
0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

1

BLISS: Improved Symbolic Execution by
Bounded Lazy Initialization with SAT Support

Nicolás Rosner, Jaco Geldenhuys, Nazareno M. Aguirre, Willem Visser and Marcelo F. Frias

Abstract—Using Lazy Initialization (LI), symbolic execution
can effectively deal with heap-allocated data structures, thanks
to a significant reduction in spurious and redundant symbolic
structures. Bounded Lazy Initialization (BLI) improves on LI
by taking advantage of precomputed relational bounds on the
interpretation of class fields to reduce the number of spurious
structures even further.

In this article we present BLISS, a novel technique that refines
the search for valid structures during the symbolic execution
process. BLISS builds upon BLI, extending it with field bound
refinement and satisfiability checks. Field bounds are refined
while a symbolic structure is concretized, avoiding cases that,
due to the concrete part of the heap and the field bounds, can
be deemed redundant. Satisfiability checks on refined symbolic
heaps allow us to prune these heaps as soon as they are identified
as infeasible, i.e., as soon as it can be confirmed that they cannot
be extended to any valid concrete heap. Compared to LI and
BLI, BLISS reduces the time required by LI by up to 4 orders
of magnitude for the most complex data structures. Moreover, the
number of partially symbolic structures obtained by exploring
program paths is reduced by BLISS by over 50%, with reductions
of over 90% in some cases (compared to LI). BLISS uses less
memory than LI and BLI, which enables the exploration of states
unreachable by previous techniques.

I. INTRODUCTION

Determining to what extent a software artifact is correct is
among the most challenging problems in software engineering.
Traditional testing is a widely adopted approach to guaran-
teeing software correctness, but its well-known limitations
threaten its effectiveness as a bug-finding technique. Therefore,
more thorough program analysis techniques, which may offer
greater levels of confidence (often enhancing or complement-
ing traditional testing) constitute an important research topic.

One technique that offers better guarantees of correctness
is model checking [5]. Java PathFinder (JPF) [22] is a well-
known tool based on this technique which targets Java source
code and is capable of finding bugs in both sequential and mul-
tithreaded programs. Moreover, through an extension called
Symbolic PathFinder (SPF) [23], [17], the tool is able to
automatically generate test cases, search for violations of user-
provided assertions or uncaught exceptions, handle arithmetic
constraints, complex data structures and rich constraints on the
program inputs.

N. Rosner is with the Department of Computer Science, FCEyN, Univer-
sidad de Buenos Aires, Buenos Aires, Argentina.

J. Geldenhuys and W. Visser are with the Department of Computer Science,
University of Stellenbosch, Stellenbosch, South Africa.

N. Aguirre is with the Department of Computer Science, FCEFQyN,
Universidad Nacional de Rio Cuarto, and CONICET, Rı́o Cuarto, Argentina.

M. Frias is with the Department of Software Engineering, Instituto Tec-
nológico de Buenos Aires, and CONICET, Buenos Aires, Argentina.

SPF combines symbolic execution [15] with model checking
and constraint solving. Symbolic execution, a well-established
program analysis technique, traverses the different paths in
a program using symbolic inputs. Unlike the concrete states
in JPF, states in SPF are symbolic. Symbolic approaches to
systematically exploring program paths have proved effective
for verification, as well as for automated test input generation
by solving the path constraints obtained during the exploration.
When using these symbolic approaches [2], [3], [6], [17],
verifying code that manipulates dynamically allocated data
structures is significantly more difficult than verifying code
dealing with basic data types (the traditional target of symbolic
execution). To effectively handle heap-allocated data struc-
tures, SPF generalizes symbolic execution by introducing Lazy
Initialization (LI) [14]: it constructs the heap as the program
paths are explored, and defers concretization of symbolic heap
object attributes as much as possible.

LI has two important properties. Firstly, it produces sym-
bolic heaps that are pairwise non-isomorphic. The number of
heaps over which a method must be symbolically executed
is greatly reduced by the elimination of symmetric struc-
tures, while guaranteeing that no relevant states are missed.
Secondly, LI exploits any method precondition provided, by
filtering out those heaps that violate it.

To improve symbolic execution, LI can be enhanced with
the use of precomputed, relational field bounds [11]. Intu-
itively, field bounds restrict the number of choices that LI
needs to consider when it is forced to concretize a part of the
heap. In [12] we realized this idea using TACO bounds [10]
(which are discussed in Section II-B), introducing Bounded
Lazy Initialization (BLI) and obtaining significant speedups
with respect to LI.

In this article we present a set of novel techniques that build
on LI and BLI. They incorporate bound refinement (RBLI) and
satisfiability checks (BLISS, BLISSDB). In the former, field
bounds are refined by leveraging information from already-
concretized fields; this makes it possible to further prune the
alternatives to be considered during symbolic execution. In the
latter, auxiliary satisfiability checks are employed to determine
the feasibility of partially symbolic structures, forcing the
symbolic execution process to backtrack as soon as a partially
symbolic candidate is found impossible to extend.

BLISS, as these techniques are collectively called, allows
us to obtain speedups of more than 100X over LI in many
cases. For example, the analyses of the contains methods
from classes TreeSet and AvlTree achieved speedups of 14X
and 188X over LI, respectively. Furthermore, our techniques
also provide advantages in the context of automated test input

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

2

generation, a task for which, as we mentioned, symbolic exe-
cution is particularly effective [3]. Indeed, BLISS can usually
reduce the number of partially symbolic structures collected
by over 50%, with reductions of over 90% in some cases,
compared to LI. Since these partially symbolic structures must
be fully concretized (using SMT solving) to produce actual
test inputs, and since BLISS only removes spurious cases, the
technique impacts test input generation time, while retaining
the same coverage obtained by LI. For instance, for the above-
mentioned contains methods, the sets of partially symbolic
structures obtained by BLISS are 12.5% and 1.6% as large as
the ones obtained using LI, respectively.

The main contributions of this article are:

1) We introduce Refined Bounded Lazy Initialization
(RBLI), a sound and complete optimization of BLI.
RBLI requires the existence of relational field bounds
(as introduced to SPF in BLI) and is often responsible
for most of the observed speedup.

2) We introduce Bounded Lazy Initialization with SAT
Support (BLISS), an additional optimization which
builds upon the existence of refined bounds as produced
by RBLI, and makes use of user-provided class repre-
sentation invariants. We show that BLISS is sound and
complete, and that it is often responsible for most of the
observed reductions in the number of partially symbolic
structures obtained during systematic path exploration.

3) We optimize BLISS by caching SAT results. BLISS
typically produces a large number of short computations,
and a significant portion of these can be reused in later,
related analyses. Hence, we cache SAT results in a Redis
[18] database, leading to an optimized version that we
call BLISSDB.

4) We evaluate our techniques on a benchmark consisting
of 33 methods from 6 well-known collection classes, and
show that the combination of the techniques can yield
significant speedups as well as considerable test suite
size reduction.

This article is organized as follows. Section II describes
SPF and briefly reviews our previous work on LI and BLI, the
existing techniques for symbolically executing code that han-
dles heap-allocated data structures. In Section III we present
RBLI and prove its soundness and completeness. In Section IV
we introduce BLISS, prove its soundness and completeness,
and present BLISSDB. Section V contains an evaluation of
RBLI, BLISS and BLISSDB on several implementations of
collection classes, some of which have been previously used
to evaluate SPF. Lastly, Section VI discusses related work, and
in Section VII we present our conclusions and proposals for
further work.

II. SYMBOLIC PATHFINDER AND
(BOUNDED) LAZY INITIALIZATION

Java PathFinder is a flexible tool for software analysis. Its
core is a virtual machine (VM) for Java byte code. Unlike a
standard Java VM, the JPF VM is capable of backtracking.
The tool identifies program statements that lead to alternative

branches, and systematically explores those alternatives. Be-
sides branching that arises as a consequence of thread schedul-
ing, the main source of nondeterminism is program inputs.
When these inputs involve –for instance– integer variables, this
may lead to path explosion (often called state space explosion).

Symbolic execution [15] collapses families of executions
by replacing concrete values with symbolic ones. Whenever
branching conditions are encountered in the program, con-
straints are collected to reflect the decisions that were taken;
the conjunction of constraints along one program path is
referred to as the path condition for that path. Such conditions
are checked for feasibility using constraint solvers (typically
SMT solvers), and when one is found to be infeasible, the
underlying model checker driving the symbolic execution
backtracks and explores other paths. This systematic explo-
ration of paths can be used for verification and bug finding.
Moreover, the path conditions obtained in the exploration of
program paths can be solved to find concrete inputs that will
drive an execution down the corresponding paths, thus leading
to a mechanism for automated white-box test input generation.

In this article we present improvements over existing work
for the symbolic analysis of code handling dynamically allo-
cated data structures. Therefore, in Section II-A we summarize
Lazy Initialization [14], the current technique used by SPF for
exploring such data structures. In [12] we introduced a first
improvement over Lazy Initialization; in order to discuss in
Section II-C this technique, called Bounded Lazy Initializa-
tion, we first introduce in Section II-B the concept of TACO
bounds.

A. Lazy Initialization
For heap-allocated structures, SPF uses Lazy Initialization

(LI) [14]. LI keeps structures partially symbolic; if an object’s
attribute f is still symbolic, it will be made concrete whenever
the execution of the program under analysis attempts to
access its value. This on-demand concretization explains the
“lazy” appellative of the algorithm. The concretization process
considers three possibilities: f is initialized with null, f is
initialized with a previously introduced concrete object, or f
holds a reference to a newly introduced concrete object whose
attributes are all symbolic. These choices are systematically
explored by the underlying model checker. A pseudo-code
description of LI is shown in Alg. 1, originally presented in
[14]. Notice that the code under analysis need not execute on
a purely symbolic structure; it may execute on an input that is
partially symbolic and for which symbolic parts are explored
using LI. This same property holds for the techniques we will
introduce in further sections.

Figure 2b shows some of the alternatives explored by the LI
algorithm when executing the traverse algorithm from Fig. 2a
on a binary tree, with binary trees defined by classes BinTree
and Node as shown in Fig. 1. Executing traverse on structure
1 from Fig. 2b reaches the branching condition “right
!= null”. Therefore, field right must be concretized. This
leads to the generation of structures 2–4 in Fig. 2b. Let us
continue with structure 4. Upon execution of the statement
“right.traverse();” on this structure, the recursive in-
vocation of traverse leads us, once again, to the concretization

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

3

if (f in uninitialized) then
if (f is reference field of type T) then

nondeterministically initialize f to
1. null
2. a new object of class T (with uninitialized fields)
3. an object created during a prior

initialization of a field of type T
if (method precondition is violated) then

backtrack();
end

end
if (f is primitive field) then

initialize f to a new symbolic value of appropriate type
end

end
Algorithm 1: Pseudo-code of the Lazy Initialization algo-
rithm.

p u b l i c c l a s s BinTree {
Node r o o t ;

}

p u b l i c c l a s s Node {
Node l e f t ;
Node r i g h t ;

}

Fig. 1. An implementation of heap-allocated binary trees.

of N1.right. This time, 4 alternatives are generated. Notice that
amongst these structures, some are clearly invalid due to the
presence of loops (this is the case for instance for structures
3, 6 and 7). In order to prune such invalid structures at an
early stage, LI resorts to preconditions. We discuss below what
preconditions are, and how they are applied during LI.

1) Preconditions and Lazy Initialization: A precondition
for a method m is a condition that is assumed to be true
before the execution of m. Such conditions are used by the
class designer/programmer to characterize those input states
in which the method is expected to behave as intended. For
example, the method for traversing a binary tree depicted
in Fig. 2a requires the input structure to be a binary tree,
and in particular, to be non-null and acyclic, since the al-
gorithm might otherwise perform a null dereference or get
stuck in an infinite loop. In object-oriented programming, one
part of a method’s precondition is usually the representation
invariant of the method’s parameters (including that of the
implicit this object on which the method is executed).
A representation invariant, also called class invariant, is a
condition that accompanies a class, which must be established
by its constructors and preserved by its public methods. Thus,
such invariants characterize properties of valid instances of
the class. For instance, for heap-allocated binary trees, the
representation invariant would specify that the structure is
indeed a tree (acyclic, with every node having exactly one
parent except for the root).

Besides being useful as program documentation, represen-
tation invariants (and, more generally, preconditions) can be
reflected programmatically as imperative routines that check
whether the invariant or precondition holds. Imperative repre-
sentation invariants are usually referred to as repOK routines.

As explained in [14], and as illustrated in Alg. 1, LI requires
an imperative precondition for the program or method under
test. But not just any precondition will work properly with

LI: the average repOK routine, for instance, is not necessarily
prepared to deal with the fact that it might run into parts of the
structure that are still symbolic. In other words, LI assumes the
existence of an imperative precondition that has been properly
adapted to deal with partially symbolic structures. We shall
refer to such preconditions as hybrid ones, since they can
be applied to structures involving both concrete and symbolic
values.

A hybrid precondition could be a straightforward adaptation
of the original concrete precondition: one that attempts to
detect ill-formed structures, but returns true as soon as it runs
into a symbolic value that it does not know how to handle. Of
course, it could also be a much more sophisticated routine,
carefully designed by the user with symbolic execution in
mind – for instance, one that backtracks whenever symbolic
values are found, and tries to detect ill-formedness later on.
This raises an important trade-off. The former approach is
a simple over-approximation that may return false positives,
which could slow down the analysis, but it has the enormous
advantage of being fully automatic. The latter approach, on the
other hand, is more specific, less prone to false positives and
thus potentially more scalable, but it requires expert human
intervention and bears considerable risk of introducing new
errors. Ensuring that a handcrafted hybrid precondition is
correct with respect to the original concrete one would become
a nontrivial problem on its own right. This is why we chose
the former (i.e., to systematically derive a conservative hybrid
precondition from an available concrete one) as our default
course of action, and for experimental evaluation. For example,
Fig. 3 shows an acyclicConcrete method that checks whether a
fully concrete structure is acyclic, and a hybrid version thereof,
acyclicHybrid, which will admit partially symbolic structures.
The hybrid version includes special constants and associated
boilerplate code in order to handle symbolic values from each
of the types involved.

There are some limitations to what can be pruned using
hybrid preconditions. These limitations stem from the fact that
LI only sets the values of accessed fields of reference types.
Primitive-typed fields, however, obtain their values from the
solutions to path conditions, which are computed by constraint
solvers. Unfortunately, these primitive values usually cannot
be used within hybrid preconditions. To illustrate this fact,
let us enrich our BinTree class with an int field named key,
and consider again method traverse from Fig. 2a, enriching its
precondition with a new constraint that requires the root’s key
to have value 0. Recall that hybrid preconditions are used to
prune symbolic execution, by forcing the process to backtrack
when a symbolic instance is found not to be obtainable from an
initial heap satisfying the hybrid precondition. Since traverse
does not access field key, the constraint solver may assign ar-
bitrary values to root.key. In particular, if it assigned a nonzero
value to the said field, this would lead to pruning a valid
partially symbolic tree, as well as all of its concretizations,
thus turning LI into an incomplete technique.

One might argue that, rather than using the constraints on
primitive values to prune symbolic execution, such constraints
could be used to enhance path conditions, thus narrowing the
space of solutions found by constraint solvers. However, let

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

4

\requires isBinTree();
public void traverse() {
 if (right != null){
 right.traverse();
 }
 if (left != null){
 left.traverse();
 }
}

N0

left right

N0

left right

null

N0

left right

N0

left right

N1

left right

N0

left right

N1

left right

null

right

right

N0

left

N1

left

N0

left right

N1

left right

N0

left right

N1

left right

N2

left right

(a)

(b)

1

2 3 4

5 6 7 8

Fig. 2. Method traverse on binary trees, and some of the structures generated
by LI along its symbolic execution.

us recall that preconditions are imperative in this context, and
therefore cannot be directly conjoined with path conditions.
One way of “conjoining” imperative preconditions with path
conditions is by sequentially composing the imperative pre-
condition with the program under analysis. Although this does
achieve the desired goal of integrating the constraints on the
primitive values into the path conditions, it severely hinders
scalability: in the code resulting from such a composition,
the imperative precondition “prefix” will typically force an
enumeration of all valid concrete (or nearly concrete) instances
prior to the execution of the routine under analysis, which
defeats the purpose of symbolically executing said routine.

Yet another alternative would be to require a declarative
precondition to be provided, so that it can be directly conjoined
with path conditions. This approach has serious disadvantages
as well. If the whole declarative precondition is included in
each and all path conditions, their sizes are substantially in-
creased, making them exceed the capabilities of the constraint
solver sooner, thus diminishing scalability. If, instead, the path
conditions are solved before symbolic execution, so that they
need not be carried along all symbolic paths, then we end up,
as in the aforementioned case, enumerating all valid concrete
(or nearly concrete) instances.

B. TACO and Field Bounds

TACO (Translation of Annotated Code) [10], [11] is a tool
for bounded program verification that targets Java code anno-
tated with JML [9] contracts. In order to verify the correctness
of a Java program, i.e., that it does not violate its contract and
does not raise unhandled exceptions, it requires the engineer
to provide a scope, which consists of a maximum number of
iterations and object instances for the classes involved. It then
checks the correctness of the program within the provided
scope – that is, it checks that no execution involving at most

p u b l i c boolean a c y c l i c C o n c r e t e () {
Set<BinTreeNode> v i s i t e d = new HashSet<BinTreeNode > () ;
L i s t<BinTreeNode> pend ing = new A r r a y L i s t<BinTreeNode > () ;
BinTreeNode r o o t = t h i s . r o o t ;
v i s i t e d . add (r o o t) ;
pend ing . add (r o o t) ;
whi le (! pend ing . i sEmpty ()) {

BinTreeNode node = pend ing . remove (0) ;
BinTreeNode l e f t = node . l e f t ;
i f (l e f t != n u l l) {

i f (! v i s i t e d . add (l e f t)) {
re turn f a l s e ;

}
pend ing . add (l e f t) ;

}
BinTreeNode r i g h t = node . r i g h t ;
i f (r i g h t != n u l l) {

i f (! v i s i t e d . add (r i g h t)) {
re turn f a l s e ;

}
pend ing . add (r i g h t) ;

}
}
re turn true ;

}

p u b l i c boolean a c y c l i c H y b r i d () {
i f (t h i s == SYMBOLIC BinTree)

re turn true ;

Set<BinTreeNode> v i s i t e d = new HashSet<BinTreeNode > () ;
L i s t<BinTreeNode> pend ing = new A r r a y L i s t<BinTreeNode > () ;
BinTreeNode r o o t = t h i s . r o o t ;
i f (r o o t == SYMBOLIC BinTreeNode)

re turn true ;

v i s i t e d . add (r o o t) ;
pend ing . add (r o o t) ;
whi le (! pend ing . i sEmpty ()) {

BinTreeNode node = pend ing . remove (0) ;
BinTreeNode l e f t = node . l e f t ;
i f (l e f t != n u l l && l e f t != SYMBOLIC BinTreeNode) {

i f (! v i s i t e d . add (l e f t)){
re turn f a l s e ;

}
pend ing . add (l e f t) ;

}
BinTree r i g h t = node . r i g h t ;
i f (r i g h t != n u l l && r i g h t != SYMBOLIC BinTreeNode) {

i f (! v i s i t e d . add (r i g h t)){
re turn f a l s e ;

}
pend ing . add (r i g h t) ;

}
}
re turn true ;

}

Fig. 3. A concrete precondition and its hybrid counterpart.

as many objects and iterations as prescribed by the scope
can violate the contract or raise an unhandled exception. To
achieve this, TACO translates the program and its declarative
specification into a propositional formula, which is solved us-
ing off-the-shelf SAT-solvers. Essentially, satisfying valuations
of the resulting formula correspond to program executions
violating the program specification; thus, unsatisfiability of the
formula means that the program is correct within the given
scope. Notice that these declarative specifications most times
include a declarative representation invariant, which is part of
the method precondition.

In TACO, the encoding of bounded program correctness as
a satisfiability problem involves characterizing heap states as
relations. Given a class C, a class field f of type C ′ defined
in C can be represented in a given program state as a total

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

5

N0

left right

N2

right

N1

null

left right

N3 null

left

null

left right

null

N0

N1

N2

next

next

null

null

Fig. 4. Object labeling according to TACO’s symmetry breaking.

function f mapping object references from C to C ′. Notice
that properties of the state, including the maximum number of
objects of each class (i.e., the scope), may make some tuples
of C×C ′ infeasible as part of field f. In particular, if the state
is assumed to satisfy constraints (e.g., the states prior to the
execution of the code under analysis are assumed to satisfy a
precondition), all tuples corresponding to ill-formed structures
will necessarily be absent from f in that state. Furthermore,
if symmetry breaking is imposed by enforcing a canonical
ordering on the way references are stored in the heap model
(see [11] for a careful introduction), then structures that do
not comply with this canonical ordering are dismissed, and
the number of tuples allowed in the relations that bound the
fields can be significantly reduced. TACO field bounds capture
precisely these feasible cases. A field bound for a field f of
type C → C ′ is a subset Uf ⊆ C × C ′, such that every tuple
t that is not Uf cannot correspond to the contents of f in
any valid instance of C within scope k. By valid instance we
mean an instance that satisfies the corresponding specification
and symmetry-breaking constraints associated with the field.
Essentially, tuples that are absent from the upper bound Uf

are infeasible, i.e., are guaranteed not to belong to any valid
instance. Note that C×C ′ is a field bound for a field f of type
C → C ′, although it is not necessarily the tightest possible
bound (i.e., the one containing the smallest possible subset
of tuples). The tighter a bound, the better, since it provides
more information about infeasible cases for the corresponding
field. While a thorough description of our symmetry-breaking
process is given in [10], we emphasize that the induced
canonical ordering labels object identifiers in accordance with
a breadth-first traversal of the memory heap. Figure 4 shows
how a singly-linked list and a binary tree are labeled. It is also
worth mentioning that TACO field bounds, that is, those that
were automatically computed using the approach put forward
in [10], are the tightest possible bounds for the data structures
that were studied in [10] (which include those analyzed in this
article): they exclude every tuple that can be proved infeasible
for the corresponding class invariants and scopes.

In order to illustrate TACO field bounds, consider again
binary trees, as defined in Fig 1. The representation invariant
for this structure, which is expected to be part of the precon-
dition of any method handling binary trees, requires the heap
structure starting at the root to be a tree. Symmetry breaking
forces tree node reference labels to be assigned in breadth-
first order. Suppose that the scope is 4 (i.e., we only consider

• root ⊆ {N0, null}
• left ⊆ {(N0, null), (N0, N1), (N1, null), (N1, N2), (N1, N3),

(N2, null), (N2, N3), (N3, null)}
• right ⊆ {(N0, null), (N0, N1), (N0, N2), (N1, null),

(N1, N2), (N1, N3), (N2, null), (N2, N3), (N3, null)}

(a)

• root ⊆ {N0, null}
• left ⊆ {(N0, null), (N0, N1), (N1, null), (N1, N3),

(N2, null), (N3, null)}
• right ⊆ {(N0, null), (N0, N2), (N1, null), (N1, N3),

(N2, null), (N3, null)}

(b)

Fig. 5. Tight relational bounds automatically computed by TACO for binary
trees (a) and complete binary trees (b), using a scope of up to 4 nodes.

trees containing at most 4 nodes). The tightest possible field
bounds for fields root, left and right are shown in Fig. 5a, and
are exactly those computed by TACO. Notice that the binary
tree illustrated in Fig. 4 satisfies the constraints (valid tree,
with nodes labeled in breadth-first order, and within scope
4); the tuples in the bounds that are involved in this tree are
highlighted in Fig. 5a.

Clearly, for a given scope, the tightest field bounds are
determined both by symmetry breaking and by the class in-
variant. Therefore, if we considered a stronger class invariant,
the corresponding field bounds would be more restrictive (that
is, they would contain fewer tuples). Continuing with our
example, if we used a stronger class invariant, for instance,
one characterizing complete binary trees (complete up to the
penultimate level, and such that nodes on the last level are
located as far to the left as possible), then the corresponding
bounds would be the ones given in Fig. 5b.

C. Bounded Lazy Initialization

Bounded Lazy Initialization (BLI) [12] is an optimization of
LI that leverages the availability of TACO bounds. Essentially,
TACO bounds are used to reduce the number of alternatives
that need to be explored during symbolic execution, avoiding
the generation of some of the structures that LI would produce.
Instead of being labeled with object identifiers, nodes in
partially symbolic structures are labeled with sets of object
identifiers, in accordance with the bounds. Given a partially
symbolic structure S and a node N in S whose label is a set
lN of identifiers, this set intuitively denotes the set of object
identifiers that could potentially be assigned to node N in a
concrete structure extending S. Naturally, in each concrete
structure, a single identifier is assigned. But, since TACO picks
identifiers in a canonical way that is consistent with a breadth-
first traversal of the structure, a node may receive different
identifiers in different structures depending, for instance, on
the number of null values found before N along the traversal.
Figure 6 shows a pair of concrete binary trees. Each node is
assigned an identifier picked from the set {N0,N1,N2} under
the constraint that the BFS traversal of the trees must produce
a sorted sequence (we assume N0 < N1 < N2). Note that, in
Fig. 6a, the rightmost node has been assigned identifier N2;
this is the only possibility that respects the BFS traversal. In
Fig. 6b, the rightmost node is assigned identifier N1. This is

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

6

{N0}

left right

{N1}

right

null null

null

left

{N0}

left right

{N2}

right

{N1}

left right left

null null null null

(a) (b)

Fig. 6. Shifting of node identifiers due to null values in the BFS traversal.

due to the presence of null as the left subtree of the root node,
which shifts the available node identifiers.

Root nodes receive as their label set their corresponding
field bounds, without null. Field bounds are also involved in
the definition of labels for non-root nodes. Given a node N
with label lN, we define its target label set through field f as
the set label(N, f) characterized by the following expression:

label(N, f) =

(⋃
n∈lN

n.Uf

)
− null ,

where Uf is the field bound for f. Notice that null is never part
of the label set of a node. This is so because only concrete
nodes are assigned label sets, and the label corresponds to
the identifiers that this node may receive. When the value of
attribute f for node N has to be concretized following the BLI
algorithm, we consider the following alternatives:
• N.f is set to null,
• N.f points to an existing concrete node N′ if the latter

has a label set that has a nonempty intersection with
label(N, f), or

• N.f points to a newly introduced concrete node N′ whose
label is defined as label(N, f) if the latter set is nonempty.

The cases in which pruning takes place are the second and
the third. Let us describe this in more detail. As we said,
the label set associated with a node captures the alternative
identifiers that the node may adopt. When a previously intro-
duced node Nt is being considered as the f field of another
node Ns, this case only makes sense as an option if the
label set of Nt has some intersection with the possible values
reachable from Ns’s label set through f, according to the
bounds. Similarly, when a node’s label set is empty, it means
that no identifier can be assigned, which deems the extension
infeasible. Algorithm 2 shows the pseudo-code of the BLI
algorithm. Notice how the alternatives for the initialization
of fields with previously visited nodes is reduced in this
algorithm, compared with LI.

Figure 7 shows how the generation of structures from Fig. 2
is carried out in the context of BLI when the bound for binary
trees (Fig. 5a) is considered. In the example we begin with
the heap root labeled {N0} (the other possibility being for the
root to be null). When accessing field right, BLI only generates
structures 2 and 4. Structure 3 is never generated because the
label for the root node (set {N0}) and the set label(N0, right)
(set {N1,N2}) do not intersect. A similar reasoning explains
why structures 6 and 7 are not generated. Notice that in these
cases we have only prevented the generation of structures that

if (f is uninitialized) then
if (f is reference field of type T) then

nondeterministically initialize f to
1. null
2. a new object n of class T (with uninitialized fields)

and label(n) := label(this,f),
if label(this,f) is nonempty

3. an object x created during a prior
initialization of a field of type T
such that label(this).intersects(label(x))

if (method precondition is violated) then
backtrack();

end
end
if (f is primitive field) then

initialize f to a new symbolic value of appropriate type
end

end
Algorithm 2: Pseudo-code of the Bounded Lazy Initializa-
tion algorithm.

\requires isBinTree();
public void traverse(){
 if (right != null){
 right.traverse();
 }
 if (left != null){
 left.traverse();
 }

}

{N0}

left right

left right

left right

N0

left right

N1

left right

null

right

right

N0

left

N1

left

N0

left right

N1

left right

N0

left right

N1

left right

N2

left right

(a)

(b)

1

4

5 6 7 8

{N1,N2}

left right

null

2
{N0}

left right

3
{N0} {N0}

Fig. 7. Some of the structures generated by BLI during the execution of
method traverse.

would be deemed redundant by LI as well upon execution of
the precondition. We have only saved the time that would have
been spent in the execution of the precondition.

BLI may also prune subtrees that would not be pruned by
LI. Let us consider structure 4 from Fig. 2. If we now use
bounds for complete binary trees (see Fig. 5b), an accordingly
labeled version of structure 4 is shown in Fig. 8. Notice
that LI would extend structure 4 to generate structure 8,
and would even attempt further extensions. Instead, since
label(N2, right) = ∅, the only possibility for concretizing
N2.right according to BLI is to assign null. Therefore, a unique
extension, namely, structure 5, will be produced by BLI.

BLI is sound and complete with respect to LI, provided
that field bounds are correct (they only exclude infeasible
tuples). BLI’s soundness and completeness with respect to LI
mean that a valid structure (one that satisfies the existing class
invariant), is generated by BLI if and only if it is generated
by LI [12].

Theorem 1: Let M be a method under analysis. A valid

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

7

left right

left right

{N0}

{N2}

Fig. 8. A version of structure 4 extracted from Fig. 2, labeled using bounds
for complete binary trees.

structure S is generated along the symbolic execution of
method M using LI if and only if it is generated along the
symbolic execution of M using BLI.

Proof: ⇒) Let us assume S is not generated via BLI and
let us arrive to a contradiction. As discussed above, there are
two situations in which S may be discarded by BLI, namely,
• the concretization of N.f is a new node whose label set

is empty, or
• the concretization of N.f is a previously introduced node

whose label set does not intersect label(N, f).
Regarding the first case, since S is pruned by BLI, there
is a symbolic execution step in which the concretization of
attribute f from node N leads to a new node N′ using LI,
but label(N, f) = ∅ and S is pruned using BLI. But, since
bounds are correct and S is a valid structure, (N,N′) ∈ Uf

and therefore label(N, f) 6= ∅ (a contradiction).
Regarding the second case, let S0 be a symbolic structure

whose concretization using LI leads to S, and such that it is
discarded by BLI when node N is made to point to a previously
existing node N′ with label(N, f) disjoint from the label set
of N′. Notice that for an arbitrary node N0 in S0, its label set
is the set of node identifiers that can be assigned to node N0

along BFS traversals of full concretizations of S0. Let LS0 and
LS 1 be the label sets for nodes N and N′, respectively. Since
S is a valid structure, let n0, n1 be the identifiers assigned
to nodes N and N′ in the BFS traversal of S, respectively.
Clearly, n0 ∈ LS0 and n1 ∈ LS1 . Also, in S, n0.f = n1. Thus,
〈n0, n1〉 ∈ Uf . But then, n1 ∈ label(N, f) and label(N, f) ∩
LS1 6= ∅ (a contradiction).
⇐) Trivial since BLI is more restrictive than LI.

III. REFINED BOUNDED LAZY INITIALIZATION

Refined Bounded Lazy Initialization (RBLI) is the first
technique that we introduce in this article, building upon
BLI. We will show that the proposed technique is sound and
complete, and will also set the basis for the experimental
evaluation that will be reported in Section V.

Notice that the number of structures generated by BLI
during concretization is directly related to its label set. A
label set containing fewer identifiers would usually produce
fewer candidate structures. Let us consider the binary tree
depicted in Fig. 9a. Let us denote by N the node whose
label is the set {N1,N2}. According to the bounds for bi-
nary trees (see Fig. 5a), label(N, right) = {N2,N3}. Since
{N1,N2} ∩ {N2,N3} 6= ∅, the structure depicted in Fig. 9b
is generated when attribute right is concretized following BLI

left right

left right

{N1,N2}

{N0}

{N1}

(a) (b)

left right

left right

left right

{N1,N2}

{N0}

{N1}

left right

Fig. 9. A binary tree and an extension generated by BLI, yet pruned by
RBLI.

(as well as when LI is used). In the remaining parts of this
section we will argue that the generation of such candidate
may be safely prevented.

A closer look at the reason why the structure depicted in
Fig. 9b was generated shows that if identifier N1 were not
part of the label for node N (i.e., if the label for node N
was {N2}), then label(N, right) would be {N3}. Therefore,
since {N2}∩{N3} = ∅, the structure would not be generated.
Recalling the explanation from Section II-C for having sets of
identifiers (rather than just identifiers) as labels, we note that in
a binary tree that respects the symmetry breaking imposed by
TACO, node N0.right may be assigned identifiers N1 or N2.
But, since identifier N1 has been already assigned to a different
node previous to N in the breadth-first search traversal of the
structure, it can be removed in this partially symbolic structure
from set {N1,N2}.

The refinement technique that we propose consists of per-
forming a breadth-first traversal of the structures, until the
first symbolic value in the search is found. Let us denote
by posBFS (N, S) the position of an arbitrary node N in the
breadth-first traversal of the structure S, prior to the first
symbolic node. We know that identifiers in N’s label that differ
from posBFS (N, S) may be removed.

Algorithm 3 shows the refinement algorithm. It returns a
boolean value, indicating whether the (possibly) refined struc-
ture is still valid, or became redundant due to the refinement.
Lines 22-25 show how the labels for concrete nodes, previous
to the first symbolic node in breadth-first traversal, are set.
Lines 19-21 show that if the current label of a node does not
contain its only valid position, then the structure is spurious
and can be removed. Algorithm 4 shows the pseudo-code for
the RBLI algorithm. Notice how this algorithm builds over
BLI, by enabling the systematic path exploration to backtrack
when the current partially symbolic structure is found to be
spurious.

The following theorem shows that RBLI is sound and
complete with respect to LI.

Theorem 2: RBLI is sound and complete with respect to
LI, i.e., a valid (with respect to the concrete imperative
precondition) structure is produced by RBLI if and only if
it is produced by LI.

Proof: Soundness is straightforward. Since RBLI differs
from BLI in that the former incorporates a process for bound
refinement, RBLI cannot produce instances that are not pro-
duced by BLI. Since BLI is sound with respect to LI, RBLI
is sound with respect to LI as well.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

8

1 boolean refineHeap(Heap h)
2 Set〈HeapNode〉 roots = h.getRoots();
3 if (not roots.isEmpty()) then
4 Queue〈HeapNode〉 pending = new List〈HeapNode〉();
5 Set〈HeapNode〉 visited = new Set〈HeapNode〉();
6 for (HeapNode hn : roots) do
7 pending.add(r);
8 visited.add(r);
9 end

10 int currIndex = 1;
11 boolean foundSymbolic = false;
12 while (not pending.isEmpty() and not foundSymbolic) do
13 HeapNode hn = pending.remove();
14 if (isSymbolic(hn)) then
15 foundSymbolic = true;
16 return true;
17 else
18 if (not isNull(hn)) then
19 if (not h.getLabel(hn).contains(currIndex)) then
20 return false;
21 end
22 LabelSet ls = new LabelSet();
23 ls.add(currIndex);
24 h.setLabel(hn, ls);
25 currIndex++;
26 for (Field f : hn.getFields()) do
27 HeapNode n = hn.getFieldValue(hn, f);
28 if (isSymbolic(n) or visited.add(n)) then
29 pending.add(n);
30 end
31 end
32 end
33 end
34 end
35 end
36 return true;
37 end

Algorithm 3: The heap refinement algorithm.

if (f is uninitialized) then
if (f is reference field of type T) then

nondeterministically initialize f to
1. null
2. a new object n of class T (with uninitialized fields)

and label(n) := label(this,f)
3. an object x created during a prior

initialization of a field of type T
such that label(this).intersects(label(x))

if (method precondition is violated || !refineHeap(currentHeap)) then
backtrack();

end
end
if (f is primitive field) then

initialize f to a new symbolic value of appropriate type
end

end
Algorithm 4: Pseudo-code of the Refined Bounded Lazy
Initialization algorithm.

The proof of completeness of RBLI with respect to LI is
based on the fact that every concrete node N in a symbolic
structure S has as label a set that contains all the identifiers
that can be assigned to N along BFS traversals of any fully
concrete extension of S. Since our approach is based on the
assumption that correct field bounds are used, we can assume
that RBLI executes on symbolic structures that satisfy the
above condition, to show that RBLI does not prune valid
structures.

Let S0 be a symbolic structure. Let Ni be the concrete node
in S0 in position i in the BFS traversal of S0. Let LS i be the
label set for node Ni, and let RLS i be the refined label set
for Ni produced by RBLI. Let us suppose that there exists a
valid fully concrete structure S that extends S0 that will not
be generated due to discarding S0. Also, let us suppose Ni /∈

RLS i (thus pruning the valid structure S). Certainly, Ni ∈ LS i

due to the completeness of BLI with respect to LI. Then, since
RBLI differs from BLI only in bound refinement, Ni must
have been removed from RLS i during refinement. Recall that
the refinement process stops as soon as a symbolic node is
reached. Thus, the fact label set LS i was refined implies Ni

must occur in a fully concrete prefix of the BFS traversal of
structure S0.

Let posBFS (Ni, S) be the index of node Ni in the BFS
traversal of structure S.
• If i < posBFS (Ni, S), then node Ni appears in a

previous BFS traversal position in S0 than its final BFS
position in S. Since what differentiates S0 from S is the
concretization of symbolic values, node Ni must appear
in a previous BFS position in S0 due to the concretization
of a symbolic value in S0 that occurs before Ni in the
breadth-first traversal. But then, since there is a symbolic
value previous to Ni in the BFS traversal of S, LS i is
not refinable, i.e., RLS i = LS i. This contradicts the fact
that Ni ∈ LI i and Ni /∈ RLS i.

• If i > posBFS (Ni, S), then we have a node in a structure
whose label is strictly greater than its BFS position,
contradicting the symmetry breaking predicates, which
force a breadth-first canonical reference assignment for
structures.

The completeness of RBLI (as well as the completeness of
BLI) with respect to LI indicates that the technique will only
prune redundant structures. As mentioned before, this means
not just that the systematic exploration of feasible paths will
be more efficient, but also that, if the resulting path conditions
are solved to build test suites, the suites obtained by RBLI and
BLI may be smaller than those obtained by LI, resulting in
fewer test cases. Thanks to completeness, the test cases that
will not be part of suites built using BLI or RBLI, or any
other of the techniques to be introduced in this article, will
be redundant with respect to the concrete precondition of the
method under analysis, and therefore also spurious. As it will
be shown in Section V, bound refinement often provides most
of the observed speedups of our techniques over LI.

IV. BLISS AND BLISSDB
Bounded Lazy Initialization with SAT Support (BLISS)

is our second main contribution in this article. BLISS ex-
tends RBLI with a mechanism for pruning partially symbolic
structures as soon as their concretization is determined to
be infeasible, i.e., that they cannot be concretized to be-
come a valid fully concrete structure. This is achieved by
searching for concretizations of partially symbolic structures
using the corresponding preconditions (e.g., data structure
class invariants), and resorting to SAT solving. Obviously,
when no concretization exists for a given partially symbolic
structure, it can be safely discarded in the symbolic execution
process. Since these SAT solver invocations are costly, we
introduce an optimization of BLISS called BLISSDB, in which
SAT calls verdicts are stored in a database and reused across
different analyses. This section then first introduces BLISS,
and afterwards the BLISSDB optimization is presented.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

9

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
T r e e S e t X = new T r e e S e t () ;
X = (T r e e S e t) Debug . makeSymbolicRef (”X” , X) ;
t r y {

i f (X != n u l l)
X. b f s T r a v e r s e () ;

} ca tch (Throwable t) {}
}

Fig. 10. A “main” method driving the SPF analysis of method bfsTraverse.

BLISS prunes redundant partially symbolic structures that
could not be pruned by the previously introduced techniques.
To this end, BLISS conjoins the declarative class invariant with
a propositional description of the concrete part of the structure;
since no constraints are imposed on the symbolic parts of the
structure, a SAT-solver call allows us to determine if the SAT-
solver was able to concretize the previously symbolic parts
in order to obtain a fully concrete structure. This high-level
intuition will be made precise along this section.

To illustrate BLISS, let us consider a slightly more com-
plex (when compared to our previous binary trees) example.
Figure 10 shows a main program used as a driver for the
symbolic execution of a breadth-first traversal of a red-black
tree. Red-black trees are balanced binary search trees. They
are used as the implementation of class TreeSet in pack-
age java.util.collections, and satisfy the following constraints,
which constitute their class invariant:

rbt1: the tree is a binary search tree,
rbt2: each node has a color, which can be red or black,
rbt3: the tree root is black,
rbt4: no two consecutive nodes in a path can be red, and
rbt5: all the paths from the root to a leaf contain the same

number of black-colored nodes.
Consider the partially symbolic red-black tree depicted in

Fig. 11a, which is generated during the symbolic execution
of method bfsTraverse. Let us discuss why this tree cannot
be colored in a way that satisfies the class invariant, which
is reasonable to assume would be part of the precondition
for bfsTraverse. First, condition rbt1 forces the root node to
be black. The coloring of root.left deserves some analysis. If
root.left is red, then root.left.right must be red too in order to
satisfy condition rbt5. But this leads to a violation of condition
rbt4. Therefore, root.left must be black. However, since all
the paths from the root to a leaf node must contain the same
number of black nodes, they must all have exactly 2 black
nodes (one of them being the root node). It is then impossible
to give a valid coloring to the right subtree (the reader should
convince him/her-self of this by looking for a valid coloring).

Even though the tree in Fig. 11a is redundant, due to our
discussion in Section II-A1, this tree would be generated along
the execution of LI. Moreover, the node labeling, computed
according to the TACO bounds for red-black trees with up to
6 nodes, shows that this tree will also be generated by BLI.
It will even be generated by RBLI, as illustrated by Fig. 11b,
which shows the same tree after refinement has been applied
to the node labels. Unlike LI, BLI and RBLI, BLISS would
recognize the infeasibility of Fig. 11a via a satisfiability check
on the structure, pruning it and consequently not considering

(b)(a)

left right

left right

{N0}

{N1,N2}{N1}

null

right

left right

left

null

left

null

right

null
{N5}

left right

{N3,N4} {N3,N4,N5}

left right

left right

{N0}

{N2}{N1}

null

right

left right

left

null

left

null

right

null
{N5}

left right

{N3} {N4}

Fig. 11. A partially symbolic red-black tree considered valid by LI and BLI
(a), its RBLI-refined version (b) also considered valid by RBLI, yet pruned
by BLISS.

/∗@
@ i n v a r i a n t r o o t != n u l l ==> r o o t . c o l o r== BLACK;
@ i n v a r i a n t
@ (\ f o r a l l Node n ;
@ \ reach (roo t , Node , l e f t) . has (n) ;
@ ((n . c o l o r == RED && n . l e f t != n u l l) ==>
@ n . l e f t . c o l o r == BLACK) &&
@ (\ f o r a l l Node x ;
@ \ reach (n . l e f t , Node , l e f t) . has (x) ;

x . key < n . key) &&
@ (\ f o r a l l Node x ;
@ \ reach (n . r i g h t , Node , l e f t) . has (x) ;

x . key > n . key) &&
@ . . .
@∗ /

Fig. 12. A fragment of the JML class invariant for TreeSet.

it, nor any of its extensions.
In order to perform BLISS satisfiability checks we use

a declarative precondition for the method under analysis,
which must be provided by the user. For instance, for method
bfsTraverse, the precondition would be the red-black tree class
invariant applied to the method’s parameter, expressed in a
language such as JML [4]. Figure 12 presents a fragment of
such an invariant.

In order to perform the above described satisfiability checks,
we automatically translate the method’s declarative precondi-
tion to a SAT-solving problem using the TACO tool. We com-
bine the propositional translation of the declarative precondi-
tion with a characterization of the partially symbolic structure
whose feasibility we want to check. To this end, BLISS uses
a mapping called pvars (for “propositional variables”) whose
key set is made of triples of the form:

〈sourceHeapNode,field , targetHeapNode〉

and whose values are variable numbers in the DIMACS [25]
CNF encoding of the propositional formula that results from
the translation of the declarative precondition. Intuitively,

pvars.get(〈s, f, t〉) = v

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

10

means that v is the variable that encodes the fact that field f
maps the source heap node s to the target heap node t. For
efficiency reasons to be discussed in Section V-C, the analysis
is simplified if we consider nodes s and t whose label sets
are singletons. Note that this naturally happens in the fully
concrete prefixes of the BFS traversal of a heap, after RBLI
has been applied. Therefore, we apply BLISS after RBLI,
in order to benefit from these fully concrete prefixes. BLISS
makes use of SAT-solving under assumptions, a common SAT-
solver feature that allows one to call the solver repeatedly
on the same CNF instance, each time passing as parameter
a different set of assumptions (literals that will be assumed
to hold during the analysis). BLISS performs a BFS traversal
of the heap and generates the assumptions to be used during
that analysis. Algorithm 5 presents BLISS’s traversal process.
Note that, at its core, it collects as assumptions the fully
concrete prefixes of the BFS traversal of the partially symbolic
structure. For our refined sample structure in Fig. 11b, the
SAT-solver would solve the propositional translation of the
declarative class invariant under the following assumptions:

pvars.get(〈N0, left , N1〉), pvars.get(〈N0, right , N2〉),
pvars.get(〈N1, left , null〉), pvars.get(〈N1, right , N3〉),
pvars.get(〈N2, left , null〉), pvars.get(〈N2, right , N4〉),
pvars.get(〈N3, left , null〉), pvars.get(〈N3, right , null〉),

pvars.get(〈N4, left , N5〉) .

Algorithm 6 shows the pseudo-code of the BLISS algorithm,
where the use of the processHeapWithSolver routine is
indicated. Notice again that this algorithm builds over RBLI,
adding a new condition under which the systematic path
exploration is forced to backtrack, namely, when the current
partially symbolic heap is found to be spurious by a SAT
query. Also, processHeapWithSolver is executed after
refineHeap, therefore operating on the already refined label
sets of the nodes in the partially symbolic heap.

1 boolean processHeapWithSolver(Heap h)
2 Node root = getRoot(h);
3 if (not isSymbolic(root) and not isNull(root)) then
4 Queue〈Node〉 pending = new LinkedList〈Node〉();
5 HashSet〈Node〉 visited = new HashSet〈Node〉;
6 HashSet〈Integer〉 assumptions = new HashSet〈Integer〉;
7 pending.add(root);
8 visited.add(root);
9 while (not pending.isEmpty()) do

10 Node src = pending.remove();
11 if (not isSymbolic(src) and not isNull(src)) then
12 for (String fn : classFieldNames) do
13 Node target = pointsThroughField(src, fn);
14 assumptions.add(pvars(src, fn, target));
15 if (visited.add(target)) then
16 pending.add(target);
17 end
18 end
19 end
20 end
21 boolean verdict = solver.isSatisfiable(assumptions);
22 return verdict;
23 end
24 return true;
25 end

Algorithm 5: Assumptions computation in BLISS.

BLISS satisfiability checks serve, in many situations, the
same purpose that preconditions/class invariants on partially
symbolic structures serve during LI, i.e., to rule out partially

symbolic structures that cannot be extended to a valid concrete
structure. However, BLISS improves upon preconditions under
various aspects. First, preconditions must be generalized to
deal with symbolic structures. This task has to be manually
carried out by the engineer, who has to attempt to algorithmi-
cally decide if a partially symbolic structure is concretizable,
from the already concretized part of the structure. Typically,
this approach is limited in the way it refers to symbolic
portions of the partially symbolic structure, and is dependent
on how well the engineer is able to “generalize” the concrete
precondition/class invariant to symbolic structures. Second,
preconditions or imperative class invariants do not take the
scope –that is, the number of available nodes, loop iterations,
and so on– into consideration. Satisfiability checks based on
the translation of declarative class invariants, on the other
hand, can predicate on symbolic portions of the structure
straightforwardly (essentially, via existential quantification),
and are able to draw conclusions based on the scope, which is
a necessary part of every satisfiability check, as in the previous
example.

On the other hand, using BLISS needs some additional
effort in comparison with LI and our previously introduced
extensions: it requires the engineer to provide a declarative
invariant. We shall elaborate on this fact in Section V-D.

if (f is uninitialized) then
if (f is reference field of type T) then

nondeterministically initialize f to
1. null
2. a new object n of class T (with uninitialized fields)

and label(n) := label(this,f)
3. an object x created during a prior

initialization of a field of type T
such that label(this).intersects(label(x))

if (method precondition is violated || !refineHeap(currentHeap) ||
!processHeapWithSolver(currentHeap)) then

backtrack();
end

end
if (f is primitive field) then

initialize f to a new symbolic value of appropriate type
end

end
Algorithm 6: Pseudo-code of the BLISS algorithm.

As the following theorem states, BLISS is sound and
complete (modulo the equivalence of the declarative and the
procedural invariants) with respect to LI. When we refer to the
equivalence with the procedural class invariant we mean with
respect to the one that operates on fully concrete structures,
and not the hybrid one. The latter is a more general and weaker
version of the former.

Theorem 3: BLISS is sound and complete with respect to
LI, i.e., a valid structure is produced by BLISS if and only if it
is produced by LI, provided that, for the class under analysis,
the declarative class invariant used by BLISS is equivalent to
the imperative class invariant on which the hybrid invariant
used by LI is based.

Proof: BLISS extends RBLI with satisfiability checks on
partially symbolic structures. Notice that these checks are only
used for pruning, so BLISS cannot generate any structure that
RBLI would not generate. Then, since RBLI is sound with
respect to LI, BLISS is also sound with respect to LI.

Now let us prove completeness. Let S be a valid structure

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

11

generated by LI within scope k, but rejected by BLISS for
the same scope. It certainly is not rejected due to bound
refinement, since RBLI is complete with respect to LI. Then,
its generation by BLISS has been prevented due to satisfiability
checks. That is, there must exist a partially symbolic structure
S′ such that S extends S′, and BLISS found S′ to be
redundant. Since the encoding of declarative class invariants
and partially symbolic structures employed by BLISS is sound
and complete with respect to bounded verification (cf. [11]),
the encoding of S′ being infeasible implies that there is no
concrete structure within scope k that extends S′ and satisfies
the declarative class invariant. But, since S extends S′, it
is within scope k and satisfies the concrete imperative class
invariant, it must be the case that the declarative and imperative
invariants are not equivalent, contradicting our hypothesis.

Satisfiability checks usually take substantially more time
than concrete executions of the kind that LI performs when
executing an imperative hybrid repOK or precondition on
partially symbolic structures. Thus, BLISS SAT checks will
be worthwhile only if the number of structures pruned thanks
to these checks is greater than those pruned by hybrid precon-
dition checking in LI, so that the cost of SAT checks pays off
with respect to considering a significantly larger number of
structures (those generated if only preconditions on symbolic
structures are employed). The level of pruning provided by
BLISS depends on the strength of the corresponding class
invariant, and on the method under analysis and how it
traverses the structure. We will show in Section V that, in
our case studies, BLISS improves the analysis time in 25 (out
of 32) methods with respect to LI. Moreover, BLISS allowed
us to analyze a method, namely AvlTree.bfs, using scope 20,
whereas LI runs out of memory in scope 13 (cf. Table III).

Again, as for the case of RBLI, since BLISS helps in reduc-
ing the number of partially symbolic structures collected while
systematically exploring path conditions, it provides signifi-
cant advantages in automated test input generation considering
test suites built by concretizing the collected partially symbolic
structures. Furthermore, since BLISS is sound and complete
with respect to LI, only redundant cases are dismissed by the
technique, ensuring that we retain exactly the same coverage
obtained by using standard SPF with LI. As our experiments
show (cf. Table X), we achieve in some cases reductions on
the number of partially symbolic structures produced using
LI of up to 99.8%. As we will show in the experimental
evaluation section, among the techniques introduced in this
paper, BLISS is the one responsible for most of the reductions
in the number of partially symbolic structures obtained during
systematic path exploration.

Unlike LI and our previously introduced techniques BLI and
RBLI, BLISS introduces additional SAT checks during SPF’s
symbolic execution. One might wonder what the advantage
could be of using these additional SAT checks, considering the
fact that SPF already uses SMT-solving to prune the search
space by solving path conditions. However, note that, while the
SMT checks performed internally by SPF have a complexity
that depends on the structure of the program under analysis
(since these are used to solve individual path conditions),
the additional SAT checks performed by our technique are

completely independent of the program structure – they only
depend on the program’s precondition and scope. Since pre-
conditions/invariants on data structures usually involve quan-
tifiers and reachability constraints, we consider this separation
of concerns positively contributes to the performance of the
approach.

The above described technique requires a significant number
of satisfiability checks – a priori, one per each partially sym-
bolic structure found along the symbolic execution process. If
we consider the workflow that users typically employ when
performing bounded analyses of the kind offered by Symbolic
PathFinder, we note that a large number of those checks
can be reused. An engineer using a bounded verification tool
will generally want to check a property for increasingly large
scopes: he or she would begin by checking a property for some
small scope, so as to ensure termination within reasonable
time, and then perform checks for larger and larger scopes, in
order to gain greater confidence on the validity of the property
(until eventually reaching a scope where the tool needs more
time or space than available). Thus, when checking a property
for a scope k, we may find it useful to reuse any equivalent
satisfiability checks that might already have been performed
on prior analyses for scopes smaller than k.

As an example, consider again the structure in Fig. 9a.
BLISS would check this structure’s feasibility before extend-
ing it, when performing symbolic execution for a given scope,
say, 3. Note that, if instead of 3, the scope is 4 (or any other
number greater than 3), the structure in Fig. 9a will still be
feasible under this new scope. This is the case due to two facts.
Firstly, scopes are non strict in our analyses, in the sense that
checking a property α for a scope k corresponds to verifying
whether α holds or not for all inputs whose size is at most k
(as opposed to strict analysis, which would check the property
for inputs of size exactly k). Secondly, (correct) TACO field
bounds are monotonic with respect to scope incrementation,
as the following theorem shows.

Theorem 4: Let C be a class and f a field in it, of type C ′.
Let Uk

f and Uk+1
f be TACO field bounds for f for scopes k

and k + 1, respectively. Then, Uk
f is contained in Uk+1

f .
Proof: Let t be a tuple in Uk

f . Since TACO bounds are
the tightest for a corresponding class and scope, there must
exist a valid structure c of class C within scope k, such that
〈c, c.f〉 = t. Since c is a valid structure within scope k, it is
also a valid structure within scope k + 1. Therefore, by the
correctness of TACO bounds, 〈c, c.f〉 must belong to Uk+1

f ,
i.e., t ∈ Uk+1

f .
The above observation involves only the satisfiable cases:

whenever a symbolic structure is found to be feasible for
scope k, it will also be feasible for scopes greater than k.
However, the same situation does not hold for unsatisfiable
cases. A symbolic structure may be redundant due to scope
restrictions, but its concretization may become feasible if
larger scopes were used. For instance, Fig. 13a is redundant
as a partially symbolic red-black tree when the scope is 6.
This is because there are already 6 concrete nodes; hence,
all possible extensions concretize symbolic references to the
null value. This leads to a tree that is a concretization of
the tree in Fig. 11a, which we already discussed was not

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

12

(a)

left right

left right

{N0}

{N2}{N1}

right

left right

left

left

null

right

null
{N5}

left right

{N3} {N4}

(b)

B

left right

R

right

R

right

B

left right

left

B

left

null

right

null
R

left right

B

null

null null

left right

null null

left

B

left right

null null

Fig. 13. A partially symbolic red-black tree redundant in scope 6, and a
valid concrete extension in scope 8.

concretizable as a red-black tree. Figure 13b, on the other
hand, depicts an appropriately-colored concrete extension of
the tree in Fig. 13a. This means that the tree in Fig. 13a is
feasible in scope 8. Therefore, infeasibility in a given scope
does not necessarily promote to larger scopes. The BLISSDB
technique consists then of an optimization to BLISS, that
takes advantage of previous SAT computations by caching the
results for satisfiable cases. Algorithm 7 shows BLISSDB’s
traversal process. Essentially, BLISSDB is the same as Alg. 6,
but instead of calling processHeapWithSolver, it calls
processHeapWithSolverDB, which caches satisfiable re-
sults.

1 boolean processHeapWithSolverDB(Heap h)
2 Node root = getRoot(h);
3 if (not isSymbolic(root) and not isNull(root)) then
4 Queue〈Node〉 pending = new LinkedList〈Node〉();
5 HashSet〈Node〉 visited = new HashSet〈Node〉;
6 HashSet〈Integer〉 assumptions = new HashSet〈Integer〉;
7 pending.add(root);
8 visited.add(root);
9 while (not pending.isEmpty()) do

10 Node src = pending.remove();
11 if (not isSymbolic(src) and not isNull(src)) then
12 for (String fn : classFieldNames) do
13 Node target = pointsThroughField(src, fn);
14 assumptions.add(pvars(src, fn, target));
15 if (visited.add(target)) then
16 pending.add(target);
17 end
18 end
19 end
20 end
21 boolean verdict;
22 if (foundSatisfiable.get(assumptions)) then
23 verdict = true;
24 else
25 verdict = solver.isSatisfiable(assumptions);
26 if (verdict) then
27 foundSatisfiable.add(assumptions);
28 end
29 end
30 return verdict;
31 end
32 return true;
33 end

Algorithm 7: Assumptions computation in BLISSDB.

In Section V we will discuss experimental results. It is our
experience that depending on the SMT and SAT solvers being

used, BLISSDB can produce a 2X speedup over BLISS.

V. EVALUATION

Before getting into the description of the experimental
results, notice that each of the presented techniques builds over
the previous, i.e., BLI extends LI, RBLI extends BLI, BLISS
extends RBLI, and BLISSDB extends BLISS. Since all our
introduced techniques are sound and complete with respect
to LI, only spurious paths (and corresponding partially sym-
bolic structures) are removed by our techniques. Also, each
technique introduces a further “pruning” over the previous,
since it incorporates some new element (compared with the
corresponding previous technique) to decide the infeasibility
of a path/symbolic structure. However, it is not obvious
whether these mechanisms pay off from an efficiency point of
view, since a particular pruning technique may be too costly
and remove only a small number of spurious paths/symbolic
structures. So, in this section we evaluate this issue, i.e.,
whether our introduced techniques are worthwhile.

The BLI, RBLI, BLISS and BLISSDB algorithms described
in the previous sections were incorporated into the standard
distribution of Symbolic PathFinder, and compared to the
already-implemented LI algorithm. To assess these algorithms,
32 methods from the following data structures were used:
• LinkedList : An implementation of the AbstractList ab-

stract datatype based on circular doubly-linked lists, taken
from the java.util package. We consider methods repOK
(which checks that the structure is actually a well-formed
doubly-linked circular list), add (which appends the given
element at the end of the list), contains (which returns
true if the list contains a given element), and remove
(which removes the element stored in a certain position
in the list). Notice that unlike the remaining structures,
this class is implemented using a cyclic structure, which
shows the suitability of the techniques also for this kind
of structures.

• BinTree : An implementation of binary trees. We consider
methods bfs (for breadth-first search traversal of a tree),
dfs (for depth-first search traversal of a tree), repOK
(which checks that the structure is actually a tree), and
count (which counts the number of nodes in a tree).

• TreeSet : An implementation of the Set abstract datatype
based on red-black trees, taken from the java.util pack-
age. We consider methods for breadth-first search traver-
sal (bfs), depth-first search traversal (dfs), repOK (which
tests whether the structure is a valid TreeSet), method
contains, which searches a TreeSet for a given element,
and methods add and remove, which insert and remove
an element, respectively.

• TreeMap : A red-black tree based implementation of
the SortedMap abstract datatype, taken from package
java.util, and used in [16]. The class includes methods
containsKey, print (which traverses the underlying red-
black tree), put and remove. Unlike TreeSet, where Sym-
bolic PathFinder is used to analyze isolated methods, for
this class we follow the procedure adopted in [16], which
consists of analyzing sequences of method invocations of
increasing length.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

13

• AvlTree : An AVL tree based implementation of the Map
abstract datatype, used first as a case study in [6], and also
used in [10], [11]. This implementation includes methods
for bfs and dfs traversals, as well as contains, insert and
delete. Also, an appropriate repOK method characterizing
valid AVL trees is included.

• BinomialHeap : This class is a Binomial Heap imple-
mentation of the Heap abstract datatype, and is one of
the case studies discussed in [16]. It includes methods
for bfs and dfs traversals, a corresponding repOK, and
methods insert, extractMin and remove. We analyze
these methods in isolation. Additionally, as in [16],
we also consider sequences of method invocations of
increasing length. These sequences include invocations
of methods insert, findMinimum, extractMin, delete and
decreaseKey. Method extractMin contains a nontrivial
bug found in [10]; we will use this method both as a
driver guiding the execution of BLISS, and also to de-
termine if BLISS can improve the analysis time required
for finding that bug using LI.

The analysis consisted both in systematically exploring
program paths for the above structures and methods, and
collecting the corresponding partially symbolic structures that
would need to be concretized via SMT-solving to build test
suites. Notice that since our techniques are sound and complete
with respect to LI, although the sets of structures collected
with different techniques may differ in size, the corresponding
test suites will be the same with all techniques (our techniques
remove only redundant cases). Analyzing our techniques both
on heavily constrained structures (such as red-black trees,
where tight bounds are smaller) and on less constrained
structures (such as binary trees or linked lists) is relevant for
a number of reasons. First, the number of partially initialized
structures generated using bounded lazy initialization and the
extensions presented in this article strongly depend on the
cardinality of the field bounds. Second, in the BLISS technique
both the cost of performing SAT checks and the corresponding
pruning depend on the strength of the class invariant. Class
BinTree is particularly interesting because, unlike the other
classes in our benchmark, its adapted “hybrid” class invariant
can precisely determine the infeasibility of partially symbolic
structures. Under these circumstances, TACO bounds will not
contribute neither by producing significant analysis speedups,
nor by reducing the number of collected partially symbolic
structures for test generation, when compared with those
produced by LI. This is experimentally confirmed in Tables VI
and X.

A. Experimental Setup

Along this section times are presented following the pat-
tern mmm:ss. “TO” (timeout) means failure to complete the
analysis within 10 hours. “OOM” (out of memory) indicates
failure to complete due to exhaustion of the 4 GB of JVM heap
memory. TACO field bounds were not recomputed as part of
the experiments for this article. Instead, the databases of previ-
ously computed TACO bounds for the data structures involved
in the experiments were reused. Computing field bounds, as

put forward in [10], requires checking, via SAT-solving, the
feasibility of each tuple in the corresponding field’s semantic
domain. Thus, a large number of SAT queries, which depends
on the scope, must be performed. However, these checks are
all independent from one another, and therefore are subject
to parallelization. Indeed, the approach proposed in [10] to
compute tight field bounds uses a cluster. The article includes
the time required to compute bounds for the classes used in this
article, using a cluster of 16 identical quad-core PCs (64 cores
total), each featuring two Intel Dual Core Xeon processors
running at 2.67 GHz, with 2 MB (per core) of L2 cache and
2 GB (per machine) of main memory. Such hardware is older
and significantly slower than the one used in this article (to be
described in the next paragraph). The time may be significant
(for instance, for red-black tress with up to 20 nodes it took
40:37, and for AVL trees with up to 20 nodes it took 168:23 to
compute the TACO bounds). Still, since bounds are used in the
analysis of all methods in a class, and even across tools (these
same bounds were used in TACO [11] and MUCHO-TACO
[19] analyses), these bound computation times are amortized.
For instance, red-black tree bounds for scope 20 were used in 3
methods in [11], in 3 methods in [19], and in 9 methods (from
classes TreeSet and TreeMap) in this article. For each method
in this article we used the bounds along the analysis with
BLI, RBLI, BLISS and BLISSDB. Therefore, these specific
bounds were used 42 times. This makes the total time (40:37)
contribute 00:58 to each analysis, which does not significantly
alter the speedups achieved. Regarding the bound computation
for class AvlTree, the TACO bounds for scope 20 were used
in 4 methods in [11], in 3 methods in [19], and in 6 methods
in this article (each one of the latter using the bounds during
BLI, RBLI, BLISS and BLISSDB analyses). Thus, the total
bound computation time in this case (168:23), contributes 5:26
to each of the 31 performed analyses. Again, adding this time
to our analysis times has a minor impact in most experiments.

All the experiments we report in this article were run on
an Intel Core i7-2600 processor with a 3.40 GHz clock speed
and 8 GB DDR3 RAM, running Linux 3.2.0. All times are
wallclock times as provided by SPF. 4 GB of heap memory
were allocated for the Java virtual machine.

B. Experimental Results

Tables I–VII report the analysis times for techniques LI,
BLI, RBLI, BLISS and BLISSDB, on all the classes and
methods mentioned above, for various scopes. The lowest
analysis times are highlighted, and the corresponding speedup
is then reported as the quotient between the analysis time
required by LI and the best analysis time among those reported
for BLI, RBLI, BLISS and BLISSDB. Note that in some cases,
LI runs out of memory while the other techniques do not. In
those cases we report an infinite speedup (∞). This happens in
20 methods. Particularly interesting are the cases for methods
TreeSet.bfs and AvlTree.bfs, where LI runs out of memory in
scope 14 and 13, respectively, yet BLISS and BLISSDB are
able to reach scopes 17 and 20, respectively.

If we look at the analysis times for method
BinomialHeap.bfs in Table IV, we see that for scopes

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

14

15 through 20, the “>” symbols pile up. For scope 15, the
explanation for such notation is simple: if the actual analysis
time was 10 hours, the speedup would be 36,000X. However,
since the analysis timed out at 10 hours (but would have taken
potentially longer to complete), we can conservatively affirm
that the speedup is at least 36,000X. Analysis times grow
most times exponentially as the scope is increased. For scope
16, although we can only guarantee a 36,000X speedup, due
to the exponential growth in analysis times, it is more likely
that the actual speedup is much larger (noted by �) than
36,000X. The same principle applies to even larger scopes;
in order to remind the reader of the exponential growth in
analysis times, we add another “>” symbol for each scope.

In Table VIII we sort the 32 methods that conform our
experimental evaluation by their maximum achieved speedup.
The listing also includes the technique that yielded said
speedup. We focus on those analyses where memory was not
exhausted. Therefore, infinite speedups are dismissed. From
Table VIII we see that 19 out of the 32 methods (59%) achieve
a speedup greater than or equal to 5X. According to Table X,
for most of those methods where the speedup was under 5X,
the reduction in the number of partially symbolic structures
collected is significant. For example, as shown in Table IX,
out of the 13 methods whose analysis speedup is below 5X, 6
reduce the corresponding set of partially symbolic structures
over 50%. In fact, out of the 32 methods under analysis, 47%
get their collected structures reduced in more than 50%. This
will yield considerable savings in testing, since these structures
will need to be solved to build test suites.

The remaining 7 methods, in which low speedups and
reductions on collected structures occurred, are the following:

1) BinTree.bfs,
2) BinTree.dfs,
3) BinTree.repOK,
4) BinTree.count,
5) LinkedList.repOK,
6) LinkedList.add, and
7) LinkedList.remove.
The fact that class BinTree does not lend itself well to the

techniques introduced in this article should not be surprising.
This is due to the fact that BinTree is a class whose adapted
hybrid class invariant (characterizing whether a partially sym-
bolic structure can be extended to a binary tree) can precisely
determine the infeasibility of partially symbolic structures.
Therefore, as discussed just before Section V-A, there is no
space for extra pruning benefits beyond those achieved by
using the hybrid invariant within LI.

Regarding the methods in class LinkedList, the analysis
times are almost negligible and therefore there is no much
space for optimization. Still, LinkedList is the only class in
our benchmark that contains cyclic structures, and it serves
the purpose of showing that the techniques can be applied to
cyclic structures without incurring in a noticeable overhead.

As shown in Fig. 10, we use the methods in the benchmark
as drivers that lead the execution of SPF until the state space
determined by the methods is exhausted. Notice that we are
not looking for existing bugs; moreover, the try-catch block
surrounding the method call masks any runtime exception that

TABLE VIII
METHODS, BEST TECHNIQUE AND MAXIMUM SPEEDUP.

Method Best technique Speedup
BinHeap.bfs BLISS/BLISSDB 36,000X
AvlTree.bfs BLISSDB 326X
TreeSet.bfs BLISSDB 188X
AvlTree.contains BLI/RBLI/BLISS/BLISSDB 188X
TreeSet.repOK BLISSDB 77X
AvlTree.dfs BLISS/BLISSDB 50X
TreeSet.add BLISSDB 43X
BinHeap.insert BLISSDB 33X
BinHeap.repOK RBLI 28X
BinHeap.dfs RBLI 24X
TreeSet.contains BLI/RBLI/BLISS/BLISSDB 14X
BinHeap.extractMin(Bug) BLISS 12X
AvlTree.insert BLISS 10X
BinHeap.trace L2 BLISSDB 7X
AvlTree.remove BLISS 6X
TreeMap.trace L2 RBLI 5X
TreeMap.trace L1 BLI/RBLI/BLISS/BLISSDB 5X
AvlTree.repOK BLISSDB 5X
BinHeap.trace L3 RBLI/BLISS 5X
TreeSet.dfs RBLI 4X
BinHeap.trace L1 BLISS 4X
BinHeap.delete RBLI/BLISS/BLISSDB 4X
TreeMap.trace L3 RBLI 3X
BinHeap.extractMin RBLI /BLISS/BLISSDB 3X
BinTree.bfs RBLI 3X
TreeSet.remove BLI/RBLI 2X
BinTree.dfs RBLI 2X
BinTree.count BLI/RBLI 2X
BinTree.repOK RBLI 1X
LinkedList.repOK LI/BLI/RBLI/BLISS/BLISSDB 1X
LinkedList.add LI/BLI/RBLI/BLISS/BLISSDB 1X
LinkedList.remove LI/BLI/RBLI/BLISS/BLISSDB 1X

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) throws E x c e p t i o n {
BinomialHeap X = new BinomialHeap () ;
X = (BinomialHeap) Debug . makeSymbolicRef (”X” , X) ;
i f (X != n u l l && X. repOK Concrete ()){

X. e x t r a c t M i n () ;
i f (X. s i z e != X. numNodes ()){

throw new E x c e p t i o n () ;
}

}
}

Fig. 14. Method extractMin(bug find) used as driver for SPF.

might be caught by SPF. Therefore, a valid question is to what
extent do the proposed techniques contribute to finding bugs.
Method extractMin in class BinomialHeap has a nontrivial
bug first detected in [10]. Method extractMin(bug find) from
class BinomialHeap denotes the “main” method presented in
Fig. 14. This driver executes method extractMin until a state in
which field size is incorrectly set is found. This bug requires
a structure with at least 13 nodes to be exhibited. In Table
IV those cells that correspond to experiments in which the
bug is found are highlighted. In scope 13 we observe that
our techniques produce a speed up of 2X. Also interesting,
when the scopes are increased the speed up increases as well,
reaching a maximum of 12X for scope 20.

C. Implementation Details

BLISS and its related techniques were implemented on top
of the standard distribution of SPF downloadable from [26].

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

15

TABLE I
ANALYSIS TIME AND SPEEDUP FOR CLASS TreeSet (ALL TECHNIQUES).

Method Technique S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
bfs LI 00:05 00:17 00:58 03:37 13:43 53:43 179:10 OOM

BLI 00:03 00:11 00:31 02:15 09:33 39:25 OOM
RBLI 00:01 00:04 00:11 00:38 02:29 09:50 39:28 OOM
BLISS 00:01 00:02 00:03 00:06 00:12 00:29 01:13 03:05 07:45 20:02 55:38 OOM
BLISSDB 00:01 00:02 00:03 00:05 00:10 00:23 00:56 02:15 05:13 12:58 OOM
Speedup 5X 8X 19X 43X 82X 140X 188X ∞ ∞ ∞ ∞

dfs LI 00:02 00:05 00:19 01:13 05:44 OOM
BLI 00:01 00:02 00:06 00:26 02:16 OOM
RBLI 00:00 00:02 00:04 00:16 01:17 08:03 27:38 OOM
BLISS 00:01 00:04 00:11 00:58 05:06 23:21 135:14 TO
BLISSDB 00:01 00:04 00:12 01:10 05:24 22:41 103:26 485:27 TO
Speedup 2X 2X 4X 4X 4X ∞ ∞ ∞

repOK LI 03:34 22:46 150:44 OOM
BLI 01:58 15:58 78:49 OOM
RBLI 00:55 06:38 24:10 194:17 OOM
BLISS 00:17 00:49 01:57 05:39 22:21 96:36 OOM
BLISSDB 00:17 00:49 01:56 05:30 22:11 98:37 OOM
Speedup 12X 27X 77X ∞ ∞ ∞

contains LI 00:05 00:12 00:29 01:07 02:39 06:11 14:35 32:54 75:11 174:47 OOM
BLI 00:01 00:02 00:02 00:05 00:12 00:28 01:06 02:37 06:02 13:57 32:37 OOM
RBLI 00:01 00:02 00:02 00:05 00:12 00:28 01:08 02:38 06:07 14:10 33:03 74:17 OOM
BLISS 00:01 00:02 00:02 00:05 00:13 00:31 01:15 02:54 06:52 16:21 38:15 88:54 204:01 OOM
BLISSDB 00:01 00:02 00:02 00:05 00:13 00:30 01:12 02:49 06:32 15:21 35:47 83:00 190:06 OOM
Speedup 5X 12X 14X 13X 13X 13X 13X 12X 12X 12X ∞ ∞ ∞

add LI 03:50 23:47 150:57 OOM
BLI 02:17 17:02 81:03 OOM
RBLI 01:12 07:19 25:35 200:55 OOM
BLISS 00:33 01:30 03:32 09:13 31:01 118:22 OOM
BLISSDB 00:34 01:31 03:30 09:04 30:40 119:10 OOM
Speedup 6X 15X 43X ∞ ∞ ∞

remove LI 01:55 07:35 30:11 112:00 417:00 OOM
BLI 00:54 04:22 11:12 53:17 235:39 OOM
RBLI 00:53 04:18 10:56 53:33 237:13 OOM
BLISS 00:55 04:34 11:57 59:04 OOM
BLISSDB 00:54 04:24 11:02 OOM OOM
Speedup 2X 1X 2X 2X 1X

TABLE II
ANALYSIS TIME AND SPEEDUP FOR CLASS TreeMap (ALL TECHNIQUES).

Method Technique S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13
trace L1 LI 00:00 00:00 00:01 00:04 00:16 00:57 03:29 12:44 47:03 173:20 OOM

BLI 00:00 00:00 00:00 00:02 00:03 00:17 01:30 06:43 15:58 76:21 OOM
RBLI 00:00 00:00 00:00 00:02 00:03 00:18 01:25 06:31 15:40 74:34 323:47 OOM
BLISS 00:00 00:00 00:00 00:02 00:03 00:17 01:28 06:49 16:56 81:28 373:01 OOM
BLISSDB 00:00 00:00 00:00 00:02 00:03 00:18 01:26 06:41 15:37 76:16 342:54 OOM
Speedup 1X 1X 2X 5X 3X 2X 1X 3X 2X ∞

trace L2 LI 00:00 00:14 01:25 07:58 41:30 205:21
BLI 00:02 00:15 00:29 04:03 07:50 72:00 OOM
RBLI 00:02 00:14 00:29 03:23 07:11 60:33 OOM
BLISS 00:02 00:14 00:29 03:24 07:15 57:32 OOM
BLISSDB 00:02 00:15 00:30 03:28 07:22 57:08 OOM
Speedup 0.5X 1X 2X 2X 5X 3X

trace L3 LI 00:49 08:04 73:13 OOM
BLI 00:50 08:03 21:46 OOM
RBLI 00:49 08:11 21:43 OOM
BLISS 00:49 08:02 21:46 215:34 OOM
BLISSDB 00:49 08:07 21:52 216:03 OOM
Speedup 1X 1X 3X ∞

The presented techniques are included as alternatives to LI,
which is implemented in class GETFIELD. To guarantee that
the LI experiments remain unbiased by the introduction of
the new techniques, we left class GETFIELD untouched and
introduced a new class GETFIELDBounded that incorporates
the new techniques.

The standard SPF distribution, which can be downloaded
from [26], does not include a clear mechanism for introducing
the hybrid preconditions. Executing the hybrid preconditions
was necessary in order to make a fair evaluation. Therefore,

we introduced a generic mechanism that allows the user to
include hybrid preconditions in the class under analysis. These
are executed during LI using Java’s reflection mechanism.

D. Threats to Validity
BLISS requires the user to provide a representation invariant

for the class under analysis in both imperative and declarative
forms (e.g., as both a repOK method and a JML predicate).
This requirement could be perceived as a limitation, especially
in situations where one of the versions is available but the other

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

16

TABLE III
ANALYSIS TIME AND SPEEDUP FOR CLASS AvlTree (ALL TECHNIQUES).

Method Technique S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
bfs LI 00:05 00:16 00:55 03:22 12:43 49:00 OOM

BLI 00:01 00:07 00:16 00:35 01:16 09:52 60:03 OOM
RBLI 00:00 00:01 00:04 00:09 00:14 00:44 03:23 15:54 73:22 OOM
BLISS 00:00 00:01 00:02 00:03 00:05 00:10 00:22 00:50 01:47 03:56 08:08 16:12 29:25 OOM
BLISSDB 00:00 00:01 00:02 00:03 00:05 00:09 00:20 00:42 01:26 02:56 05:36 10:01 17:09 36:33
Speedup 5X 16X 27X 37X 152X 326X ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

dfs LI 00:03 00:10 00:34 02:03 08:23 OOM
BLI 00:01 00:04 00:07 00:14 00:27 03:53 22:30 OOM
RBLI 00:00 00:01 00:03 00:06 00:13 01:18 08:30 OOM
BLISS 00:00 00:01 00:03 00:05 00:10 01:38 14:04 90:10 476:05 TO
BLISSDB 00:01 00:02 00:03 00:06 00:10 03:18 20:53 111:53 561:25
Speedup 3X 10X 11X 24X 50X ∞ ∞ ∞ ∞

repOK LI 01:18 03:49 10:51 29:50 82:10 223:34 OOM
BLI 01:03 03:44 10:18 27:19 71:33 219:25 OOM
RBLI 00:33 02:01 06:32 17:42 37:45 110:42 OOM
BLISS 00:29 01:25 03:28 07:34 16:23 38:52 103:02 264:35 OOM
BLISSDB 00:28 01:24 03:24 07:36 16:25 38:26 104:18 258:11 OOM
Speedup 2X 2X 3X 3X 4X 5X ∞ ∞

contains LI 00:05 00:12 00:29 01:07 02:42 06:16 14:26 32:46 74:51 OOM
BLI 00:00 00:01 00:01 00:01 00:01 00:02 00:05 00:12 00:28 01:08 01:05 01:06 01:07 02:36
RBLI 00:00 00:01 00:01 00:01 00:01 00:02 00:05 00:12 00:28 01:06 01:06 01:07 01:06 02:39
BLISS 00:00 00:01 00:01 00:01 00:01 00:02 00:05 00:13 00:30 01:11 01:13 01:13 01:14 03:02
BLISSDB 00:00 00:01 00:01 00:01 00:01 00:02 00:05 00:13 00:29 01:11 01:13 01:07 01:08 02:54
Speedup 5X 12X 29X 67X 162X 188X 173X 163X 160X ∞ ∞ ∞ ∞ ∞

insert LI 18:28 91:16 OOM
BLI 02:03 23:45 30:43 30:36 30:45 OOM
RBLI 01:44 18:37 26:14 26:15 26:07 OOM
BLISS 01:42 19:00 26:30 26:16 26:32 OOM
BLISSDB 01:44 18:57 26:34 26:06 26:27 OOM
Speedup 10X 3X ∞ ∞ ∞

remove LI 117:33 OOM
BLI 25:18 443:50 OOM
RBLI 18:42 OOM
BLISS 18:01 OOM
BLISSDB 18:02 OOM
Speedup 6X ∞

TABLE IV
ANALYSIS TIME AND SPEEDUP FOR CLASS BinomialHeap (ALL TECHNIQUES, METHODS bfs, dfs AND repOK).

Method Technique S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
bfs LI 00:59 03:33 12:52 48:40 171:59 TO

BLI 00:18 00:59 03:11 11:38 42:49 140:52 520:12 TO
RBLI 00:01 00:02 00:05 00:13 00:39 01:20 01:36 02:11 02:40 03:40 07:31
BLISS 00:00 00:00 00:01 00:01 00:01 00:01 00:01 00:02 00:02 00:03 00:03
BLISSDB 00:00 00:00 00:00 00:01 00:01 00:01 00:01 00:01 00:01 00:01 00:02
Speedup 59X 213X 772X 2,920X 10,319X >36,000X �36,000X >�36,000 ��36,000 >��36,000 ���18,000

dfs LI 00:49 02:44 09:07 30:53 103:15 338:52 TO
BLI 00:08 00:15 01:00 02:01 08:59 25:45 50:12 111:33 247:05 476:14 TO
RBLI 00:05 00:12 00:34 01:40 04:47 13:55 45:23 97:10 190:02 374:59 TO
BLISS 00:08 00:23 01:06 03:40 10:18 32:07 98:17 224:52 450:17 TO
BLISSDB 00:10 00:29 01:22 03:53 09:43 28:51 81:16 167:02 486:43 TO
Speedup 9X 13X 16X 18X 21X 24X >13X �6X >�3X ��1X

repOK LI 00:25 00:46 01:24 02:34 04:44 08:28 15:13 27:21 50:08 87:44 156:38
BLI 00:10 00:17 00:24 00:41 01:04 01:36 02:02 02:30 03:04 03:45 06:23
RBLI 00:09 00:15 00:21 00:36 01:01 01:31 01:55 02:19 02:46 03:25 05:31
BLISS 00:09 00:15 00:21 00:36 00:58 01:33 01:56 02:23 02:53 03:28 05:45
BLISSDB 00:09 00:15 00:20 00:35 00:58 01:32 01:51 02:15 02:41 03:11 05:30
Speedup 2X 3X 4X 4X 4X 5X 8X 12X 18X 27X 28X

extractMin LI 00:31 00:58 01:38 00:34 00:50 01:49 02:41 04:15 07:00 12:22 20:53
(bug find) BLI 00:16 00:29 00:38 00:18 00:19 00:55 00:58 01:01 01:03 01:34 01:52

RBLI 00:15 00:27 00:35 00:17 00:19 00:53 01:57 00:58 01:01 01:31 01:46
BLISS 00:15 00:28 00:35 00:16 00:17 00:55 00:56 00:57 00:59 01:31 01:44
BLISSDB 00:15 00:27 00:35 00:16 00:16 00:54 00:56 00:57 00:59 01:31 01:42
Speedup 2X 2X 2X 2X 3X 2X 2X 4X 7X 8X 12X

one is not. Our experience, however, suggests that the hardest
task is usually that of writing the first invariant in a correct
and complete fashion, in either form. Once that is successfully
accomplished, translating the correct and complete invariant to
the other paradigm is a comparably much simpler matter.

While the techniques introduced in this article were proven

theoretically sound and complete, we have not verified the im-
plementation as formally correct: the code may contain errors.
However, we have checked that the experimental results are
consistent across tools. In particular, the number of structures
generated when analyzing method repOK is consistent with
the number of structures generated by Korat [1] for all classes

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

17

TABLE V
ANALYSIS TIME AND SPEEDUP FOR CLASS BinomialHeap (ALL TECHNIQUES, REMAINING METHODS).

Method Technique S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12
insert LI 00:00 00:00 00:01 00:10 01:09 07:03 41:36 243:03 TO

BLI 00:00 00:00 00:00 00:02 00:19 02:20 16:16 21:27 22:58 175:17 178:14 OOM
RBLI 00:00 00:00 00:00 00:02 00:16 02:20 16:32 21:49 23:13 172:55 175:57 OOM
BLISS 00:00 00:00 00:00 00:01 00:11 01:43 11:28 16:37 17:35 135:10 136:12 OOM
BLISSDB 00:00 00:00 00:00 00:01 00:11 01:42 11:25 16:20 17:52 131:25 136:09 OOM
Speedup 1X 1X 1X 10X 6X 4X 3X 14X >33X �4X >�4X

delete LI 00:00 00:00 00:01 00:23 07:13 129:06 OOM
BLI 00:00 00:00 00:01 00:13 04:50 80:44 OOM
RBLI 00:00 00:00 00:00 00:05 02:37 56:53 OOM
BLISS 00:00 00:00 00:00 00:05 01:46 34:39 500:29 OOM
BLISSDB 00:00 00:00 00:00 00:05 01:47 35:53 OOM
Speedup 1X 1X 1X 4X 4X 3X ∞

extractMin LI 00:00 00:00 00:00 00:03 00:44 10:20 135:08 OOM
BLI 00:00 00:00 00:00 00:01 00:23 04:59 60:16 297:53 OOM
RBLI 00:00 00:00 00:00 00:00 00:13 04:35 57:40 289:32 OOM
BLISS 00:00 00:00 00:00 00:00 00:12 03:45 45:20 223:15 OOM
BLISSDB 00:00 00:00 00:00 00:00 00:12 03:45 45:54 222:45 OOM
Speedup 1X 1X 1X 3X 3X 2X 2X ∞

trace L1 LI 00:00 00:00 00:04 00:49 11:39 183:29 OOM
BLI 00:00 00:00 00:02 00:22 07:03 112:03 OOM
RBLI 00:00 00:00 00:01 00:10 03:58 77:53 OOM
BLISS 00:00 00:00 00:01 00:10 02:45 50:08 OOM
BLISSDB 00:00 00:00 00:01 00:10 02:48 49:50 OOM
Speedup 1X 1X 4X 4X 4X 3X

trace L2 LI 00:02 00:33 09:13 174:40 OOM
BLI 00:02 00:07 02:58 60:29 OOM
RBLI 00:02 00:07 01:46 27:56 OOM
BLISS 00:02 00:07 01:36 23:43 OOM
BLISSDB 00:02 00:07 01:36 23:37 OOM
Speedup 1X 4X 5X 7X

trace L3 LI 00:47 16:26 OOM
BLI 00:47 03:12 136:58 OOM
RBLI 00:47 03:25 77:47 OOM
BLISS 00:47 03:16 68:12 OOM
BLISSDB 00:47 03:16 68:51 OOM
Speedup 1X 5X ∞

TABLE VI
ANALYSIS TIME AND SPEEDUP FOR CLASS BinTree (ALL TECHNIQUES).

Method Technique S05 S06 S07 S08 S09 S10 S11 S12 S13 S14
bfs LI 00:00 00:01 00:02 00:05 00:15 00:42 03:51 OOM

BLI 00:00 00:00 00:01 00:03 00:11 00:43 02:46 OOM
RBLI 00:00 00:00 00:01 00:02 00:06 00:17 01:00 03:42 OOM
BLISS 00:00 00:00 00:01 00:03 00:10 00:38 02:44 OOM
BLISSDB 00:00 00:01 00:02 00:04 00:13 00:52 03:06 OOM
Speedup 1X 1X 2X 2X 2X 2X 3X ∞

dfs LI 00:00 00:00 00:01 00:04 00:11 00:57 03:44 OOM
BLI 00:00 00:00 00:01 00:03 00:11 00:43 02:46 OOM
RBLI 00:00 00:00 00:01 00:03 00:09 00:25 01:35 06:20 26:53 OOM
BLISS 00:00 00:00 00:01 00:03 00:10 00:38 02:44 OOM
BLISSDB 00:00 00:01 00:01 00:06 00:26 01:30 08:07 OOM
Speedup 1X 1X 1X 1X 1X 2X 2X ∞ ∞

repOK LI 00:00 00:01 00:03 00:10 00:34 02:03 07:40 OOM
BLI 00:00 00:01 00:03 00:09 00:30 01:46 06:37 24:17 OOM
RBLI 00:00 00:01 00:03 00:08 00:24 01:22 04:48 OOM
BLISS 00:00 00:01 00:03 00:09 00:29 01:43 06:28 OOM
BLISSDB 00:00 00:01 00:04 00:13 00:45 02:41 09:45 OOM
Speedup 1X 1X 1X 1X 1X 1X 1X ∞

count LI 00:00 00:00 00:01 00:04 00:13 00:53 03:43 OOM
BLI 00:00 00:00 00:01 00:03 00:10 00:27 01:48 07:30 OOM
RBLI 00:00 00:00 00:01 00:03 00:08 00:23 02:08 OOM
BLISS 00:00 00:00 00:01 00:04 00:13 00:45 03:58 OOM
BLISSDB 00:00 00:01 00:02 00:05 00:24 01:23 08:01 OOM
Speedup 1X 1X 1X 1X 1X 2X 2X ∞

except TreeSet. The difference for class TreeSet is explained
by the fact that all techniques in this article (including LI) keep
the node coloring symbolic. Therefore, trees with the same
structure that differ only in coloring are collapsed into a single
structure. For example, for scope 3 (i.e., structures with up to
3 nodes), Korat produces the 5 nonempty structures depicted

in Fig. 15. If we instead look at the structures generated by
SPF, we only get 4 nonempty structures. This is due to the
fact that the two structures shown inside the box are collapsed
by SPF into a single structure.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

18

TABLE VII
ANALYSIS TIME AND SPEEDUP FOR CLASS LinkedList (ALL TECHNIQUES).

Method Technique S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
repOK LI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

BLI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
RBLI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
BLISS 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:01 00:01 00:01
BLISSDB 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:01 00:01
Speedup 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X

add LI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
BLI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
RBLI 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
BLISS 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
BLISSDB 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00
Speedup 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X

remove LI 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:13 00:16 00:18
BLI 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:13 00:16 00:18
RBLI 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:13 00:16 00:18
BLISS 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:14 00:16 00:19
BLISSDB 00:02 00:03 00:04 00:05 00:06 00:07 00:09 00:11 00:13 00:16 00:19
Speedup 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X

TABLE IX
NUMBER OF PARTIALLY SYMBOLIC STRUCTURES COLLECTED BY EACH TECHNIQUE, AND CORRESPONDING REDUCTION COMPARED TO LI.

Method Technique S03 S04 S05 S06 S07 S08 S09 S10 S11 S12

TreeSet.dfs LI 8 22 64 196 625 2,055 6,917 23,713 82,499 OOM
BLI 4 14 20 92 385 1,511 3,909 16,353 64,835 -
RBLI 4 8 14 42 151 555 1,657 6,083 22,953 -
BLISS(DB) 4 8 14 26 55 95 141 217 407 -
Reduction 50% 63% 78% 86% 91% 95% 98% 99.1% 99.6%

BinHeap.trace L1 LI 40 119 349 1,049 OOM
BLI 31 77 251 659 -
RBLI 9 20 77 363 -
BLISS(DB) 25 43 130 547 -
Reduction 37% 63% 62% 47%

BinHeap.delete LI 16 58 196 647 OOM
BLI 12 37 144 416 -
RBLI 9 20 77 363 -
BLISS(DB) 9 18 68 327 -
Reduction 43% 68% 64% 49%

TreeMap.trace L3 LI 775 OOM
BLI/RBLI/BLISS(DB) 219 -
Reduction 71%

BinHeap.extractMin LI 8 19 45 117 291 OOM
BLI 6 14 38 98 254 -
RBLI/BLISS(DB) 5 8 20 96 252 -
Reduction 36% 57% 55% 17% 14%

TreeSet.remove LI 24 104 417 1,542 5,367 17,957 58,542 187,710 595,651 OOM
BLI 8 56 100 643 2,988 11,912 27,395 106,510 388,824 -
RBLI 8 47 91 535 2,414 9,642 22,538 87,156 317,473 -
BLISS(DB) 8 47 91 493 2,229 8,933 20,242 79,621 OOM -
Reduction 66% 54% 78% 68% 58% 50% 65% 57% 46%

VI. RELATED WORK

Constraint-based bounded verification has its origins in [13],
where a translation from annotated code to SAT is proposed,
and off-the-shelf SAT-solvers are used in order to determine
the existence of bugs in the code under analysis. Several
articles suggest improvements over [13]. For instance, [21]
uses properties of functional relations to improve Java code
analysis, and provides improvements for integer and array
analyses. Bounded verification can be performed modularly,
as shown in [8]. In [10], the use of tight field bounds allowed
for a significant improvement on bounded verification, which
we leveraged in [12], as well as in the techniques presented
in this article.

Symbolic execution and bounded verification were com-
bined in [20]. Symbolic execution was used to build path
conditions that were later on solved using bounded verifica-

tion. Bounds have also been used in the context of symbolic
execution; tools like Kiasan [6] and SPF [17] limit the length
of reference chains. In [23] symbolic execution was used to
generate tests for container classes closely resembling the
ones used in this article to assess our techniques. Various
different approaches were used (in [23]) for test generation,
including symbolic execution of repOK, but no relational
field bounds were considered. All techniques that resort to
symbolic execution can benefit from using the mechanisms
associated with the techniques presented in this paper. For
example the “lazier” [6] and “lazier#” [7] algorithms delay
the concretization of a reference (much more so than the
standard lazy initialization), but eventually when it is required
the approaches presented here can limit the number of choices
for concretization.

Although symbolic execution is a white-box technique, it is

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

19

TABLE X
REDUCTIONS IN TEST SUITE SIZE ACHIEVED BY BLISS.

Class Method MaxScope #LI #BLISS Red. (%)

TreeSet bfs 13 1,033,411 1,767 99.8
dfs 11 82,499 407 99.5
repOK 9 212 212 0
contains 16 65,535 8,191 87.5
add 9 141 141 0
remove 10 187,710 79,621 57.5

TreeMap trace L1 10 209,343 77,662 62.9
trace L2 6 35,701 10,038 71.8
trace L3 3 775 219 71.7

AvlTree bfs 12 290,511 425 99.8
dfs 11 82,499 241 99.7
repOK 12 425 425 0
contains 15 32,767 511 98.4
insert 9 1,640 477 70.9
remove 7 2,297 396 82.7

BinHeap bfs 14 4,240 15 99.6
dfs 17 6,764 18 99.7
repOK 20 21 21 0
insert 8 224 184 17.9
delete 6 647 327 49.5
extractMin 7 291 252 13.5
extractMinbug 20 9 9 0
trace L1 6 1049 547 47.9
trace L2 4 960 264 72.5
trace L3 2 103 84 18.5

BinTree bfs 13 1,033,411 1,033,411 0
dfs 13 1,033,411 1,033,411 0
repOK 13 1,033,411 1,033,411 0
count 13 1,033,411 1,033,411 0

LList repOK 20 20 20 0
add 20 2 2 0
remove 20 16,234 16,234 0

B

null

right

null

left

B

null

rightleft

R

null

right

null

left

B

rightleft

R

null

right

null

left

null

B

rightleft

R

null

right

null

left

R

null

right

null

left

B

rightleft

B

null

right

null

left

B

null

right

null

left

Fig. 15. Nonempty red-black trees with up to 3 nodes generated by Korat.

worth mentioning that when analyzing code that manipulates
complex data, one can keep the structures concrete by taking
a black-box approach to calling just methods that use the
structures. Here however we are interested in doing symbolic
execution of methods that take symbolic structures as input.

For a detailed comparison of the white- versus black-box
approaches to analyzing structures the interested reader is
referred to [23].

Green [24] is a technique that aims at providing a simple,
canonical interface to a constraint solver in order to enable the
recycling of results from one analysis run in future analysis
runs. Although it is designed to be used in the context of
symbolic execution, it targets the solving of path conditions.
The DB component of BLISSDB cannot be easily substituted
with Green due to the fact that the auxiliary solver checks
used by BLISS (as explained in Section IV) are based on the
translation of declarative invariants, not on path conditions.

VII. CONCLUSIONS AND FURTHER WORK

Relational field bounds have been successfully used in the
context of bounded exhaustive bug finding, in order to increase
analysis scalability. They have also been used for the improve-
ment of generalized symbolic execution (symbolic execution
extended to deal with programs that manipulate heap-allocated
data structures) through an enhancement of Lazy Initialization
called Bounded Lazy Initialization [12]. In this article, we
built upon BLI and introduced novel techniques that further
improve the efficiency of symbolic execution via two mecha-
nisms: bound refinement and auxiliary feasibility (SAT) checks
along the symbolic execution process. We showed that these
mechanisms, jointly realized in a prototype called BLISS,
significantly improve symbolic execution when compared to
traditional LI and to BLI. Furthermore, we showed that BLISS
can be improved even further by caching SAT checks, since
many of these are repeated when carrying out the same anal-
ysis for different (typically increasing) scopes. We carried out
experiments with classic data structure implementations that
show the benefits of incorporating our techniques to Symbolic
PathFinder, enabling the tool to effectively work with data
structures whose size exceed the tool’s previous capabilities
(in time and/or space), both with the goal of systematically
exploring program paths and that of automatically generating
test inputs. Our experiments showed that, compared to LI and
BLI, BLISS can reduce the time required to systematically
explore program paths by up to 4 orders of magnitude, and
that it generally reduces the number of structures obtained
during path exploration (which have to be concretized using
SMT solving to build test suites) by over 50%, with reductions
of over 90% in some cases, compared to LI. We also showed
that these reduced collections of partially symbolic structures
retain exactly the same coverage as the much larger collections
that would be obtained using LI, since our techniques only
remove spurious structures.

As explained in Section II-A1, some constraints are harder
to generalize (in order to admit partially symbolic structures)
as hybrid preconditions, than others. Even if some of the
harder ones could perhaps be generalized by hand, albeit possi-
bly at the cost of introducing new errors, we showed that some
constraints do not lend themselves to be captured by a hybrid
invariant at all. This can become a nontrivial obstacle for
the usability of symbolic execution on programs dealing with
heap-allocated structures, considering that a hybrid invariant is

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSE.2015.2389225, IEEE Transactions on Software Engineering

20

a necessary prerequisite of all the techniques involved, starting
with (and including) traditional LI.

In this context, we conclude that the BLISS techniques
are particularly effective for the verification of classes whose
concrete repOK cannot be easily and/or completely captured
by the hybrid invariant. Our experimental results show that
BLISS obtains better results on classes with less precise hybrid
invariants, where there is room for improvement, i.e., some
distance between the concrete and hybrid invariants’ pruning
power that can be compensated by BLISS.

The new techniques require precomputed field bounds for
the fields of the program under analysis. Computing tight
field bounds as explained in [10] requires a large number of
satisfiability queries, which are independent and can therefore
be parallelized. Hence, a cluster is used to compute these
bounds. We are working on alternative, more efficient ways of
computing bounds. In particular, we are currently developing
bound computation mechanisms that can be run on a single
workstation, with efficiency comparable to the approach in
[10], but which may lead to less precise, yet sound, bounds.

We also plan to integrate Green [24] into the BLISS distri-
bution. As explained in Section VI, Green is not a practical
substitute for the non-path-condition-related SAT checks used
by BLISS (which are cached by the BLISSDB mechanism).
Nevertheless, it could be a useful addition towards obtaining
the benefits of verdict caching on the SMT side (i.e., to recycle
path-condition-related SMT check results across runs) as well.
In particular, there are some cases where the benefits of BLISS
are eclipsed by a proportionally large amount of runtime being
invested in the SMT-solving of path conditions. Incorporating
Green could be an important step towards improving effec-
tiveness in such cases.

The techniques we presented aim at producing a complete
exploration of the states space. Yet, for instance, in the
context of bug-finding, it may be more effective to trade such
completeness by new techniques to explore larger structures.
It may perhaps be useful to use overly refined TACO bounds
from larger scopes, which may allow us to explore new
structures at the expense of pruning valid instances.

VIII. ACKNOWLEDGEMENTS

This publication was made possible by NPRP grant NPRP-
4-1109-1-174 from the Qatar National Research Fund (a
member of Qatar Foundation). The statements made herein
are solely the responsibility of the authors.

REFERENCES

[1] C. Boyapati, S. Khurshid and D. Marinov, Korat: automated testing
based on Java predicates, in Proceedings of ISSTA 2002, pp. 123–133.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, pages 209–224. USENIX Association, 2008.

[3] C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen, N. Tillmanni
and W. Visserr, Symbolic execution for software testing in practice: pre-
liminary assessment, in Proceedings of the 33rd International Conference
on Software Engineering ICSE 2011, ACM, 2011.

[4] Chalin P., Kiniry J.R., Leavens G.T., Poll E. Beyond Assertions: Ad-
vanced Specification and Verification with JML and ESC/Java2. FMCO
2005: 342-363.

[5] E. M. Clarke, O. Grumberg and D. Peled, Model Checking, MIT Press,
1999.

[6] X. Deng, J. Lee and Robby. Bogor/Kiasan: A k-bounded Symbolic
Execution for Checking Strong Heap Properties of Open Systems,
in Proceedings of the 21st IEEE/ACM International Conference on
Automated Software Engineering ASE 2006, IEEE CS, 2006.

[7] X. Deng, Robby, J. Hatcliff. Towards A Case-Optimal Symbolic Ex-
ecution Algorithm for Analyzing Strong Properties of Object-Oriented
Programs. International Conference on Software Engineering and For-
mal Methods (SEFM). IEEE, 2007.

[8] G. Dennis, K. Yessenov and D. Jackson, Bounded Verification of Voting
Software, in Proceedings of the 2nd International Conference on Verified
Software: Theories, Tools, Experiments, VSTTE 2008, Springer, 2008.

[9] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. Saxe and R. Stata,
Extended static checking for Java, in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
PLDI 2002, ACM, 2002.

[10] J. P. Galeotti, N. Rosner, C. López Pombo and M. F. Frias, Analysis
of invariants for efficient bounded verification, in Proceedings of the
19th International Symposium on Software Testing and Analysis ISSTA
2010, ACM, 2010.

[11] J. P. Galeotti, N. Rosner, C. López Pombo and M. F. Frias, TACO:
Efficient SAT-Based Bounded Verification Using Symmetry Breaking and
Tight Bounds, IEEE Transactions on Software Engineering, 39(9), IEEE,
2013.

[12] J. Geldenhuys, N. Aguirre, M. F. Frias and W. Visser, Bounded Lazy
Initialization, in Proceedings of the 5th International NASA Formal
Methods Symposium NFM 2013, LNCS 7871, Springer, 2013.

[13] D. Jackson and M. Vaziri, Finding Bugs with a Constraint Solver,
in Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis ISSTA 2000, ACM, 2000.

[14] S. Khurshid, C. Păsăreanu and W. Visser, Generalized Symbolic Ex-
ecution for Model Checking and Testing, in Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems TACAS 2003, LNCS 2619, Springer, 2003.

[15] J. C. King, Symbolic Execution and Program Testing, Communications
of the ACM, 19(7), ACM, 1976.

[16] M. Staats and C. S. Păsăreanu, Parallel symbolic execution for structural
test generation. ISSTA 2010: 183-194

[17] C. S. Pǎsǎreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz,
and N. Rungta. Symbolic PathFinder: Integrating symbolic execution
with model checking for Java bytecode analysis. Automated Software
Engineering, 20(3):391–425, 2013.

[18] Redis can be downloaded from http://redis.io/download.
[19] N. Rosner, J. P. Galeotti, S. Bermúdez, G. M. Blas, S. Perez De Rosso,

L. Pizzagalli, L. Zemı́n, M. F. Frias, Parallel bounded analysis in code
with rich invariants by refinement of field bounds. ISSTA 2013: 23-33

[20] D. Shao, S. Khurshid and D. Perry, Whispec: White-Box Testing of
Libraries using Declarative Specifications, in Proceedings of the Sym-
posium on Library-Centric Software Design LCSD 2007, ACM, 2007.

[21] M. Vaziri and D. Jackson, Checking Properties of Heap-Manipulating
Procedures with a Constraint Solver, in Proceedings of the 9th Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems TACAS 2003, Springer, 2003.

[22] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda, Model Checking
Programs, Automated Software Engineering 10(2), Springer, 2003.

[23] W. Visser, C. Păsăreanu and S. Khurshid, Test input generation with
java PathFinder, in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis ISSTA 2004, ACM, 2004.

[24] W. Visser, J. Geldenhuys and M. B. Dwyer, Green: reducing, reusing and
recycling constraints in program analysis, in Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, FSE
2012, ACM, 2012.

[25] http://www.satcompetition.org/2009/format-benchmarks2009.html
[26] http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

