too:
Spin is a very mature model checker that implements many
optimizations, whereas Electrum is a relatively recent project.

B. Assessment

Let us discuss the experimental results on the above case
studies. Firstly, notice that the main motivation for the exten-
sions for dynamic behavior over Alloy specifications is specifi-
cation convenience, i.e., declarativeness in modeling, not neces-
sarily efficiency improvement with respect to Alloy. Regarding
this issue, in [44], it is explicitly stated that a comparison with
Alloy, in terms of efficiency, is less interesting than comparing
with alternative tools, since Electrum is based on Alloy (in fact,
Electrum implements the “time” idiom, so increased efficiency
with respect to Alloy is in principle not expected). In the case of
DynAlloy, on the other hand, the results shown in early works
such as [21] report that DynAlloy analyses, based on weakest
precondition computation, lead to improved efficiency with re-
spect to Alloy. This is a first interesting result of our evaluation:
as we can see in Table VII, while DynAlloy is still the most
efficient tool in the majority of cases, Alloy does perform very
well in a good number of cases (in other words, the speedup
gain by DynAlloy is relatively small for many cases). This
reduces the difference with earlier evaluations [21], and can be
explained by the significant advances both in the SAT solving
technologies underlying Alloy, and in the language’s specific
optimizations (it is worth remarking that [21] is previous to
the development of KodKod, the relational solver behind the
current version of Alloy).

Regarding the case studies in which Alloy outperforms Dy-
nAlloy, there are various different characteristics, that prevent

TABLE VII
SUMMARY OF EXPERIMENTAL RESULTS FOR

SAFETY PROPERTIES

Total (18 properties)
Extensions Alloy vs Extensions

Electrum DynAlloy Alloy Electrum DynAlloy
3 15 6 0 12

TABLE VIII
SUMMARY OF EXPERIMENTAL RESULTS FOR LIVENESS PROPERTIES

Total (2 properties)
Electrum (Bounded) Electrum (Unbounded) Alloy DynAlloy

3 3 - -

us from having a consistent conclusion in this regard. In some
cases, River Cross for instance, it is due to the simplicity
of the model and the analysis. In others, like Ring Election,
most of the state space is “touched” by the state-modifying
operations, thus making the weakest precondition approach less
effective. DynAlloy’s weakest precondition computation profits
from cases where not all state-modifying operations affect the
state in the same way, which allows the tool to generate less
intermediate variables for property verification. Overall, Dy-
nAlloy has evolved specifically as an intermediate language for
source code verification, making it, in some cases, less efficient
for dynamic behavior analysis in the context of more abstract
Alloy modeling.

Among the two extensions, and as far as safety properties are
concerned, DynAlloy clearly outperforms, and by a large mar-
gin, the Electrum tool. The difference in performance between
Alloy and Electrum is significant too (recall that Alloy models
have non-looping traces, while Electrum models inherently
consider looping traces). This is, in our opinion, an indication
that there is room for improvement in bounded analysis of
safety properties as implemented in the Electrum tool. It is also
worth pointing out that some of the mechanisms that are imple-
mented in DynAlloy’s weakest precondition computation, are
not specifically tied to this language, and can also be exploited
in the context of Electrum.

It is important to remark that Electrum can also verify safety
properties on unbounded traces (resorting to model checkers),
as opposed to the other two tools that only support analysis
on bounded scenarios. We do not report here the results of
Electrum’s unbounded verification of safety properties because
most models are either not supported by Electrum’s translation
into nuXmv/NuSMV, or reach a time out with the smallest
scopes (in fact, only some properties of 4 out of the 9 models can
be handled by Electrum with unbounded traces). The results of
unbounded verification of safety properties with Electrum can
however be found in the experiments site [1].

Regarding the verification of liveness properties of the con-
sidered case studies, the Electrum tool shows a feature that
the other tools do not support. We summarize the liveness
verification results in Table VIII. This is an important dis-
tinction of Electrum in comparison with the other tools. As
far as unbounded analysis is concerned, the tool is still below
the scalability of other mature model checkers. Moreover, the
rich definition of the state structure offered by Alloy, and thus
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supported by Electrum, makes it very difficult for the tool to
analyze large state spaces in the same way that model checkers
do. But performance and scalability is not the only dimension to
take into account: Electrum supports a very expressive declar-
ative language to describe system state (Alloy), that can fa-
vor model understandability and avoid introducing unnecessary
operational detail into specifications. This calls for a different
kind of comparative study, between Electrum and other model
checkers such as Spin and NuSMV, which is beyond the scope
of our paper.

VI. THREATS TO VALIDITY

We have made our best effort to take into account potential
threats to the validity of our evaluation. Firstly, the comparison
may be biased by the case studies that we considered; we fo-
cused on well-known Alloy specifications demanding dynamic
behavior analysis, from a variety of sources, and trying to cover
different kinds of models, ranging from abstract behavioural
models to more concrete algorithmic models. Another potential
bias is in how each model is captured, as different modeling
alternatives may lead, especially, to disparate performances.
For each language, we took models exactly as published in
the literature, when available. The Chord models were largely
discussed in the paper, and their associated modeling decisions
come from Zave’s work [65]. Most other Alloy versions of
the models come as part of the Alloy Analyzer distribution
(except InsertionSort and FileSystem, which were taken from
[49]); Electrum Analyzer comes with versions of all models
except CacheMemory, FileSystem and InsertionSort; and
DynAlloy had models for all case studies except Span Tree,
Dijkstra, Firewire, FileSystem and InsertionSort. For the
missing case studies, and in some cases missing properties (e.g.,
Farmer Always There and No Resurrection), we constructed
the models ourselves, trying our best to be faithful to the corre-
sponding notation. The constructed models were independently
checked by different authors of this paper. The Chord model
plays a central role in our qualitative analysis. It has a simple
control flow in its dynamic aspects, favoring Electrum for
its characterization. While its introduction may be considered
a bias in our comparison, we believe it is a highly relevant
“dynamic” model in the context of Alloy, worth studying in
this paper. It is also a model that, in our opinion, is difficult
to replace by one of similar importance, and fairer to both
studied extensions.

Our qualitative evaluation has not exhaustively covered the
syntax of the studied notations. While we have not been ex-
haustive, we made our best effort to include the most relevant
parts of the two notations, especially in our introduction of the
notations and the qualitative analysis. In particular, we did not
use some temporal logic operators available with Electrum,
but tried to use the most suitable for the specification of the
required properties (we used eventually, always, after
and primed expressions for “next”). Similarly, we have not
covered some of DynAlloy’s program composition operators,
e.g., repeat and while, in the introduction of the notation
and the qualitative analysis.

Another potential threat to validity is in the scopes of the eval-
uations, including trace lengths, in the considered SAT solvers,
and the intrinsic non-determinism in solving. Although we only
report a representative sample of scopes and configurations
(including the selected SAT solvers) in this paper due to space
reasons, further options are reported in the paper’s evaluation
site [1]. The reader can check that the results reported explicitly
in the paper are indeed representative of the general case. To
account for the non-determinism in SAT solvers, each configu-
ration was run 30 times; the reported times are averages, as the
differences between the different runs of the same experiment
were negligible (see standard deviation and other statistics in
the paper’s evaluation site [1]). Finally, we tried to consider all
the variables in the experiments, that may affect performance.
In particular, all tools were run using strict (fixed scope) as
well as non-strict (all scopes up to a given maximum) mode, as
some of the tools, notably Alloy (which uses ordering and thus
forces a strict analysis), can have a better performance in one of
the two modes. All experimental results and the corresponding
comparisons can also be found in [1].

VII. RELATED WORK

Comparative studies of formal notations are useful elements,
that allow one to better understand the different characteristics
of alternative notations, their advantages and drawbacks, and
helps users in choosing the right tool for their analysis purposes.
Comparison of notations, in particular formal notations, have
been proposed in the literature, concentrating in expressiveness
in some earlier comparisons (e.g., [3]), and in analysis in more
recent efforts (e.g., [20], [27], [30], [51]). Comparisons involv-
ing specifically Alloy, as in this paper, are also present in [36],
[60], where the focus is in similarities with related languages,
especially in expressiveness and style. The work reported in
[5] studies the issues that arise in capturing UML class dia-
grams with OCL constraints into Alloy. These works however
concentrate in Alloy as a language for static aspects of system
modeling. The work in [58] is related to our current evaluation,
since the authors compare alternative ways of capturing state
change (mutability) in Alloy. The analysis is however more “low
level”, concentrating on alternative mechanisms to describe
mutability within Alloy and their relative performances. The
works introducing the extensions to deal with dynamic behavior
in Alloy typically only compare against the original notation
[21], [44], and not among alternative extensions. Moreover,
some of these works involve comparisons that are now outdated,
since they do not take into account modern optimizations that
significantly improve analysis, compared to early versions of
the tools (see previous section for more details on this issue).

Besides DynAlloy and Electrum, other extensions dealing
with the problem of specifying dynamic behavior more ap-
propriately have been proposed, notably [49]. The language
presented therein shares similarities especially with DynAlloy,
and also features some elements now present in Electrum. We
left it out of the comparison due to a lack of an updated tool for
analysis. Tools such as Squander [47] and TACO [26] combine
Alloy with “imperative” notations, but do so for higher-level
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programming languages, rather than software models. Thus, we
also left them out of the comparison. Another proposal based
on Alloy for modeling dynamic behavior is Dash [55], [56].
We left it out of the comparison because of two reasons: (i)
the modeling approach in Dash is based on directly capturing
a transition system, different from Electrum and DynAlloy,
where the transition system is implied by a model at a higher
level of abstraction; and (ii) at the time this study was initi-
ated, the language for property specification [19], [59] was not
supported as part of Dash’s tool3 (tool support has recently
evolved to support temporal property specification). Dash uses
Alloy as an analysis backend, but its modeling style is actually
closer to other tools, as reflected in the comparison reported
in [2]. Previous work attempted to capture the Chord model
in Electrum [10]. The model therein is however a simplifi-
cation of Zave’s model, as fewer event interleavings are al-
lowed for. Moreover, the model uses non-standard Electrum
features (e.g., action definitions), that are not part of Electrum’s
public releases.

Earlier in this paper we also mentioned tools and notations
that require capturing dynamism in Alloy [16], [26], [43], [53],
[62]. These tools and notations can benefit from understanding
the available Alloy alternatives to support dynamic behavior
specification and analysis.

VIII. CONCLUSION

Formal specification languages, and in particular those that,
like Alloy, put an emphasis in automated or semi-automated
analysis, are useful tools for the analysis of system specifi-
cations. With the continuous development of new languages,
with different characteristics and support for different analysis,
and even different specification styles, it becomes important for
software engineers to understand each language’s peculiarities,
to help engineers decide what is the most appropriate formalism
and tool, for a specific specification or analysis problem. Efforts
such as those around the steam boiler specification [3] or the
electronic wallet [20], [27], [30], [51] show the need to better
understand the modeling styles and associated analyses of dif-
ferent formal methods. In this paper, we tackled this problem,
to study two different extensions of Alloy, that aim at better
incorporating dynamic behavior specification into Alloy. Our
comparison is based both in qualitative and quantitative aspects,
and we discussed specification styles, tool usability, degree of
abstraction offered by each style, expressiveness and perfor-
mance. We conclude that both languages are faithful extensions
to the Alloy style of specification, that ease the specification of
system execution properties, with Electrum being at the same
time the most abstract language (specifications in this language
are at a higher level of abstraction) and the most expressive
in relation to analysis (liveness properties are expressible and
analyzable in Electrum). DynAlloy, on the other hand, is better
suited for system specifications that are more directly captured
through abstract programs (e.g., with nondeterminism), or have
a more complex control flow.

3cf. http://dash.uwaterloo.ca:8080/dash/editor.html.

Since Alloy is designed with automated analysis in mind,
this is a characteristic that both studied extensions maintain. In
this respect, Electrum offers more flexibility, allowing users
to select different analysis engines, including model check-
ers for the analysis of unbounded execution traces. DynAlloy
offers the greatest scalability among the extensions for ana-
lyzing safety properties in a bounded fashion, with consistent
significant speed-ups in relation to Electrum. We believe this
performance of DynAlloy is related to how the translation of
analysis problems into SAT is implemented by the tool. It does
not seem that the optimizations in DynAlloy’s translation are
specific to DynAlloy: they could be exploited by Electrum
developers too (at least as far as bounded safety verification is
concerned). Alloy also showed good efficiency, paying a price,
of course, in specification convenience compared to the evaluat-
ed extensions.
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