Reasoning About Static and Dynamic
Properties in Alloy: A Purely
Relational Approach

MARCELO F. FRIAS and CARLOS G. LOPEZ POMBO

FCEyN, Universidad de Buenos Aires and CONICET

GABRIEL A. BAUM

Facultad de Informética, Universidad Nacional de La Plata and CONICET
NAZARENO M. AGUIRRE

FCEFQyN, Universidad Nacional de Rio Cuarto and CONICET

and

THOMAS S. E. MAIBAUM

Department of Computing & Software, McMaster University

We study a number of restrictions associated with the first-order relational specification language
Alloy. The main shortcomings we address are:

—the lack of a complete calculus for deduction in Alloy’s underlying formalism, the so called rela-
tional logic,

—the inappropriateness of the Alloy language for describing (and analyzing) properties regarding
execution traces.

The first of these points was not regarded as an important issue during the genesis of Alloy, and
therefore has not been taken into account in the design of the relational logic. The second point is a
consequence of the static nature of Alloy specifications, and has been partly solved by the developers
of Alloy; however, their proposed solution requires a complicated and unstructured characterization
of executions.

We propose to overcome the first problem by translating relational logic to the equational cal-
culus of fork algebras. Fork algebras provide a purely relational formalism close to Alloy, which

Marcelo F. Frias wishes to thank the Antorchas Foundation.

Authors’ addresses: M. F. Frias and C. G. Lépez Pombo, Department of Computer Science,
School of Sciences, University of Buenos Aires, Buenos Aires, Argentina (1427); email: {mfrias,
clpombo}@dc.uba.ar; G. A. Baum, Facultad de Ciencias Exactas, Universidad Nacional de La
Plata, Calle 50 y 115- ler piso (1900), La Plata, Argentina; email: gbaum@sol.info.unlp.edu.ar;
N. M. Aguirre, Departamento de Computacién, FCFQyN, Universidad de Rio Cuarto, Enlace ru-
tas 8y36, Km 601, Rio Cuarto (56800), Cérdobu, Argentina; email: aguirre@dc.exa.unrc.edu.ar;
T. S. E. Maibaum, Department of Computing and Software, McMaster University, 1280 Main Street
West, Hamilton, ON, Canada L8S 4L7; email: tom@maibaum.org.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2005 ACM 1049-331X/05/1000-0478 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005, Pages 478-526.

Reasoning About Static and Dynamic Properties in Alloy . 479

possesses a complete equational deductive calculus. Regarding the second problem, we propose to
extend Alloy by adding actions. These actions, unlike Alloy functions, do modify the state. Much the
same as programs in dynamic logic, actions can be sequentially composed and iterated, allowing
them to state properties of execution traces at an appropriate level of abstraction.

Since automatic analysis is one of Alloy’s main features, and this article aims to provide a
deductive calculus for Alloy, we show that:

—the extension hereby proposed does not sacrifice the possibility of using SAT solving techniques
for automated analysis,

—the complete calculus for the relational logic is straightforwardly extended to a complete calculus
for the extension of Alloy.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-

tion—Formal methods

General Terms: Design, Verification

Additional Key Words and Phrases: Alloy, fork algebras, relational specifications

1. INTRODUCTION

The specification of software systems is an activity considered worthwhile in
most modern development processes. Some specification languages are infor-
mal, meaning that the notations on which they are based are not precisely
defined. Informal specification languages are usually referred to as model-
ing languages, since specifications allow us to build abstract models of the
intended systems. Due to the lack of a precise semantics, informal specifica-
tions must usually be complemented with natural language annotations or
some other mechanisms, in order not to fall into ambiguous understandings
of what is being modeled. However, informal specifications are still useful as
a means for communication between developers, documentation, and even for
performing some restricted kinds of analysis. UML [Booch et al. 1998] is an
example of a widely used informal specification language, whose specifica-
tions, based on a variety of languages, are centered on notions from object
orientation.

Formal approaches to software specification, on the other hand, are those
based on well defined notations, founded on solid (usually mathematical)
grounds. Formal specification languages are better suited for analysis, due to
their precise semantics, but they are usually more complex, and require famil-
iarity and experience with the manipulation of mathematical definitions. So,
their acceptance by software engineers greatly depends on their simplicity and
usability.

There exists a wide range of formal specification languages, based on a va-
riety of logics and other formalisms. A subset of these languages, in which we
are interested, are the so called model oriented formal specification languages.
Their approach to specification consists of describing systems by building math-
ematical models. Traditionally, model oriented specification languages describe
a system by defining its state space, and its operations as state transformations.
Some examples of model oriented formal specification languages are B [Abrial
1996], VDM [Jones 1986], Z [Spivey 1988], and Alloy [Jackson et al. 2001].

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

480 U M. F. Frias et al.

Formal semantics is not necessarily enough for making specifications an-
alyzable: effective analysis mechanisms must be defined. Furthermore, it is
generally accepted that, due to the difficulties associated with the use of for-
mal methods, appropriate software tool support for the analysis is a must. We
are particularly interested in Alloy, a language designed with fully automated
analyzability of specifications as a priority, and which has recently gained in-
creasing attention. Alloy has its roots in the Z formal specification language,
and its few constructs and simple semantics are the result of putting together
some valuable features of Z and some constructs that are normally found in
informal notations. This is done while avoiding incorporation of other features
that would increase Alloy’s complexity more than necessary.

Alloy is defined on top of what is called relational logic (RL), a logic with
a clear semantics based on relations. This logic provides a powerful yet sim-
ple formalism for interpreting Alloy’s modeling constructs. The simplicity of
both the relational logic and the language as a whole makes Alloy suitable for
automatic analysis. The main analysis technique associated with Alloy is essen-
tially a counterexample extraction mechanism, based on SAT solving. Basically,
given a system specification and a statement about it, a counterexample of this
statement (under the assumptions of the system description) is exhaustively
searched for. Since first-order logic is not decidable (and the relational logic is a
proper extension of first-order logic), SAT solving cannot be used in general to
guarantee the consistency of (or, equivalently, the absence of counterexamples
for) a theory; then, the exhaustive search for counterexamples has to be per-
formed up to certain bound % in the number of elements in the universe of the
interpretations. Thus, this analysis procedure can be regarded as a validation
mechanism, rather than a verification procedure. Its usefulness for validation
is justified by the interesting idea that, in practice, if a statement is not true,
there often exists a counterexample of it of small size:

“First-order logic is undecidable, so our analysis cannot be a decision
procedure: if no model is found, the formula may still have a model
in a larger scope. Nevertheless, the analysis is useful, since many
formulas that have models have small ones [Jackson 2000, p. 1].”

This analysis has been implemented by the Alloy Analyzer [Jackson et al.
2000], a tool that incorporates state-of-the-art SAT solvers in order to search
for counterexamples of specifications. Alloy and its tool support have been used
with some success to model and analyze a number of problems of different do-
mains, such as, for instance, the simplification of a model of the query interface
mechanism of Microsoft’s COM [Jackson and Sullivan 2000].

1.1 Contributions of this Article

The contributions of this article are twofold. First, we notice that deduction was
not regarded as an important issue during the genesis of Alloy, and therefore
has not been taken into account in the design of the relational logic. In order to
overcome this difficulty, we introduce the fork relational logic (FRL), as the equa-
tional theory of fork algebras [Frias 2002] extended with reflexive-transitive
closure. The interpretation of Alloy’s underlying relational logic within FRL

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 481

allows us to define a purely relational and complete equational calculus for rea-
soning about Alloy specifications. Moreover, we will show that translating Alloy
specifications into FRL does not compromise the analyzability of specifications.
In fact, resorting to FRL enables us to strictly analyze more properties than with
the Alloy Analyzer under the standard Alloy semantics [Jackson et al. 2000].

Second, we notice that Alloy is inappropriate as a language for the descrip-
tion and analysis of properties regarding execution traces of systems. This is
due to the static nature of Alloy specifications (a deficiency shared with other
model oriented specification languages), and although has been partly solved
by the developers of Alloy [Jackson et al. 2001], their proposed solution re-
quires a complicated and unstructured characterization of executions. In order
to address this problem, we propose extending Alloy with actions, and enhanc-
ing FRL’s expressiveness with dynamic logic features. Functions in Alloy, as
schemas for operations in Z, serve the purpose of defining state changes, by
relating variables corresponding to the state prior to the operation’s execution
with variables corresponding to the state resulting from the execution of the
operation. A number of conventions, such as the fact that primed variables
correspond to post-execution state, are central to the correct interpretation of
function definitions. We believe that actions (as will be defined in this article),
unlike functions, are better qualified for describing state change, especially for
the purpose of expressing properties regarding executions.

We will argue that, as a result, the newly defined dynamic Alloy (DynAlloy)
is better suited (at least when compared to Jackson et al. [2001, Section 2.6])
for modeling the execution of operations, and reasoning about execution traces.
Even a SAT solving-based analysis, similar to that defined for standard Alloy,
can be provided in order to validate properties regarding execution traces.

Since one of the intended contributions of this article is providing a com-
plete calculus for Alloy, it is worthwhile asking ourselves whether the deduc-
tive calculus for the relational logic presented in this article can be extended
to DynAlloy. We show that by extending FRL to a dynamic logic over fork alge-
bras (denoted by FDL), we again obtain a purely relational and complete proof
calculus; this enables us to also perform deductive reasoning about properties
of executions specified in DynAlloy.

An interesting side effect of adopting FRL (and its extension FDL) as our
foundation is that there is no need for second order quantifiers in the compo-
sition of Alloy functions (see for instance Jackson [2002b, Section 2.4.4]). Also,
the availability of encodings for the semantics of FRL and its extension FDL into
higher order logic allows us to verify Alloy specifications, even those involving
actions and executions, using a higher order logic theorem prover, such as PVS
[Owre et al. 1998].

The relationships among the formalisms involved in our approach are de-
picted in Figure 1.

1.2 Related Work

As we mentioned before, deduction was not considered an important issue when
Alloy was created; instead, the design of the language was centered on the idea

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

482 U M. F. Frias et al.

is interpreted
DynAlloy FDL

is extended

Alloy is extended

is interpreted
RL FRL

Fig. 1. Relationships among the formalisms.

of providing efficient automated analysis of specifications via SAT solving. In
the case of Alloy, SAT solving-based analysis provides a validation mechanism
for specification. Theorem proving, on the other hand, would provide a mecha-
nism for the verification of properties.

To the best of our knowledge, since the beginnings of Alloy, not much work has
been done regarding the use of theorem proving in the analysis of Alloy specifi-
cations. We are aware of the work of Arkoudas et al. [2004] on their tool Prioni,
presented some time after the first submission of this article at RelMiCS’03.!
Prioni uses a semi-automatic theorem prover called Athena [Arkoudas 2000]
in order to prove properties regarding Alloy specifications. Arkoudas et al’s
characterization of Alloy allows one to reason about specifications, using semi-
automatic theorem proving. However, the proposed characterization does not
capture well some features of Alloy and its relational logic, such as, for instance,
the uniform treatment for scalars and singletons. Quoting the authors:

“Recall that all values in Alloy are relations. In particular, Alloy blurs
the type distinction between scalars and singletons. In our Athena
formalization, however, this distinction is explicitly present and can
be onerous for the Alloy user [Arkoudas et al. 2004, p. 6].”

Prioni also has a number of further shortcomings, such as the, in our opin-
ion, awkward representations of Alloy’s composition operation ‘-’ and of ordered
pairs [Arkoudas et al. 2004, p. 4]. This tool, however, succeeds in integrating
the use of theorem proving with the SAT solving-based analysis of the Alloy
Analyzer, cleverly assisting theorem proving with SAT solving and vice versa.
The mechanisms used to combine SAT solving and theorem proving are inde-
pendent of the theorem prover used and the axiomatic characterization of Alloy.
Thus, they could also be employed to combine the Alloy Analyzer with other
approaches to reasoning about Alloy specifications, such as, for instance, the
one presented in this article.

The deduction system we propose is based on purely relational (i.e., only the
type of relations is present) calculi for FRL and FDL, which are complete with

INote that our approach is previous to Arkoudas et al.’s: Arkoudas et al. [2004] includes a reference
to a preliminary version of this article [Frias et al. 2003].

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 483

respect to the semantics of the corresponding logics. These logics allow for a
uniform treatment of scalars and singletons, and thanks to their expressive-
ness, the characterization of the constructs of Alloy and RL is straightforward.
We believe that ‘minimal mathematics [for the end user]’, which comes from
adopting well understood concepts such as sets and relations and is one of the
motivations of Alloy, is not lost by using these logics to enhance Alloy.

There is a wide range of semi-automatic techniques for software verifica-
tion and validation. A particularly successful branch is that of model checking
[Clarke et al. 2000]. By model checking we mean the well known approach of
representing a finite state program as a model in a certain (often modal) logic,
and then checking whether that model does or does not satisfy a logical prop-
erty. There exist various approaches to efficient model checking, such as the
automata-theoretic [Vardi and Wolper 1986], the semantic [Cleaveland et al.
1993], and the symbolic ones [McMillan 1993].

Alloy, as well as our approach to deduction, is not directly related to model
checking, since the subject of verification (or validation) is not in principle a
transition system (i.e., the representation of the possible execution traces of
a program); instead, Alloy’s target is in the description and analysis of struc-
tural properties of systems Jackson [2002a]. Nevertheless, model checking tech-
niques might be useful for the verification of properties regarding traces of
executions of Alloy specifications. In fact, as demonstrated in Jackson et al.
[2001], there exists an interest in describing and analyzing the possible behav-
iors of systems specified in Alloy; furthermore, as we said, it is one of our aims
to contribute to a better characterization of these behaviors. The description
of executions proposed in Jackson et al. [2001], by introducing system traces,
clock ticks, and so on, as part of the model of the system, obscures the differ-
ences between what is the description of the system itself and what is part of
the machinery necessary for “talking about executions.” We believe that this
unstructured merge of the system description and the characterization of be-
haviors would complicate the possibility of applying model checking techniques
to verify properties of executions. Our approach, on the other hand, clearly
separates the two different levels of specification, leaving the description of
executions to the upper layer dynamic logic. Model checking would then be
more easily applicable.

We restrict ourselves to the study of a well organized and simple charac-
terization of executions of Alloy specifications. The exact difficulties related to
the use of model checking techniques for the analysis of properties regarding
executions of Alloy specifications are beyond the scope of this article.

1.3 Structure of the Article

The remainder of this article is organized as follows. In Section 2, we present
a description of the syntax and semantics of the current version of standard
Alloy, as presented in Jackson et al. [2001]. In Section 3, we present the main
features of Alloy and some of its shortcomings; we also discuss some, in our
opinion, desirable improvements to the language. In Section 4, we introduce
the fork relational logic FRL, and present a semantics-preserving mapping from
RL to FRL that allows for deduction of RL properties in FRL. In Section 5 we

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

484 U M. F. Frias et al.

extend Alloy to DynAlloy by adding features from dynamic logic, and show how
properties of executions can be represented in DynAlloy. We also show how to
analyze DynAlloy using the Alloy Analyzer. In Section 6 we present a complete
deductive calculus for DynAlloy. In Section 7 we present an extension of the
theorem prover PVS in order to verify FDL specifications. Finally, in Section 8
we present our conclusions and proposals for further work.

2. THE ALLOY SPECIFICATION LANGUAGE

In this section, we introduce the reader to the Alloy specification language, by
means of an example extracted from Jackson et al. [2001]. This example serves
as a means for illustrating the standard features of the language and their
associated semantics, and will also help us demonstrate the shortcomings we
wish to overcome.

Suppose we want to specify systems involving memories with cache. We
might recognize that, in order to specify memories, datatypes for data and ad-
dresses are especially necessary. We can then start by indicating the existence
of disjoint sets of atoms for data and addresses, which in Alloy are specified
using signatures:

sig Addr { }

sig Data { }

These are basic signatures. We do not assume any special properties regarding
the structures of data and addresses.

With data and addresses already defined, we can now specify what consti-
tutes a memory. A possible way of defining memories is by saying that a memory
consists of a set of addresses, and a total mapping from these addresses to data
values:

sig Memory {
addrs: set Addr
map: addrs ->! Data

}

The symbol “!” in this definition indicates that “map” is functional and total (for
each element a of addrs, there exists exactly one element d in Data such that
map(a) = d).

Alloy allows for the definition of signatures as subsets of the set denoted by
another “parent” signature. This is done via what is called signature extension.
For example, one could define other, perhaps more complex, kinds of memories
as extensions of the Memory signature:

sig MainMemory extends Memory {}

sig Cache extends Memory {
dirty: set addrs

}

With these definitions, MainMemory and Cache are special kinds of memories.
In caches, a subset of addrs is recognized as dirty.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy 485
problem ::= decl”form M : form — env — Boolean
decl ::= var : typexpr
¢ R X : expr — env — value
typZ:Cp " env = (var + type) — value
yp value = (atom X --- X atom)+
| type — type

| type = typexpr

(atom — wvalue)

M]a in ble = X[a]e C X[ble

form ::= (subset) M][IF]e = ~M][Fle
CXPY ¥ SXpr (SUbse M[F&&Gle = M[Fle A M[Gle
|lform (neg)

| form && form (conj)

| form || form (disj)

| all v : type | form (univ)

| some v : type | form (exist)

expr =

expr + expr (union)

| expr & expr (intersection)
| expr — expr (difference)
|~ expr (transpose)

| expr.expr (navigation)

| +expr (transitive closure)
| {v:t|form} (set former)
| Var

Var =

MIF || Gle = M[Fle v M[Gle

Mlallv:t| F]=
MM[Fl(e®v—{z}) [z € e(t)}

M[some v :t| F|=
V{M[Fl(e @ v—{z}) | = € e(t)}

X[a + ble = X[ale U X[b]e
X[a&ble = X[a]e N X[ble
X[a — ble = X[ale \ X[ble
X[~ ale = { (,9) : {y2) € X[ale}
X[a.ble = X[ale; X [ble
X[+a)e = the smallest 7 such that
r;r Crand X[ale Cr
X[{v:t|F}le=
{z € e(t) | M[F)(e ® v—{z })}
Xv]e = e(v)

X[a[v]]e = {<y17" . 7yn> I

var (variable) 3z (Y1, - - yn) € e(a) A (z) € e(v)}

| Var[var] (application)

Fig. 2. Grammar and semantics of Alloy.

A system might now be defined to be composed of a main memory and a
cache:

sig System {
cache: Cache
main: MainMemory

}

As the previous definitions show, signatures are used to define data domains
and their structure. The fields of a signature denote relations. For instance, the
“addrs” field in signature Memory represents a binary relation, from memory
atoms to sets of atoms from Addr. Given a set m (not necessarily a singleton) of
Memory atoms, m.addrs denotes the relational image of m under the relation
denoted by addrs. This leads to a relational view of the dot notation, which is
simple and elegant, and preserves the intuitive navigational reading of dot, asin
object orientation. Signature extension, as we mentioned before, is interpreted
as inclusion of the set of atoms of the extending signature into the set of atoms
of the extended signature.

In Figure 2, we present the grammar and semantics of Alloy’s relational
logic. An important difference with respect to the previous version of Alloy,
as presented in Jackson [2002a], is that expressions now range over relations
of arbitrary rank, instead of being restricted to binary relations. Composition

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

486 U M. F. Frias et al.

of binary relations is well understood; but for relations of higher rank, the
following definition for the composition of relations has to be considered:

R;S ={{a1,...,a;-1,b9,...,bj):
E|b(<a1,...,ai,1,b) eR A (b, bg, ...,bj) € S)}

Operations for transitive closure and transposition are only defined for bi-
nary relations. Thus, function X in Figure 2 is partial.

2.1 Operations in a Model

So far, we have just shown how the structure of data domains can be specified in
Alloy. Of course, one would like to be able to define operations over the defined
domains. Following the style of Z specifications, operations in Alloy can be
defined as expressions, relating states from the state spaces described by the
signature definitions. Primed variables are used to denote the resulting values,
although this is just a convention, not reflected in the semantics.

In order to illustrate the definition of operations in Alloy, consider, for in-
stance, an operation that specifies the writing of a value to an address in a
memory:

fun Write(m, m’: Memory, d: Data, a: Addr) {
m’.map = m.map ++ (a — > d)

}

The intended meaning of this definition can be easily understood, having in
mind that m’ is meant to denote the memory (or memory state) resulting from
the application of function Write, a -> d denotes the ordered pair <a, d), and ++
denotes relational overriding, defined as follows?:

R++S={a1,...,a,) : {a1,...,a,) € R A a3 ¢ dom(S)}US.

We have already seen a number of constructs available in Alloy, such as
the dot notation and signature extension, that resemble object oriented defini-
tions. Operations, however, represented by functions in Alloy, are not “attached”
to signature definitions, as in traditional object-oriented approaches. Instead,
functions describe operations of the whole set of signatures: the model. So,
there is no notion similar to that of class, as a mechanism for encapsulating
data (attributes) and behavior (operations or methods).

In order to illustrate a couple of further points, consider the following more
complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
§’.main = s.main

}

There are two important issues exhibited in this function definition. First, func-
tion SysWrite is defined in terms of the more primitive Write. Second, the use

2Given a n-ary relation R, dom (R) denotes the set {a; : Jao, ...,a, such that (aq,as,...,a,) € R}.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 487

of Write takes advantage of the hierarchy defined by signature extension: note
that function Write was defined for memories, and in SysWrite it is being “ap-
plied” to cache memories.

As explained in Jackson et al. [2001], an operation that flushes lines from
a cache to the corresponding memory is necessary in order to have a realistic
model of memories with cache, since usually caches are smaller than main mem-
ories. A nondeterministic operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {
s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
§’.main.map = s.main.map +-+
{a: x, d: Data | d = s.cache.maplal}

}

In the third line of the above definition of function Flush, x->Data denotes all
the ordered pairs whose domains fall into the set x, and that range over the
domain Data. Function Flush will be used in Section 4.1.5 to illustrate one of
the main problems that we try to solve.

Functions can also be used to represent special states. For instance, we can
characterize the states in which the cache lines not marked as dirty are consis-
tent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty | (1)
s.cache.map[a] = s.main.mapla] }

“‘”

In this context, the symbol “!I” denotes negation, indicating in the above formula
that “a” ranges over atoms that are non dirty addresses.

2.2 Properties of a Model

As the reader might expect, a model can be enhanced by adding properties
(axioms) to it. These properties are written as logical formulas, much in the
style of the Object Constraint Language [Object Management Group 1997].
Properties or constraints in Alloy are defined as facts. To give an idea of how
constraints or properties are specified, we reproduce some here. The sets of
main memories and cache memories are disjoint:

fact {no (MainMemory & Cache)}

In the above expression, “no x” indicates that x has no elements, and & denotes
intersection. Another important constraint inherent in the presented model is
that, in every system, the addresses of its cache are a subset of the addresses
of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

488 U M. F. Frias et al.

More complex facts can be expressed by using the quite considerable expres-
sive power of the relational logic.

2.3 Assertions

Assertions are the intended properties of a given model. Consider, for instance,
the following simple Alloy assertion, regarding the presented example:

assert {
all s: System | Dirtylnv(s) && no s.cache.dirty
=> s.cache.map in s.main.map

}

This assertion states that, if “DirtyInv” holds in system “s” and there are no
dirty addresses in the cache, then the cache agrees in all its addresses with the
main memory.

Assertions are used to check specifications. Using the Alloy analyzer, it is
possible to validate assertions, by searching for possible counterexamples for
them, under the constraints imposed in the specification of the system.

3. FEATURES AND DEFICIENCIES OF ALLOY

In this section, we summarize what are, to our understanding, the main features
and deficiencies of the Alloy language.

Alloy is a formal specification language which has, as any other formal spec-
ification language, a formal syntax and semantics. Contrary to the approach of
most model oriented formal specification languages, such as Z [Spivey 1988],
VDM [Jones 1986] or B [Abrial 1996], Alloy’s semantics is strongly based on
the use of relations. A main distinguishing characteristic of Alloy, that we men-
tioned before in this article, is that it has been designed with the goal of making
specifications automatically analyzable. This restriction forced the developers
of Alloy to keep the language simple, not including even simple data types such
as integers, floats, rationals or lists.

Alloy has evolved significantly since its origins. Although the language is
rather simple, it is surprisingly expressive, especially useful for the descrip-
tion of the structure of systems and their properties. Some of the important
features of Alloy’s current version, as described in Jackson [2002a], are the
following:

—Fulfilling the goal of an analyzable language made Alloy a simple language,
with a clear and elegant semantics based on relations.

—Regardless of its simplicity, Alloy supports some constructs that resemble
common idioms of object modeling. Perhaps this feature is one of the main
reasons why Alloy reaches a broader audience than that of some other formal
specification languages. Also thanks to this characteristic of the language,
Alloy can be regarded as a suitable alternative for the Object Constraint
Language (OCL) [Object Management Group 1997]. The well defined and
concise syntax of Alloy is much easier to understand than the, in our opin-
ion, rather cumbersome OCL grammar, as presented in Object Management

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 489

Group [1997]. A similar argument applies when comparing Alloy and OCL
with respect to their semantics. OCL's attempt to describe the various con-
structs of object modeling led to a cumbersome, incomplete, and perhaps even
inconsistent semantics [Bickford and Guaspari 1998].

—The syntax of Alloy, which includes both textual and graphical notations, is
based on a small underlying formalism, RL, with few constructs. The rela-
tional semantics of RL allows one to refer to relations, sets, and individual
atoms with the same simplicity.

Alloy also has some, to our understanding, important deficiencies. As we
have explained, we are interested in addressing two main drawbacks of Alloy:

—Alloy was designed with the goal of making specifications automatically an-
alyzable by means of SAT solving-based techniques. Theorem proving was
not then considered a critical issue in the design of the language and its
underlying foundations.

Fully automatic techniques have limitations. In the case of Alloy, SAT
solving-based analysis allows one to validate a property of a specification, but
we cannot use the analysis for proper verification. There is some evidence of
the fact that semiautomated deduction can be used successfully, especially
in combination with fully automatic analysis. The Stanford Temporal Prover
(STeP) [Manna et al. 1994], for instance, is a good example of a tool combining,
with great success, fully automatic verification (in this case, model checking)
with semiautomated deduction.

Providing Alloy with theorem proving is not a particularly complicated
task. As we mentioned, Arkoudas et al. [2004] have even implemented a
tool for theorem proving in Alloy. However, their calculus resorts to the set-
theoretical definition of Alloy’s operators, thus loosing the purely relational
flavor of Alloy. Actually, it is not clear whether a complete, purely relational
calculus for Alloy even exists. Completeness is an advantageous feature, be-
cause it expresses the fact that one has all the deductive power one might
need; in other words, if one counts on a complete proof system for the logic,
then all the statements expressible in the logic that are consequences of the
axioms of a specification are provable.

Despite the fact that a complete proof calculus for RL has not yet been
found, we present in Section 6 a complete deductive system for FRL, a logic
extending Alloy’s foundational formalism RL.

—Whereas Alloy makes a great choice for describing structural properties of
systems, the language is, in our opinion, inappropriate for the description
of properties regarding behaviors of systems. This is due to a particularity of
Alloy, inherited from Z: specifications are descriptions of the static aspects
of systems, such as structural invariants and the like, but one has no direct
way of expressing facts regarding execution traces.

Jackson et al. [2001] present a methodology for checking properties of ex-
ecutions in Alloy. The method presented consists of the representation, to-
gether with the static description of a system, of its execution traces. It in-
volves incorporating into the model of a system, elements such as a sort for

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

490 U M. F. Frias et al.

its finite traces, operations for clock ticks, first and last points in a trace, and
so on. In this context, checking if a given assertion is invariant under the
execution of some operations is reduced to checking for the validity of the as-
sertion in the last element of every finite trace. Since the model of execution
traces is incorporated as part of the system description, SAT solving-based
analysis is still applicable.

Although this approach is sound, we believe it is not the best way of tack-
ling Alloy’s limitations with respect to the description of behaviors. This is
because of essentially two reasons: first, when a software engineer writes
an assertion, validating the assertion should not demand additional model-
ing efforts; second, in order to keep an appropriate separation of concerns in
the modeling activity, the static and dynamic parts of a system description
should be clearly identifiable.

Our proposal in order to overcome this problem is presented in Section 5. It
consists of extending Alloy to a more expressive specification language, called
dynamic Alloy (DynAlloy), which separates the static and dynamic aspects of
a specification in a simple and better organized manner. DynAlloy supports
the description of assertions regarding executions. DynAlloy can then be inter-
preted over a dynamic logic extending FRL. An SAT solving-based analysis,
similar to that defined for standard Alloy, can be provided in order to val-
idate properties regarding execution traces in DynAlloy. Also, the dynamic
logic over FRL admits a complete proof system. Therefore, we are also able
to do theorem proving regarding properties of executions.

—In the definition of some necessary elements of a system specification, such
as sequencing of operations, or even specifications such as the one for func-
tion Flush (see Section 2.1), one may require higher-order formulas. Quoting
Alloy’s developers:

“Sequencing of operations presents more of a language design
challenge than a tractability problem. Following Z, one could take
the formula op1;0p2 to be short for

some s : state | opl(pre, s) and op2(s, post)

but this calls for a second-order quantifier.” [Jackson 2002a,
Section 6.2]
A partial solution to this problem was proposed in [Jackson et al. 2001],
consisting of a treatment for operation composition via the use of signatures.
However, higher order quantifiers are still used within specifications. For
instance, the definition of function Flush uses a higher order quantifier over
unary relations (sets).
Our approach, combining the fork-algebraic logic and its dynamic logic ex-
tension, has as a side effect the elimination of the need for higher order
quantification.

4. A COMPLETE EQUATIONAL CALCULUS FOR ALLQY,
BASED ON FORK ALGEBRAS

In most papers regarding Alloy, the semantics of Alloy’s relational logic is de-
fined in terms of binary relations. The current semantics [Jackson et al. 2001] is

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 491

given in terms of relations of arbitrary finite arity. The formalism FRL that we
will present goes back to binary relations. This was our choice for the following
three main reasons:

(1) Some of Alloy’s relational logic operations, such as transposition or transi-
tive closure, are only defined on binary relations.

(2) There exists a complete calculus for reasoning about binary relations with
certain operations (to be presented next).

(3) Itis possible—and we will show how—to deal with relations of rank higher
than 2 within our framework of binary relations.

4.1 Closure Fork Algebras

Fork algebras [Frias 2002] are described through a few equational axioms. The
intended models of these axioms are structures called proper fork algebras, in
which the domain is a set of binary relations on some base set, let us say B,
closed under the following operations for sets:

—union of two binary relations, denoted by U,

—intersection of two binary relations, denoted by N,

—complement of a binary relation with respect to B x B, denoted, for a binary
relation r, by 7,

—the empty binary relation, which does not relate any pair of objects, and is
denoted by 9,

—the universal binary relation, namely, B x B, that will be denoted by 1.

Besides the previous operations for sets, the domain has to be closed under the
following operations for binary relations:

—the identity relation (on B), denoted by Id.

—transposition of a binary relation. This operation swaps elements in the pairs
of a binary relation. Given a binary relation r, its transposition is denoted
by 7,

—composition of two binary relations, which, for binary relations r and s is
denoted by r;s.

Finally, a binary operation called fork is included, which requires the base set
B to be closed under an injective function : B x B — B. This means that there
are elements x in B that are the result of applying the function x to elements
y and z. Since * is injective, x can be seen as an encoding of the pair (y, z).
The application of fork to binary relations R and S is denoted by RV S, and its
definition is given by:

RVS ={{a,bxc):{a,b) e R Al{a,c)eS}.

Closure fork algebras are then obtained from fork algebras by adding
reflexive-transitive closure, which, for a binary relation r, is denoted by r*.

The class of proper closure fork algebras can be characterized by a set of
formulas and inference rules. These constitute what we call Fork Relational
Logic, denoted by FRL.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

492 U M. F. Frias et al.

The axioms of FRL are composed of:

(1) Your favorite set of equations axiomatizing Boolean algebras. These axioms
define the meaning of union, intersection, complement, the empty set and
the universal relation. We denote by < the ordering induced by the Boolean
axioms, and defined by x <y < xUy =y.

(2) Formulas defining composition of binary relations, transposition and the
identity relation:

x;(y;2) =(x;y);2,
x;Id =1d;x = x,
(x;y)Nz=0iff(z;y)Nx =Giff X;z)Ny =0.

(3) Formulas defining the operator V:
xVy=(x;IdV1)n(y;(1VId)),
@Vy);(wVz) =@x;w)N(y;2),

(Idv1)v(1VId) < Id.

(4) Formulas axiomatizing reflexive-transitive closure:
x*=Id U (x;x*), L
x*;y;1 < (y; DU (y;1 N (x5y;5D)).

The inference rules for FRL are those for equational logic (see for instance

Burris and Sankappanavar [1981, p. 94]), plus the following equational (but
infinitary) proof rule for reflexive-transitive closure?:

Fld<y x'<ykxtl<y
Fx*<y

The axioms and rules given above define a class of models. It is relatively
straightforward to prove that proper closure fork algebras are among these
models, since they satisfy the axioms [Frias et al. 1997]. It could also be the case
that there are models of the axioms that are not proper closure fork algebras;
this would mean that the above axioms and inference rules do not precisely
characterize proper closure fork algebras. Fortunately, as it was proved in Frias
et al. [2002] (which heavily relies on Frias et al. [1997]), if a model is not a proper
closure fork algebra then it is isomorphic to one.

It is also worth noting that in fork algebras, binary relations are first-order
citizens. Therefore, quantification over binary relations is first-order.

In Section 4.1.3 we will need to handle fork terms involving variables de-
noting relations. Following the definition of the semantics of Alloy, we define a
mapping Y that, given an environment in which these variables receive values,
homomorphically allows us to calculate the values of terms. We also present a
mapping that allows us to assign semantics to fork algebraic equations. The
definitions are given in Figure 3. The set U is the domain of a proper fork
algebra, and therefore a set of binary relations.

1

3Given i > 0, by x* we denote the relation inductively defined as follows: x! = x, and x’+1 = x ;x%.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 493

Y :expr — env — U
N : expr X expr — env — Boolean
env = (var + type) — U.

Y[0]e = smallest element in U
Y[1]e = largest element in U
Yale = Y]ale

Y[aUble =Y[aleUY[b]e
Y]anble =Y[aleNnY|[ble
Y(ale = (Y[ale)”

Y[Idle = Id

Y[a;ble = Y[a]e;Y [ble
Y([aVble = Y[aleVY|ble
Y[a*]e = (Y[a]e)™

Yvle = e(v)

N[tl,tﬂe = (Y[tﬂe = Y[tQ]e)

Fig. 3. Semantics of fork terms and equations involving variables.

4.1.1 Representing Objects and Sets. Sets will be represented by partial
identities; that is, binary relations contained in the identity relation Id. Thus,
for an arbitrary type ¢, the meaning of ¢ within an environment env, denoted
by env(¢), must be a partial identity. Variables of type ¢ are represented, within
an environment env, by singletons of the form { (x, x) }, where (x, x) € env(¢).
This can be characterized by the following conditions*:

env(v) C env(t),
env(v);1;env(v) = env(v),
env(v) # 0.

In fact, it is not difficult to prove that, given binary relations x and y
satisfying the properties:

yCId, xCy, x;l;x=x, x#, (2)

x must be of the form { (a, a) } for some object a.

Thus, given an object a, by a we will also denote the binary relation { (a, a) }.
For relations x and y, we denote by x : y the fact that x is of type y; that is,
that x and y satisfy the formulas in (2).

4.1.2 Representing and Navigating Relations of Higher Rank in Fork Alge-
bras. In a proper fork algebra, the relations = and p defined by

n=({dv1), p=(1VId)

behave as projections with respect to the encoding of pairs induced by the in-
jective function . Their semantics in a proper fork algebra 2l whose binary
relations range over a set B, is given by

7={{axb,a):a,be B},
p={{axb,b):a,bec B}.

4The proof requires relation 1 to be of the form B x B for some nonempty set B.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

494 U M. F. Frias et al.

Fig. 4. Semantics of e.

Given an n-ary relation R C Aj x - -- x A,, we will represent it by the binary

relation
{{a1,ae*---*xay) :{ai,...,a,) € R}.

This will be an invariant in the representation of n-ary relations by binary ones.

From fork, = and p we can define a new binary operator called cross (and
denoted by ®) by

R®S =(m;R) V (p;S).

From a set-theoretical point of view, cross can be understood as follows:

R®S ={{axb,cxd):{a,c) e R A (b,d) e S}.

In order to clarify our treatment of n-ary relations, let us consider a small
example. Recalling signature Memory, field map stands in Alloy for a ternary
relation

map C Memory x addrs x Data.

In our framework it becomes a binary relation map whose elements are pairs
of the form (m, a xd) for m : Memory, a : Addr and d : Data. In general, we will
denote by C the encoding of an n-ary relation C as a binary relation.

Given an object (in the relational sense—cf. 4.1.1) m : Memory, the naviga-
tion of the relation map through m should result in a binary relation contained
in Addr x Data. Given a relational object a : £ and a binary relation R encoding
a relation of rank higher than 2, we define the navigation operation e by

ae R =7;Ran(a;R);p. 3)

Operation Ran in (3) returns the range of a relation as a partial identity. It

is defined by
Ran (x) = (x;1) -Id.
Its semantics in terms of binary relations is given by
Ran(R)={{(a,a):3bs.t.(b,a) e R}.

If we denote by x R y, the fact that x and y are related via the relation R,

then Figure 4 gives a graphical explanation of operation e.

For a binary relation R representing a relation of rank 2, navigation is easier.
Given a relational object a : ¢, we define

aeR =Ran(a;R).

Going back to our example about memories, it is easy to check that, for a
relational object m’ : Memory such that m’ = { (m, m) },

m’emap = {{a,d) : a € Addr,d € Data and {(m,a xd) € map}.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 495

Alloy

is interpreted
RL FRL

Fig. 5. Relationships among the formalisms.

In case relation R is not a set—it represents a relation whose rank is greater
than or equal to 2—navigation R e S can still be defined. Nevertheless, its
relational definition in terms of binary relations is more cumbersome. Since in
object oriented settings navigation usually falls in the situation where relation
R is a set, we will not deal here with the general case.

4.1.3 Translating Alloy Formulas into Fork Algebra Equations. A problem
that is central to our work is that of interpreting RL, and consequently Alloy as
a whole, into the FRL. In this section, we deal with this problem, and show how
RL formulas can be interpreted as FRL equations. If we want, as we propose,
to use FRL as a proof system for (extended) Alloy specifications, the translation
of an RL formula « into a set ay of FRL equations must be done in such a way
that « is valid if and only if ay is provable in FRL. Regarding Figure 1, in this
section we deal with the portion depicted in Figure 5.

Atomic RL formulas are straightforwardly translated into FRL, since they
can be seen as equations. Dealing with atomic formulas is not sufficient, since
we still need to deal with Boolean connectives and quantifiers. The case of
Boolean connectives does not constitute a problem: As we will show next,
Boolean combinations of RL equations can be reduced to a single RL equation,
and therefore can be easily translated into FRL. Formulas involving quantifi-
cation are then the remaining problem. We will show how to handle these at
the end of this section.

This section is rather theoretical, and some readers might want to skip it;
the remaining sections can be understood without going into the details of how
Alloy formulas are represented in terms of fork algebra equations.

It is well known [Tarski and Givant 1987, p. 26] that Boolean combinations
of relation algebraic equations can be translated into a single equation of the
form R = 1. Since Alloy terms are typed, the translation must be modified
slightly. We denote by 1 the untyped universal relation. By 1; we will denote
the universal k-ary relation. The transformation, for n-ary Alloy terms a and
b, is:

ainb~ (1, —a)+b=1,.
For a formula of the form !(a = 1,,), we reason as follows:
la=1,) < !1,—a=0).

Now, from a nonempty n-ary relation, we must generate a universal n-ary
relation. Notice that if 1, — a is nonempty, then 1;.(1,, — a) is nonempty, and

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

496 U M. F. Frias et al.

has arity n — 1. Thus, the term
—_—

n—1
yields a nonempty 1-ary relation. If we post compose it with 15, we obtain the
universal 1-ary relation. If the resulting relation is then composed with the

(n + 1)-ary universal relation, we obtain the desired n-ary universal relation.
We then have

a=1) ~ Q1 (1.1, —a)--)19). 11 = 1.

n—1
If we are given a formula of the form
a=1,&&b=1,,
with n = m, then the translation is trivial:
a=1,&&b=1,, ~a&b=1,.

If m > n, we will convert a into a m-ary relation a’ such that a’ = 1,, if and
only ifa = 1,. Let o’ be defined as

a.Id3.1m,n+1.
Then,
a=1,&&b=1, ~d&b=1,,.

Therefore, we will assume that whenever a quantifier occurs in a formula, it
appears being applied to an equation of the form ¢ = 1,,, where ¢ is a RL term,
and n € IN. RL term ¢ may contain variables x1, ..., x,. Since variables in RL
stand for single objects, instantiating x1, ..., x,, with atoms 44, ..., b,, yields a
n-ary relation denoted by ¢(b1, ..., b,,). In this section, term ¢ will be translated
to a term T),,(¢) such that

<.7C, y) Et(bly-”ybm) <~ ((bl*"'*bm)*x,(bl*"'*bm)*y> S Tm(t)
If we define relations X;(1 <i < k) by

x Vg if 1<i<k,
T Y if i =k,

an input aj x - - - xay, is related through term X; to a;. Notice then that the term
Dom (;X; N p) filters those inputs (a1 * - - - xa) x b in which a; # b (i.e., the
value b is bound to be a;). The translation is defined as follows:

T,.C) = ds,® - --®lds,)®C,

Tn(x;) = Dom(m;X; N p),

Tn(r+s) = Tnpr)UTy(s),

Tn(r&s) = T,)NTy(s),

Tn(r—s) = T,r)NTp(s)N(Uds, ® - -- ®Idsg,)Q1),
Tn(~r) = T,),

Tm(+r) = Tm(’"),Tm(r)>k

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 497

In order to define the translation for navigation r.s and application s[v], we
need to distinguish whether s is a binary relation, or if it has greater arity. The
definition is as follows:

Tr(r) @ Ty(s) if s is binary,

Tn(r.s) =
{Tm(r) o (T,,(s);(Id®m)V(Id® p))) otherwise.

Tr(v) @ Try(s) if s is binary,

Tn(slv]) = { '
Tn@) @ (Tr(5);(Id®7)VId® p))) otherwise.

In case there are no quantified variables, there is no need to carry the values
on, and the translation becomes:

To(C) = C,

To(r+s) = To(r) U To(s),
To(r&s) = To(r) N To(s),
Tor —s) = To(r) N Tols),
To(~r) = To@r),
To(+r) = To(r);To(r)",
To(r.s) = To(r) e To(s),
To(slr]) = To(r) e To(s).

It is now easy to prove a theorem establishing the relationship between RL
terms and their corresponding translation. Notice that for every environment e:

—Given a type T, e(T') is a nonempty set.
—Given a variable v, e(v) is a n-ary relation for some n € IN.

We define the environment e’ by:

—Given atype T, e(T) = {{a,a) : a € e(T)}.
—Given a variable v such that e(v) is a n-ary relation,
{{a,a):a €e()} if n=1,

e'(v) =
{{lal,ag x---*ay) : {a1,as,...,a,) €e(v)} otherwise.

In the following theorem we assume that, whenever the transpose operation
or the transitive closure occur in a term, they affect a binary relation. Notice
that this very same assumption is also made in Jackson et al. [2001]. We also
assume that whenever the navigation operation is applied, the argument on the
left-hand side is a unary relation (set). This is because our representation of
relations of arity greater than two makes defining the generalized composition
more complicated than desirable. At the same time, the use of navigation in
object-oriented settings usually falls in this situation. With the aim of using a
shorter notation, the value, according to the standard semantics, of a term ¢ in
an environment e will be denoted by e(¢) rather than by X[t]e. Similarly, the
value in FRL of a term ¢ in an environment e’ will be denoted by e'(¢) rather than
by Y[tle’. In order to simplify the notation, we will denote by &* the element
bl L SKIEII bm

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

498 . M. F. Frias et al.
TuEOREM 4.1. For every Alloy term t such that:

(1) XI[tle defines an n-ary relation,
(2) there are m free variables x1,...,xy int,

((b* xa,b* xa) :a € X[tle(b — X))

sifn=1.
YT, (t)le = _
(b*xa1,b* x(@g x---xay)) : (a1, ...,a,) € X[tle(b— %)}
sifn> 1.

Proor. The prooffollows by induction on the structure of term ¢. As a sample
we prove it for the variables, the remaining cases being simple applications of
the semantics of the fork algebra operators.

If v is a quantified variable (namely, x;), then e(¢) is a unary relation.

e (T, (x;)) = e'(Dom (m;X; N p)) (def. Ty,)
= {(b*xa,b* xa) :a = b;} (semantics)
= {{b*xa,b*xa):a € {b;}} (set theory)

= {(b*xa,b*xa):a c (e(b > X))(x;)} (def. e(d — X))
If v is a variable distinct of x4, ..., x,,, there are two possibilities.

(1) e(v) denotes a unary relation.
(2) e(v) denotes an n-ary relation with n > 1.

If e(v) denotes a unary relation,

e'(T, () = e'(Uds,® --- ®Ids,)®V) (def. T},,)
= (ldg,® - ®Idg,)®e'(v) (semantics)
= (lds,® --- ®Ids,)®{(a,a) :a € e()} (def. ')
= {(b*xa,b*xa) :a ce(v)} (semantics)

= {{(b*xa,b**xa) :a € (e %)W)} (def e(d > X))

If e(v) denotes a n-ary relation (n > 1),

e'(Tp,()) = e(Uds,® - -- ®Ids,,)®V)

(def. T),)

= (Ids,® --- ®Idg,)®e'(v)
(semantics)

= (lds,® - ®Ids,)®@{{a1,az x - - - xay) : (a1, ... ,a,) €e()}
(def. e’)

= {(*xa1,b* x(agx---*xay)) : {ai,...,a,) €e)}
(semantics)

= {(*xa1,b*x(agx---*xay) :{ai,...,a,) € (elb— x))(v)}
(def. e(b > %)) O

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 499

In order to translate an RL formula o« we will assume the following:

—If a subformula of « is a Boolean combination of atomic formulas, then, before
translating «, 8 has been converted to a single equation of the form R =1,
following the procedure explained at the beginning of this section.

— Before translating «, all the negations have been pushed into the formula as
much as possible, using simple valid transformations such as:
——p~ B,
=(BVy)~=B A =y,
=(BAY)~=B vV =,
=(3x : S)B~ (Vx : S)—=B,
—(Vx : S)B~ (3x : S)—-B,

Notice that this implies that negations will only appear next to atomic for-
mulas. Therefore, in virtue of the item above, no negation appears in «.

In the next paragraphs we will define a mapping 7,, (where m is the number
of variables that might occur free in the formula being translated) that will
allow us to translate RL formulas to FRL terms. We then define function RL —
FRL (mapping RL sentences to FRL equations) on a sentence « in the following
way:

AL~ FRL@) ¥ 1@ = 1.
atomic formula: Let o be the atomic formula ¢ = 1, (where m variables
X1,...,%y occur free in term ¢). Notice that, according to Theorem 4.1, T),(¢)

is a binary relation whose elements are pairs of the form
(b %+ *by)xa1, (byx--- % by) x(@g * -+ xay)).

From the set-theoretical definition of fork and the remaining relational op-
erators, it follows that®:

(B x---xbp)*xay,(byx---xby)x(agx---xay)) € Ty(t)
e ((by*x---xbyp)xay)x(ag*---*a,) e ranld V T,,(t);p)
e (((by*---xby)xar)x(ag*---xay),c)Rand V T, (#);p);1

Formula o states that every n-tuple belongs to the semantics of £. Therefore,
we must universally quantify over all values ai,as,...,a,. We define (for a
variable x; of sort S) the relational term 3,, as follows®:

3, =X1V - VX, 1VIgVX;1 V- VX,

For instance, if ¢ = 3, we have 3,, = X1 V15V X3. This term defines the binary
relation

{(a1xas,a1xazsxas) :az € S}.

5Given a binary relation R, ran (R) denotes the set {b : 3o such that (a, b) € R}.
6We define relation 1g as 1;Idg, the universal binary relation whose range is restricted to sort S.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

500 o M. F. Frias et al.

Notice that term 3,, generates all possible values for variable x3. Given a term
t standing for a binary relation with one free variable, the term

3y, ;Randd V Ti(t);p);1
describes the binary relation
{{b1 *az,c) : (Fay : S)((by x a1, by xag) € T1(2))}.

We define {(¢) := Ran(Id V T,,(t);p);1. Term 3,,;1(¢) indeed quantifies variable
x9 existentially over the domain S. Taking advantage of the interdefinability
of 3 and Vv, the term

(Id®Id);3,, ;1)

allows us to quantify variable xy universally. We will denote such a term as
VDCZT(t)~
We then define T, (¢ = 1,) as (Vy,) - - - (Vi)1(2).

conjunction: Let « = f&&y . Let m be the maximum number of variables over
individuals free in either g or y. Let t; := T,,(B), t2 := T, (y). We then define
T,;L(a) =11 Nig.

disjunction: Let « = 8 || y. Let m be the maximum number of variables over
individuals free in either g or y. Let t; := T,,(B), ta := T, (y). We then define
T,;L(O[) =11 Uls.

existential: Let « = some x; : S | B. We define T (o) = 3,57, ,(B). Moving
from T,, to T, , is justified because there may be a new free variable in g,
namely, x;.

universal: Let « = all x; : S | B. We define 7}, (a) = V,, T, . ,(B). Moving from
T, to T, ., is justified because there may be a new free variable in 8, namely,
Xi.

Once the translation T, has been defined, the following theorem, showing
the adequacy of the translation, can be proved by induction on the structure of
RL formulas.

THEOREM 4.2. For every RL sentence a, for every environment e,
Mlale <= NI[RL — FRL(x)l¢/,

where environment e’ is defined as in Theorem 4.1.

Example. Let us consider the following assertion:
some s : System | s.cache.map in s.main.map. (4)
Once converted to an equation of the form R = 1, assertion (4) becomes
some s : System | (13 — s.cache.map) + s.main.map = 1s. (5)

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 501

If we apply translation 7} to the term on the left-hand side of the equality in
(), it becomes

Idg Ids Ids Id®n
® |NDom(m;XsNp)e Q@ e ® ; V
1 cache map Id®p
Idg Ids Id®n
UDom@m@;XsNple Q@ o ® ; V . (B6)

main map Id®p

Since s is the only variable, X = p° = Id, and therefore (6) becomes

Idg Idg Ids Id®m
® |NDom(mNp)e Q@ e ® ; V
1 cache map Id®p
Idg Ids Id®m
UDom(m@mnple Q@ e ® ; V . (7N

main map Id®p

Certainly (7) is much harder to read than the equation in (4). This can be
improved by adding appropriate syntactic sugar to the language. Let us denote
by E the term (7). Following our recipe, applying RL — FRL we arrive at the
following equation:

3s;V. ¥y (Ran (Id V E;p) ;1) =1,
which we can try to prove by equational reasoning within FRL.

4.1.4 Analyzing FRL. An essential feature of Alloy is its adequacy for au-
tomatic analysis. It is clear that the translation defined in Section 4.1.3 induces
a new semantics for RL formulas in terms of fork algebras. That is, given an
RL formula o« whose FRL translation is a fork equation e,, we can compute the
semantics of e, using function N (cf. Figure 3). Thus, an immediate question
one might ask is: What is the impact of this new semantics in the analysis of
Alloy specifications?

In the next paragraphs we will argue that the new semantics can fully profit
from the analysis procedure provided by the Alloy Analyzer. Notice that the
Alloy Analyzer is a refutation procedure. As such, if we want to check whether
an assertion « holds in a specification S, we must search for a model of SU{ —« }.
If such a model exists, then we have found a counterexample that refutes the
assertion «. Of course, since first-order logic is undecidable, this cannot be a
decision procedure. Therefore, the Alloy tool searches for counterexamples of a
bounded size, in which each set of atoms is bounded to a finite size or “scope.”

A counterexample is an environment, and as such it provides sets for each
type of atom, and values (relations) for the constants and the variables. We will
show now that whenever a counterexample exists according to Alloy’s standard
semantics, the same is true for the fork algebraic semantics.

Given a specification whose types are T4, ..., T,, and a counterexample as-
signing to each type T; a domain D;, let D be defined as | J;_;, D;.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

502 U M. F. Frias et al.

Once D is defined, we define the set D* by | Jy-; D}, where

D; = D,
D;., = D;U{axb:a,beD;}.

Let us consider now the proper fork algebra 2l whose domain is P (D* x D*),
and whose forking operation is defined, for binary relations R and S, by

RVS ={{a,bxc):aRb AnaSc}.

Given a counterexample (environment) e according to the standard seman-
tics of Alloy, we will build a counterexample e’ according to the fork-algebraic se-
mantics. Notice that for an Alloy sentence o and an environment e, Theorem 4.2
shows that

Mlale < NI[RL+— FRL(&)l¢/,

where environment e’ is defined as in Theorem 4.1. Environment e’ is the sought
counterexample.

This shows that all the work that has been done so far toward the analysis
of Alloy specifications can be used toward the verification of Alloy specifica-
tions with respect to the new semantics. The theorem proposes a method for
analyzing Alloy specification (according to the new semantics), as follows:

(1) Give the Alloy specification to the current Alloy analyzer.

(2) Get a counterexample, if any exists within the given scopes.

(3) Build a counterexample for the new semantics from the one provided by
the tool. The new counterexample is defined in the same way environment
¢’ is defined from environment e above.

Notice that the above recipe relies on the use of the Alloy tool. An alterna-
tive approach would be to translate a FRL specification into a SAT problem, and
then make use of the SAT solvers on the propositional formulas thus obtained.
When translating an Alloy specification, a field R in a specification, standing
for a n-ary relation on A; x --- x A,, can be seen as a bit n-dimensional matrix
M. If we denote by ai» the j-th atom from domain A;, M will hold a 1 in posi-
tion [x1,...,x,] (0 < x; < |A;|) when the tuple of atoms (a%l, ... ,ay) belongs
to R. The translation [Jackson 2000] then associates a propositional variable
DPxs,.. x, to each position in M. When translating FRL, fields always stand for
binary relations. Nevertheless, since fork induces tupling of atoms, a field will
stand for a binary relation holding pairs of the form (@ * - - - @y, b1 % -+ - x b,) €
(A1 x---xAp)x(By x---x B,). If atom a; is the x;-th atomin 4; (1 <i <m)and
atom b; is the y;-th atom in B; (1 < j < n), we associate a propositional vari-
able pu,, . x.),(y1,...y,)- The translation then proceeds as with Alloy specifications
(with minor modifications regarding handling of indices), with the exception of
the new operator fork. Let T = RVS. Let R, S and T be the bidimensional
bit matrices associated to the relations R, S and T, respectively. If we denote
by ri ;, si j, ti ; the propositional variable associated to position [Z, j]of R, S, T,
respectively, we establish the correspondence:

ik =Ti,j N Sik-

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 503

Notice that in Theorem 4.2 we assume that the fork algebra on which the
environment assigns values to variables is proper. So the question arises of
whether using non proper fork algebras allows one to verify the same prop-
erties that the Alloy Analyzer does. Actually, the surprising answer is that it
is possible to verify strictly more properties. That is, there exists at least one
problem for which the Alloy Analyzer cannot find a counterexample (no mat-
ter the scopes chosen), but for which a small counterexample exists using non
proper fork algebras. This is because counterexamples in Alloy are built from
finite relations, while elements in a non proper fork algebra may represent in-
finite relations. In the next paragraphs we will discuss this briefly. A complete
discussion exceeds the scope of this article.

The Specification: Assume as given, an Alloy specification stating that a bi-
nary relation R is a total ordering.
The Assertion: There are first and last elements for the ordering R.

This assertion is flawed. Any infinite total ordering provides a counterexam-
ple. Unfortunately, since the Alloy Analyzer can only handle finite relations,
and every finite total ordering is bounded, no counterexample will be found, no
matter the scope chosen.

On the other hand, there is a finite representable relation algebra (actu-
ally, it has 8 elements), in which there is a relation that in every represen-
tation is a dense linear order without end points. This relation provides the
counterexample.

4.1.5 Eliminating Higher-Order Quantification. We will show now that by
giving semantics to Alloy in terms of fork algebras, higher order quantifiers are
not necessary. We begin with an example. The specification of function Flush
in Section 2.1 has the following form:

somex:sett | F. (8)

This is recognized within Alloy as a higher order formula [Jackson 2002b]
because quantification in Alloy is only defined over atoms, yet x takes as values
arbitrary unary relations (sets). Let us analyze what happens in the modified
semantics. Since ¢ is a type (set), it stands for a subset of Id. Similarly, subsets
of t are subsets of the identity, which are contained in ¢. Thus, formula (8) is an
abbreviation for

Ix(xCt AF),

which is a first-order formula on the language of fork algebras.

Regarding the higher order formulas that appear in the composition of op-
erations, discussed in Section 3, no higher order formulas are required in our
setting. Formula

some s : state | opl(pre, s) and op2(s, post) 9)

is first-order with the modified semantics. Operations op1l and op2 are nothing
but binary predicate symbols added to the first-order language of fork algebras,
and thus formula (9) is first-order.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

504 U M. F. Frias et al.

DynAlloy

is extended

Alloy

RL

Fig. 6. Alloy and its dynamic extension DynAlloy.

This result shows that the newly defined semantics fits in a better way with
the language, compared with the standard semantics.

5. ADDING DYNAMIC FEATURES TO ALLOY

In this section we start with the second part of our contribution. We extend
Alloy’s relational logic syntax and semantics with the aim of dealing with prop-
erties of executions of operations specified in Alloy. Recalling Figure 1, in this
section we will deal with the portion reproduced in Figure 6.

The reason for this extension (called DynAlloy) is that we want to provide a
setting in which, besides functions describing sets of states, there are actions
that actually change states (i.e., they describe relations between input and out-
put data). Actions are built out of atomic actions using well known constructs
for sequential programming languages. We will describe the syntax and seman-
tics of DynAlloy in Section 5.1, but it is worth mentioning at this point that both
were strongly motivated by dynamic logic [Harel et al. 2000], and the fact that
dynamic logic is suitable for expressing partial correctness assertions. In Sec-
tion 5.2 we propose a proof method for dealing with properties of executions. In
Section 5.3 we show how to analyze properties of executions using the Alloy an-
alyzer by first computing the weakest liberal precondition of actions [Dijkstra
and Scholten 1990]. Finally, in Section 5.4 we present a short case study as an
example of how this method can be applied to prove properties of executions of
Alloy specifications.

5.1 Functions vs. Actions

Functions in Alloy are just parametrized formulas. Some of the parameters are
considered input parameters, and the relationship between input and output
parameters is carried out by the convention that the second argument is the
result of the function application. Following Jackson et al. [2001], the function
dom that yields the domain of a relation is defined as

sigX {} fundom (r: X — X,d : X){d =r.X}. (10)

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 505

Then, if « is a formula with one free variable and we want to prove that «
holds when applied to the domain of the relation r, (10) is used as follows:

all result : X | dom(r, result) = a(result).

Notice that there is no real change in the state of the system, since no variable
actually changes its value.

Dynamic logic [Harel et al. 2000], arose in the early *70s with the intention
of faithfully reflecting state change. In the following paragraphs we propose,
motivated by its syntax, the use of actions to model state change in Alloy.

What we would like to say about an action is how it transforms the system
state after its execution. We can do this by using pre and post conditions. An
assertion of the form

o
{A}
B

affirms that whenever action A is executed on a state satisfying «, if it termi-
nates, it does so in a state satisfying 8. This approach is particularly appropri-
ate, since behaviors described by functions are better viewed as the result of
performing an action on an input state. Thus, a definition of the function dom
has as counterpart a definition of an action DOM of the form

r=rond =dy
{DOM(r, d)} (11)
r=rond =r.X.

Although it may be hard to find out what are the differences between (10)
and (11) just by looking at the formulas (i.e., both formulas seem to provide the
same information), the differences rely on the semantics, as well as the fact that
actions can be sequentially composed, iterated or nondeterministically chosen,
while Alloy functions cannot. Another relevant difference is that while functions
in Alloy are shorthands for formulas that can be defined in RL, DynAlloy’s actions
are new elements in the language.

The syntax of DynAlloy’s formulas is the same as presented in Figure 2, with
the addition of the following clause for building partial correctness statements
(we assume that pre and post conditions are RL formulas):

formula ::= ... | formula {program} formula “partial correctness”

The syntax for programs is the one defined in Harel et al. [2000] for the class
of regular programs plus a new rule to allow the construction of atomic actions
from their pre and post conditions.

program = {formula, formula) “atomic action”
| formula? “test”
| program + program “non-deterministic choice”
| program;program “sequential composition”
| program* “iteration”

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

506 o M. F. Frias et al.

Ma{p}Ble = M[a]e = Ve’ ({e,e’) € Plp] = M|[Ble’)
P : program — P (env X env)

P[(pre, post)] = A({pre, post))
Pla?] ={(e,e'): M[a]JeNe=¢€"}
P[p1 + p2] = P[p1] U Plp2]
Plp1;p2] = Plp1]; P[p2]

Plp*] = Plp]”

Fig. 7. Syntax and Semantics of DynAlloy.

In Figure 7 we extend the definition of function M to partial correctness as-
sertions and define the denotational semantics of programs as binary relations
over env. The definition of function M on a partial correctness assertion makes
clear that we are actually choosing partial correctness semantics. This follows
from the fact we are not requesting environment e to belong to the domain of the
relation P[p]. In order to assign semantics to atomic actions, we will assume
there is a function A assigning to each atomic action a binary relation on the
environments. We impose the following restriction on A:

A((pre, post)) C {{e,e’) : M[prele A M[postle'}.

There is a subtle point in the definition of the semantics of atomic programs.
We assume that actions modify certain variables, and those variables that are
not modified retain their values. Thus, given an atomic action

X = X0
{Add1)

x=x0+1

adding 1 to the value of parameter x, it is clear that variable xo must re-
tain its value. Without this assumption, the definition we provide accepts awk-
ward pairs of environments (e, ¢') satisfying, for instance, e(x) = e(xo) = 0, and
e'(x) =11 and e'(x) = 10.

5.2 Specifying and Proving Properties of Executions: Motivation

Suppose we want to show that a given property P is invariant under sequences
of applications of the operations “Flush” and “SysWrite” from an initial state.
A technique useful for proving invariance of property P consists of proving P
on the initial states, and proving for every non initial state and every operation
O < {Flush, SysWrite} the following holds:

P(s)A O(s,s") = P(s).

This proof method is sound but incomplete, since the invariance may be
violated in unreachable states. Of course it would be desirable to have a proof
method in which the considered states were exactly the reachable ones. This
motivated the introduction of traces in Alloy [Jackson et al. 2001].

The following example, extracted from Jackson et al. [2001], shows signa-
tures for clock ticks and for traces of states. The first exclamation mark in the
definition of “next” means it is total on its declared domain.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 507

sig Tick {}

sig SystemTrace {
ticks: set Tick,
first, last: Tick,
next: (ticks - last) ! — ! (ticks - first),
state: ticks — ! System }

The following “fact” states that all ticks in a trace are reachable from the
first tick, that a property called “Init” holds in the first state, and finally that
the passage from one state to the next is through the application of one of the
operations under consideration.

fact {
first.next* = ticks
Init(first.state)

all t: ticks - last |
some s = t.state, s’ = t.next.state |
Flush (s,s”)
|| some d : Data, a : Addr | SysWrite(s,s’,d,a)
}

If we now want to prove that P is invariant, it suffices to show that P holds in
the final state of every trace. Notice that unreachable states are no longer a bur-
den because all states in a trace are reachable from the states that occur before.

Even though from a formal point of view the use of traces is correct, from a
modeling perspective it is less suitable. Traces are introduced in order to cope
with the lack of real state change of Alloy. They allow us to port the primed
variables used in single operations to sequences of applications of operations.

The specification in DynAlloy of action SysWrite is done as follows:

S = 8o
{SysWrite(s: System)}

some d: Data, a: Addr |
s.cache = sg.cache ++ (@ — d) A
s.cache.dirty = sg.cache.dirty + a A
s.main = sg.main
For action Flush, the specification becomes:

S = 8o
{Flush(s: System)}

some Xx: set sg.cache.addrs |
s.cache.map = sg.cache.map - x—Data A
s.cache.dirty = sg.cache.dirty - x A
s.main.map = sgp.main.map ++ {a: x, d: Data | d = sg.cache.mapl[a]}

Notice that the previous specifications are as understandable as the ones
given in Alloy. Moreover, using partial correctness statements on the set of

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

508 o M. F. Frias et al.

regular programs generated by the set of atomic actions {SysWrite, Flush}, we
can assert the invariance of a property P under finite applications of functions
SysWrite and Flush as follows:

Init(s) A P(s)
{(SysWrite(s) + Flush(s))"}
P(s).

More generally, suppose now that we want to show that a property @ is
invariant under sequences of applications of arbitrary operations Oq, ..., Oy,
starting from states s described by a formula Init. Specification of the problem
in our setting is done through the formula

Init A Q
{(O1+---+ Op)"} (12)
Q.

Notice that there is no need to mention traces in the specification of the pre-
vious properties. This is because finite traces get determined by the semantics
of reflexive-transitive closure.

5.3 Analysis of DynAlloy Specifications

As we mentioned throughout the article, Alloy’s design was deeply influenced
by the intention of producing an automatically analyzable language. While
DynAlloy is better suited than Alloy for the specification of properties of execu-
tions, the use of ticks and traces allows one to automatically analyze properties
of executions. Therefore, an almost mandatory question is whether DynAlloy
can be automatically analyzed, and if so, what is the effort required to this end.
In this section we show how to analyze DynAlloy automatically using the Alloy
analyzer. In Jackson [2000], a function

MT : formula — booleanformulatree

allows one to transform Alloy formulas to Boolean formulas. These formulas
are later on transformed into conjunctive normal form and fed to off-the-shelf
SAT-solvers. The main rationale behind our technique is the translation of par-
tial correctness assertions to first-order Alloy formulas, using weakest liberal
preconditions [Dijkstra and Scholten 1990].

In the next paragraphs we will define a function

wlp : program x formula — formula

that computes the weakest liberal precondition of a formula according to a
program. We will in general use names x1, x5 . .. for program variables, and will
use names Y1, Y2, ... for rigid variables: those auxiliary variables whose values
are not affected by actions. We will denote by «|’ the substitution of variable x
by the fresh variable v in formula «. For an atomic action (pre, post) we assume
Y = ¥1,..., yi are therigid variables, and ¥ = x4, .. ., x, the program variables.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 509

Function wip is then defined as follows:

wipl(pre, post), f1 = all ¥ (pre => allv (post|y = [|Y))
wiplg?, f1] =g = f

wiplp1 + p2, f1] wiplp1, f1Awiplps, f]

wiplp1;pe, f] wiplp1, wiplps, 1]

wiplp*, f1 = NZowlplp', f1.

Notice that wip yields Alloy formulas in all cases except for the iteration
construct, where the resulting formula may be infinitary. In order to obtain
an Alloy formula, we can impose a bound on the depth of iterations. This is
equivalent to fixing a maximum length for traces. A function Bwlp (bounded
weakest liberal precondition) is then defined as wip except for iteration, where
it is defined by:

Bwlplp*, f1= /\ Bwlp[p, f]. (13)

n
1=0

In (13), n is the scope set for the depth of iteration.
We now extend the definition of function M T to partial correctness state-
ments by the condition:

MTl« {p} Bl = MTla = Bwlplp, B1l.

Of course this proof method is not complete, but clearly it is not meant to be;
from the very beginning we placed restrictions on the domains involved in the
specification to be able to turn first-order formulas into propositional formulas.
This is just another step in the same direction.

5.4 A Short Case Study

In this section we will develop a short case study to show how this proof method
is used. As an instance of (12), let us consider a system whose cache agrees with
main memory in all nondirty addresses. A consistency criterion of the cache
with main memory is that after finitely many executions of SysWrite or Flush,
the resulting system must still satisfy the invariant DirtyInv. This property is
specified in DynAlloy by:

all s : System |
DirtyInv(s)
{(SysWrite(s) + Flush(s))*}
DirtyInv(s).

(14)

Notice also that if after finitely many executions of SysWrite and Flush
we flush all the dirty addresses in the cache to main memory, the resulting
cache should fully agree with main memory. In order to specify this property
we need to specify the function that flushes all the dirty cache addresses. The

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

510 U M. F. Frias et al.

is interpreted
DynAlloy FDL

Fig. 8. Relationships among the formalisms DynAlloy and FDL.
specification is as follows:

S = 8o
{DSFlush(s : System)}

s.cache.dirty = @ A
s.cache.map = sg.cache.map —
sg.cache.map[sg.cache.dirty] A
s.main.map = so.main.map ++ sp.cache.mapl[sy.cache.dirty]

We specify the property establishing the agreement of the cache with main
memory as follows:

FullyAgree(s : System) <= s.cache.map in s.main.map.

Once “DSFlush” and “FullyAgree” have been specified, the property is spec-
ified in DynAlloy by:
all s : System |
DirtyInv(s)
{(SysWrite(s) + Flush(s))*; DSFlush(s)}
FullyAgree(s).

(15)

Now, it only remains to apply function M T to formula (15) and feed the Alloy
analyzer with the resulting formula.

6. A COMPLETE CALCULUS FOR DYNAMIC ALLOY

In this section we present a complete calculus for reasoning about properties
specified in DynAlloy. Recalling Figure 1, in this Section we deal with the portion
reproduced in Figure 8.

The formalism FDL (Fork Dynamic Logic) can be succinctly described as first-
order dynamic logic over the equational theory of fork algebras. The reason
for using dynamic logic is that there is a close relationship between this logic
and partial correctness assertions. In Section 6.1 we present the syntax and
semantics of first-order dynamic logic. In Section 6.2, dynamic logic is extended
with fork algebras. We then extend function RL — FRL so that it also translates
partial correctness assertions. Finally, in Section 6.3 we present a complete
calculus for FDL.

6.1 Dynamic Logic

Dynamiclogicis a formalism for reasoning about programs. From a set of atomic
actions (usually assignments of terms to variables), and using appropriate com-
binators, it is possible to build complex actions. The logic then allows us to state

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 511

action ::= a1, ...ay (atomic actions)

| skip

| action+action (non-deterministic choice)
| action;action (sequential composition)

| action* (finite iteration)

| dform? (test)

expr 1= var
| f(expry,...,expry) (f € F with arity k)

dform ::= p(expry,...,expr,) (p € P with arity n)
| Idform (negation)

| dform && dform (conjunction)

| dform || dform (disjunction)

| all v : type | dform (universal)

| some v : type | dform (existential)

| [action]dform (box)

Fig. 9. Syntax of dynamic logic.

properties of these actions, which may hold or not in a given structure. Actions
can change (as usually programs do), the values of variables. We will assume
that each action reads and/or modifies the value of finitely many variables.
When compared with classical first—order logic, the essential difference is the
dynamic content of dynamic logic, which is clear in the notion of satisfiabil-
ity. While satisfiability in classical first—order logic depends on the values of
variables in one valuation (state), in dynamic logic it is necessary to consider
two valuations in order to reflect the change of values of program variables;
one valuation holds the values of variables before the action is performed, and
another holds the values of variables after the action is executed.

Along the section we will assume a fixed (but arbitrary) finite signature
Y =(s,A,F,P), wheresisasort, A={ai,...,a}is the set of atomic action
symbols, F' is the set of function symbols, and P is the set of atomic predicate
symbols. Atomic actions contain input and output formal parameters. These
parameters are later instantiated with actual variables when actions are used
in a specification.

The sets of programs and formulas on ¥ are mutually defined in Figure 9.

As is standard in dynamic logic, states are valuations of the program vari-
ables (the actual parameters for actions). The environment env assigns a
domain s to sort s in which program variables take values. The set of states
is denoted by ST. For each action symbol a € A, env yields a binary relation
on the set of states, that is, a subset of ST x ST. The environment maps func-
tion symbols to concrete functions, and predicate symbols to relations of the
corresponding arity. The semantics of the logic is given in Figure 10.

6.2 FDL: Dynamic Logic over Fork Algebras

In Section 6.1 we introduced first-order dynamic logic. As with classical first-
order logic, it is possible to extend the language of dynamic logic by adding
new symbols, and also to add new axioms giving meaning to these. In order to
define FDL, we include in the set of function symbols of signature X, the set of

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

512 U M. F. Frias et al.

Q : form — ST — Boolean
P : action — P (ST x ST)
Z :expr — ST — s

Qlp(t1, ..., tn)p = (Z[t1]p, - .., Z[tn]p) € env(p) (atomic formula)
QIIFp = —Q[Flp

QF&&GIp = Q[F|pn A Q[G]u

QIF || Glu = Q[F]pu v QG

Qlall vt | Flu= MQIF)(s & vz) | = € env(t)}

Qlsome vt | Flu= V{QIF)(n® va) | z € env(t)}

Ql[alF Jp = NQIFIv | (u,v) € P(a)}

Pla] = env(a) (atomic action)
Plskip] = {(p,pn) : p € ST}
Pla + b] = Pla] U P[b]

Pla;b] = Pla]o P[b]

Pla*] = (Pla])*

Pla?] = { (s, 1) : Qo }

Z[olu = p(v)
Z[f (b1,)l = env(f)(Zlta I ., Zlt]p)

Fig. 10. Semantics of dynamic logic.

constants {0, 1, Id}, the set of unary symbols {7, ”, *}, and the set of binary sym-
bols { +, -, ;, V }. The only predicate we will consider is equality. Since these
signatures include all operation symbols from fork algebras, they will be called
fork signatures. Once FDL is defined, the main result in this section (Theo-
rem 6.4) is an interpretation of DynAlloy into FDL. That is, we will present a
semantics—preserving mapping from DynAlloy formulas to FDL formulas. This
will allow us, in Section 6.3, to present a complete calculus for FDL, which can
be used for proving DynAlloy theorems.

Remark 1. Notice that FDL atomic formulas are equalities between fork
algebra terms, and thus, for atomic formulas, function @ from Figure 10 and
function N from Figure 3 agree.

We will call theories containing the identities (axioms) specifying the class of
fork algebras FDL theories. By working with FDL theories, we intend to describe
structures for dynamic logic whose domains are sets of binary relations. This
is indeed the case as it is shown in the following theorem.

THEOREM 6.1. Let T be a fork signature, and V¥ be a FDL theory. For each
model 2 for ¥ there exists a model B for W, isomorphic to 2, in which the domain
s is a set of binary relations.

Proofr. Let us consider the reduct A of the model 2, obtained by keeping
A’s domain and the fork algebra operations. Then A is a structure of the form
(A, +,-,7,0,1,;,%, Id, V) in which the semantics of action, function and pred-
icate symbols is given through an environment env. Since ¥ is an FDL theory
(and therefore satisfies the axioms for fork algebras), A is a fork algebra. Thus,
by Frias et al. [1997] and Frias [2002, Theorem 4.2], 2(is isomorphic to a proper

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 513

fork algebra with domain B. Let 2~ : A — B be the isomorphism. In order to
define the model B we will define an environment env’ for action, function and
predicate symbols as follows:

—Actions: (s, s') € env'(a) <= (h7(s),h7!(s")) € env(a), where for a state s,
h~1(s) is the state satisfying (A~ 1(s))(v) = A~ 1(s(v)).

—Functions: [env'(f)] (b) = h ([env(f)] (R1(b))).

—Predicates: b € env'(p) <= h~1(b) € env(p).

By construction, 9B is isomorphic to 2. O

The previous theorem is essential, and its proof, which makes use of Frias
[2002, Theorem 4.2], heavily relies on the use of fork algebras rather than plain
relation algebras [Tarski and Givant 1987]. A model for an FDL theory ¥ is a
structure satisfying all the formulas in W. Such a structure can, or cannot, have
binary relations in its domain. Theorem 6.1 shows that models whose domains
are not a set of binary relations are isomorphic to models in which the domain
is a set of binary relations. This allows us to look at specifications in FRL, and
interpret them as properties predicating about binary relations.

We will end this section by presenting the extension of function RL — FRL
to partial correctness assertions. The extension, which is defined as RL — FRL
for the remaining formula patterns, is denoted by DynAlloy — FDL. Then,

DynAlloy - FDL (a{p}B) = RL > FRL(«) = [p] RL > FRL(A).

In the following paragraphs we present a theorem describing the relationship
established by the translation, between the formalisms DynAlloy and FDL.

LEmMmA 6.2. Let o be a DynAlloy formula. Let e be a DynAlloy environment,
and A the function that assigns meaning to atomic actions. Then, there exists
an FDL environment e such that

Mlale = Q[DynAlloy — FDL(x)le.
Proor. Let environment ¢ be defined by:

—for each variable v denoting a n-ary relation ¢, we define e(v) = ¢ (the binary
encoding of relation c, cf. 4.1.2),

—for each atomic action symbol a, we define
ela) = {(e},ey) : (e1,e2) € Ala)},

where e, e, are defined from e; and e; as in Theorem 4.1.

The proof now proceeds by induction on the structure of formula «. For the
sake of simplicity we will present the proof for atomic formulas and partial
correctness assertions.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

514 . M. F. Frias et al.
Let o be atomic: o = ¢1ints.

Mty in tole

= NI[RL — FRL(#; in t5)le’ {by Theorem 4.2}
= N[RL — FRL(# in)l {because no actions occur in o}
= Q[RL— FRL(#; in ta)le {by Remark 1}

= QI[DynAlloy — FDL(¢; in t2)le {because « is a RL formula}

Let o = B{p}y.

MIB{p}yle

= MI(Ble = Vei ((e,e1) € P[p] = Mlyle)
{by def. M}

= NI[RL — FRL(B)le’ = foralle| ([’,e,) € P[p] = NIRL+— FRL(y)le})
{by Thm 4.2}

= Q[RL—~ FRL(B)le’ = Ve, ([¢/,e}) € P[p] = QI[RL — FRL(y)le})
{by Remark 1}

= Q[RL— FRL(B) = [pIRL —~ FRL(y)le
{by semantics of FDL and definition of ¢}

= Q[DynAlloy — FDL(8{p}y)le.
{by definition of DynAlloy — FDL} |

LEMMA 6.3. Let a be a DynAlloy formula. Let € be an FDL environment.
Then, there exists a function A assigning meaning to actions and an environment
e for DynAlloy such that

QIDynAlloy > FDL(a)]é = M[cle.

Proor. Notice that FDL environments differ from DynAlloy environments in
that the former assign meaning to actions, while the latter only assign meaning
to variables. Thus, from the FDL environment e we can project a valuation e’ for
the variables. Notice also that e’ assigns meaning to binary relations, but these
relations can be seen as encodings for higher rank relations (cf. 4.1.2). Thus,
from e’ we obtain the DynAlloy valuation e defined by: e(v) = {{(a1,aq,...,a,) :
(a1, ag % - --xay) € e'(v)}. It only remains to define function A. Let a be an atomic
action symbol. We define

Ala) = {(e1, e2) : (e}, e5) € ea)}.

The proof now proceeds by induction on the structure of the formula o and
is left as an exercise for the reader. O

THEOREM 6.4. Let a be a DynAlloy formula. Then, « is valid in DynAlloy if
and only if DynAlloy — FDL(«x) is valid in FDL.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 515

Proor.
DynAlloy — FDL(«) is not valid in FDL

< Je (—~Q[DynAlloy — FDL(a)Je) (by semantics FDL)
< Je (~Mlal(e)) (by Lemmas 6.2 and 6.3)
<= « is not valid in DynAlloy. (by semantics DynAlloy)

O

6.3 A Complete Calculus for FDL

In this section we present a complete calculus for FDL. Notice that due to
Theorem 6.4, we can use this calculus for reasoning about the validity of
DynAlloy assertions.

The set of axioms for FDL is the set of axioms for classical first-order logic,
enriched with the axioms and rules for closure fork algebras, and the following
axiom schemas for first-order dynamic logic:

—(P)a A[P]B = (P)aAPp),

—(P)aVp) & (PlaV (P,

—(Po+ Pi)a & (Po)a Vv (Pr)a,

—(Po; P1)a & (Po)(P1)a,

—(@?B & anB,

—a VvV {(P)Y{P*Ya = (P"a,

—(PHa = aV (P*)(—a A (P)a),

—(x <« ta & alx/t],

—a <& «; where @ is « in which some occurrence of program P has been

replaced by the program z < x; P’;x <« z, for z not appearing in «, and P’
is P with all the occurrences of x replaced by z.

The inference rules are those used for classical first-order logic plus:

—Generalization rule for the necessarily modal statement:

o

[Pla

— Infinitary convergence rule:
(VYn : nat)o = [P"*]B)
o= [P*]
A proof of the completeness of the calculus for dynamic logic is presented in
Harel et al. [2000, Theorem 15.1.4]. Joining this theorem with the completeness

of the axiomatization of closure fork algebras [Frias 2002, Theorem 4.3], it
follows that this calculus is complete with respect to the semantics of FDL.

7. VERIFYING ALLOY SPECIFICATIONS WITH PVS

As has been shown in previous sections, the extended kernel for Alloy that
has been presented here is a language suitable for the description of systems

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

516 U M. F. Frias et al.

{-1} alpha 1
{-2} alpha 2

{-n} alpha n

{1} beta 1
{2} beta 2

{m} beta m
Fig. 11. Diagrammatic representation of sequents.

behavior. There are different options in order to reason about such descriptions.
Techniques such as model checking, SAT solving and theorem proving give one
the possibility of detecting system flaws during early stages of the design life
cycle.

Regarding the problem of theorem proving, there are several theorem provers
that can be used to carry out this task. Among them, we can mention Isabelle
[Nipkow et al. 2002], HOL [Gordon and Melham 1993], Coq [Dowek et al. 1993]
and PVS [Owre et al. 1992]. PVS (Prototype Verification System), is a powerful
and widely used theorem prover that has shown very good results when applied
to the specification and verification of real systems [Owre et al. 1998]. Thus, we
will concentrate on the use of this particular theorem prover in order to prove
assertions from Alloy specifications.

As has been described in the basic PVS bibliography [Owre et al. 2001a,
2001b, 2001c], PVS is a theorem prover built on classical higher order logic.
The main purpose of this tool is to provide formal support during the design of
systems, in a way in which concepts are described in abstract terms to allow a
better level of analysis. Some distinguishing features of PVS for system speci-
fication are an advanced data-type specification language [Owre and Shankar
1993], the notion of subtypes and dependent types [Owre et al. 2001a], the pos-
sibility to define parametric theories [Owre et al. 2001a], and a collection of
powerful proof commands to carry out propositional, equality, and arithmetic
reasoning [Owre et al. 2001b]. These proof commands can be combined to form
proof strategies. The last feature simplifies the process of developing, debug-
ging, maintaining, and presenting proofs.

Assertions are presented to PVS in the form of sequents. A sequent is dia-
grammatically presented as shown in Figure 11.

The formulas in the upper part of the sequent are called premises, and those
in the lower part of the sequent are the conclusions. A sequent such as the one
presented in Figure 11 asserts that the disjunction of the conclusions follows
from the conjunction of the premises. This semantics is induced by the deduction
rules of the calculus.

Using PVS to reason about Alloy specifications is not trivial because this
language is not supported by the PVS tool itself. To bridge this gap, a proof
checker was built by encoding the new semantics for Alloy into PVS’ language
[Lopez Pombo et al. 2002].

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 517

FODL_Language [Constant: TYPE,
Metavariable: TYPE,
Variable: TYPE,
Predicate: TYPE, sigPredicate: [Predicate -> nat],
Function_: TYPE, sigFunction_: [Function_ -> nat]]:
DATATYPE WITH SUBTYPES Term., Formula_, Program_

BEGIN

“Construct a Term_ from a constant / metavariable / variable symbol.”
c(c: Constant): c?: Term_
m(m: Metavariable): m?: Term_
v(v: Variable): v?: Term-

“Constructs a Term_ from a function application of a function symbol to a list of Term_.”
F(f: Function_, 1F: 1Prime: list[Term.] | ...): F?: Term_

“Construct a Formula_ by applying boolean operators to a / two Formula_.”
NOT(f: Formula.): NOT?: Formula_
OR(f.0, f_1: Formula_): OR?: Formula._

“Constructs a Formula_ from a predicate application of a predicate symbol to a list of Term_.”
P(p: Predicate, 1P: 1Prime: list[Term.] | ...): P?: Formula_

“Constructs a (an equation) Formula_ from two Term_.”
=(t_0: Term_, t_1: Term_): EQ?: Formula_

“Constructs a (universally quantified) Formula- from (variable) Term_ and a Formula_.”
FORALL_(x: (v?), f: Formula_.): FORALL?: Formula_

“Constructs a (box) Formula_ from a Program_ and a Formula_.”
[J(P: Program_, f: Formula.): BOX?: Formula_

“Constructs a (test) Program_ from a Formula_.”
T?(f: Formula.): T??: Program_

“Constructs a (atomic action) Program_ from two Formula_.”
A(pre_post: [Formula_, Formula_]): A?: Program_

“Constructs a (skip / assignment / sequential composition / choice / iteration) Program_.”
SKIP: SKIP?: Program_
<|(x: (v?), t: Term.): ASSIGNMENT?: Program_
//(PO, P_1: Program_): COMPOSITION?: Program_
+(P_0, P_1: Program_): CHOICE?: Program_
*(P: Program_): ITERATION?: Program_

END FODL_Language

Fig. 12. Dynamic logic language encoded in as a PVS theory.

This framework is separated in two parts. The first one is a packet of thirteen
files containing the theories needed to encode the fragment of the language that
is common in every specification, for example, the file “FODL_Language.pvs”,
presented in Figure 12. This theory contains an encoding of the language of
dynamic logic. Notice that the fact that this theory is common to every speci-
fication relies on the use of abstract data types, parametric theories, subtypes
and dependent types.

The other files contain those theories that depend on the specification. Taking
as a case study the memories with cache (systems) presented in Section 5.2, we
provided five theories in order to build the PVS specification.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

518 U M. F. Frias et al.

Preservation_of _DirtyInv: LEMMA
FORALL_(v(cs), DirtyInv(v(cs)) IMPLIES
[1(*(SysWrite(v(cs))+Flush(v(cs))),
DirtyInv(v(cs))))

Fig. 13. PVS translation of Formula (14).

Consistency_criterion: THEOUREM
FORALL_(v(cs), DirtyInv(v(cs)) IMPLIES
[1 (x(SysWrite(v(cs))+Flush(v(cs)))//DSFlush(v(cs)),
FullyAgree(v(cs))))

Fig. 14. PVS translation of Formula (15).

Once the theories are built, we can start the theorem proving process. In
Figures 13 and 14 we show, as examples, the PVS translation of Formulas (14)
and (15).

Figures 15 and 16 show the PVS proof scripts of the properties stated in
Figures 13 and 14.

Notice that in the proof script shown in Figure 15, two lemmas were used
to complete the proof. These lemmas state that the application of the functions
SysWrite and Flush preserves the validity of the formula DirtyInv. In FDL the
lemmas are stated as follows:

(Vs : System)(DirtyInv(s) = [SysWrite(s)]DirtyInv(s))
(Vs : System)(DirtyInv(s) = [Flush(s)]DirtyInv(s))

In the proof script presented in Figure 15, these lemmas appear referenced
by the names “SysWrite_preserves DirtyInv” and “Flush_preserves DirtyInv.”

In the case of the proof script of Figure 16, we also used a lemma to complete
the proof. The lemma states that if the formula DirtyInv is satisfied, after the
application of function DSFlush the formula FullyAgree is satisfied too. This
property is specified in FDL by the formula

(Vs : System)(DirtyInv(s) = [DSFlush(s)]FullyAgree(s)).

During the proving process various strategies have been used. Some of them
are strategies already defined in PVS, while others were implemented by us in
order to make the framework friendlier to the user. Since only objects of type
bool can take place in a sequent, Alloy formulas cannot be part of sequents
unless they are conveniently preprocessed. This is why, given a formula «, we
will prove the formula

FORALL (w : World.) : meaningF(f) (w). (16)

rather than « itself. In Formula (16), function meaningF has type Formula_ —
World_- — bool, and its definition is such that it asserts the validity of the
formula « in the world w. Notice that there is no ambiguity in saying that o
holds, because by Theorem 6.1 « is a theorem if and only if it is valid in the
semantics we defined.

In order to improve readability of formulas (and therefore the usability of
the tool), we have defined a conversion so the user can simply declare

Theorem_1 : THEOREM f,

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

prove a theorem declared as “Theorem_1
the sequent

Reasoning About Static and Dynamic Properties in Alloy

;33 Proof for formula SpecProperties.Preservation_of DirtyInv ;;;
developed with old decision procedures (""

(EXPAND-MEANING)

(EXPAND-MEANING 1)

(EXPAND-MEANING 1)

(SKOSIMPx*)

(PURIFY-FODL -1)

(LEMMA "PDL_6_box_form")

(INST -1 "DirtyInv(v(cs))"
"SysWrite(v(cs)) + Flush(v(cs))"
"w!l WITH [(cs) := t!'1]1")

(EXPAND-MEANING -1)

(INST?)

(EXPAND-MEANING -1)

(PROP)

(HIDE 2)

(EXPAND-MEANING 1)

(PROP)

(("1" (PURIFY-FODL 1))

(||2||

(EXPAND-MEANING 1)

(SKOSIMP*)

(EXPAND-MEANING 1)

(PROP)

(PURIFY-FODL -2)

(EXPAND-MEANING 1)

(SKOSIMP*)

(PURIFY-FODL 1)

(HIDE -1 -4)

(PURIFY-FODL -2)

(PROP)

(G
(LEMMA "SysWrite_preserves_DirtyInv")
(PURIFY-FODL -1)
(INST -1 "wPrime!2")
(INST -1 "mMetavariable!1l")
(INST -1 "wPrime!1(cs)™)
(PROP)
(INST -1 "wPrime!2")
(PROP))

(||2||

(LEMMA "Flush_preserves_DirtyInv")
(PURIFY-FODL -1)
(INST -1 "wPrime!2")
(INST -1 "mMetavariable!1")
(INST -1 "wPrime!1(cs)")

(PROP)
(INST -1 "wPrime!2")
(PROP))))))

Fig. 15. PVS proof script of formula in Figure 13.

519

is automatically turned into Theorem_1 : THEOREM FORALL (w

meaningF (f) (w). This means that whenever the user attempts to

{1} FORALL (w : World_) : meaningF (f) (w)

{1} FORALL (w : World.) : (£)(w)

THEOREM £”, PVS internally builds

Notice that there is no harm or ambiguity in pretty-printing the sequent as

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

520 U M. F. Frias et al.

533 Proof for formula SpecProperties.Consistency_criterion ;;;
developed with old decision procedures (""

(EXPAND "Consistency_criterion" 1)

(EXPAND-MEANING 1)

(EXPAND-MEANING 1)

(EXPAND-MEANING 1)

(SKOSIMP*)

(PURIFY-FODL -1)

(LEMMA "PDL_4_box_form")

(INST -1 "FullyAgree(v(cs))"
"x(SysWrite(v(cs)) + Flush(v(cs)))"
"DSFlush(v(cs))" "w!l WITH [(cs) := t!1]")

(EXPAND-MEANING -1)

(INST -1 "mMetavariable!1")

(EXPAND-MEANING -1)

(PROP)

(HIDE 2 3)

(EXPAND-MEANING 1)

(SKOSIMP*)

(LEMMA "Preservation_of_DirtyInv")

(EXPAND "Preservation_DirtyInv" -1)

(EXPAND-MEANING -1)

(EXPAND-MEANING -1)

(INST -1 "w!1 WITH [(cs) := t!1]1")

(INST -1 "mMetavariable!1")

(INST -1 "(w!l WITH [(cs) := t!'1])(cs)™)

(EXPAND-MEANING -1)

(PROP)

(G

(EXPAND-MEANING -1)

(INST -1 "wPrime!1")

(PROP)

(PURIFY-FODL -1)

(LEMMA "DSFlush_leaves_FullyAgree")

(EXPAND "DSFlush_leaves_FullyAgree" -1)

(EXPAND-MEANING -1)

(EXPAND-MEANING -1)

(INST -1 "wPrime!1")

(INST -1 "mMetavariable!1")

(INST -1 "wPrime!1(cs)")

(EXPAND-MEANING -1)

(PROP)

(("1" (HIDE -2 -3 -4) (PURIFY-FODL))
("2" (HIDE -2 -3 2) (PURIFY-FODL))))

("2" (HIDE -1 2) (PURIFY-FODL))))

Fig. 16. PVS proof script of the formula in Figure 14.

because constructing the semantics of f and proving that the formula describ-
ing the semantics holds in every world is the only way to prove, in PVS, that
f is a theorem. Thus, the application of the function meaningF can, and most
often will, remain implicit. In order to leave the application implicit we built
a strategy in PVS that unfolds the meaning function but avoids making any
explicit reference to meaningF in the resulting expression. For instance, if we
unfolded the (implicit) occurrence of meaningF in the formula (a v 8)(w), we
would obtain the formula (x)(w) v (B)(w).

As is shown in the proof script presented in Figure 15, the first strategy
applied is (EXPAND-MEANING) and the result is the sequent

{1} FORALL (w:World_):
FORALL (mMetavariable:AssMetavariable):
(f) (mMetavariable) (w)

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 521

This sequent is the pretty-printed version of the sequent

{1} FORALL (w:World_):
FORALL (mMetavariable:AssMetavariable):
m(mMetavariable) (inl(f)) w

and considers a new definition of the meaning function that involves the use
of valuations for rigid variables. These valuations are necessary for the sake
of specifying pre and post conditions. The next example shows how this rigid
variables are used:

(Ym : Memory)(Vd : Data)(Va : Addr) |
(m=My N d =Dy = [Write(m,a,d);Read(m,a,d)l(d = Dy))

In the previous assertion, M, and D, are variables that record the initial
values of variables m and d, respectively. The value of My and Dy must remain
the same in all worlds, and this is the reason why these variables are called
rigid. In order to prove the validity of the assertion, it is necessary to allow
My and Dy to range over all possible memories and data, respectively. Since
mMetavariable ranges over valuations for the rigid variables, this is achieved
by universally quantifying mMetavariable. From now on the meaning function
will be denoted by m, and will recursively construct the semantics of a formula
each time its definition is implicitly expanded by the application of the strategy
(EXPAND-MEANING ...) to a formula number.

The next strategy applied in the proof script is called SKOSIMP. This strategy
skolemises a universal quantifier, and the star is used to tell PVS that it should
skolemise as many quantifiers as possible, even if that requires simplifying the
sequent by breaking conjunctions and disjunctions in the sequent. Essentially,
if we apply this strategy to the sequent

{1} FORALL (w: World_):
FORALL (mMetavariable: AssMetavariable):
(f) (mMetavariable) (w)

we will obtain as a result

{1} (£) (mMetavariable!1) (w!1)

due to the introduction of Skolem constants to replace the quantifiers.

After that, a strategy called PURIFY-FODL is applied. This strategy was de-
signed to perform all the expansions necessary in order to construct the se-
mantics of the formula whose number is given as argument. If the argument is
omitted, all the formulas in the sequent are expanded. Notice that this proce-
dure involves the recursive expansion of the meaning function.

The use of the command LEMMA allows the user to introduce a given formula
as a hypothesis (it will appear in the upper part of the sequent, and will be

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

522 U M. F. Frias et al.

numbered as -1). To get a complete proof of the target property this formula
must be discharged. Otherwise, the proof is considered incomplete because it
relies on a lemma whose proofis still pending. Suppose we want to use a formula
g, that was named “hypothesis_for_f” when it was declared, as an assumption
to prove formula f. Applying the command (LEMMA “hypothesis_for_f”) has the
following effect:

{1} (f) (mMetavariable!1) (w!1)

Following the proof script, the INST command is applied. This command tells
PVS that the universal quantifiers in the formula given as argument must be
instantiated with the terms listed in the call. The quantifiers are instantiated
in the order they appear in the formula. Notice that one of the terms used
to instantiate the quantifiers is “w!1 WITH [(cs) := t!1]”. This is the PVS
notation for functional update, and stands for the world (valuation) that agrees
in all variables but cs with world w!1. This world evaluates variable cs to the
value “t!1”.

Another command used during the proof is HIDE. This command hides for-
mulas that appear in a sequent, therefore improving readability. If we have the
sequent

(-1} £1
-2} £2
(-3} £3

{1} &1
{2} g2

and apply (HIDE -2 2), the result is the sequent
(-1} 1

The command EXPAND appearing in the proof script is a primitive PVS com-
mand that allows one to substitute an identifier by its definition. For instance, if
function g is defined by g(x, y) = x + y, after the application of (EXPAND “g” 1)
to the sequent

{1} £ (x!'1, y!1) =g (r!1, s!1)

we obtain the sequent

(1} £ (x!'1, y!1) = r!1 + s!1

The last command to which we make reference in the proof script is PROP.
This command is used in order to simplify a sequent by:

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 523

—splitting conjunctions in the thesis part of the sequent or disjunctions in the
hypothesis part,

—flattening disjunctions in the thesis part of the sequent or disjunctions in the
hypothesis part.

The effect of this command can be seen as follows:

_ | ——=———- is transformed to

{1} p AND q
| -—————- and |-—————-
{1} p {1} q
{1} p AND q
[-—==——- is transformed to
{-1} p
{-2} q
[——
— [——————~ is transformed to
{1} p OR q
[———
{1} p
{2} q
— {-1}1 p OR q
[-—————- is transformed to
-1} p {-1} q

Notice that the remaining strategies and commands used in the proofs are
among the ones explained above. Even if the proof seems to be cryptic for readers
not familiar with PVS, it is quite short and straightforward for users used to
the framework and PVS’ language. This is partly because the use of lemmas
simplifies the process of proving a property by allowing modular proofs. We
recommend the reading of Lopez Pombo et al. [2002] as the reference material
for this section.

The example presented is rather simple, but it shows that our extension
of PVS can effectively be used for proving Alloy assertions. While there is no
theoretical limitation to the Alloy models that can be translated and verified
within PVS, modularization is the key toward successful theorem proving of
Alloy assertions.

8. CONCLUSIONS AND FURTHER WORK

We have succeeded in finding a logic that can be understood by an Alloy user
without demanding significant new skills. This logic possesses a complete and

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

524 U M. F. Frias et al.

purely relational equational calculus that can be used in the verification of
Alloy assertions. Further work includes the inclusion of the calculus in an ax-
iomatic theorem prover such as, for instance, Isabelle [Nipkow et al. 2002].
Also, we presented in Section 4.1.4 an example of a property that cannot be
analyzed with the Alloy analyzer but can be analyzed in FRL. This has to
be studied further in order to determine to what extent it extends to other
assertions.

Extending Alloy with actions allowed us to deal with properties of execu-
tions in a more natural and abstract way. We are currently modifying the Alloy
analyzer’s source code in order to analyze properties involving actions.

ACKNOWLEDGMENTS

We wish to thank Daniel Jackson for reading preliminary versions of this article
and making valuable suggestions. Also, Sam Owre and Natarajan Shankar are
to be thanked for their work on the verification of properties using PVS. Finally,
the anonymous referees made criticisms that in our opinion led to a much better
article than it was at first.

REFERENCES

AgriaL, J. 1996. The B-Book: assigning programs to meanings. Cambridge University Press,
New York, NY.

Arrounas, K. 2000. Denotational proof languages. Ph.D. thesis, Massachusetts Institute of
Technology.

Arrounas, K., KHursHID, S., MArINOV, D., AND RinarD, M. 2004. Integrating model checking and
theorem proving for relational reasoning. In Proceedings of the 7th Conference on Relational
Methods in Computer Science (RelMiCS)-2nd. International Workshop on Applications of Kleene
Algebra, R. Berghammer and B. Moller, Eds. Lecture Notes in Computer Science, vol. 3051.
Springer-Verlag, Malente, Germany, 204—213.

Bickrorp, M. AND GuaspPar, D. 1998. Lightweight analysis of UML. Tech. Rep. TM-98-0036,
Odyssey Research Associates, Ithaca, NY, November.

BoocH, G., RuMBAUGH, dJ., AND JAcoBsoN, 1. 1998. The Unified Modeling Language User Guide.
Addison—Wesley Longman Publishing Co., Inc., Boston, MA.

Burris, S. AND SANKAPPANAVAR, H. P. 1981. A Course in Universal Algebra. Graduate Texts in
Mathematics. Springer-Verlag, Berlin, Germany.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. 2000. Model Checking. MIT Press, Cambridge, MA.

CLEAVELAND, R., KLEIN, M., AND STEFFEN, B. 1993. Faster model checking for the modal mu-calculus.
In Proceedings of Computer Aided Verification (CAV), G. von Bochmann and D. K. Probst, Eds.
Lecture Notes in Computer Science, vol. 663. Springer-Verlag, Montreal, Canada, 410-422.

DisksTtrA, E. W. AND ScHOLTEN, C. S. 1990. Predicate Calculus and Program Semantics. Springer-
Verlag, New York, NY.

Dowek, G., FeLry, A., HERBELIN, H., HUET, G., MURTHY, C., PARENT, C., PAULIN-MOHRING, C., AND WERNER,
B. 1993. The coq proof assistant user’s guide (version 5.8). Tech. Rep. 154, INRIA, Rocquen-
court, France.

Frias, M. F. 2002. Fork Algebras in Algebra, Logic and Computer Science. Advances in Logic,
vol. 2. World Scientific Publishing Co., Singapore.

Frias, M. F,, Baum, G. A., AND MaBaum, T. S. E. 2002. Interpretability of first-order dynamic logic
in a relational calculus. In Proceedings of the 6th. Conference on Relational Methods in Computer
Science (RelMiCS)—TARSKI, H. de Swart, Ed. Lecture Notes in Computer Science, vol. 2561.
Springer-Verlag, Oisterwijk, The Netherlands, 66—80.

Frias, M. F., HAEBERER, A. M., AND VELOsO, P. A. S. 1997. A finite axiomatization for fork algebras.
Logic Journal of the IGPL 5, 3, 311-319.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

Reasoning About Static and Dynamic Properties in Alloy . 525

Frias, M. F., Lopez PomBo, C. G., Baum, G. A., AGUIRRE, N. M., AND MaiBaum, T. S. E. 2003. Taking
Alloy to the movies. In Proceedings of FM 2003: the 12th International FME Symposium, K. Araki,
S. Gnesi, and D. Mandrioli, Eds. Lecture Notes in Computer Science, vol. 2805. Springer-Verlag,
Pisa, Italy, 678-697.

Gorpon, M. J. axnpD MeLHAM, T. F., Eds. 1993. Introduction to HOL: A Theorem Proving Environ-
ment for Higher Order Logic. Cambridge University Press, New York, NY.

Harer, D., Kozen, D., anD TruryN, J. 2000. Dynamic Logic. Foundations of Computing. MIT Press,
Cambridge, MA.

Jackson, D. 2000. Automating first-order relational logic. In Proceedings of the 8th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM Press, San
Diego, California, 130-139.

Jackson, D. 2002a. Alloy: a lightweight object modelling notation. ACM Trans. Soft. Eng.
Meth. 11, 2, 256-290.

Jackson, D. 2002b. A Micromodel of Software: Lightweight Modelling and Analysis with Alloy.
MIT Laboratory for Computer Science, Cambridge, MA.

JACKSON, D., SCHECHTER, 1., AND SHLYAHTER, H. 2000. Alcoa: the alloy constraint analyzer. In Pro-
ceedings of the 22nd. International Conference on Software Engineering, C. Ghezzi, M. Jazayeri,
and A. L. Wolf, Eds. Association for the Computer Machinery and IEEE Computer Society, ACM
Press, Limerick, Ireland, 730-733.

JACKSON, D., SHLYAKHTER, I., AND SRIDHARAN, M. 2001. A micromodularity mechanism. In Pro-
ceedings of the 8th European Software Engineering Conference held together with the 9th
ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM Press,
Vienna, Austria, 62—73.

Jackson, D. anp Surnivan, K. 2000. COM revisited: tool-assisted modelling of an architectural
framework. In Proceedings of the 8th ACM SIGSOFT International Symposium on Foundations
of Software Engineering: Twenty-First Century Applications, D. S. Rosenblum, Ed. ACM Press,
San Diego, CA, 149-158.

JonEs, C. 1986. Systematic Software Development Using VDM. Prentice Hall, Hertfordshire, UK.

Lorez Pomeo, C. G., OWRE, S., AND SHANKAR, N. 2002. A semantic embedding of the Ag dy-
namic logic in PVS. Tech. Rep. SRI-CSL-02-04, Computer Science Laboratory, SRI International.
July.

MANNA, Z., ANUCHITANUKUL, A., BJgrNER, N., BROWNE, A., CHANG, E., CoLoN, M., DE ALFARO, L.,
Devarajan, H., Sipma, H., aND UriBg, T. 1994. STeP: The stanford temporal prover. Tech. Rep.,
Stanford University, Stanford, CA.

McMiLran, K. L. 1993. Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA.

Nrekow, T., Paurson, L. C., anpD WENzEL, M. 2002. [Isabelle/ HOL—A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer-Verlag, Berlin,
Germany.

OBJECT MANAGEMENT GROUP. 1997. Object Constraint Language Specification. Object Manage-
ment Group, Needham, MA, version 1.1.

OWwRE, S., RusHBy, J. M., AND SHANKAR, N. 1992. PVS: A prototype verification system. In Pro-
ceedings of the 11th International Conference on Automated Deduction (CADE), D. Kapur,
Ed. Lecture Notes in Artificial Intelligence, vol. 607. Springer-Verlag, Saratoga, NY, 148—
752.

OWRE, S., RusHBY, J. M., SHANKAR, N., AND STRINGER-CAIVERT, D. 1998. PVS: an experience report.
In Proceedings of Applied Formal Methods — (FM-Trends) ’98, D. Hutter, W. Stephan, P. Traverso,
and M. Ullman, Eds. Lecture Notes in Computer Science, vol. 1641. Springer-Verlag, Boppard,
Germany, 338-345.

OWRE, S. AND SHANKAR, N. 1993. Abstract datatypes in PVS. Tech. Rep. SRI-CSL-93-9R, Computer
Science Laboratory, SRI International. December. Subtantially revised in June 1997.

OWRE, S., SHANKAR, N., RusHBY, J. M., AND STRINGER-CALVERT, D. 2001a. PVS Language Reference,
Version 2.4 ed. SRI International.

OWRE, S., SHANKAR, N., RUsHBY, J. M., AND STRINGER-CALVERT, D. 2001b. PVS Prover Guide, Version
2.4 ed. Computer Science Laboratory, SRI International.

OWRE, S., SHANKAR, N., RUsHBY, J. M., AND STRINGER-CALVERT, D. 2001c. PVS System Guide, Version
2.4 ed. Computer Science Laboratory, SRI International.

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

526 U M. F. Frias et al.

Spivey, J. M. 1988. Understanding Z: A Specification Language and its Formal Semantics.
Cambridge University Press, New York, NY.

Tarski, A. AND GIVANT, S. 1987. A Formalization of Set Theory Without Variables. American Math-
ematical Society Collogium Publications, Providence, RI.

Varpi, M. Y. anp WoLPER, P. 1986. An automata-theoretic approach to automatic program verifi-
cation (preliminary report). In Proceedings of the Symposium on Logic in Computer Science ‘86,
A. Meyer, Ed. IEEE Computer Society, Cambridge, MA, 332—-344.

Received April 2003; revised August 2004 and April 2005; accepted June 2005

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 4, October 2005.

