
4

Efficient Analysis of DynAlloy Specifications

MARCELO F. FRIAS, CARLOS G. LOPEZ POMBO, and JUAN P. GALEOTTI

Universidad de Buenos Aires

and

NAZARENO M. AGUIRRE

Universidad Nacional de Rı́o Cuarto

DynAlloy is an extension of Alloy to support the definition of actions and the specification of as-
sertions regarding execution traces. In this article we show how we can extend the Alloy tool so
that DynAlloy specifications can be automatically analyzed in an efficient way. We also demon-
strate that DynAlloy’s semantics allows for a sound technique that we call program atomization,
which improves the analyzability of properties regarding execution traces by considering certain
programs as atomic steps in a trace.

We present the foundations, case studies, and empirical results indicating that the analysis of
DynAlloy specifications can be performed efficiently.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Validation; D.2.10 [Software Engineering]: Design—Representation; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Languages, Design, Verification

Additional Key Words and Phrases: Alloy, dynamic logic, software specification, software validation

ACM Reference Format:
Frias, M. F., Lopez Pombo, C. G., Galeotti, J. P., and Aguirre, N. M. 2007. Efficient analysis of
DynAlloy specifications. ACM Trans. Softw. Eng. Methodol. 17, 1, Article 4 (December 2007), 34
pages. DOI = 10.1145/1314493.1314497 http://doi.acm.org/10.1145/1314493.1314497

1. INTRODUCTION

The main objective of specifying, or modeling, software systems is the possibility
of describing software artifacts with a certain degree of abstraction, so some
useful analysis tasks can be performed on these descriptions. This analysis
might allow one to see, or perhaps discover, some properties of the specified
artifacts, and understand the implications of our design decisions. Furthermore,
the analysis tasks can help us foresee problems and anticipate possible flaws

Authors’ addresses: email: {mfrias, clpombo}@dc.uba.ar, jgaleotti@dc.uba.ar, naguirre@dc.exa.
unrc.edu.ar.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1049-331X/2007/12-ART4 $5.00 DOI 10.1145/1314493.1314497 http://doi.acm.org/
10.1145/1314493.1314497

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:2 • M. F. Frias et al.

of the specified artifact, which is especially important when this artifact still
needs to be built.

Due to their precise semantics, formal specifications of software are well
suited for analysis. However, formal semantics is not necessarily enough for a
specification language to be useful: appropriate specification constructs at the
right level of abstraction, ease of use, simplicity, tool support (for automated
analysis, for instance), and so on, play decisive roles in the take-up and utility
of a formal method. Abstraction, in particular, is normally considered a good
feature of formalisms for specification, since abstract descriptions usually allow
us to ignore irrelevant details, and concentrate on the issues we are interested in
describing and analyzing. Abstract descriptions are also usually more concise,
which greatly improves the comprehension of the models, and consequently, of
the relevant aspects of the specified artifacts. Analyzability is an issue related
to abstraction and simplicity, since simple, but adequately expressive, models
(i.e., models at the right level of abstraction) are normally easier to analyze,
and reduce the complexity of tool support implementation.

Alloy [Jackson 2002a; Jackson et al. 2001] is a formal specification language,
defined in terms of a simple relational semantics. It belongs to the class of
the so-called model-oriented formal methods, but unlike other model-oriented
formalisms, Alloy has been designed with the particular aim of making spec-
ifications automatically analyzable [Jackson 2002b]. Moreover, Alloy’s syntax,
although small, includes constructs ubiquitous in (less formal) object-oriented
notations. These features make the language easy to learn and use, and have
turned Alloy into an appealing formal method.

As for any other model-oriented specification language, Alloy’s approach
to specification consists of describing systems by building abstract models of
them. Traditionally, model-oriented specification languages describe a system
by defining its state space, and its operations as state transformations; Alloy
is not an exception in this respect. Alloy specifications are defined essentially
in terms of data domains, and operations among these domains. In particular,
one can use data domains to specify the state space of a system or a compo-
nent, and employ operations as a means for the specification of state change.
These characteristics make Alloy, and other model-oriented formal notations
such as Z [Spivey 1988] or VDM [Jones 1986], suitable for the specification of
static properties of systems. However, as we have advocated in the past, and as
various researchers have observed, these languages, including Alloy, are less
appropriate for specifying dynamic properties—properties regarding execution
traces—due to the static nature of their specifications.

One of the reasons why the specification of properties of executions is com-
plicated in Alloy has to do with the semantics of operations. Semantically, op-
erations correspond to predicates, in which certain variables are assumed to
be output variables, or, more precisely, are meant to describe the system state
after the operation is executed. By looking into Alloy’s semantics, it is easy to
confirm that “output” and “after” are intentional concepts: the notions of output
or temporal precedence are not reflected in the semantics and, therefore, under-
standing variables this way is just a reasonable convention. Variable naming
conventions are a useful mechanism, which might lead to a simpler semantics

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:3

of specifications. Nevertheless, we have proposed an alternative, consisting of
extending Alloy with actions understood as a general concept associated with
state change, covering transactions and events, for example, with a well-defined
input/output semantics, in order to specify properties of executions. This, be-
sides enabling us to characterize properties regarding execution traces in a
convenient way, provides a significant improvement to Alloy’s expressiveness
and analyzability, as we will show in this article.

In order to see how actions improve Alloy’s expressiveness, suppose, for in-
stance, that we need to define the combination of certain operations describing
a system. Some combinations are representable in Alloy; for instance, if we have
two operations Oper1 and Oper2, and denote by Oper1 ;Oper2 and Oper1 +Oper2
the sequential composition and nondeterministic choice of these operations,
respectively, then these can be easily defined in Alloy as follows:

Oper1 ;Oper2(x, y) = some z | (Oper1(x, z) and Oper2(z, y))
Oper1 + Oper2(x, y) = Oper1(x, y) or Oper2(x, y)

where the first and second arguments of each operation represent its input and
output parameters, respectively. However, if we aim at specifying properties of
executions, then it is highly likely that we will need to predicate at least about
all terminating executions of the system. This demands some kind of iteration
of operations. While it is possible to easily define sequential composition or non-
deterministic choice in Alloy, as we showed before, finite unbounded iteration
of operations cannot be defined using Alloy’s constructs.

Alloy’s developers have acknowledged the problem of specifying properties
of executions, and have proposed a solution that includes a representation of
the iteration of operations, in order to analyze properties of executions in Alloy.
By enriching models with the inclusion of a new signature (type) for execution
traces [Jackson et al. 2001], and constraints that indicate how these traces are
constructed from the operations of the system, it is possible to simulate oper-
ation iteration. Essentially, traces are defined as being composed of all inter-
mediate states visited along specific runs. While adding traces to specifications
indeed provides a mechanism for dealing with executions (and even specifica-
tions involving execution traces can be automatically analyzed), this approach
requires the specifier to explicitly take care of the definition of traces (an ad hoc
task that depends on the properties of traces one wants to validate). Further-
more, the resulting specifications are cumbersome, since they mix together two
clearly separated aspects of systems, the static definition of domains and op-
erations that constitute the system, and the dynamic specification of traces of
executions of these operations. Modules, as used in Alloy, might help in orga-
nizing a specification, by separating the static and dynamic aspects of a system;
however, the specifier still needs to manually provide the specification of traces,
since, as we said, this is an ad hoc activity, dependent on the particular property
of executions that needs to be validated.

We consider that actions, if appropriately used, constitute a better candidate
for specifying assertions regarding the dynamics of a system (i.e., assertions
regarding execution traces), leading to cleaner specifications, with clearer sep-
aration of concerns.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:4 • M. F. Frias et al.

In order to compare these two approaches, let us suppose that we need to
specify that every terminating execution of two operations Oper1 and Oper2
beginning in a state satisfying a formula α, terminates in a state satisfying
a formula β. Using the approach presented in Jackson et al. [2001] that we
described above, it is necessary to provide an explicit specification of execution
traces complementing the specification of the system, as follows:

(1) Specify the initial state as a state satisfying α,
(2) specify that every pair of consecutive states in a trace is either related by

Oper1 or by Oper2,
(3) specify that the final state satisfies β.

Using the approach we proposed in Frias et al. [2005a], based on actions, ex-
ecution traces are only implicitly used. This specification can be written in a
simple and elegant way, as follows:

{α}
(Oper1 + Oper2)∗.

{β}
This states that every terminating execution of (Oper1 + Oper2)∗ (which rep-
resents an unbounded iteration of the nondeterministic choice between Oper1
and Oper2) starting in a state satisfying α, ends up in a state satisfying β.
This notation corresponds to the traditional and well known notation for par-
tial correctness assertions [Floyd 1967; Hoare 1969]. Notice that no explicit
reference to traces is required. Nevertheless, traces exist and are well taken
care of in the semantics of actions, far from the eyes of the software engi-
neer writing a model. It is clear then that pursuing our task of adding ac-
tions to Alloy contributes toward the usability of the language. Also, note that
finite unbounded iteration is, in our approach, expressible via the iteration
operation “*”.

As we mentioned, one of the main features of Alloy is the automatic an-
alyzability of its specifications. The analysis technique principally associated
with Alloy is essentially a counterexample extraction mechanism, based on
SAT solving. Basically, given a system specification and a statement about it,
a counterexample of this statement (under the assumptions of the system de-
scription) is exhaustively searched for. Since first-order logic is not decidable,
and Alloy is based on a proper extension of first-order logic, SAT solving cannot
be used in general to guarantee the validity of (or, equivalently, the absence
of counterexamples for) a theory; then, the exhaustive search for examples or
counterexamples has to be performed up to a certain bound k in the number
of elements in the universe of the interpretations. Thus, this analysis proce-
dure can be regarded as a validation mechanism, rather than a verification
procedure. Its usefulness for validation is justified by the interesting observa-
tion that, in general, if a statement is not true, there often exists a small size
counterexample of it. This has become known as the small scope hypothesis.
The described analysis technique is implemented by the Alloy Analyzer, a tool
that employs state-of-the-art SAT solvers, such as MChaff, ZChaff [Moskewicz

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:5

et al. 2001] and Berkmin [Goldberg and Novikov 2002], in order to search for
examples or counterexamples of specifications.

In this article, we show that our extension of Alloy with actions, referred to as
DynAlloy, besides being more expressive than standard Alloy, can also be com-
plemented with efficient automatic analysis. We modify the Alloy tool in order
to allow for efficient verification of DynAlloy specifications, and show that, in
our experiments based on two case studies, the resulting tool was demonstrated
to be more efficient than the standard Alloy Analyzer, for validating properties
of executions. We also present a mechanism called program atomization, which
improves the analyzability of properties regarding execution traces by consid-
ering certain programs as atomic steps in a trace. This is of special interest
when combined with incremental specification; once a component C together
with programs regarding this component are validated (this involves the anal-
ysis of execution traces), one can build new components in terms of the defined
C, and new programs, in which some of the programs corresponding to C are
considered as atomic. Intuitively, this technique allows us to compress the size
of the traces of new programs, leading to the exploration of longer computations
during the analysis, as we will show.

The remainder of this article is organized as follows. In Section 2 we sum-
marize the main characteristics of the Alloy specification language. In Section
3 we introduce the reader to our extension of Alloy, the DynAlloy language. In
Section 4 we present the DynAlloy tool, the tool that extends the Alloy Analyzer
with support for actions, partial correctness assertions, and their correspond-
ing analysis. In Section 5 we present the program atomization technique, and
its impact on incremental validation. In Section 6 we present the case studies
used to compare our approach with standard Alloy, and their corresponding
running times. Finally, in Section 7 we present our conclusions and proposals
for further work.

2. THE ALLOY SPECIFICATION LANGUAGE

In this section, we introduce the reader to the Alloy specification language by
means of an example extracted from Jackson et al. [2001]. This example serves
as a means for illustrating the standard features of the language and their
associated semantics, the shortcomings overcome by our alternative semantics,
and will be used as a basis for the properties of traces we will analyze.

Suppose we want to specify systems involving memories with cache. We
might recognize that, in order to specify memories, data types for data and ad-
dresses are especially necessary. We can then start by indicating the existence
of disjoint sets of atoms for data and addresses, which in Alloy are specified
using signatures:

sig Addr { } sig Data { }.
These are basic signatures. We do not assume any special properties regarding
the structures of data and addresses.

With data and addresses already defined, we can now specify what consti-
tutes a memory. A possible way of defining memories is by saying that a memory

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:6 • M. F. Frias et al.

consists of a set of addresses, and a partial mapping from these addresses to
data values. In our case, we will use memories in order to model what is common
to cache and main memories, so the signature must be declared as abstract:

abstract sig Memory {
addrs: set Addr,
map: addrs -> one Data

}
The modifier “one” in the above definition indicates that “map” is functional
and total (for each element a of addrs, there exists exactly one element d in
Data such that map(a) = d).

Alloy allows for the definition of signatures as subsets of the set denoted
by another “parent” signature. This is done via what is called signature exten-
sion. For the example, one could define other perhaps more complex kinds of
memories as extensions of the Memory signature:

sig MainMemory extends Memory {}

sig Cache extends Memory {
dirty: set addrs

}
As specified in these definitions, MainMemory and Cache are special kinds of
memories. In caches, a subset of addrs is recognized as dirty.

A system might now be defined to be composed of a main memory and a
cache:

sig System {
cache: Cache,
main: MainMemory

}
As the previous definitions show, signatures are used to define data domains

and their structures. The attributes of a signature denote relations. For in-
stance, the “addrs” attribute in signature Memory represents a binary relation,
from memory atoms to sets of atoms from Addr. Given a set m (not necessarily
a singleton) of Memory atoms, m.addrs denotes the relational image of m under
the relation denoted by addrs. This leads to a relational view of the dot notation,
which is simple and elegant, and preserves the intuitive navigational reading
of dot, as in object orientation. Signature extension, as we mentioned before, is
interpreted as inclusion of the set of atoms of the extending signature into the
set of atoms of the extended signature.

In Figure 1, we present the grammar and semantics of Alloy’s relational logic,
the core logic on top of which all of Alloy 3.0’s syntax and semantics are defined
[Jackson et al. 2001]. An important difference with respect to previous versions
of Alloy, as for instance the one presented in [Jackson 2002a], is that expressions
now range over relations of arbitrary rank, instead of being restricted to binary
relations. Composition of binary relations is well understood; but for relations
of higher rank, the following definition for the composition of relations has to

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:7

Fig. 1. Grammar and semantics of Alloy.

be considered:

R ;S = {〈a1, . . . , ai−1, b2, . . . , bj 〉 :
∃b(〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj 〉 ∈ S)} .

Operations for transitive closure and transposition are only defined for bi-
nary relations. Thus, function X in Figure 1 is partial.

2.1 Operations in a Model

So far, we have just shown how the structure of data domains can be specified in
Alloy. Of course, one would like to be able to define operations over the defined
domains. Following the style of Z specifications, operations in Alloy can be
defined as expressions, relating states from the state spaces described by the
signature definitions. Primed variables are used to denote the resulting values,
although this is just a convention, not reflected in the semantics.

In order to illustrate the definition of operations in Alloy, consider, for in-
stance, an operation that specifies the writing of a value to an address in a
memory:

pred Write(m, m′: Memory, d: Data, a: Addr) {
m′.map = m.map ++ (a -> d)

}
(1)

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:8 • M. F. Frias et al.

The intended meaning of this definition can be easily understood, bearing in
mind that m′ is meant to denote the memory (or memory state) resulting from
the application of function Write, a -> d denotes the ordered pair 〈a, d〉, and ++
denotes relational overriding, defined as follows1:

R ++S = {〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S)} ∪ S .

We have already seen a number of constructs available in Alloy, such as the
dot notation and signature extension, that resemble object oriented definitions.
Moreover, operations, represented by functions in Alloy, can be “attached” to
signature definitions, as in traditional object-oriented approaches. However,
this is just a convenient notation, and functions describe operations of the whole
set of signatures, that is, the model. So, there is no notion similar to that of
class, as a mechanism for encapsulating data (attributes or fields) and behavior
(operations or methods).

In order to illustrate a couple of further points, consider the following more
complex function definition:

pred SysWrite(s, s′: System, d: Data, a: Addr) {
Write(s.cache, s′.cache, d, a)
s′.cache.dirty = s.cache.dirty + a
s′.main = s.main

}
There are two important issues exhibited in this function definition. First, func-
tion SysWrite is defined in terms of the more primitive Write. Second, the use
of Write takes advantage of the hierarchy defined by signature extension: note
that function Write was defined for memories, and in SysWrite it is implicitly
being “applied” to cache memories.

As explained in Jackson et al. [2001], an operation that flushes lines from
a cache to the corresponding memory is necessary in order to have a realistic
model of memories with cache, since usually caches are smaller than main mem-
ories. A nondeterministic operation that flushes information from the cache to
main memory can be specified in the following way:

pred SysFlush(s, s′: System) {
some x: set s.cache.addrs {

s′.cache.map = s.cache.map − { x->Data }
s′.cache.dirty = s.cache.dirty − x
s′.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]}
}

}
In the third line of this definition of function SysFlush, x->Data denotes the set
of all ordered pairs whose first elements fall into the set x, and whose second
elements range over Data.

1Given a n-ary relation R, dom (R) denotes the set
{

a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R
}
.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:9

Functions can also be used to represent special elements. For instance, we
can characterize the systems in which the cache lines not marked as dirty, are
consistent with main memory:

pred DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(2)

Recall (c.f. Figure 1), that symbol “!” denotes negation, indicating in the above
formula that “a” ranges over atoms that are non-dirty addresses.

2.2 Properties of a Model

As the reader might expect, a model can be enhanced by adding properties
(axioms) to it. These properties are written as logical formulas, much in the
style of the Object Constraint Language (OCL) [Object Management Group
1997]. Properties or constraints in Alloy are defined as facts. To give an idea of
how constraints or properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache memories are
disjoint:

fact {no (MainMemory & Cache)}

In the above expression, “no x” indicates that x has no elements, and & denotes
set intersection. Another important constraint inherent in the presented model
is that, in every system, the addresses of its cache are a subset of the addresses
of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}

More complex facts can be expressed by using the quite considerable expres-
sive power of the relational logic.

2.3 Assertions

Assertions are the intended properties of a given model. Consider, for instance,
the following simple Alloy assertion, regarding the presented example:

assert {
all s: System | DirtyInv(s) and no s.cache.dirty

=> s.cache.map in s.main.map
}

This assertion states that, if “DirtyInv” holds in system s and there are no dirty
addresses in the cache, then the cache agrees in all its addresses with the main
memory.

Assertions are used to check specifications. Using the Alloy analyzer, it is
possible to validate assertions, by searching for possible finite counterexamples
for them, under the constraints imposed in the specification of the system.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:10 • M. F. Frias et al.

3. DYNALLOY: ADDING PARTIAL CORRECTNESS ASSERTIONS TO ALLOY

DynAlloy is an extension of the Alloy modeling language. It was first presented
in Frias et al. [2005b] as a formalism suitable for dealing with properties of ex-
ecutions of operations specified in Alloy. In addition to the automated analysis
approach we propose in this article, DynAlloy admits deductive (equational)
reasoning via a complete relational calculus, as was shown in Frias et al.
[2005b]. So, one can reason about DynAlloy assertions using an automated
theorem prover such as PVS [Owre et al. 2001].

The reason why we proposed this extension is that we wanted to provide a
setting in which, besides functions describing sets of states, actions are also
available, to represent state changes (i.e., to describe relations between input
and output states). As opposed to the use of functions for this purpose, actions
have an input/output meaning reflected in the semantics, and can be composed
to form more complex actions, using well-known constructs from imperative
programming languages.

The syntax and semantics of DynAlloy is described in Section 3.1. It is worth
mentioning at this point that both were strongly motivated by dynamic logic
[Harel et al. 2000], and the well-established suitability of dynamic logic for
expressing partial correctness assertions.

3.1 Alloy Functions vs. DynAlloy Actions

Functions in Alloy are just parameterized formulas. Some of the parameters are
considered input parameters, and the relationship between input and output
parameters relies on the convention that the second argument is the result of
the function application. Recalling the definition of function Write, notice that
there is no actual change in the state of the system, since no variable actually
changes its value.

Dynamic logic [Harel et al. 2000] arose in the early 1970s, with the intention
of faithfully reflecting state change. Motivated by dynamic logic, we propose
the use of actions to model state change in Alloy.

What we would like to say about an action is how it transforms the system
state after its execution. A now traditional way of doing so is by using pre and
post condition assertions. An assertion of the form

{α}
A

{β}

affirms that whenever action A is executed on a state satisfying α, if it termi-
nates, it does so in a state satisfying β (notice that we are assuming a partial
correctness reading of this expression). This approach is particularly appropri-
ate, since behaviors described by predicates are better viewed as the result of
performing an action on an input state. Thus, the definition of predicate Write

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:11

Fig. 2. Grammar for composite actions in DynAlloy.

could be expressed as an action definition, of the following form:

{true}
Write(m : Memory, d : Data, a : Addr)

{m′.map = m.map ++ (a → d)} .

(3)

At first glance it is difficult to see the differences between (1) and (3), since
both expressions seem to provide the same information. The crucial differences
are reflected in the semantics, as well as in the fact that actions can be sequen-
tially composed, iterated or composed by nondeterministic choice, while Alloy
predicates, in principle, cannot.

An immediately apparent difference between (1) and (3) is that action Write
does not involve the parameter m′, while predicate Write uses it. This is because
we use the convention that m′ denotes the state of variable m after execution of
action Write. This time, “after” means that m′ gets its value in an environment
reachable through the execution of action Write (cf. Figure 3). Since Write de-
notes a binary relation on the set of environments, there is a precise notion of
input/output inducing a before/after relationship.

3.2 Syntax and Semantics of DynAlloy

The syntax of DynAlloy’s formulas extends the one presented in Figure 1 with
the addition of the following clause for building partial correctness statements:

formula ::= . . . | {formula} program {formula}
“partial correctness”

The syntax for programs (cf. Figure 2) is the class of regular programs defined
in Harel et al. [2000], plus a new rule to allow for the construction of atomic
actions from their pre- and post-conditions. In the definition of atomic actions,
x denotes a sequence of formal parameters. Thus, it is to be expected that the
precondition is a formula whose free variables are within x, while postcondition
variables might also include primed versions of the formal parameters.

In Figure 3 we extend the definition of function M to partial correctness as-
sertions and define the denotational semantics of programs as binary relations
over env. The definition of function M on a partial correctness assertion makes
clear that we are actually considering a partial correctness semantics. This fol-
lows from the fact that we are not requesting environment e to belong to the
domain of the relation P [p]. In order to provide semantics for atomic actions,
we will assume that there is a function A assigning, to each atomic action, a

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:12 • M. F. Frias et al.

Fig. 3. Semantics of DynAlloy.

binary relation on the environments. We define function A as follows:

A(〈pre, post〉) = {〈e, e′〉 : M [pre]e ∧ M [post]e′} .

There is a subtle point in the definition of the semantics of atomic programs.
While actions may modify the value of all variables, we assume that those
variables whose primed versions do not occur in the post condition retain
their corresponding input values (therefore implementing a “frame condition”).
Thus, the atomic action Write modifies the value of variable m, but a and d
keep their initial values. This allows us to use simpler formulas in pre and
post conditions. Notice that, since parallel composition of actions is not an
allowed action combinator, this assumption does not restrict the sound com-
position of actions or programs. Although parallel composition is not avail-
able, one could still define it by means of interleaving of atomic actions, via
nondeterministic choice and sequential composition, as usual in concurrent
programming.

3.3 Specifying Properties of Executions in Alloy and DynAlloy

Suppose that we want to specify that a given property P is invariant under
sequences of applications of the operations “SysFlush” and “SysWrite”, from
certain initial states. A useful technique for stating the invariance of a property
P consists in specifying that P holds in the initial state(s), and that for every
noninitial state and every operation O ∈ {SysFlush, SysWrite}, the following
holds:

P (s) ∧ O(s, s′) ⇒ P (s′) .

This specification, although sound, is too strong, since those properties that
are indeed invariants, but violate the invariance in unreachable states states,
fall outside the characterization (i.e., the characterization only covers inductive
invariants). Of course it would be desirable to have a specification in which the
states under consideration were exactly the reachable ones. The need for such
a characterization motivated the introduction of traces in Alloy [Jackson et al.
2001].

The following example, extracted from Jackson et al. [2001], shows a signa-
ture for clock ticks:

sig Tick {
system: System

}
ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:13

Traces are built by imposing a total ordering on ticks. In the example developed
here this is achieved by taking advantage of Alloy’s modules, importing a spec-
ification of Ordering over the above Tick signature. Notice that we refer to it
below directly as “TickOrder,” since it is declared globally in the Alloy module.

We will refer to total orders on ticks as traces. The following “fact” states that
all ticks in the trace are reachable from the first tick through the application
of one of the operations under consideration, and that a property called “Init”
holds in the first state:

fact {
Init (TickOrder/first().system)
all t: Tick-TickOrder/last() {

SysFlush (t.system, TickOrder/next(t).system) or
some a: Addr, d: Data |

SysWrite (t.system, TickOrder/next(t).system, a, d)
}

}
If we now want to assert that P is invariant, it suffices to assert that if P

holds in the first state then it must hold in the final state of every trace. Notice
that unreachable states are no longer a burden because all states in a trace are
reachable from the states that occurred before.

Even though, from a formal point of view, the use of traces is correct, from
a modeling perspective it is less appropriate. Traces are introduced in order to
cope with the lack of real state change in Alloy. They allow us to port the primed
variables used in single operations to sequences of applications of operations.

Our approach is to consider SysWrite and SysFlush as actions that perform
a certain operation on the state variables. The specification of actions SysWrite
and SysFlush in DynAlloy is done as follows:

{ true }
SysWrite(s: System)

{ some d: Data, a: Addr |
s’.cache.map = s.cache.map ++ (a → d) and
s’.cache.dirty = s.cache.dirty + a and
s’.main = s.main }

{ true }
SysFlush(s: System)

{some x: set s.cache.addrs |
s’.cache.map = s.cache.map − x→Data and
s’.cache.dirty = s.cache.dirty − x and
s’.main.map = s.main.map ++

{a: x, d: Data | d = s.cache.map[a]} }
Notice that the previous specifications are as understandable as the ones

given in Alloy. Moreover, by using partial correctness statements on the set of

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:14 • M. F. Frias et al.

regular programs generated by the set of atomic actions {SysWrite, SysFlush},
we can assert the invariance of a property P under finite applications of func-
tions SysWrite and SysFlush in a simple and elegant way, as follows:

{Init(s) ∧ P (s)}
(SysWrite(s) + SysFlush(s))∗

{P (s′)}
More generally, suppose now that we want to show that a property Q is

invariant under sequences of applications of arbitrary operations O1, . . . , Ok ,
starting from states s described by a formula Init. The specification of this
assertion in our setting is done via the following formula:

{Init(x) ∧ Q(x)}
(O1(x) + · · · + Ok(x))∗ (4)

{Q(x ′)}
Notice that there is no need to mention traces in the specification of the

previous properties. This is so due to the fact that finite traces get determined
by the semantics of reflexive-transitive closure.

3.4 Analysis of DynAlloy Specifications

Alloy’s design was deeply influenced by the intention of producing an automat-
ically analyzable language. While DynAlloy is, to our understanding, better
suited than Alloy for the specification of properties of executions, the use of
ticks and traces as defined in Jackson et al. [2001], has as the advantage that
it allows one to automatically analyze properties of executions. Therefore, a
question is immediately raised: Can DynAlloy specifications be automatically
analyzed, and if so, how efficiently?

The main rationale behind our technique for the analysis of DynAlloy speci-
fications is the translation of partial correctness assertions to first-order Alloy
formulas, using weakest liberal preconditions [Dijkstra and Scholten 1990].
The generated Alloy formulas, which may be large and quite difficult to un-
derstand, are not visible to the end user, who only accesses the declarative
DynAlloy specification.

We define a function:

wlp : program × formula → formula

that computes the weakest liberal precondition of a formula according to a
program (composite action). We will in general use names x1, x2 . . . for program
variables, and will use names x ′

1, x ′
2, . . . for the value of program variables after

action execution. We will denote by α|vx the substitution of all free occurrences
of variable x by the fresh variable v in formula α.

When an atomic action a specified as 〈pre, post〉(x) is used in a composite
action, formal parameters are substituted by actual parameters. Since we as-
sume all variables are input/output variables, actual parameters are variables,

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:15

let us say, y . In this situation, function wlp is defined as follows:

wlp[a(y), f] =
(
pre| y ′

x =⇒ all n
(

post|nx ′ | y ′
x =⇒ f |ny ′

))
. (5)

A few points need to be explained about (5). First, we assume that free vari-
ables in f are among y ′, x0. Variables in x0 are generated by the translation
function pcat given in (7). Second, n is an array of new variables, one for each
variable whose value is modified by the action. Last, notice that the result-
ing formula again has its free variables among y ′, x0. This property is also
preserved in the remaining cases in the definition of function wlp.

For the remaining action constructs, the definition of function wlp is the
following:

wlp[g?, f] = g =⇒ f

wlp[p1 + p2, f] = wlp[p1, f] ∧ wlp[p2, f]
wlp[p1 ; p2, f] = wlp[p1, wlp[p2, f]]

wlp[p∗, f] =
∞∧

i=0

wlp[pi, f] .

Notice that wlp yields Alloy formulas in all these cases, except for the iteration
construct, where the resulting formula may be infinitary. In order to obtain
an Alloy formula, we can impose a bound on the depth of iterations. This is
equivalent to fixing a maximum length for traces. A function Bwlp (bounded
weakest liberal precondition) is then defined exactly as wlp, except for iteration,
where it is defined by:

Bwlp[p∗, f] =
n∧

i=0

Bwlp[pi, f] . (6)

In (6), n is the scope set for the depth of iterations.
We now define a function pcat that translates partial correctness assertions

to Alloy formulas. For a partial correctness assertion {α(y)} P (y) {β(y , y ′)}
pcat ({α} P {β})

= ∀ y
(
α =⇒

(
Bwlp

[
P, β|x0

y

])
| y

y ′ | y
x0

)
. (7)

Of course, this analysis mechanism, where iteration is restricted to a fixed
depth, is not complete, but clearly it is not meant to be; from the very beginning
we placed restrictions on the size of domains involved in the specification to
be able to turn first-order formulas into propositional formulas. This is just
another step in the same direction.

3.5 Expressiveness of DynAlloy Specifications

DynAlloy provides, to our understanding, a language that is more convenient
than standard Alloy for specifying properties of traces (implicitly determined
by program definitions), by means of partial correctness assertions. Moreover,
as we discussed in the previous section, DynAlloy specifications can also be
automatically analyzed, and as we will discuss later on, more efficiently than
their corresponding equivalent specifications in standard Alloy.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:16 • M. F. Frias et al.

However, DynAlloy has an important limitation in expressiveness, when
compared with the standard Alloy’s approach for dealing with properties of
executions. DynAlloy allows one to validate an important class of properties of
traces, the so called invariance properties. But, in its current form, DynAlloy
cannot deal with more general properties of traces. In particular, one cannot
express liveness properties by means of partial correctness assertions in DynAl-
loy, whereas in Alloy, with its explicit characterization of traces, such assertions
are easily specified. Consider, for instance, the following assertion:

In every execution of successive applications of SysWrite and
SysFlush, any dirty address eventually becomes nondirty.

Using standard Alloy’s explicit characterization of traces, we can express this
assertion as follows2:

assert {
all t: Tick | all a: Addr |

a in t.system.cache.dirty implies
(some t’ : Tick | TickOrder/lt(t,t’) and !(a in t’.system.cache.dirty))

}

This assertion is not expressible in DynAlloy by means of actions, implicit
traces and partial correctness assertions.

Although liveness properties are expressible in the standard Alloy’s approach
to the characterization of traces, this does not necessarily mean that the Alloy
Analyzer can be employed in order to validate these assertions. It is well known
in the area of concurrent systems that only infinite traces can be actual coun-
terexamples of liveness properties (liveness properties do not exclude finite
prefixes of runs) [Alpern and Schneider 1985]; in other words, given a liveness
assertion P , any finite trace can be extended to an infinite trace satisfying P .
Since the analysis mechanisms associated with the Alloy and DynAlloy Analyz-
ers cannot handle infinite runs, neither of the tools can be employed in order to
validate liveness properties. One might, nevertheless, consider more complex
mechanisms for detecting the violation of liveness properties, such as discov-
ering loops in traces, which makes it possible to avoid certain desirable states
in some infinite runs. However, Alloy employs an explicit state style of speci-
fication, which typically leads to relatively long loops exhibiting violations of
liveness properties, usually longer than what Alloy’s analysis mechanism can
handle in practice.

This fact provides an important justification for studying deductive reason-
ing over Alloy specifications. Since the analysis mechanism associated with
Alloy cannot handle liveness assertions, one could take advantage of the Alloy
characterization of properties of traces and attempt to use a proof calculus,
such as that presented in Frias et al. [2004], to perform deductive reasoning
regarding liveness properties.

2Predicate TickOrder/lt reflects the less-than relation imposed by the ordering.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:17

4. THE DYNALLOY TOOL

The Alloy tool [Jackson 2002b] is open source. This encourages and facilitates
the development of extensions of the tool. DynAlloy is an extension of the Alloy
tool that allows the user to write and analyze specifications involving actions.
Once a DynAlloy specification involving actions is opened, executing the Build
command first translates the DynAlloy specification into Alloy using the trans-
lation function pcat, and then compiles the Alloy specification thus obtained.

In this section we discuss some modifications on the definition of the trans-
lation function pcat provided in (7) that will allow us to analyze specifications
efficiently. We also describe some implementation details.

4.1 Translating Partial Correctness Assertions into Alloy

In Section 3.4 we showed how to compute the weakest liberal precondition wlp
and its bounded version Bwlp for an arbitrary composite action. For atomic
actions a and b, Bwlp(a ;b, α) is a formula whose shape is roughly the following:

prea(s) ⇒ ∀s1(posta(s, s1) ⇒ (preb(s1) ⇒ ∀s2(postb(s1, s2) ⇒ α(s2)))) . (8)

When Alloy was fed with a formula like (8) for three sample actions, two
problems arose:

(1) Compilation time was almost unacceptable.
(2) Analysis time was in general worse than the time obtained using traces.

So, we started looking for ways of improving the analysis of these formulas.
Notice that the quantifiers binding variables s1 and s2 can be promoted to

the front of the formula by simple logical manipulations, yielding the following:

∀s1∀s2(prea(s) ⇒ (posta(s, s1) ⇒ (preb(s1) ⇒ (postb(s1, s2) ⇒ α(s2))))) . (9)

Feeding Alloy with a formula like (9) produced running times that were, in
general, significantly better than those achieved in Alloy using traces. On the
negative side, for actions of the form (a+b)n, the resulting formula was quite
large. For n = 2, using the definition of Bwlp, we obtain:

Bwlp((a+b)2, α)
= Bwlp((a+b);(a+b), α)
= Bwlp(a+b, Bwlp(a+b, α))
= Bwlp(a, Bwlp(a+b, α)) ∧ Bwlp(b, Bwlp(a+b, α))
= prea ⇒ (posta ⇒ Bwlp(a+b, α)) ∧

preb ⇒ (postb ⇒ Bwlp(a+b, α)) . (10)

Simple logical properties allow us to rewrite (10) as

((prea ∧ posta) ⇒ Bwlp(a+b, α)) ∧ ((preb ∧ postb) ⇒ Bwlp(a+b, α)) . (11)

At this point, notice that the formula Bwlp(a+b, α) appears twice in (11).
Thus, computing Bwlp((a+b)n, α) yields a formula whose size is exponential
as a function of n. Feeding Alloy with a formula like (11) produced, for small
values of n, analysis times that were significantly better that those achieved

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:18 • M. F. Frias et al.

using traces. Unfortunately, compilation time grew exponentially, proving that
the analysis using this translation was unfeasible for reasonable values of n.

Once again, elementary properties of first-order logic allow us to transform
(11) into the following equivalent formula:

((prea ∧ posta) ∨ (preb ∧ postb)) ⇒ Bwlp(a+b, α). (12)

Formula Bwlp (a+b, α) occurs only once in (12). Applying this simple trans-
formation made the previous exponential-size formulas become linear-size.

Finally, Alloy’s parser seems to perform quite badly on formulas involving
many parentheses and implications; so, we desugarized the resulting formulas,
by replacing the implications by their Boolean equivalent formulas in terms of
conjunction and negation. We then applied the De Morgan rule in order to
push the negations down to the atoms of the formulas. This is essentially the
translation that is implemented in the DynAlloy tool.

Notice that this translation produces a single monolithic formula to be
checked. The size of this formula still has an impact on compilation time. If
we choose a number n of loop unfoldings to perform, a partial correctness as-
sertion of the form

{pre(a)}
(P1 + · · · + Pk) ∗
{post(a, a′)}

gets translated by DynAlloy into an Alloy assertion of the form

assert pca{all a0, . . . , an : S | pre(a0) ⇒(
preP1

(a0) ∧ postP1
(a0, a1)

) ∨ · · · ∨ (
prePk

(a0) ∧ postPk
(a0, a1)

) ⇒
...(

preP1
(an−1) ∧ postP1

(an−1, an)
) ∨ · · · ∨ (

prePk
(an−1) ∧ postPk

(an−1, an)
) ⇒

post(a0, an)}
In order to reduce the size of the previous assertion, we automatically create a
new signature T

one sig T {
a0, . . . , an : S

}
and replace the previous assertion by the following equivalent (c.f. (12)) facts
and assertion:

fact {pre(T.a0)}
fact {(preP1

(T.a0) ∧ postP1
(T.a0, T.a1)

) ∨ · · ·
∨ (

prePk
(T.a0) ∧ postPk

(T.a0, T.a1)
)}

...
fact {(preP1

(T.an−1) ∧ postP1
(T.an−1, T.an)

) ∨ · · ·
∨ (

prePk
(T.an−1) ∧ postPk

(T.an−1, T.an)
)}

assert pca{post(T.a0, T.an)}
In this way, compilation time is no longer a concern.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:19

Running times very much depend on the chosen SAT solver, and while our
translation works well in all of them, different optimizations can be applied
depending on the particular SAT solver chosen.

4.2 Implementation Details

Not only is the source code for the Alloy tool publicly available, but all the neces-
sary software and tools required in order to generate the source code are freely
available, also. For instance, the Alloy grammar specification, as required by
JavaCC (a parser generator for Java), is also supplied. We extended this gram-
mar specification to a specification of DynAlloy’s grammar. Combining the use of
the tools JJTree and JavaCC, we built a parser and abstract syntax tree gener-
ator for DynAlloy. Given a tree for a DynAlloy model, we apply transformations
leading to an Alloy specification.

In order to make this process invisible to the end user, we modified distribu-
tion 3.0 of the Alloy Analyzer. We changed the original Alloy “Build” command
so that it now first translates a DynAlloy specification into Alloy, and then
compiles the resulting model, in the same way standard Alloy does.

5. PROGRAM ATOMIZATION AND INCREMENTAL VALIDATION

When specifying software systems in Alloy, modelers typically modularize their
specifications by using the notions of signature and signature extension. Thus,
predicates, as operation descriptions, are often associated with particular signa-
tures, and one typically defines operations corresponding to complex signatures
out of operations corresponding to simpler signatures. Various examples of this
situation are given in Jackson et al. [2001], and we reproduced some previously
in this article. For instance, operation SysWrite (associated with signature Sys-
tem) is defined in terms of operation Write (associated with signature Memory);
similarly, an operation SysRead (again, associated with signature System) is
defined by operation Read (associated with signature Memory) in Jackson et al.
[2001]. This practice of defining operations of complex modules out of the op-
erations defined in the simpler modules is widely accepted as methodologically
correct, since it favors encapsulation and reuse.

It is rather natural to think that modelers would take advantage of the
modularization of the system specification in terms of signatures and their cor-
responding operations, and try to perform the analysis tasks modularly. When
validating static properties, however, the validity of a particular property is
independent of the validity of other intended properties, since it only depends
on the facts (axioms of the specification) and the structure of the specifica-
tion being validated. Nevertheless, one might take advantage of module def-
initions, and separate a system specification in modules. In this way, when
validating static properties corresponding to the structure and operations of a
signature S, one can consider only the axioms corresponding to S, and there-
fore reduce the size of the formulas to be analyzed. Still, for the top level
module, validation will take into account the whole system specification, and
therefore one cannot benefit from the validation tasks performed in simpler
modules.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:20 • M. F. Frias et al.

The situation is different when we look at properties regarding executions.
As we said before, it is common, and considered methodologically correct, to
define operations of a complex module M (in our case, a complex signature) in
terms of the operations of the simpler modules M is built out from. So, when
defining traces for validating a particular property of executions of M , one
would be implicitly, using properties of traces of operations of the modules M
is built out from.

Consider, as an initial example to illustrate incremental validation in
DynAlloy, a complex system encapsulating an instance of a slightly modified
version of our System specification and an external Cache. First we introduce
the modifications to our System specification. They simply consist of making
the SysWrite action take the address and data to write as parameters, giving
rise to the following new specification:

{true}
SysWrite(s: System, a: Addr, d: Data)

{ s’.cache = s.cache ++ (a → d) ∧ s’.cache.dirty = s.cache.dirty + a ∧
s’.main = s.main }

We will also consider the specification of the Write action, as presented in (3),
and a new action, called Input, specified as follows:

{true}
Input(a: Addr, d: Data)

{some ai: Addr, di: Data | a’ = ai and d’ = di}
Finally, the specification of a complex system is the following:

sig ComplexSystem {
s: System,
c: Cache

}
Consider also two actions that ComplexSystem comes equipped with, one for
writing on the encapsulated system and one for flushing a block of cache ad-
dresses, defined respectively as follows:

CSysWrite(c: ComplexSystem, a: Addr, d: Data) =
Input(a, d);SysWrite(c.s, a, d);Write(c.c, a, d)

CSysFlush(c: ComplexSystem) = (SysFlush(c.s))∗

Note that these actions are programs defined in terms of the more basic actions,
Input, Write, SysWrite, and SysFlush, corresponding to signatures Memory and
System. Now, suppose that we want to check whether the system underlying a
complex system retains the property DirtyInv, under sequences of applications
of CSysWrite and CSysFlush. This can easily be asserted by using a partial

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:21

correctness assertion, in the following way:

{DirtyInv(c.s)}
(CSysWrite(c, a, d) + CSysFlush(c))∗

{DirtyInv(c′.s)}
(13)

Here, we have a choice for performing the analysis of this property. The easiest,
but not necessarily the best, would be to unfold the definitions of CSysWrite
and CSysFlush, obtaining the following assertion regarding ComplexSystem:

{DirtyInv(c.s)}
(Input(a, d); SysWrite(c.s, a, d); Write(c.c, a, d) + SysFlush(c.s)∗)∗

{DirtyInv(c′.s)}
This alternative does not correspond to incremental validation, since we do not
carry out the analysis based on already validated properties of simpler actions;
instead, we simply expand their definitions. Notice that we have nested stars
in the above program. From the point of view of the automated validation of
traces (in the style of standard Alloy), if the bound imposed on iteration is k,
we will need to explore traces whose length goes up to k × k. In the style of
validation of traces of DynAlloy, this has an equivalent impact, but in the size
of the formula to be validated. This, even for small values of k, will lead us to
scopes beyond what is currently analyzable in practice, using both approaches.

On the other hand, we might first consider the validity of the following as-
sertion as a property of systems:

{DirtyInv(s)}
SysFlush(s)∗

{DirtyInv(s′)}
Indeed, the iteration of action SysFlush preserves DirtyInv, and therefore we
will be able to validate this assertion. In this case, if k is the bound imposed
on the number of iterations, the formula corresponding to the above partial
correctness assertion will only be linearly proportional to k.

Assuming that we have validated this assertion, and gained confidence about
its validity, we can atomize it. Basically, the atomization consists of considering
a new atomic action on systems, let us call it BlockSysFlush, whose pre- and
post-conditions are the ones corresponding to the already validated partial cor-
rectness assertion. After the atomization of SysFlush(c.s)∗ the specification of
CSysFlush can be rewritten as:

CSysFlush(c: ComplexSystem) = BloskSysFlush(c.s)

and consequently, the assertion presented in (13) can be equivalently stated as

{DirtyInv(c.s)}
(CSysWrite(c) + BlockSysFlush(c.s))∗

{DirtyInv(c′.s)}
ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:22 • M. F. Frias et al.

becoming an unbounded iteration of the nondeterministic choice between pro-
gram CSysWrite (which becomes the sequential composition of three atomic
actions after the unfolding) and the atomic action BlockSysFlush (resulting
from the described atomization). Therefore, validating it will require the gen-
eration of a formula which depends linearly on the bound k imposed on the
number of iterations.

This reasoning corresponds to incremental validation in the sense of using
already validated properties of smaller modules as a technique to reduce the
complexity of validating properties of bigger ones. The same reasoning can be
applied to the action CSysWrite, but in this case as a property of the complex
systems, by validating the following assertion:

{DirtyInv(c.s)}
Input(a, d); SysWrite(c.s, a, d); Write(c.c, a, d)

{DirtyInv(c′.s)}
This can be seen as the decomposition of the validation of the partial correct-
ness assertion presented in (13) into three less complex ones. Basically, in the
first case we have modularized the validation of two nested iterations as the
validation of two separate iterations; and in the second case we have abstracted
a program by validating the sequential composition separately.

Notice that in standard Alloy, this would be very difficult to achieve, since
the explicit definition of traces would force us to define different sorts of traces
for different programs, and then explicitly indicate how the elements in these
sorts are related. It is not clear whether this might favor the analyzability of
specifications.

Let us describe in more detail the general procedure for incremental valida-
tion via atomization in DynAlloy, and also justify more precisely its soundness.
Suppose that we need to validate an assertion of the form:

{α}
P

{β}
where the program term P contains some subprogram or subterm Ps. Moreover,
suppose that in a previous validation activity, we needed to check for the validity
of

{αs}
Ps

{βs}
that is, the partial correctness of Ps with respect to the pre- and post-condition
specification {αs}{ βs}. Let us suppose further, that for a bound k on the number of
iterations, no counterexamples were found for the partial correctness assertion
of Ps. Then we can assure that, in all traces of Ps with iterations of at most k
steps, if the trace starts in a state satisfying αs then it ends in a state satisfying
βs. Then we might consider extending our set of atomic actions with a new

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:23

atomic action aPs , whose specification is the following:

{αs}
aPs

{βs}
We can then replace every occurrence of Ps in P by aPs , obtaining a variant Pv of
P . This process is what we call program atomization. Notice that, if we analyze
Pv with k as a bound on the number of iterations and no counterexamples are
found, then necessarily the original P has no counterexamples under the same
circumstances (i.e., with the same bound k on the number of iterations, and the
same bounds on the numbers of atoms of the domains of the specification). This
is justified by Theorem 5.1.

THEOREM 5.1. Let {α}P{β} be a DynAlloy partial correctness assertion. Let
Ps, be a subterm of P, and {αs}Ps{βs}, a partial correctness assertion for it. Let aPs

be an atomic action with the same specification as Ps. Further, suppose that, for
given bounds for domains in the specification and for a bound k on the number
of iterations, neither {αs}Ps{βs} nor {α}P [aPs/Ps]{β} (where P [aPs/Ps] denotes
the program resulting from replacing all occurrences of Ps in P by aPs) have
any counterexamples. Then, under the same given bounds for domains on the
specification and for the bound k on the number of iterations, {α}P{β} does not
have any counterexamples.

PROOF. Let {α}P{β} be a DynAlloy partial correctness assertion, Ps, a sub-
term of P , and {αs}Ps{βs}, a partial correctness assertion for it. Let aPs be an
atomic action with the same specification as Ps. Suppose that under certain
bounds on the domains of the specification and a bound k on the number of
iterations, {αs}Ps{βs} has no counterexamples. Let us suppose also that under
the same bounds on the domains of the specification and the bound k on the
number of iterations, {α}P [aPs/Ps]{β} does not have any counterexamples, but
{α}P{β} does have a counterexample. If this is the case, then there exists a run
σ = s1, . . . , sn of P such that s1 satisfies the initial condition α but sn does not
satisfy β. Notice that since {α}P [aPs/Ps]{β} does not have any counterexamples,
necessarily Ps must be involved in σ (otherwise, σ would also be a run of P after
the atomization, and it would be a counterexample of its specification). So σ has
the form:

σ = s1, . . . , sb1 , . . . , se1 , . . . , sb2 , . . . , se2 , . . . , sbm , . . . , sem , . . . , sn

where sbi , . . . , sei corresponds to runs of Ps. Since we have k as the limit on
iteration, and we know that {αs}Ps{βs} has no counterexamples with that bound,
we know that if each sbi satisfies αs, then each sei satisfies βs. Let us suppose
that, for some x, sbx does not satisfy αs. We can replace all the previous sbi , . . . , sei ,
with i < x, by sbi , sei , obtaining the following:

σx = s1, . . . , sb1 , se1 , . . . , sb2 , se2 , . . . , sbx

which is a prefix of a trace of P [aPs/Ps]. Moreover, s1 satisfies α. Thus this
prefix is a counterexample of {α}P [aPs/Ps]{β}, since it corresponds to a run

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:24 • M. F. Frias et al.

starting in a state satisfying the initial condition α and which, before reaching
the final state, violates the precondition of an atomic action, not allowing us to
assert the validity of the postcondition β in the final state. Notice also that this
trace is a run bounded by k on the number of iterations. Since, as we assumed,
{α}P [aPs/Ps]{β} does not have counterexamples with iteration bounded by k,
this cannot be possible. Therefore, all sbi ’s must satisfy αs, and consequently all
sei ’s must satisfy βs. Then the trace:

s1, . . . , sb1 , se1 , . . . , sb2 , se2 , . . . , sn

is a trace of P [aPs/Ps] (with iteration bounded by k), with s1 satisfying α and
sn not satisfying β; again, this contradicts our hypothesis that {α}P [aPs/Ps]{β}
does not have counterexamples bounded by k. Therefore, we arrived at a con-
tradiction, proving that, if for certain bounds {α}P [aPs/Ps]{β} does not have
counterexamples (for particular bounds on the domains and the length of itera-
tions), then {α}P{β} does not have counterexamples either, for the same bounds
on the domains and the length of iterations. �

Notice that the implication in the other direction does not necessarily hold.
Consider as a trivial, and somehow extreme, example the following partial
correctness assertions:

{DirtyInv(s)}
SysWrite(s, a, d); SysWrite(s, a, d)

{some s′.cache.dirty}

{DirtyInv(s) && no s.cache}
(SysWrite(s, a, d); SysWrite(s, a, d) + SysFlush(s))∗

{DirtyInv(s′)}
Notice that the first of these specifications is valid, so we will not find coun-

terexamples of any size (moreover, it is not sensible to the bound on iteration,
since the program does not even involve iteration). The second specification is
also valid, so we will not find any counterexamples of it. Now suppose we apply
program atomization, replacing the subterm SysWrite(s, a, d); SysWrite(s, a, d)
in the program of the second specification, and considering the first specification
as its definition, then the resulting program will indeed have counterexamples.
The problem here has to do with the fact that the postcondition of the first
specification is too weak for our embedding into the program of the second
specification. This fact leads us to a “false negative”. Theorem 5.1 guarantees
that we will not have any false positives when using program atomization.

6. CASE STUDIES

In this section we analyze three case studies. The first is an assertion whose
validity follows from the specification, and therefore has no counterexamples.
It will serve as a stress test for Alloy and DynAlloy. The assertion of the second
case study has counterexamples, and is useful for verifying how efficiently can
these be found using DynAlloy. The third is an example of the improvement

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:25

Table I. Verification Times for the Assertion DirtyInv Using the SAT Solver MChaff

#elems → 4 5 6 7
Tr. length

↓ DynAlloy Alloy DynAlloy Alloy DynAlloy Alloy DynAlloy Alloy

6 0′05′′ 0′25′′ 0′05′′ 2′16′′ 0′23′′ 4′19′′ 0′11′′ 6′41′′

7 0′04′′ 1′37′′ 0′06′′ 10′03′′ 0′48′′ 3′54′′ 0′29′′ 15′01′′

8 0′10′′ 3′48′′ 0′25′′ 5′39′′ 1′07′′ 8′55′′ 2′26′′ 22′51′′

9 0′12′′ 8′21′′ 0′24′′ 6′12′′ 1′32′′ 11′13′′ 1′49′′ 53′34′′

10 0′36′′ 16′17′′ 0′16′′ 32′30′′ 1′34′′ 16′04′′ 1′05′′ > 60′

11 1′10′′ 36′13′′ 0′15′′ 12′39′′ 4′55′′ 28′59′′ 2′05′′ > 60′

12 0′38′′ 14′21′′ 1′53′′ 20′16′′ 3′19′′ 46′19′′ 2′07′′ > 60′

in the verification times of the first case study when program atomization is
carried out on the specification.

The analysis was carried out using a 64-bit AMD Athlon 3200 with 2 GB
of RAM running on a dual channel architecture. For the analysis we imposed
a limit of 60 minutes. Those runs that did not finish within 60 minutes were
stopped and marked in the tables as “> 60′”.

All case studies are based on the same Alloy model, namely the model of
cache memories introduced before. We think these case studies are good rep-
resentatives of typical Alloy/DynAlloy models and assertions. Nevertheless, we
plan to carry out experimental analyses on other models, which due to a lack
of time we have been unable to develop and present in this article.

6.1 Case Study 1: DirtyInv

The problem we will first analyze is whether function DirtyInv, defined in (2),
is an invariant with respect to finite applications of operations SysWrite and
SysFlush. Its Alloy specification is the following:

assert DirtyInvAssertion {
DirtyInv (TickOrder/first().system) =>
DirtyInv (TickOrder/last().system)

}

The corresponding DynAlloy specification is:

assert DirtyInvAssertionDynAlloy {
{DirtyInv(s)}

(SysWrite(s) + SysFlush(s))*
{DirtyInv(s’)}

}

Notice that these specifications are quite similar, in the sense that both pred-
icate only about the initial and final states. In Tables I and II we compare
running CPU times for the analysis of both specifications for different trace
lengths, domain sizes, and the available SAT solvers.

The “check” condition used in the Alloy specification for traces of length n
and domains of size k, is:

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:26 • M. F. Frias et al.

Table II. Verification Times for the Assertion DirtyInv Using the SAT Solver Berkmin

#elems → 4 5 6 7
Tr. length

↓ DynAlloy Alloy DynAlloy Alloy DynAlloy Alloy DynAlloy Alloy

6 0′02′′ 0′09′′ 0′04′′ 0′15′′ 0′05′′ 0′54′′ 0′10′′ 3′49′′

7 0′03′′ 0′11′′ 0′06′′ 0′20′′ 0′09′′ 1′15′′ 0′14′′ 6′16′′

8 0′05′′ 0′23′′ 0′07′′ 0′39′′ 0′13′′ 1′52′′ 0′15′′ 11′23′′

9 0′11′′ 0′27′′ 0′12′′ 0′48′′ 0′13′′ 3′00′′ 0′23′′ 13′26′′

10 0′21′′ 0′29′′ 0′20′′ 1′13′′ 0′51′′ 4′19′′ 1′00′′ 20′26′′

11 0′22′′ 0′30′′ 0′32′′ 1′31′′ 1′14′′ 7′29′′ 1′40′′ 33′30′′

12 0′28′′ 0′44′′ 1′20′′ 1′58′′ 1′36′′ 12′00′′ 2′53′′ 44′19′′

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18

S
e
c
o
n
d

s

Trace length

DynAlloy w/6 elems

Alloy w/6 elems

DynAlloy w/7 elems

Alloy w/7 elems

Fig. 4. Evolution graph for the assertion DirtyInv using the SAT solver MChaff with domain sizes
6 and 7.

check DirtyInvAssertionAlloy for k but n+1 Memory, n+1
Cache, n+1 MainMemory, n+1 System, n+1 Tick.

For the DynAlloy specification, we use:

check DirtyInvAssertionDynAlloy for k but n+1 Memory, n+1
Cache, n+1 MainMemory, n+1 System.

Figure 4 shows how both approaches evolve in time as the trace length grows.
The results are shown for two domain sizes (k = 6 and k = 7). Analogously,
Figure 5 shows how both approaches evolve in time as the domain size grows.
The results are shown for two trace lengths (n = 9 and n = 14).

As we did for MChaff, Figure 6 shows how both approaches evolve in time
as the trace length grows. The results are shown for two domain sizes (k = 6
and k = 7). Analogously, Figure 7 shows how both approaches evolve in time
as the domain size grows. The results are shown for two trace lengths (n = 9
and n = 14).

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:27

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4 4.5 5 5.5 6 6.5 7 7.5 8

S
e
c
o
n
d
s

Elements in each domain

DynAlloy w/tl 9

Alloy w/tl 9

DynAlloy w/tl 14

Alloy w/tl 14

Fig. 5. Evolution graph for the assertion DirtyInv using the SAT solver MChaff with trace lengths
9 and 14.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 6 8 10 12 14 16 18

S
e
c
o
n
d

s

Trace length

DynAlloy w/6 elems

Alloy w/6 elems

DynAlloy w/7 elems

Alloy w/7 elems

Alloy specification makes Alloy
die for traces longer that 12.

Fig. 6. Evolution graph for the assertion DirtyInv using the SAT solver Berkmin with domain
sizes 6 and 7.

Running times for RelSat will not be presented because they exhibited worse
behavior, compared to MChaff and Berkmin, for out case studies. As an exam-
ple, the verification time for traces of length 2 and 6 elements was 10′17′′ for
DynAlloy and > 60′ for Alloy.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:28 • M. F. Frias et al.

 0

 200

 400

 600

 800

 1000

 1200

 4 4.5 5 5.5 6 6.5 7 7.5 8

S
e
c
o
n
d
s

Elements in each domain

DynAlloy w/tl 9

Alloy w/tl 9

DynAlloy w/tl 14

Alloy w/tl 14

Alloy specification makes Alloy

die for traces longer that 12.

Fig. 7. Evolution graph for the assertion DirtyInv using the SAT solver Berkmin with trace length
9 and 14.

The noticeable difference in running times between our DynAlloy specifica-
tions and the standard Alloy specifications can be explained by our discussion
at the end of Section 4.1. Due to the Alloy characterization of traces, it is rel-
atively straightforward to realize that, for executions of programs of the form
(p1 + · · · + pn)∗, the number of traces to be checked depends exponentially on
the length of traces. In DynAlloy, on the other hand, for programs of the form
(p1 + · · · + pn)∗, the size of the formula to be validated depends linearly on the
bound k imposed on iteration.

6.2 Case Study 2: FreshDir

Let us continue with our second case study. Given an initially empty
CacheSystem, whose set of addresses has size k, we will assert that every se-
quence of applications of the operations SysWrite and SysFlush still leaves a
“fresh” address, that is an address that has never been written into. This is a
flawed assertion. In order to write the assertion, we require a predicate speci-
fying that a CacheSystem is empty, and another describing the fresh address
property. They are given next.

pred Init (s: System) {
no s.cache.dirty
no s.cache.map
no s.main.map

}

pred FreshDir (s: System) {
some a: Addr { all d: Data {

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:29

Table III. Verification times for FreshDir

MChaff Berkmin
Tr. length ↓ Alloy DAlloy Alloy DAlloy

3 0′03′′ 0′00′′ 0′02′′ 0′01′′

4 0′21′′ 0′01′′ 0′16′′ 0′02′′

5 12′20′′ 4′21′′ 2′07′′ 0′04′′

6 > 60′ 55′43′′ 28′44′′ 0′09′′

7 > 60′ > 60′ > 60′ 0′35′′

8 > 60′ > 60′ > 60′ 2′15′′

9 > 60′ > 60′ > 60′ 5′57′′

10 > 60′ > 60′ > 60′ 54′27′′

! ((a -> d) in s.main.map) &&
! ((a -> d) in s.cache.map) } }

}

With Init and FreshDir already specified, we can easily specify our assertion,
both in Alloy and DynAlloy, as follows:

assert FreshDirAssertion {
Init (TickOrder/first ().system) =>

FreshDir (TickOrder/last ().system)
}

assert FreshDirAssertionDynAlloy {
{Init(s)}
(SysWrite(s) + SysFlush(s))*

{FreshDir(s’)}
}

In order to guarantee that there are n addresses, we check the assertion
imposing a scope of n for signature Addr and including as part of the model, a
fact asserting that there are n distinct elements for this signature. So, we verify
the Alloy assertion using the command

check FreshDirAssertionAlloy for k but n Addr, n+1 Memory,
n+1 Cache, n+1 MainMemory, n+1 System, n+1 Tick.

For DynAlloy we use

check FreshDirAssertionDynAlloy for k but n Addr, n+1
Memory, n+1 Cache, n+1 MainMemory, n+1 System.

Table III shows a comparison of analysis running times for these assertions,
under MChaff and Berkmin. ZChaff presented, in general, worse analysis times.

Finally, Figures 8 and 9 show how both approaches evolve in time as the
trace length grows. The results are shown only for domain size 3.

6.3 Case Study 3: Incremental Validation of DirtyInv

We finish this section by showing the impact of program atomization in the
analysis of DynAlloy specifications. We extend the specification of memories
with caches by defining signature ComplexSystem, as shown in Section 5.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:30 • M. F. Frias et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12

S
e

c
o

n
d

s

Trace length

DynAlloy w/3 elems
Alloy w/3 elems

Fig. 8. Evolution graph for the assertion FreshDir using MChaff with domain size 3.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12

S
e

c
o

n
d
s

Trace length

DynAlloy w/3 elems

Alloy w/3 elems

Fig. 9. Evolution graph for the assertion FreshDir using the SAT solver Berkmin with domain
size 3.

We first check whether DirtyInv(c.s) is invariant under sequences of appli-
cations of CSysWrite and CSysFlush, by unfolding their definitions.

assert ComplexDirtyInvUnfolding {
{DirtyInv(c.s)}
(Input(a, b);SysWrite(c.s, a, d);Write(c.c, a, d) +

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:31

(FlushDA(c.s))*)*
{DirtyInv(c’.s)} }

Then, we perform incremental validation via program atomization. First, we
check whether CSysFlush preserves DirtyInv. This is specified in DynAlloy by
the following assertion on systems:

assert ComplexSystem_CSysFlush_DirtyInv {
{DirtyInv(s)}

SysFlush(s)*
{DirtyInv(s’)}

}

Having validated this assertion, and not finding any counterexamples, we can
now atomize this program. This corresponds to considering a new atomic action
CSysFlush associated with signature System, defined as follows:

{DirtyInv(s)}
CSysFlush(s)

{DirtyInv(s’)}

Then, we can validate the preservation of DirtyInv under the application of the
operation CSysWrite. This assertion can be stated as follows:

assert ComplexSystem_CSysWrite_DirtyInv {
{DirtyInv(c.s)}

Input(a, b);SysWrite(c.s, a, d);Write(c.c, a, d)
{DirtyInv(c’.s)}

}

Once this assertion is verified, we can proceed by atomizing the program
CSysWrite (but in this case associated with signature ComplexSystem).

Using these two results, we can validate a new assertion, ComplexSys-
tem DirtyInv, defined as follows:

assert ComplexSystem_DirtyInv {
{DirtyInv(c.s)}

(CSysWrite(c) + CSysFlush(c.s))*
{DirtyInv(c’.s)}

}

The comparison of the running times required to validate the preservation of
DirtyInv, both for incremental and nonincremental approaches, are presented
in Table IV. The first column of the table shows the bound imposed to both
iterations, while the second shows the size of each of the domains involved in
the property.

7. CONCLUSIONS AND FURTHER WORK

We believe that using actions within Alloy in order to represent state change
is a methodological improvement. Using actions favors a better separation of
concerns, since models do not need to be reworked in order to describe the

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:32 • M. F. Frias et al.

Table IV. Verification Times for DirtyInv Under Incremental and Nonincremental Approaches

MChaff Berkmin
Bound # elements Nonincremental Incremental Nonincremental Incremental

2 4 0′32′′ 0′02′′ 0′04′′ 0′03′′
5 1′10′′ 0′03′′ 0′03′′ 0′03′′
6 0′37′′ 0′03′′ 0′08′′ 0′03′′
7 2′17′′ 0′04′′ 0′11′′ 0′04′′
8 4′57′′ 0′08′′ 0′11′′ 0′06′′
9 1′49′′ 0′09′′ 0′24′′ 0′09′′

3 4 > 60′ 0′04′′ 0′51′′ 0′03′′
5 > 60′ 0′03′′ 0′52′′ 0′03′′
6 > 60′ 0′04′′ 2′09′′ 0′05′′
7 > 60′ 0′08′′ 6′26′′ 0′06′′
8 > 60′ 0′12′′ 2′38′′ 0′09′′
9 > 60′ 0′22′′ 13′27′′ 0′13′′

4 4 > 60′ 0′05′′ 16′23′′ 0′03′′
5 > 60′ 0′06′′ 15′22′′ 0′04′′
6 > 60′ 0′07′′ 25′52′′ 0′05′′
7 > 60′ 0′80′′ 22′33′ 0′08′′
8 > 60′ 0′31′′ > 60′ 0′13′′
9 > 60′ 3′51′′ > 60′ 0′18′′

5 4 > 60′ 0′09′′ > 60′ 0′05′′
5 > 60′ 0′08′′ > 60′ 0′05′′
6 > 60′ 0′17′′ > 60′ 0′09′′
7 > 60′ 1′09′′ > 60′ 0′12′′
8 > 60′ 21′41′′ > 60′ 0′19′′
9 > 60′ > 60′ > 60′ 0′18′′

adequate notion of trace modeling of the desired behavior. Using actions, the
problem reduces to describing how actions are to be composed. This method-
ological improvement is supported by empirical results evidencing that analysis
can be done more efficiently than resorting to traces. Furthermore, thanks to
this standardized and automated characterization of executions, we are able to
perform incremental validation of properties of executions. The technique as-
sociated with this possibility, called program atomization, enables us to explore
longer computations during the analysis activities.

The shape of the formulas obtained during the translation of partial cor-
rectness assertions into Alloy gives us the opportunity of parallelizing their
analysis process, allowing in the future, for the analysis of larger models.

Different SAT solvers react differently to the formulas resulting from the
translation. While all of them behave satisfactorily, we can still generate differ-
ent translations depending on the chosen SAT solver, in order to improve the
analysis time.

We also observed that DynAlloy has an important limitation in expressive
power, since in its current form, it only allows us to express invariance proper-
ties. The standard Alloy approach to the modeling of traces, on the other hand,
allows one to specify other kinds of properties, particularly liveness properties.
However, neither the DynAlloy tool (due to expressiveness restrictions) nor the
Alloy Analyzer (due to intrinsic properties of liveness assertions) can be em-
ployed for analyzing liveness properties. This is due to the fact that liveness

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

Efficient Analysis of DynAlloy Specifications • 4:33

properties cannot have finite traces as counterexamples (liveness properties
do not exclude finite prefixes of runs) [Alpern and Schneider 1985]. Since the
analysis mechanisms associated with Alloy and DynAlloy cannot handle in-
finite runs, we are currently exploring the use of a complete proof calculus,
presented in Frias et al. [2004], to perform deductive verification of assertions,
particularly liveness assertions, in Alloy specifications. We are examining a
characterization of a similar proof calculus for a closely related language in
PVS, presented in Lopez Pombo et al. [2002], for this task.

ACKNOWLEDGMENTS

The authors wish to thank Emina Torlak, who proposed an alternative to our
previous way of translating partial correctness assertions into Alloy. Her alter-
native translation is the one that DynAlloy currently implements, and resulted
in much better compilation times. The authors also wish to thank the anony-
mous reviewers for their helpful comments.

REFERENCES

ALPERN, B. AND SCHNEIDER, F. B. 1985. Defining liveness. Inform. Proc. Lett. 21, 4, 181–185.
DIJKSTRA, E. W. AND SCHOLTEN, C. S. 1990. Predicate Calculus and Program Semantics. Springer-

Verlag, New York, NY.
FLOYD, R. W. 1967. Assigning meanings to programs. In Mathematical Aspects of Computer Sci-

ence, Proceedings of Symposia in Applied Mathematics. American Mathematical Society, Provi-
dence, Rhode Island, pp. 19–32.

FRIAS, M. F., GALEOTTI, J. P., LOPEZ POMBO, C. G., AND AGUIRRE, N. M. 2005a. DynAlloy: upgrading
alloy with actions. In Proceedings of the 27th International Conference on Software Engineering,
G.-C. Roman, Ed. Association for Computing Machinery and IEEE Computer Society, ACM Press,
St. Louis, Missouri, USA, 442–450.

FRIAS, M. F., LOPEZ POMBO, C. G., AND AGUIRRE, N. M. 2004. An equational calculus for Alloy. In
Proceedings of the Sixth International Conference on Formal Engineering Methods (ICFEM),
J. Davies, W. Schulte, and M. Barnett, Eds. Lecture Notes in Computer Science, vol. 3308.
Springer-Verlag, Seattle, Washington, 162–175.

FRIAS, M. F., LOPEZ POMBO, C. G., BAUM, G. A., AGUIRRE, N., AND MAIBAUM, T. S. E. 2005b. Reasoning
about static and dynamic properties in alloy: A purely relational approach. ACM Trans. Softw.
Eng. Meth. 14, 4, 478–526.

GOLDBERG, E. AND NOVIKOV, Y. 2002. BerkMin: A fast and robust SAT-solver. In Proceedings of the
Conference on Design, Automation and, Test in Europe, C. D. Kloos and J. da Franca, Eds. IEEE
Computer Society, Paris, France, 142–149.

HAREL, D., KOZEN, D., AND TIURYN, J. 2000. Dynamic logic. Foundations of Computing. MIT Press,
Cambridge, MA.

HOARE, C. A. R. 1969. An axiomatic basis for computer programming. Comm. ACM 12, 10, 576–
583.

JACKSON, D. 2002a. Alloy: A lightweight object modelling notation. ACM Trans. Softw. Eng.
Meth. 11, 2, 256–290.

JACKSON, D. 2002b. Micromodels of Software: Lightweight Modelling and Analysis with Alloy.
MIT Laboratory for Computer Science, Cambridge, MA.

JACKSON, D., SHLYAKHTER, I., AND SRIDHARAN, M. 2001. A micromodularity mechanism. In Proceed-
ings of the 8th European Software Engineering Conference Held Together with the 9th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering. ACM Press, Vienna,
Austria, 62–73.

JONES, C. 1986. Systematic Software Development Using VDM. Prentice Hall, Hertfordshire, UK.
LOPEZ POMBO, C. G., OWRE, S., AND SHANKAR, N. 2002. A Semantic Embedding of the Ag Dynamic

Logic in PVS. Tech. Rep. SRI-CSL-02-04, Computer Science Laboratory, SRI International. July.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

4:34 • M. F. Frias et al.

MOSKEWICZ, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: engineering an
efficient SAT solver. In Proceedings of the 38th Conference on Design Automation, J. Rabaey, Ed.
ACM Press, Las Vegas, Nevada, 530–535.

OBJECT MANAGEMENT GROUP. 1997. Object Constraint Language Specification. Object Manage-
ment Group, Needham, MA. version 1.1.

OWRE, S., SHANKAR, N., RUSHBY, J. M., AND STRINGER-CALVERT, D. 2001. PVS Language Reference,
Version 2.4 ed. SRI International.

SPIVEY, J. M. 1988. Understanding Z: A Specification Language and Its Formal Semantics.
Cambridge University Press, New York, NY.

Received August 2005; revised July 2006, January 2007; accepted January 2007

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 1, Article 4, Pub. date: December 2007.

