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In this article, we empirically study the suitability of tests as acceptance criteria for automated program fixes,
by checking patches produced by automated repair tools using a bug-finding tool, as opposed to previous
works that used tests or manual inspections. We develop a number of experiments in which faulty programs
from IntroClass, a known benchmark for program repair techniques, are fed to the program repair tools
GenProg, Angelix, AutoFix, and Nopol, using test suites of varying quality, including those accompanying the
benchmark. We then check the produced patches against formal specifications using a bug-finding tool. Our
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fewer correct repairs are produced. Finally, by comparing with previous work, we show that overfitting is
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using a bug-finding tool.
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1 Introduction
Software has become ubiquitous, and many of our activities depend directly or indirectly on it.
Having adequate software development techniques and methodologies that contribute to producing
quality software systems has become essential formany human activities.The significant advances in
automated analysis techniques have led, in the last few decades, to the development of powerful tools
able to assist software engineers in software development, that have proved to greatly contribute to
software quality. Indeed, tools based on model checking [8], constraint solving [42], evolutionary
computation [11], and other automated approaches are being successfully applied to various
aspects of software development, from requirements specification [3, 15] to verification [23] and
bug finding [16, 21]. Despite the great effort that is put in software development to detect software
problems (wrong requirements, deficient specifications, design flaws, implementation errors, etc.),
e.g., through the use of the above mentioned techniques, many bugs reach and make it through the
deployment phases. This makes effective software maintenance greatly relevant to the quality of the
software that is produced, and since software maintenance takes a significant part of the resources of
most software projects, also economically relevant to the software development industry. Thus, the
traditional emphasis of software analysis techniques, that concentrated in detecting the existence
of defects in software and specifications, has recently started to broaden up to be applied to
automatically repair software [1, 10, 29, 32, 53].

While the idea of Automatic Program Repair (APR) is certainly appealing, automatically
fixing arbitrary program defects is known to be infeasible. In the worst-case it reduces to program
synthesis which is known to be undecidable for Turing-complete programming languages [7]. Thus,
the various techniques that have been proposed to automatically repair programs are intrinsically
incomplete, in various respects. Firstly, many techniques for automatically repairing programs need
to produce repair candidates, often consisting of syntactical modifications on the original (known
to be faulty) program. Clearly, all (even bounded) program repair candidates cannot be exhaustively
considered, and thus the space of repairs to consider needs to be somehow limited. Secondly, for
every repair candidate, checking whether the produced candidate constitutes indeed a repair is
an undecidable problem on its own, and solving it fully automatically is then, also, necessarily
incomplete. Moreover, this latter problem requires a description of the expected behavior of the
program to be fixed, i.e., a specification, subject to automated analysis, if one wants the whole
repair process to remain automatic. Producing such specifications is costly, and therefore requiring
these specifications is believed to undermine the applicability of automatic repair approaches. Most
automated repair techniques then use partial specifications, given in terms of a validation test
suite. Moreover, most techniques heavily rely on these tests as part of the techniques, e.g., for fault
localization [53].

There is a risk in using tests as specifications, since as it is well known, their incompleteness makes
it possible to obtain spurious repairs, i.e., programs that seem to solve the problems of faulty code,

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 57. Publication date: February 2025.

https://doi.org/10.1145/3702971


Empirical Study on the Suitability of Test-based Patch Acceptance Criteria 57:3

but are incorrect despite the fact that the validation suite is not able to expose such incorrectness.
Nevertheless, various tools report significant success in repairing code using tests as criteria
for accepting patches [18]. More recently, various researchers have observed that automatically
produced patches are likely to overfit test suites used for their validation, leading tools to produce
invalid program fixes [34, 47]. Then, further checks have been performed, to analyze more precisely
the quality of automatically produced patches, and consequently the ability of automated program
repair techniques in producing actual fixes. However, these further checks have usually been
performed through manual inspection, or using extended alternative test suites, leaving room for
still undetected flaws.

In this article, we empirically study the suitability of tests as acceptance criteria for automated
program fixes, by checking patches produced by automated repair tools using a bug-finding tool,
as opposed to previous works that used tests and/or manual inspections. We develop a number
of experiments using IntroClass, a known benchmark for program repair techniques, consisting
of small programs solving simple assignments. Faulty programs from this benchmark are used to
feed four state-of-the-art program repair tools, using test suites of varying quality and extension,
including those accompanying the benchmark. Produced patches are then complemented with
corresponding formal specifications, given as pre- and post-conditions, and checked using Pex
[49], an automated test generation tool based on concrete/symbolic execution and constraint
solving, that attempts to exhaustively cover bounded symbolic paths for the patches. Our results
show that:

— In general, automated program repair tools are significantly more likely to accept a spurious
program fix than producing an actual one, in the studied scenarios.

—By improving the quality of the test suite by extending it to a sort of bounded-exhaustive
suite (whose size is bounded to approximately 100 or 1,000 tests), we show that a few more
correct fixes are obtained in those cases where the tool under analysis is able to cope with the
suite size.

—Finally, we show that overfitting is more likely to occur in semantics-based tools than previ-
ously reported in [56]. The use of the bug-finding tool allows us to detect overfitting patches
that remain undetected using held-out tests, tests that are not used during the patch generation
process but are instead kept aside for the verification of the produced patches.

Notice that using IntroClass, a benchmark built from simple small programs (usually not exceeding
30 lines of code), is not a limitation of our analysis. If state-of-the-art tools fail to distinguish correct
fixes from spurious ones on this benchmark, we should not expect them to perform better on larger,
or more complex benchmarks. If anything, using IntroClass makes the analysis more conclusive.

This article reports research that extends previous work reported in [59]. It poses and answers
Research Questions (RQs) that were not part of [59]. A deeper discussion of the relationship
between these two works is presented in Section 5.

The article is organized as follows. After this Introduction, in Section 2 we introduce automated
program repair and the overfitting problem. In Section 3 we evaluate four tools for automated
program repair, namely, Angelix [37], AutoFix [52], GenProg [18], and Nopol [55]. We present and
answer the RQs. In Section 4 we discuss the threats to the validity of the results presented in the
article. In Section 5 we discuss related work. In Section 6 we discuss the results we obtain in the
article, to finish in Section 7 with some conclusions and proposals for further work.

2 Automated Program Repair
Automated program repair techniques aim at fixing faulty programs through the application
of transformations that modify the program’s code. Generation and Validation (G and V)
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techniques for automated program repair receive a faulty program to repair, a specification of the
program’s expected behavior, and attempt to generate a patch through the application of syntactic
transformations on the original program that satisfies the provided specification [1]. Different
techniques and tools have been devised for automated program repair, which can be distinguished
on various aspects such as the programming language or kind of system they apply to, the syntactic
modifications that can be applied to programs (or, similarly, the fault model a tool aims to repair), the
process to produce the fix candidates or program patches, how program specifications are captured
(and how these are contrasted against fix candidates), and how the explosion of fix candidates
is tamed.

From the point of view of the technology underlying the repair generation techniques, a wide
spectrum of approaches exist, including search-based approaches such as those based on evo-
lutionary computation [1, 52, 53], constraint-based automated analyses such as those based on
SatisfiabilityModuloTheory (SMT) and SAT solving [17, 37], and model checking and automated
synthesis [48, 51]. A crucial aspect of program repair that concerns this article is how program
specifications are captured and provided to the tools. Some approaches, notably some of the initial
ones (e.g., [1, 48]), require formal specifications in the form of pre- and post-conditions, or logical
descriptions provided in some suitable logical formalism. These approaches then vary in the way
they use these specifications to assess repair candidates; some check repair candidates against
specifications using some automated verification technique [48]; some use the specifications to
produce tests, which are then used to drive the patch generation and patch assessment activities
[52]. Moreover, some of these tools and techniques require strong specifications, capturing the, say,
“full” expected behavior of the program [1, 48], while others use contracts present in code, that
developers have previously written mainly for runtime checking [52].

Many of the latest mainstream approaches, however, use tests as specifications. These approaches
relieve techniques from the requirement of providing a formal specification accompanying the
faulty program, arguing that such specifications are costly to produce, and are seldom found
in software projects. Tests, on the other hand, are significantly more commonly used as part of
development processes, and thus requiring tests is clearly less demanding. Weimer et al. mention
in [54], for instance, that by requiring tests instead of formal specifications one greatly improves
the practical applicability of their proposed technique. Kaleeswaran et al. [25] also mention that
approaches requiring specifications suppose the existence of such specifications, a situation that is
rarely true in practice; they also acknowledge the limitations of tests as specifications for repairs,
and aim at a less ambitious goal than fully automatically repairing code, namely, to generate
repair hints.

The partial nature of tests as specifications immediately leads to validity issues regarding the
fixes provided by automated program repair tools, since a program patch may be accepted because
it passes all tests in the validation suite but still not be a true program fix (there might still be other
test cases, not present in the validation suite, for which the program patch fails). This problem,
known as overfitting [47], has been previously identified by various researchers [34, 47, 56], and
several tools are known to produce spurious patches as a result of their program repair techniques.
This problem is handled differently by different techniques. Some resign the challenge of producing
fixes and aim at producing hints (e.g., the already mentioned [25]). Others take into account a
notion of quality, and manually compare the produced patches with fixes provided by human
developers or by other tools [34, 36]. Notice that, even after manual inspection, subtle defects may
be still present in the repairs, thus leading to accepting a fix that is invalid. We partly study this
issue in this article.
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3 Evaluation
In this section we evaluate Angelix, AutoFix, GenProg, and Nopol, four well-regarded tools that
use tests as their patch acceptance criterion. The evaluation is performed on the IntroClass dataset,
which is described in detail in Section 3.1. The dataset contains student-developed solutions for six
simple problems. The correctness of the student’s solutions (which usually take under 30 LOC) can
be evaluated using instructor-prepared test suites. Each of the provided solutions is faulty: at least
one test in the corresponding suite fails.

The tools were selected because they use different underlying techniques for patch generation,
and also due to the existence of mature-enough implementations that would allow to carry on the
experiments. Angelix [37] collects semantic information from controlled symbolic executions of
the program and uses MaxSMT [43] to synthesize a patch. AutoFix [52] is intended for Eiffel [39]
programs repair. It is contract-based, and is based in AutoTest [40] for automated test generation.
GenProg [18] uses genetic algorithms to search for a program variant that retains correct function-
ality yet passes failing tests. Finally, Nopol [55] collects program execution information and uses
SMTs [2] to generate patches. Unlike Angelix, Nopol focuses on the repair of buggy conditional
statements.

Since our aim is to evaluate the suitability of test-based patch acceptance criteria, we will
introduce some terminology that will help us better understand the following sections. Given a
faulty routine<, and a test suite ) employed as an acceptance criterion for automated program
repair, a tool-synthesized version<′ of< that passes all tests in ) is called a patch. A patch may
overfit and be correct with respect to the provided suite, yet be faulty with respect to a different
suite, or more precisely, with respect to its actual expected program behavior. We may then have
correct and incorrect patches; a correct patch, i.e., one that meets the program’s expected behavior,
will be called a fix. This gives rise to our first RQ.

RQ1: When applying a given program repair tool/technique on a faulty program, how likely is
the tool/technique to provide a patch, and if a patch is found, how likely it is for it to be a fix?

Patch correctness is typically determined by manual inspection. Since manual inspections are
error-prone (in fact, the faulty routines that constitute the IntroClass dataset were all manually
inspected by their corresponding developers, yet they are faulty), we will resort to automated
verification of patches, in order to determine if they are indeed fixes. We will use concrete/symbolic
execution combined with constraint solving, to automatically verify produced patches, against their
corresponding specifications captured as contracts [38]. More precisely, we will translate patches
into C#, and equip these with pre- and post-conditions captured using Code Contracts [14]; we
will then search for inputs that violate these assertions via concrete/symbolic execution and SMT
solving, using the Pex tool [49]. Finally, to prevent any error introduced by the above described
process, we run the corresponding test generated by Pex on the original patched method to check
that it actually fails.

To assess the above RQ, we need to run automatic repair tools on faulty programs. As we
mentioned, we consider the IntroClass dataset, so whatever conclusion we obtain will, in prin-
ciple, be tied to this specific dataset and its characteristics (we further discuss this issue in Sec-
tion 4). By focusing on this dataset, we will definitely get more certainty regarding the following
issues:

—Overfitting produced by repair tools on the IntroClass dataset, and
—Experimental data on the limitations of manual inspections in the context of automated
program repair (especially because this benchmark has been used previously to evaluate
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various program repair tools). We will show, with the aid of the bug-finding tool that patches
that were hinted as correct in [56], are not.

Notice that when a patch is produced, but this patch is not a fix, one may rightfully consider the
problem being on the quality of the test suite used for patch generation, not necessarily a limitation
of test-based acceptance criteria as a whole, or the program fixing technique in particular: By
providing more/better tests one may prevent the acceptance of incorrect patches. That is, overfitting
may be considered a limitation of the particular test suites rather than a limitation of test-based
acceptance criteria. To take into account this issue, for instance [47, 56] enrich the test suites
provided with the benchmark with white-box tests that guarantee branch coverage of a correct
variant of the buggy programs. Then, as shown in [47, Figure 3], between 40% and 50% of the
patches that are produced with the original suite, are discarded when the additional white-box
suite ensuring branch coverage is considered. Yet the analysis does not address the following two
issues:

—Are the patches passing the additional white-box tests indeed fixes? And, equally important,
—Would the tool reject more patches by choosing larger suites?

This leads to our second RQ:

RQ2 : How does overfitting relate to the thoroughness of the validation test suites, in program
repair techniques?

Thoroughness can be defined in many ways, typically via testing criteria. Given the vast amount
of testing criteria, an exhaustive analysis, with quality suites according to many different of these
criteria, is infeasible. Our approach will be to enrich the validation test suites, those provided with
the dataset, by adding bounded-exhaustive suites [4] for different bounds. The rationale here is to
attempt to be as thorough as possible, to avoid overfitting. For each case study, we obtain suites
with approximately 100 tests, and with approximately 1,000 tests (with two different bounds),
for each routine. These suites can then be assessed according to measures for different testing
criteria. Notice that, as the size of test suites is increased, some tools and techniques may see their
performance affected. This leads to our third RQ:

RQ3: How does test suite size affect the performance of test-based automated repair tools?

As we mentioned earlier in this section, patches are classified as correct (i.e., fixes) or not using
either manual inspections or, as in [56], using held-out tests. We consider these to be error-prone
procedures to assess the correctness of a patch. In [56] overfitting of the Angelix APR tool is
analyzed over the IntroClass dataset. Held-out tests are used to determine non-overfitting patches.
Our fourth RQ is then stated as:

RQ4: Can we produce substantial evidence on the fact held-out tests underestimate overfitting
patches in semantics-based APR tools such as Angelix?

The remaining part of this section is organized as follows. Section 3.1 describes the IntroClass
dataset. Section 3.2 describes the experimental setup we used. Section 3.3 describes the reproducibil-
ity package we are providing in order to guarantee reproducibility of the performed experiments.
Finally, Section 3.5 presents the evaluations performed, and discusses RQ1–RQ4.
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3.1 The IntroClass Dataset
The IntroClass benchmark is thoroughly discussed in [31]. It contains student-developed C programs
for solving six simple problems (that we will describe below) as well as instructor-provided test
suites to assess their correctness. IntroClass has been used to evaluate a number of automated repair
tools [27, 46, 47, 56], and its simplicity reduces the requirements on tool scalability. The benchmark
comprises methods to solve the following problems:

Checksum: Given an input string ( = 20, . . . 2: , this method computes a checksum character 2
following the formula 2 =

(∑
0≤8<(.length( ) (.charAt (8)

)
% 64 + ′ ′.

Digits: Convert an input integer number into a string holding the number’s digits in reverse
order.

Grade: Receives five floats 51, 52, 53, 54, and score as inputs. The first four are given in decreasing
order (51 > 52 > 53 > 54). These four values induce five intervals (∞, 51], (51, 52], (52, 53], (53, 54],
and (54,−∞]. A grade �, �, � , � , or � is returned according to the interval score belongs to.

Median: Compute the median among three integer input values.
Smallest : Compute the smallest value among four integer input values.
Syllables: Compute the number of syllables into which an input string can be split according to
English grammar (vowels “a,” “e,” “i,” “o,” and “u,” as well as the character “y,” are considered as
syllable dividers).

There are two versions of the dataset, the original one described in [31], whose methods are
given in the C language, and a Java translation of the original dataset described in [12]. Some
of the programs that result from the translation from C to Java were not syntactically correct
and consequently did not compile. Other programs saw significant changes in their behavior.
Interestingly, for some programs, the transformation itself repaired the bug (the C program fails
on some inputs, but the Java version is correct). The latter situation is mostly due to the different
behavior of the non-initialized variables in C versus Java [12]. These abnormal cases were removed
from the resulting Java dataset, which thus has fewer methods than the C one.

Because of the automated program repair tools that we evaluate, which include AutoFix and
Angelix, we need to consider yet other versions of the IntroClass dataset:

— IntroClass Eiffel: This new version is the result of translating the original C dataset into Eiffel.
For the translation, we employed the C2Eiffel tool [50]; moreover, since AutoFix requires
contracts for program fixing, we replaced the input/output sentences in the original IntroClass,
which received inputs and produced outputs from/to standard input/output, to programs
that received inputs as parameters, and produced outputs as return values. We equipped the
resulting programs with the correct contracts for pre- and post-conditions of each case study.
As in the translation from C to Java, several faulty programs became “correct” as a result of
the translation. These cases have to do with default values for variables, as for Java, and with
how input is required and output is produced; for instance, faulty cases that reported output
values with accompanying messages in lowercase, when they were expected to be upper case,
are disregarded since in Eiffel translated programs outputs are produced as return values.

— IntroClass Angelix: In order to run experiments with Angelix the source code of each variation
has to be instrumented and adapted to include calls to some macro functions, and to return the
output in a single integer or char. Since in several variants the errors consist of modifications
of the input/output Strings, which are stripped out by the instrumentation, the faulty versions
became “correct.”

Since IntroClass consists not only of different students’ implementations but also different
commits/versions of the implementation of each student, in several cases the instrumentation
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Fig. 1. Performance of GenProg (and other tools) on the IntroClass dataset, as reported in [26].

Table 1. Description of the IntroClass C, Java, and Eiffel Datasets

Checksum Digits Grade Median Smallest Syllables Total
IntroClass C (GenProg) 46 143 136 98 84 63 570
IntroClass C (Angelix) 31 149 36 58 41 44 359
IntroClass Java (Nopol) 11 75 89 57 52 13 297
IntroClass Eiffel (AutoFix) 45 141 72 86 56 77 477
Test suite size 16 16 18 13 16 16 95

resulted in duplicate files, which we removed using the diff tool to reduce bias (notice that the
IntroClass version used in [26] and reported in Figure 1 does not eliminate duplicates and contains
208 extra datapoints). Table 1 describes the four datasets and, for each dataset, the number of faulty
versions for each method. The sizes of their corresponding test suites are only relevant for C and
Java since, in the case of AutoFix, tests are automatically produced using AutoTest [33] (the tool
does not receive user-provided test suites).

3.2 Experimental Setup
In this section we will describe the software and hardware infrastructure we employed to run
the experiments whose results we will report in Section 3.5. We also describe the criteria used to
generate the bounded-exhaustive test-suites, as well as the automated repair tools we will evaluate
and their configurations.

In order to evaluate the subjects from the IntroClass dataset we consider, besides the instructor-
provided suite delivered within the dataset, two new suites. For those programs in which it is
feasible, we consider bounded-exhaustive suites. Bounded-exhaustive suites contain all the inputs
that can be generated within user-provided bounds. We will use such suites for programs digits,
median, smallest, and syllables. Program grade uses floats and, therefore, even small bounds would
produce suites that are too big; therefore, for program grade we use tests that are not bounded
exhaustive, but that are part of a bounded exhaustive suite. We chose bounds so that the resulting
suites have approximately 100 tests and 1,000 tests for each method under analysis. This gives
origin to two new suites that we will call S100 and S1,000, whose test inputs for each problem are
characterized below in Tables 2 and 3. Notice that from these inputs, actual tests are built using
reference implementations of the methods under repair as an oracle. Notice also that all the tests in
S100 also belong to S1,000, i.e., S1,000 extends S100 in all cases.
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Table 2. Specification of Test Suites (100

Test inputs specification Total
(100checksum = {20, . . . , 2: | 0 ≤ : ≤ 4 ∧ ∀0≤8≤:28 ∈ {′0′,′ 1′,′ 2′}} 120
(100digits = {: | − 64 ≤ : ≤ 63} 128
(100grade = {(51, . . . , 54, score) | (∀1≤8≤4 58 ∈ {30, 40, 50, 60, 70, 80})

 ∧ (51 > 52 > 53 > 54) ∧ B2>A4 ∈ {5, 10, 15, 20, . . . , 90}} 285
(100median = {(:1, :2, :3) |∀1≤8≤3 − 2 ≤ :8 ≤ 2} 125
(100smallest = {(:1, :2, :3, :4) |∀1≤8≤4 − 2 ≤ :8 ≤ 1} 256
(100syllables = {20, . . . 2: |0 ≤ : < 4 ∧ ∀0≤8≤:28 ∈ {′0′,′ 1′,′ 2′}} 120

Table 3. Specification of Test Suites (1, 000

Test inputs specification Total
(1,000checksum = {20, . . . , 2: | 0 ≤ : ≤ 5 ∧ ∀0≤8≤:28 ∈ {′0′,′ 1′,′ 2′,′ 4′}} 1,364
(1,000digits = {: | − 512 ≤ : ≤ 511} 1,024
(1,000grade = {(51, . . . , 54, score) | (∀1≤8≤4 58 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90})

 ∧ (51 > 52 > 53 > 54) ∧ score ∈ {0, 5, 10, 15, 20, . . . , 100}} 2,646
(1,000median = {(:1, :2, :3) |∀1≤8≤3 − 5 ≤ :8 ≤ 4} 1,000
(1,000smallest = {(:1, :2, :3, :4) |∀1≤8≤4 − 3 ≤ :8 ≤ 2} 1,296
(1,000syllables = {20, . . . , 2: |0 ≤ : < 5 ∧ ∀0≤8≤:28 ∈ {′0′,′ 1′,′ 2′,′ 4′}} 1,364

Along the experiments we report in this section, we used a workstation with Intel Core i7
2600, 3.40 GHz, and 8 GB of RAM running Ubuntu 16.04 LTS x86_64. The experiments involving
Pex were performed on a virtual machine (VirtualBox) running a fresh install of Windows 7 SP1.
The specific version of the software used in the experiments, including that of the APR tools,
can be found on the reproducibility package. In general, finding an appropriate timeout depends
on the context in which the tool is being used. Perhaps, for mission-critical applications a large
timeout is more appropriate, while for other domains, it may be too expensive to devote 1 hour to
(most probably failed) repair attempts. We set a 2-hour timeout; enough for the tools to run, and at
the same time reasonable for the time running all the experiments will require.

3.3 Reproducibility
The empirical study we present in this article involves a large set of different experiments. These
involve four different datasets (versions of IntroClass, as described in the previous section), config-
urations for four different repair tools across three different languages, and three different sets of
tests for the tools that receive test suites. Also, all case studies have been equipped with contracts,
translated into C# and verified using Pex. We make available all these elements for the interested
reader to reproduce our experiments in

https://sites.google.com/a/dc.exa.unrc.edu.ar/test-specs-program-repair/

Instructions to reproduce each experiment are provided therein.

3.4 Why Use Bounded-exhaustive Suites
RQs 2 and 3 discuss the impact of using alternative (w.r.t. test suites used as specifications of the
programs being developed) test suites in overfitting and tool scalability. It is expected that these
held-out tests will allow one to expose those patches generated by an APR tool that overfit to the
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Table 4. Repair Statistics for the Nopol Automated Repair Tool

Method #Versions Suite #Patches #Fixes %Patches %Fixes
Checksum 11 O 0 0 0% 0%

O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

Digits 75 O 7 1 9.3% 1.3%
O ∪ S100 2 1 2.7% 1.3%
O ∪ S1,000 2 1 2.7% 1.3%

Grade 89 O 2 1 2.2% 1.1%
O ∪ S100 2 1 2.2% 1.1%
O ∪ S1,000 2 1 2.2% 1.1%

Median 57 O 11 4 19.3% 7%
O ∪ S100 4 4 7% 7%
O ∪ S1,000 4 4 7% 7%

Smallest 52 O 12 0 23.1% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

Syllables 13 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

specification suite. The first problem, namely, the impact on overfitting of considering alternative
suites, has been already discussed in the literature by using, besides the original suite, new white-
box suites automatically generated in order to satisfy a coverage criterion (usually, branch coverage)
[26, 47, 56]. Using white-box suites as held-out tests is rarely useful in software development.
They are obtained from a (usually non-existent) correct implementation whose complexity usually
differs greatly from the students-developed version losing both, the property of the suite being
white-box and the satisfaction of the coverage criterion. Also, they may not be comprehensive
enough. For example, for the IntroClass dataset, the white-box suites used in [56] have between
8 and 10 tests, and keeping portions of the suite to check the impact of larger/smaller suites on
assessing scalability seems at least risky. As an alternative of using small white-box suites, that
suffer from the mentioned methodological limitations, we propose the use of bounded-exhaustive
suites whenever possible, or similar ones when bounded-exhaustiveness is not an option. They
can easily be made to grow in size as much as necessary, and they capture a similar behavior to
formal specifications in a fragment of the program domain. We will be exploring alternatives to
bounded-exhaustive suites with similar characteristics as further work.

3.5 Experimental Results
In this section we present the evaluation of each of the repair tools on the generated suites, and
from the collected data we will discuss RQ1–RQ4 in Sections 3.6–3.9. Tables 4–7 summarize the
experimental data. On these tables, we report a patch/fix if any repair mode/configuration or
execution produced a patch/fix. For example, we considered 10 executions of GenProg due to its
random behavior. It suffices only one execution to find a patch to be reported.

3.6 RQ1
This RQ addresses overfitting, a well-known limitation of G and V APR approaches that use
test suites as the validation mechanism. The use of patch validation techniques based on human
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Table 5. Repair Statistics for the GenProg Automatic Repair Tool

Method #Versions Suite #Patches #Fixes %Patches %Fixes
Checksum 46 O 3 2 6.5% 4.3%

O ∪ S100 23 0 50% 0%
O ∪ S1,000 22 1 47.8% 2.2%

Digits 143 O 29 12 20.3% 8.4%
O ∪ S100 17 10 11.9% 7%
O ∪ S1,000 13 7 9.1% 4.9%

Grade 136 O 2 0 1.5% 0%
O ∪ S100 50 0 36.8% 0%
O ∪ S1,000 23 0 16.9% 0%

Median 98 O 37 13 37.8% 13.3%
O ∪ S100 67 0 68.4% 0%
O ∪ S1,000 51 3 52% 3.1%

Smallest 84 O 37 3 44% 3.6%
O ∪ S100 61 0 72.6% 0%
O ∪ S1,000 47 0 56% 0%

Syllables 63 O 19 0 30.2% 0%
O ∪ S100 38 0 60.3% 0%
O ∪ S1,000 37 0 58.7% 0%

Table 6. Repair Statistics for the AutoFix Automatic Repair Tool

Method #Versions Suite #Patches #Fixes %Patches %Fixes
Checksum 45 O 1 0 2.2% 0%

O ∪ S100 1 0 2.2% 0%
O ∪ S1,000 1 0 2.2% 0%

Digits 141 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

Grade 72 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

Median 86 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

Smallest 56 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

Syllables 77 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%
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Table 7. Repair Statistics for the Angelix Automatic Repair Tool

Method #Versions Suite #Patches #Fixes %Patches %Fixes
Checksum 31 O 0 0 0% 0%

O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

Digits 149 O 20 5 13.4% 3.4%
O ∪ S100 13 10 8.7% 6.7%
O ∪ S1,000 8 4 5.4% 2.7%

Grade 36 O 7 7 19.4% 19.4%
O ∪ S100 7 7 19.4% 19.4%
O ∪ S1,000 5 5 13.9% 13.9%

Median 58 O 29 10 50.0% 17.2%
O ∪ S100 15 15 25.9% 25.9%
O ∪ S1,000 6 6 10.3% 10.3%

Smallest 41 O 33 1 80.5% 2.4%
O ∪ S100 1 1 2.4% 2.4%
O ∪ S1,000 1 1 2.4% 2.4%

Syllables 44 O 0 0 0% 0%
O ∪ S100 0 0 0% 0%
O ∪ S1,000 0 0 0% 0%

inspections or comparisons with developer patches (or even accepting patches as fixes without
further discussion) has not allowed the community to identify the whole extent of this problem.
For example, paper [26] includes the table we reproduce in Figure 1. The table gives the erro-
neous impression that 287 out of 778 bugs were fixed (36.8%). The paper actually analyzes this
in more detail and by using independent test suites to validate the generated patches, it claims
GenProg’s patches pass 68.7% of independent tests, giving the non-expert reader the impression
the produced patches were of good quality while, in fact, it might be the case that none of the
patches is actually a fix. Actually, as our experiments reported in Table 5 show, only 30 out of
570 faults were correctly fixed (which gives a fixing ratio of 5.3%, well below the 36.8% presented
in [26]).

We have obtained similar results for the other tools under analysis. Angelix patches 89 faults out
of 360 program variants (a ratio of 24.7%), yet only 23 patches are fixes (the ratio reduces to 6.4%).
The remaining patches were discarded with the aid of Pex. Nopol patched 32 out of 297 versions
(10.7%), using the evaluation test suite. Upon verification with Pex, the number of fixes is 6 (2%).
AutoFix uses contracts (which we provided) in order to automatically (and randomly) generate the
evaluation suite. When a patch is produced, AutoFix validates the adequacy of the patch with a
randomly generated suite. AutoFix then produced patches for the great majority of faulty routines,
but itself showed that most of these were inadequate, and overall reported only one patch (which
was an invalid fix).

As previously discussed in the beginning of Section 3, these unsatisfactory results might be due
to the low quality of the validation test suite. Yet, it is worth emphasizing that the IntroClass dataset
was developed to be used in program repair, and the community has vouched for its quality by
publishing the benchmark and using the benchmark in their research.
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Table 8. Number of Timeouts Reached by Tool
and Validation Suite

Nopol GenProg Angelix
O 0 2 5
O ∪ S100 0 135 47
O ∪ S1,000 0 237 69

3.7 RQ2
This RQ relates to the impact of more thorough validation suites on overfitting, as well as on
the quality of the produced patches. Table 4 shows that Nopol profits from larger suites in order
to reduce overfitting significantly. It suffices to consider suite O ∪ S100 to notice a reduction in
overfitting. The number of patches is reduced from 32 to 8. Unfortunately, the number of fixes
remains low. This shows that Nopol, when fed with a better quality evaluation suite, is able to
produce (a few) good quality fixes. GenProg, on the other hand, shows an interesting behavior (see
Table 5): It doubles the number of patches with suite O ∪ S100, yet the number of fixes is reduced
from 30 to 10. With suite O ∪ S1,000 produces around 50% more patches but the number of fixes
is reduced from 30 to 11. We believe this is due to its random nature. Angelix (see Table 7) sees
its overfitting reduced. Interestingly, suite O ∪ S100 allows Angelix to obtain five more fixes for
method digits and five more for method median. Since AutoFix generates the evaluation suites,
rather than providing larger suites we extend the test generation time. AutoFix does not have a
good performance on this dataset.

3.8 RQ3
This RQ relates to the impact larger validation suites may have on repair performance. In most
of the evaluated tools this impact can be illustrated by showing the number of timeouts reached
during the repair process. Table 8 reports, for each tool able to use suites S100 and S1,000, and for
each validation suite, the number of timeouts reached during repair. We report a timeout only when
a timeout occurs for all repair modes/configurations and executions. For example, we considered
two repair modes (condition and pre-condition) for Nopol. Depending on the suite, some of them
reached a timeout, however, there is no faulty version for which all of them do. Recall that AutoFix
generates its validation suites from user-provided contracts, and is therefore left out of this analysis.
While Nopol’s mechanism for data collection discards tests that are considered redundant (which
as shown in Table 8 makes Nopol resilient to suite size increments), GenProg and Angelix are both
sensitive to the size of the evaluation suite.

3.9 RQ4
This RQ addresses our intuition that using held-out tests, as a means to determine if a patch found
by an APR tool is indeed correct, is an error-prone procedure. This procedure is widely used and
accepted by the community [26, 30, 47, 56, 58]. In [56, Table 2], reproduced in Figure 2, we see
the overfitting reported for Angelix on the IntroClass benchmark using the originally provided
black-box test suites. The table omits methods syllables and checksum for which no patches
were generated. Table 9 compares the number of fixes obtained in [56] (reproduced in Figure 2)
and in this article in Table 7 for those methods that are in the intersection of both studies, namely,
median, smallest, and digits.

While there is a discrepancy in the results reported in Table 9, this does not imply per se that an
error has been made. Methods have been instrumented, parameters may include subtle differences

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 3, Article 57. Publication date: February 2025.



57:14 L. Zemín et al.

Fig. 2. Overfitting patches produced by Angelix as reported in [56, Table 2].

Table 9. Comparing the Number
of Reported Fixes with [56]

Figure 2 Table 7
Median 9 5
Smallest 10 10
Digits 1 1

Table 10. Quality of Patches That Pass the
Held-out Tests

#Patches #Pass O #Pass Pex
Median 887 [58] 130 [28] 66 [12]
Smallest 1,155 [51] 283 [26] 11 [3]
Digits 78 [22] 9 [7] 3 [1]

that lead to different results, and so on. These discrepancies, nevertheless, called our attention and
led to RQ4. Paper [56] reports a reproducibility package [57] that, in particular, includes all the
patches generated by Angelix. It is not clear how the files in [57] match the experiments reported
in [56] (the number of files does not match the results reported in the paper). Still, many files are
available that allow us to study this RQ in depth. Disregarding their provenance, there are 45,131
patches in the reproducibility package [57]. Since there may be repeated patches, we removed
repetitions and 2,120 patches remained. For each of these patches we checked overfitting using
the test suite provided in IntroClass (suite O in our tables) as held-out tests. Also, we checked
overfitting using Pex. Finally, as we did with our experiments, we ran the corresponding test
generated by Pex (if any) on the original patched method to check that it actually fails. Table 10
reports the total number of unique patches for each method. Since there might be multiple patches
for a specific student version, we also present the number of versions involved in brackets. For
example, there are 78 unique patches for the method digits in the available reproducibility package,
yet they correspond to 22 different student versions. Table 10 provides strong evidence that using
held-out tests to assess the correctness of a patch is unacceptable since more than 80% of them are
deemed correct by the held-out tests, yet they are incorrect (the 80% value is obtained from Table 10
by calculating (#?0BB $ − #%0BB %�- )/#%0BB $). Interestingly, the number of student versions
fixed reported in Table 10 (after an in-depth analysis of the reproducibility package obtained from
[56]) and Table 7 are very similar. This observation suggests that despite the differences in the
instrumentation of the dataset and the experimental setup, running the same tool on the same
dataset produced the same results, providing evidence against any bias introduced during our
experiments.
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4 Threats to Validity
In the article we focused on the IntroClass dataset. Therefore, the conclusions we draw only apply
to this dataset and, more precisely, to the way in which the selected automated repair tools are able
to handle IntroClass. Nevertheless, we believe this dataset is particularly adequate to stress some
of the points we make in the article. Particularly, considering small methods that can be easily
specified in formal behavioral specification languages such as Code Contracts [13] or JML [5] allow
us to determine if patches are indeed fixes or are spurious fix candidates. This is a problem that
is usually overlooked in the literature: Either patches are accepted as fixes (no further study on
the quality of patches is made) [47], or they are subject to human inspection (which we consider
severely error-prone), or are compared against developer fixes retrieved from the project repository
[37] (which, as pointed out in [47], may show that automated repair tools and developers overfit in
a similar way). Since these tools work on different languages (GenProg and Angelix work on C
code, while Nopol works on Java code and AutoFix repairs Eiffel code), the corresponding datasets
are different across languages as explained in Section 3.2. Therefore, the reader is advised to not
draw conclusions by comparing between tools working on different datasets.

Also, we used the repair tools to the best of our possibilities. This is complex in itself because
research tools usually have usability limitations and are not robust enough. In all cases we consulted
corresponding tool developers in order to make sure we were using the tools with the right
parameters, and reported a number of bugs that in some cases were fixed in time for us to run
experiments with the fixed versions. The reproducibility package includes all the settings we used.

Notice that we are using Pex as our golden standard, i.e., if a patch is deemed correct by Pex,
it is accepted as a fix. This may not always be the case. If that happens, it will count against
our hypothesis. For the experimental evaluation we used a 2-hour timeout. We consider this an
appropriate timeout, but increasing it may yield added results.

The results reported only apply to the studied tools. Other tools might behave in a substantially
different way. We attempted to conduct this study on a wider class of tools, yet some tools were not
available even for academic use (for instance, PAR [29]), while other tools had usability limitations
that prevented us from running them even on this simple dataset (this was the case for instance
with SPR [34]).

5 Related Work
This article extends previous results published by the authors in [59]. The paper addressed the use of
specifications and automated bug-finding to assess overfitting in automated program repair tools.
Similar ideas were later also published in [44], where OpenJML [9] is used for verification purposes
rather than Pex. Only the overfitting problem is analyzed in [44], but on a different benchmark of
programs. This new benchmark is a valuable contribution of [44]. Instead, we stick to the IntroClass
dataset, which has simpler programs, has been used as a benchmark in other papers, and serves as a
lower bound for the evaluation of APR tools, i.e., if tools fail to properly fix these simple programs,
it is hardly the case they will be successful on more complex ones.

Automatic program fixing has become over the last few years a very active research topic, and
various tools for program repair are now available, many of which we have already referred to
earlier in this article. These generally differ in their approaches for producing program patches,
using several different underlying approaches, including search-based techniques, evolutionary
computation, pattern-based program fixing, program mutation, synthesis, and others. Since this
article is mainly concerned with how these program fixing approaches evaluate the produced fix
candidates, we will concentrate on that aspect of automated program repair techniques. A very
small set of program repair techniques use formal specifications as acceptance criteria for program
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fixes. Gopinath et al. [17] propose a technique to repair programs automatically, by employing SAT
solving for various tasks, including the construction of repair values from faulty programs where
suspicious statements are parameterized, and checking whether the repair candidates are indeed
fixes; they use contracts specified in Alloy [20], and SAT-based bounded verification for checking
candidate programs against specifications. Staber et al. [48] apply automated repairs on programs
captured as finite state machines, whose intended behavior is captured through linear time temporal
logic [8]; repair actions essentially manipulate the state transition relation, using a game-theoretic
approach. von Essen and Jobstmann [51] propose a technique to repair reactive systems, specified by
formal specifications in linear time temporal logic, resorting to automated synthesis. The approach
by Arcuri and Yao [1] applies to sequential programs accompanied by formal specifications in
the form of first-order logic pre- and post-conditions, and uses genetic programming to evolve
a buggy program in the search for a fix, driven by a set of tests automatically computed from
the formal specification and the program. Their use of formal specifications is then weaker than
the previously mentioned cases. Wei et al. [52] propose a technique that combines tests for fault
localization with specifications in the form of contracts, for automatically repairing Eiffel programs.
Their technique may correct both programs and contracts; it uses automatically generated tests
to localize faults and to instantiate fix schemas to produce fix candidates; fix candidates are then
assessed indirectly against contracts, since they are evaluated on a collected set of failing and
passing tests, automatically built using random test generation using the contracts.

All other automated repair tools we are aware of use tests as specifications, mainly as a way of
making the corresponding techniques more widely applicable, since tests can be more commonly
found in software projects and their use scales more reasonably than other verification approaches.
We summarize here a set of known tools and techniques that use tests as specifications. The BugFix
tool by Jeffrey et al. [22] applies to C programs and uses tests as specifications; the tool employs
machine learning techniques to produce bug-fixing suggestions from rules learned from previous
bug fixes. Weimer et al. [54] use genetic algorithms for automatically producing program fixes for C
programs, using tests as specifications too; moreover, they emphasize the fact that tests as opposed
to formal specifications lead to wider applicability of their technique. Kern and Esparza [28] repair
Java programs by systematically exploring alternatives to hotspots (error prone parts of the code),
provided that the developers characterize hotspot constructs and provide suitable syntactic changes
for these; they also use tests as specifications, but their experiments tend to use larger test sets
compared to the approaches based on evolutionary computation. Debroy and Wong [10] propose a
technique that combines fault localization with mutation for program repair; fault localization is a
crucial part of their technique, in which a test suite is involved, the same one used as acceptance
criterion for produced program patches. Tool SemFix by Nguyen et al. [41] combines symbolic
execution with constraint solving and program synthesis to automatically repair programs; this
tool uses provided tests both for fault localization and for producing constraints that would lead to
program patches that pass all tests. Kaleeswaran et al. [25] propose a technique for identifying, from
a faulty program, parts of it that are likely to be part of the repaired code, and suggest expressions
on how to change these. Tests are used in their approach both for localizing faults and for capturing
the expected behavior of a program to synthesize hints for fixes. Ke [27] proposes an approach
to program repair that identifies faulty code fragments and looks for alternative, human-written,
pieces of code, that would constitute patches of the faulty program; while their approach uses
constraints to capture the expected behavior of fragments and constraint solving to find patches,
this behavior is taken from tests, and the produced patches are in the end evaluated against a set
of test cases, for acceptance. Long and Rinard [34] propose SPR, a technique based on the use of
transformation schemas that target a wide variety of program defects, and are instantiated using a
novel condition synthesis algorithm. SPR also uses tests as specifications, not only as acceptance
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criterion but also as part of its condition synthesis mechanism. Mechtaev et al. [37] propose Angelix,
a tool for program repair based on symbolic execution and constraint solving, supported by a novel
notion of angelic forest to capture information regarding (symbolic) executions of the program
being repaired; while Angelix uses symbolic execution and constraint solving, the intended behavior
of the program to be repaired is in this case also captured through test cases. Finally, Xuan et al.
[55] propose Nopol, which also resorts to constraint solving to produce patches from information
originating in test executions, encoded as constraints. Again, Nopol uses tests both in the patch
generation process, and as acceptance criterion for its produced fixes to produce patches from
information originating in test executions, encoded as constraints.

Various tools for program repair that employ testing as acceptance criteria for program fixes
have been shown to produce spurious (incorrect) repairs. Paper [46] shows that GenProg and other
tools overfit patches to the provided acceptance suites. They do so by showing that third-party
generated suites reject the produced patches. Since several tools (particularly GenProg) use suites
to guide the patch generation process, [46] actually shows that the original suites are not good
enough. We go one step further and show that even considering more comprehensive suites the
performance of the repair tools is only partially improved: Fewer overfits are produced, but no new
fixes. This supports the experience by the authors of [46], and generalizes it to other tools as well:

“Our analysis substantially changed our understanding of the capabilities of the analyzed
automatic patch generation systems. It is now clear that GenProg, RSRepair, and AE are
overwhelmingly less capable of generating meaningful patches than we initially understood
from reading the relevant papers.”

The overfitting problem is also addressed in [47, 56], where the original test suite is extended
with a white-box one, automatically generated using the symbolic execution engine KLEE [6]. RQ2
in [47] analyzes the relationship between test suite coverage and overfitting, a problem we also
study in this article. Their analysis proceeds by considering subsets of the given suite, and showing
this leads to even more overfitted patches. Rather than taking subsets of the original suite, we go
the other way around and extend the original suite with a substantial amount of new tests. This
allows us to reach to conclusions that exceed [47], as for instance the fact that, while overfitting
decreases, the fixing ratio remains very low. Also, we analyze the impact of larger suites on tool
performance, which cannot be correctly addressed by using small suites.

Long and Rinard [35] also study the overfitting problem but from the perspective of the tools
search space. It concludes that many tools show poor performance because their search space
contains significantly fewer fixes than patches, and in some cases, the patch generation process
employed produces a search space that does not contain any fixes.

Kali [46] was developed with the purpose of generating patches that delete functionality. RSRepair
[45] is an adaptation of GenProg that substitutes genetic programming by random search.

6 Discussion
The significant advances in automated program analysis have enabled the development of powerful
tools for assisting developers in various tasks, such as test case generation, program verification,
and fault localization. The great amount of effort that software maintenance demands is turning
the focus of automated analysis into automatically fixing programs, and a wide variety of tools
for automated program repair have been developed in the last few years. The mainstream of these
tools, as we have analyzed in this article, concentrate in using tests as specifications, since tests
are more often found in software projects, compared to more sophisticated formal specifications,
and their evaluation scales better than the analysis of formal specifications using more thorough
techniques. While several researchers have acknowledged the problem of using inherently partial
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specifications based on tests to capture expected program behavior, the more detailed analyses that
have been proposed consisted in using larger test suites, or perform manual inspections, in order to
assess more precisely the effectiveness of automated program repair techniques, and the severity
of the so-called test suite overfitting patches [47].

Our approach in this article has been to empirically study the suitability of tests as fix acceptance
criteria in the context of automated program repair, by checking produced patches using an
automatic bug-finding tool, as opposed to previous works that used tests or manual inspections. We
believe that previous approaches to analyze overfitting have failed to demonstrate the criticality
of invalid patches overfitting test suites. Our results show that the percentage of valid fixes that
state-of-the-art program repair tools, that use tests as acceptance criteria, are able to provide is
significantly lower than the estimations of previous assessments, e.g., [47], even in simple examples
such as the ones analyzed in this article. Moreover, increasing the number of tests reduces the
number of spurious fixes but does not contribute to generating more fixes, i.e., it does not improve
these tools’ effectiveness; instead, such increases make tools most often exhaust resources without
producing patches.

7 Conclusions and Further Work
Some conclusions can be drawn from these results. While weaker or lighterweight specifications,
e.g., based on tests, have been successful in improving the applicability of automated analyses,
as it has been shown in the contexts of test generation, bug finding, fault localization, and other
techniques, this does not seem to be the case in the context of automated program repair. Indeed,
as our results show, using tests as specifications makes it significantly more likely to obtain invalid
patches (that pass all tests) than actual fixes. We foresee three lines of research in order to overcome
this fundamental limitation:

(1) Use of strong formal specifications describing the problem to be solved by the program
under analysis. In some domains (for instance when automatically repairing formal models
[19, 60, 61]) this is the natural way to go. For programs, more work is necessary in order to
assess if partial formal specifications present improvements over test-based specifications.

(2) Use more comprehensive test suites, as for instance bounded-exhaustive suites. These capture
a portion of the semantics of the strong formal specification. Since these suites are likely to
be large in size, new tools must be prepared to deal with large suites.

(3) Include a human in the loop that assesses if a repair candidate is indeed a fix. If she determines
it is not, she may expand the suite with new tests. This iterative process has limitations
(the human may make wrong decisions), but has good chances of being more effective than
test-based specifications.

This work opens more lines for further work. An obvious one consists of auditing patches
reported in the literature, by performing an automated evaluation as the one performed in this
article. This is not a simple task in many cases, since it demands understanding the contexts of the
repairs, and formally capturing the expected behavior of repaired programs. Also, in the article we
used bounded-exhaustive test suites that contain approximately 100 or 1,000 tests. For some tools
we saw improvement in the number of fixes, and for others we saw that large suites deem the tools
useless. We will study how tools behave when finer granularity is applied in the construction of
bounded-exhaustive suites, hoping to find sweet spots that favor the quality of the produced patches.

In this article we are not proposing the use of specifications and verification tools along auto-
mated program repair in industrial settings. Specifications are scarce, and producing good-enough
specifications is an expensive task. Yet it is essential that APR tool users be aware of the actual
limitations APR tools have. Still, in an academic setting we believe that checking tools against
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the IntroClass dataset and assessing the quality of patches using formal specifications should be a
standard. This article provides all the infrastructure necessary to make this task a simple one.
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