
SOFTWARE TESTING, VERIFICATION AND RELIABILITY

Softw. Test. Verif. Reliab. 0000; 00:1–44

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Improving Lazy Abstraction for SCR Specifications through

Constraint Relaxation

Renzo Degiovanni1,3*, Pablo Ponzio1,3, Nazareno Aguirre1,3 and Marcelo Frias2,3

1Departamento de Computación, FCEFQyN, Universidad Nacional de Rı́o Cuarto, Rı́o Cuarto, Argentina.
2Departamento de Ingenierı́a Informática, Instituto Tecnológico Buenos Aires, Buenos Aires, Argentina.

3Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina.

SUMMARY

Formal requirements specifications, e.g. SCR (Software Cost Reduction) specifications, are challenging to

analyze using automated techniques such as model checking. Since such specifications are meant to capture

requirements, they tend to refer to real-world magnitudes often characterized through variables over large

domains. At the same time, they feature a high degree of non determinism, as opposed to other analysis

contexts such as (sequential) program verification. This makes model checking of SCR specifications

difficult even for symbolic approaches. Moreover, automated abstraction refinement techniques such as

counterexample guided abstraction refinement fail in many cases in this context, since the concrete state

space is typically large, and reaching specific states of interest may require complex executions involving

many different states, causing these approaches to perform many abstraction refinements, and making them

ineffective in practice.

In this paper, an approach to tackle the above situation, through a two-stage abstraction, is presented. The

specification is first relaxed, by disregarding the constraints imposed in the specification by physical laws

or by the environment, before being fed to a CEGAR (Counterexample Guided Abstraction Refinement)

procedure, tailored to SCR. By relaxing the original specification, shorter spurious counterexamples are

produced, favouring the abstraction refinement through the introduction of fewer abstraction predicates.

Then, when a counterexample is concretizable with respect to the relaxed (concrete) specification but it is

spurious with respect to the original specification, an efficient though incomplete refinement step is applied

to the constraints, to cause the removal of the spurious case.

This approach is experimentally assessed, comparing it with related techniques in the verification of

properties and in automated test case generation, using various SCR specifications drawn from the literature

as case studies. The experiments show that this new approach runs faster and scales better to larger, more

complex specifications than related techniques. Copyright © 0000 John Wiley & Sons, Ltd.

Received . . .

∗Correspondence to: Departamento de Computación, FCEFQyN, Universidad Nacional de Rı́o Cuarto. Ruta Nac. No.
36 Km. 601, Rı́o Cuarto (5800), Argentina. E-mail: rdegiovanni@dc.exa.unrc.edu.ar

Copyright © 0000 John Wiley & Sons, Ltd.

Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

2 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

1. INTRODUCTION

The requirements process, consisting of thoroughly describing the features that software artifacts

must possess, is recognized as an important phase in the development of quality software

[23, 37, 48]. This phase often involves some requirements specification framework or language

specifically designed for the task, whose usage leads to better requirements elicitation, e.g., by

exposing imprecisions in the description of software features, missing cases, and even contradictions

among different requirements. Thus, a main benefit of a rigorous requirements process lies in its

potential to expose errors at early stages of software development, when these are easier and less

expensive to correct.

Various approaches aim at aiding in eliciting, describing and organizing requirements, most of

which are based on informal notations (e.g., the approaches by Stevens et al. [47] an Maiden and

Alexander [42]). Some approaches, on the other hand, are based on formal notations, leading to

inherently unambiguous specifications, better suited for automated or semi-automated analyses.

Software Cost Reduction (SCR) [32, 27, 25] is a formal methodology for describing software

requirements. SCR’s distinctive feature is its tabular notation, that allows one to organize large

and unstructured requirements into smaller and well structured tables, yielding more modular

requirements specifications that are easier to understand and mantain. SCR is useful to describe

the interactions between a software system and its operating environment, as well as the particular

features imposed by the nature of the environment itself. SCR has been successfully used for

eliciting the requirements of many safety critical applications, including an aircraft’s operational

flight program [32], a submarine’s communications system [26], the control software of a nuclear

power plant [50], among others [9, 13, 39]. It has also been used as part of a process for

developing human-centric decision systems [30], and as part of an approach to the development

of trustworthy autonomous systems [31], and to derive event-based transition systems from goal

oriented requirements models [40]. In addition, several tools supporting automated analysis of

SCR specifications have been developed, most notably the toolset introduced by Heitmeyer et

al. [29], which performs type-checking, consistency checking (no contradictory requirements, no

missing cases, etc.), simulation of user provided scenarios, and other analysis tasks. Two particularly

difficult analyses regarding SCR specifications are test case generation, i.e., producing executions

of the system from the specification of the requirements, and the verification of properties of the

specification. The former is very important for contrasting the expected behaviour of the system, as

specified by the formal requirements, and the actual behaviour of the system once it is implemented

(it is in fact an instance of the so called model based testing approach). The latter is very useful

as a way of checking properties that are expected to emerge as a consequence of the requirements.

For both these analyses, a typical mechanism employed in the context of SCR specifications is

model checking, including some rather sophisticated approaches (e.g., those introduced by Bultan

and Heitmeyer [12]).

A main limitation in automated analyses is the state explosion problem: automated analyses

are at least polynomial on the size of the state space of a specification, and such size grows

exponentially with the complexity of the specification (e.g, increasing number of variables or

the size of their domains, increasing number of components in a specification). In requirements

specifications, there is typically a need to refer to real-world magnitudes, which are often formally

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 3

characterized through variables over large domains, increasing the size of the state space. Also,

since they correspond to early phases of software development, they often feature a high degree

of non determinism, compared to other more concrete descriptions, such as designs and source

code. Thus, model checking requirements specifications is a challenging task, even for symbolic

approaches. Approaches that use abstraction as a way of tackling state explosion, by producing

more abstract versions of a specification that are better suited for analysis, have also been employed

for requirements analysis. However, these mechanisms also suffer from known limitations. Some

approaches require manual abstractions [29, 22]. Heitmeyer et al. [29] perform ad hoc abstractions

on specifications, while Gargantini and Heitmeyer [22] propose manually shrinking the domains

of numeric variables before analysis. Ad hoc abstractions require careful observation of the

specification and the property to be verified, or the goal to be reached in the case of test case

generation, by an experienced engineer, a time consuming and expensive activity; on the other hand,

proving a property true or reaching a goal in a specification with manually reduced domains does not

guarantee that the property holds or the goal is actually reached in the original specification. This is

an important problem, in particular in relation to test case generation, where the produced test cases

are used to contrast expected behaviour with the actual system behaviour; when these scenarios

come from manually abstracted specifications, they will need to be (manually) concretized in order

to be contrastable with the system.

Techniques that automatically refine abstractions for analysis, e.g., Counterexample Guided

Abstraction Refinement (CEGAR), also have difficulties to be applied in the domain of requirements

specifications, since the concrete state space in such specifications is typically large, and reaching

specific states of interest may require complex executions involving many different states, causing

these approaches to perform many abstraction refinements, and making them ineffective in practice.

In this paper, an approach to tackle the above situation, through a two-stage abstraction,

is presented. The specification is first relaxed, by disregarding the constraints imposed in the

specification by physical laws or by the environment, before being fed to a CEGAR procedure,

tailored to SCR. Essentially, the first stage is motivated by the observation that, by disregarding

environmental constraints imposed on monitored (numerical) variables of SCR requirements

specifications, one obtains a relaxed specification, adequate for the verification of properties that

do not need to precisely track the validity of such environmental constraints. At the same time,

by relaxing the original specification, shorter spurious counterexamples are produced, favouring

the abstraction refinement through the introduction of fewer abstraction predicates. The second

stage is a standard CEGAR procedure [33], designed to exploit inherent characteristics of SCR

specifications such as the division of the state space in mode classes, to achieve better performance.

It is complete with respect to the relaxed specifications it is fed with. However, concretizable

counterexamples may still be spurious with respect to the original specification. These receive

a lightweight treatment, that only allows it to remove spurious cases when infeasibility can be

blamed on atomic transitions, through the addition of transition invariants that cause their removal,

constituting an incomplete refinement of the relaxed specification.

The presented technique is evaluated for verifying properties of requirements specifications and

generating tests from specifications, on a number of case studies taken from the literature. These

experiments show that this technique outperforms previous approaches (including previous work by

authors of this article [19], by orders of magnitude). Moreover, these cases show that indeed many

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

4 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

Old mode Event New mode

TooLow @T(mWaterPres >= Low) Permitted

Permitted @T(mWaterPres < Low) TooLow

Permitted @T(mWaterPres >= Permit) High

High @T(mWaterPres < Permit) Permitted

(a) Mode class mcPressure

Modes Events

High Never @F(mcPressure=High)

TooLow, @T(mBlock=On) @T(mcPressure=High)
Permitted when mReset=Off OR @T(mReset=On)

tOverridden True False

(b) Term tOverridden

Modes Conditions

High, Permitted True False

TooLow tOverridden NOT tOverridden

cSafetyInjection Off On

(c) Controlled var. cSafetyInjection

Figure 1. Tabular specification of the Safety Injection System

properties do not need to precisely track the validity of environmental constraints, witnessed by

the very low number of refinements required on the relaxed specifications, and that the lightweight

refinement of the relaxed specification is powerful enough to handle the assessed specifications, not

falling into its source of incompleteness in any of these cases.

The remainder of this article is organized as follows. In section 2 the SCR method is discussed,

as well as the motivation for this work. In Section 3 the lazy abstraction approach for the analysis of

SCR specifications is presented, which serves as a core of the whole analysis approach, described

in Section 4. Later on, in Section 5, the experimental evaluation is presented. Finally, Section 6

discusses related work, while the conclusions are presented in Section 7.

2. SOFTWARE COST REDUCTION

Software Cost Reduction (SCR) is a method and a language for describing software requirements

[28]. A distinctive feature of SCR is its tabular notation for describing requirements, resulting

in specifications that are more modular, and easier to understand and maintain. SCR is a formal

language with a precisely defined semantics. An SCR requirements specification describes how the

system must interact with its environment in order to accomplish its desired goal, e.g., ensuring that

some property always holds in the environment. In SCR, the system is conceived as an actuator

that reads the values of some quantities of interest from the environment via its monitored (input)

variables, and based on such inputs dictates which values the system must produce on its controlled

(output) variables, which in turn produce changes in output devices to (indirectly) alter the

environment to accomplish the system’s goal. From the point of view of the system, the environment

nondeterministically triggers input events, via (feasible) changes in the monitored variables. The

system is aware of the environmental alterations associated to input events through changes in

the monitored variables, and constantly reacts to these alterations producing values for controlled

variables, to mantain the intended properties in the environment. Formally, the requirements are

described in SCR by means of a mathematical relation among the system’s monitored and controlled

variables, called REQ, defining, for fixed values of monitored variables, the accepted values for the

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 5

system’s controlled variables. Furthermore, SCR allows one to describe constraints of the system’s

environment by means of another (mathematical) relation, called NAT.

As an example, that will be used as a running case study throughout this article, consider the

Safety Injection System (SIS) [17] and whose SCR specification is depicted in Figure 1. SIS is in

charge of partially controlling a nuclear power plant by tracking the water pressure of a cooling

subsystem via a monitored variable mWaterPres, and the state of two user-controlled switches,

one that prevents the system from being engaged (monitored variable mBlock), and another that

reactivates the system after being blocked (monitored variable mReset). SIS requirements (relation

REQ) should state that when the water pressure level is too low (dangerous), the system must

administer a “safety injection” that takes the water pressure back to a normal level. Thus, SIS sets

controlled variable cSafetyInjection to true to indicate that a safety injection must be applied.

Constraints on the SIS environment (relation NAT) may state, for instance, that due to physical laws

the water pressure levels can vary between 0 and 5000, and that the sensoring equipment guarantees

that the difference between two consecutive measurements of the water pressure level cannot be

greater than 10.

SCR also introduces the notions of modes and mode classes. A mode class is, essentially, an

internal controlled variable that allows the system to maintain state information, whose possible

values are the modes. For example, SIS defines mode class mcPressure, which introduces modes

TooLow, Permitted and High. These modes indicate that water pressure levels are currently

too low (dangerous), normal and high, respectively.

SCR specifications are typed, variables can only take values from their corresponding typesets.

A mode class’ typeset is the set of the modes it introduces. For the above example, mode class

mcPressure defines modes TooLow, Permitted and High; monitored variables mBlock

and mReset are of type {On,Off}, and mWaterPres is an integer ranging from 0 to 5000;

controlled variable cSafetyInjection is boolean. SCR also features the definition of constants;

in SIS, constants Low (900) and Permit (4000) represent the thresholds for entering modes

TooLow and High, respectively.

The syntax adopted for basic events in SCR is @T(cond), where cond is a logical predicate.

Its semantics is that the system (atomically) transitions from a state where cond does not

hold to a state satisfying cond, i.e., it intuitively reads as “cond becomes true”. For example,

@T(mWaterPress >= Low) (see the first row in Figure 1(a)) states that the water pressure level

just became greater than or equal to Low (it was less than Low in the previous state). Expression

@F(cond) is the dual of @T(cond) (“cond” just became false). The events that occur in the

system environment and affect the values of monitored variables are called input events. They drive

the execution of the system (i.e., the system reacts to input events).

The relation that governs the intended behaviour of the system, namely REQ, is captured in SCR

through a set of tables. Tables can be either mode transition, event or condition tables. A mode

transition table describes how a system’s mode class changes in response to events. SIS’ mode

transition table, corresponding to mode class mcPressure, is shown in Figure 1(a). For example,

the first row states that when the system is in mode TooLow, and monitored variable mWaterPres

is increased reaching or exceeding Low (i.e., input event @T(mWaterPres >= Low) occurs),

then the system transitions into mode Permitted. An event table defines how a variable (other

than a mode class) changes its value in response to events. The only event table for SIS is shown

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

6 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

in Figure 1(b). It defines a term (a kind of auxiliary internal variable of the specification) called

tOverridden. tOverriden is true when the system actions are overridden, i.e., when the

block switch is pressed and the reset switch is not, while the mode is not High. Figure 1(b)

shows that tOverriden takes the value True (row 3, column 2) when the mode is TooLow or

Permitted (row 2, column 1) and event @T(mBlock=On) when mReset=Off occurs (row

2, column 2). This last expression is an example of a conditioned event, which is triggered only

when mBlock becomes On while mReset is Off. Finally, a condition table defines a variable or

term as a function of other variables in the current state of the system. The condition table of SIS,

shown in Figure 1(c), defines the controlled variable cSafetyInjection in terms of the values

of mcPermitted and tOverriden. For example, the table states that the safety injection must

be applied (cSafetyInjection is On in row 3, column 3) when the system is in mode TooLow

(row 2, column 1) and the system actions are not overridden (row 2, column 3).

2.1. SCR semantics

In this section the standard SCR semantics is briefly discussed. The reader is referred to the work

of Heitmeyer et al. [29] for further details. In section 3.1 a slightly different presentation of this

SCR semantics, that fits better the introduction of the lazy predicate abstraction algorithm for SCR

analysis, is provided. Throughout this section a fixed SCR specification Spec is assumed.

Formally, the system modelled by Spec is represented by a labelled transition system (LTS)

ΣSpec = (S, S0, E, T), where S is the (finite) set of system states, S0 ✓ S are the initial states, and

E are the input events that it observes from its environment. The transition relation T ✓ S ⇥ E ⇥ S

is defined by the SCR tables and the NAT relation of Spec. If the system is in state s 2 S and input

event e 2 E is triggered, T indicates how to construct the new system state s0 (the system response

to e). Due to the constraints imposed on SCR tables, T is deterministic, i.e., given a source state s

and an event e, SCR tables and NAT constraints deterministically define s0 = T (s, e). In addition,

T is partial, since not all the input events are reacted to in all states. Moreover, SCR tables define a

dependency relation D between entities (xDy iff y is involved in the table defining x), which must

be a partial order.

There are some assumptions related to the occurrence of input events in the environment. First,

input events are triggered nondeterministically in the environment. At any given state, any enabled

input event might occur. An event is enabled if it is allowed to occur at the current state, according

to its definition, and satisfies NAT. For instance, assuming that NAT states that sensoring intervals

guarantee that mWaterPres cannot change more than 10 units in two consecutive measurements,

@T(mWaterPres>900) is only enabled in states in which mWaterPres 2 [891..900] (@T(c)

represents the fact that c becomes true in the state, i.e., c must be false for the event to be enabled).

Second, it is assumed that input events are triggered one at a time. In other words, exactly one input

event occurs at each system transition. This is often called the One-Input Assumption in the literature

[28].

Let us be more precise about the state space of the system. As mentioned before, there are four

kinds of entities in SCR: mode classes, terms, monitored and controlled variables. Each entity has an

associated datatype, a finite set of values that the entity can take. Function TY is defined to map each

entity to its corresponding datatype. In the case of a mode class m, TY maps it to {M1, . . . ,Mn},

the set of modes it defines. A state s 2 S is a total function mapping each entity x to a value in

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 7

TcSafetyInjection(mcPressure,tOverriden) =
(

Off if mcPressure = High _ mcPressure = Permitted _
(mcPressure = TooLow ^ tOverriden)

On if mcPressure = TooLow ^ ¬tOverriden

Figure 2. cSafetyInjection’s table function

TY (x); s(x) denotes x’s value in s. Since only finite datatypes are allowed in SCR, S is a finite set.

Notice that, as each entity must have a unique value in a given state s, each mode class m must have

a unique mode MDm(s) in s (when the system has only one mode class, the subscript m in MDm)

is dropped. Without loss of generality, it is assumed that every SCR specification Spec defines a

single mode class.

2.1.1. Tables. Intuitively, each SCR table Tx defines a dependent entity rx; when an input event

occurs, Tx describes the value of rx in either the current state or the next state (the latter denoted by

r0x). More precisely, if r1, . . . , rk are all the dependencies of rx (i.e., (rx, rj) 2 D for 1  j  k),

then Tx defines a total function Fx : TY (r1)⇥ . . .⇥ TY (rk) ! TY (rx), called the table function

for Tx. Being total functions, the tables ensure that for each state and input event exactly one

successor state exists (notice that the target state can be the same as the source state, when the

corresponding table does not prescribe a change in the value of the defined entity). Thus, the whole

set of SCR tables in Spec describes the transition relation T from ΣSpec, viewing it as a total function

by mapping a state s to itself when an event is not reacted to.

A condition table Tc defines the value of an entity rc as a function of the values of other entities

in the current state (i.e., it does not depend on events). The SCR method requires that Tc guarantees

completeness and disjointness [28], implying that in every state s 2 S, Tc must assign exactly one

value to rc. As an example, consider the condition table in Figure 1(c) that defines controlled

variable cSafetyInjection; this variable depends on mode class mcPressure and term

tOverriden, and its table function TcSafetyInjection is as shown in Figure 2.

An event table Te defines an entity re in terms of events. Te then typically must consider both

“old” (previous state) and “new” (current state) values of entities that re depends on. SCR requires

that Te guarantees disjointness, enforcing that two different table rows cannot simultaneously be

satisfied. Also, according to SCR semantics, different rows must yield different values for re.

Finally, if no event considered by Te takes place (in the circumstances that Te expects), then Te

maintains the same value of re in the next state (i.e., r0e = re). As an example, consider the event

table of Figure 1(b), defining term tOverriden. This term depends on the values of mBlock,

mBlock’, mReset, mReset’, mcPressure, mcPressure’ and tOverriden, and the

table function TtOverriden is as shown in Figure 3.

A mode transition table Tm is a particular case of an event table, defining how the system

transitions within modes of a mode class rm when events occur. Thus, the table function Fm for

Tm is defined similarly to event tables. In addition to the conditions imposed on event tables, Tm

has to meet a reachability condition ensuring that all modes in TY (rm) can be reached from its

prescribed initial mode.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

8 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

TtOverriden(mBlock,mReset,mcPressure,tOverriden,mBlock’,mReset’,mcPressure’) =
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

true if (mcPressure = TooLow ^ mBlock’ = On ^ mBlock = Off ^ mReset = Off)_
(mcPressure = Permitted ^ mBlock’ = On ^ mBlock = Off ^ mReset = Off)

false if (mcPressure = TooLow ^ mReset’ = On ^ mReset = Off)_
(mcPressure = Permitted ^ mReset’ = On ^ mReset = Off)_
(mcPressure’ 6= High ^ mcPressure = High)_
(mcPressure’ = High ^ mcPressure 6= High)

tOverriden otherwise

Figure 3. tOverriden’s table function

2.1.2. Executions, reachable states, and the verification of invariant properties. Let ΣSpec =

(S, S0, E, T) be Spec’s associated LTS. For set F ✓ E, F ⇤ (resp. F+) is defined to be the set of

all sequences (resp. non empty sequences) of events in F . The following notation is introduced.

For every e 2 F and es 2 F ⇤, e · es is the sequence resulting from prepending e to the beginning

of es, #es is the length of es, and es " i is the sequence containing the first i elements of es.

For states s, s0 2 S and event e 2 F , s
e
; s0 denotes T (s, e) = s0. Furthermore, for monitored

variable mv, s
mv
; s0 denotes that there exists an input event e modifying mv (e 2 mv) such that

s
e
; s0. The definition of ; is lifted to sequences of events in the usual way: s

λ
; s0 iff s = s0 (λ

represents the empty sequence), and s
e·es
; s0 iff there exists a state s00 such that s

e
; s00 ^ s00

es
; s0.

In addition, s
F⇤

; s0 (resp. s
F+

; s0) stands for 9es 2 F ⇤ | s
es
; s0 (resp. 9es 2 F+ | s

es
; s0). Hence,

for monitored variable mv, s
mv+

; s0 indicates that there exists a non empty sequence of events that

modify monitored variable mv that makes the system transition from s to s0.

An execution of ΣSpec is a sequence es 2 E⇤ of input events, starting at an initial state s0 2 S0.

Given an execution σ, #σ is the number of states in σ. Also, σ.i yields σ’s i-th state, for 0  i < #σ,

i.e., if s0
es"i
; si, then σ.i = si.

The set Reach(ΣSpec) of reachable states of ΣSpec is defined as the ending states of executions:

Reach(ΣSpec) = {s | 9s0 2 S0.s0
E⇤

; s}. An invariant property is a predicate P over S that holds

in every s 2 Reach(ΣSpec). A transition property is a predicate PT over S ⇥ S, that must be true in

every pair (s, s0) of consecutive reachable states, i.e., states such that there exists an execution σ and

value i such that σ.i = s and σ.(i+ 1) = s0.

A traditional way for verifying that an invariant property P holds in ΣSpec is to prove that

the set Reach(ΣSpec) does not intersect with the set of states satisfying ¬P . Notice that proving

that any overapproximation (superset) of Reach(ΣSpec) does not intersect with ¬P also suffices

to prove P valid in ΣSpec. As feasible transitions only lead to states in Reach(ΣSpec), then

proving a transition property PT valid can be done by proving that no transition executed from

states satisfying Reach(ΣSpec), or any overapproximation of it, satisfies ¬PT . The computation of

overapproximations is the core of abstract interpretation based approaches for verification, like the

work presented in this paper.

2.2. Abstraction based analysis for SCR and the numerical variables problem

Instead of directly dealing with the verification of a reachability property on a potentially very

large concrete LTS, abstraction based analyses propose to do so on an abstract state space, to

increase scalability. That is, given an LTS S = (S,Σ,!), an abstraction based approach proposes

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 9

considering regions, i.e., abstract states which represent sets of states from S, and abstract transitions

that overapproximate the ! transitions between the states constituting the regions. More precisely,

a region structure for LTS S is a structure R = (R,?,t,u, pre, post, [.]), consisting of a set R of

regions, where each region r represents a set [r]† of states of S; ? represents the empty set of states,

r t r0 and r u r0 are the union and intersection operators of [r] and [r0], respectively; pre(r, l) and

post(r, l) are the weakest precondition and strongest postcondition operators with respect to labels

(pre(r, l) returns the largest region such that, from all its states and traversing arcs labelled by l one

arrives at states in r; post(r, l) returns the largest set of states that can be reached from states in

r through transitions labelled by l), respectively. An abstraction structure A = (R, preA, postA,⇥)

for an LTS S complements a region structure R for S with abstract pre and post operators preA

and postA, and a precision preorder ⇥, such that pre(r, l) ✓ preA(r, l), post(r, l) ✓ postA(r, l) (i.e.,

abstract transitions overapproximate concrete transitions between sets of states), assuming that

r ✓ r0 denotes [r] ✓ [r0]. Moreover, preA and postA must be monotonic with respect to (⇥ \ ✓),

i.e., the precision preorder ⇥ intuitively indicates how close the abstract pre and post operators are

to the concrete ones, for given regions.

The above described general abstraction setting can be instantiated in various ways, in particular

through an effective one known as predicate abstraction. In predicate abstraction, regions are

characterized by sets of state properties called support predicates, and the concretization is

simply the set of states satisfying the corresponding predicates. More precisely, if P is a

set of predicates over S (i.e., for every p 2 P , [p] ✓ S), an abstraction structure AP (S) =

(RP (S), preAP , postAP ,⇥P) can be defined as follows:

• RP (S) = (R,?,t,u, pre, post, [.]), where the regions in R are pairs (ϕ,Γ), with Γ ✓ P being

a finite set of (local) support predicates, and ϕ is a boolean formula over the predicates of Γ.

The remaining elements of RP (S) are defined as follows: ?= (false, ;); (ϕ,Γ) t (ϕ0,Γ0) =

(ϕ _ ϕ0,Γ [Γ
0); (ϕ,Γ) u (ϕ0,Γ0) = (ϕ ^ ϕ0,Γ [Γ

0); pre((ϕ,Γ), l) = (ϕpre
l ,Γls) where ϕ

pre
l

is the weakest precondition of ϕ with respect to l and Γls is the least superset of Γ which

contains all predicates in ϕ
pre
l . Operator post is defined in a similar way. The concretization

[(ϕ,Γ)] of (ϕ,Γ) is defined as [ϕ] (the set of states satisfying ϕ).

• The abstract operator postAP is defined as follows: let (ϕ,Γ) be a region with ϕ = ϕ1 _ · · · _

ϕk in DNF (with support predicates as atomic formulas), and l be a label. postAP ((ϕ,Γ), l) is

the disjunction ψ1 _ ψ2 _ · · · _ ψk, where each ψi is a conjunction of all literals γ appearing

positively or negatively in Γ, and such that ϕi) pre(γ, l). The operator preAP is defined in a

similar way.

• ⇥ is defined in the following way: (ϕ,Γ)⇥ (ϕ0,Γ0) iff Γ ◆ Γ
0.

An important fact about abstraction based analyses, including predicate abstraction ones, is that

the process is sound but incomplete with respect to unreachability. That is, if a state is determined

unreachable in the abstract state space, it is guaranteed that it is unreachable in the concrete

state space; but, a state may be reachable in the abstract state space while being unreachable

in the concrete state space. This fact leads to possibly having spurious counterexamples, i.e.,

abstract counterexamples that cannot be “concretized” (reproduced in the concrete state space).

These spurious counterexamples can be removed by refining the abstraction, adding appropriate

†[.] : R ! 2S is the function that maps each region to the set of states it represents.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

10 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

abstraction predicates that make such counterexamples cease, making the abstraction closer to the

concrete state space. These new abstraction predicates can actually be computed automatically

from spurious counterexamples, e.g. via interpolation, leading to automated counterexample guided

abstraction refinement (CEGAR). Of course, the larger the set of abstraction predicates, the more

concrete the abstract state space, and the more expensive the analysis becomes, so it is important to

maintain the set of abstraction predicates small. Notice that the above characterization of predicate

abstraction, called lazy predicate abstraction and introduced in [33], allows it to maintain abstraction

predicates local to the regions, thus allowing one to refine only parts of the abstract state space, as

required, during a CEGAR process.

For illustration purposes, let us consider the following simple analysis scenario. Suppose that one

wants to check whether mode Permitted is reachable in the SIS specification or not, starting from

a particular initial state in which mcPressure = TooLow ^ mWaterPres=14. The initial

abstraction will have a single abstraction predicate, namely φ0 : mcPressure = Permitted,

and the abstract state space is as shown in Fig. 4(a). A first abstract trace reaching mode

Permitted is shown in Fig. 4(b), which is clearly spurious, since according to NAT an input

event can increase mWaterPres in at most 10 units at a time. In this case, the abstraction may

be refined by introducing a new abstraction predicate. Many approaches have been proposed to

(automatically) suggest such predicates. In the present case, when using an interpolation based

approach implemented on the MathSAT tool, the first abstraction predicate that is added to remove

the spurious counterexample is mWaterPres <= 24, which leads to the refined abstraction in

Fig 4(c). Now, for the refined abstraction, a new spurious counterexample is obtained, shown

in Fig. 4(d). Clearly, since at least 89 input events modifying mWaterPres must take place

for the system to transition to Permitted from the initial state, the process will need to

“discover” 88 abstraction predicates (mWaterPres=i, with i 2 {24, 34, 44, . . . , 894}) before

obtaining a (minimal) concretizable abstract counterexample, thus proving the reachability of mode

Permitted.

Since the size of the abstract model constructed in any predicate abstraction based approach grows

exponentially with respect to the number of abstraction predicates [24], requiring 88 abstraction

predicates makes this simple analysis scenario rather difficult. Notice how the restrictions imposed

by NAT affect the number of abstraction predicates required to produce concretizable abstract

counterexamples; for instance, if NAT asserts that mWaterPres can change in at most 5 units

in two consecutive measures, then the previous simple abstraction predicate based analysis will

require 176 abstraction predicates. Clearly, numerical monitored variables with large domains that

vary in small leaps (small compared to the size of the domain) are problematic for abstraction

based approaches. Since monitored variables with these characteristics appear frequently in SCR

specifications, as acknowledged by cases reported in the literature [12, 29, 21].

Let us now elaborate on the importance of a lazy abstraction approach, in contrast with a

standard predicate abstraction mechanism. Consider the abstract state transition representation of

the safety injection example, shown in Figure 5(a). This abstract transition system corresponds

to an abstraction built from only two abstraction predicates, namely mcPressure = TooLow

and mWaterPres=14, similar to the example used previously in this section; solid arrows

correspond to valid abstract state transitions triggered by changes in the water pressure, while

dotted lines indicate infeasible transitions, that had to be checked in the construction of the

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 11

mcPressure !=

Permitted

mcPressure =

Permitted

mcPressure !=

Permitted

&&

mWaterPres=<24

mcPressure !=

Permitted

&&

mWaterPres>24

mcPressure =

Permitted

&&

mWaterPres>24

(a)

(c)

mcPressure != Permitted mcPressure = Permitted

mcPressure != Permitted

mWaterPres<=24

mcPressure != Permitted

mWaterPres>24

mcPressure = Permitted

mWaterPres>24

(b)

(d)

Figure 4. A simple predicate abstraction and abstract counterexamples for the SIS specification.

abstract model. Suppose that, while trying to concretize an abstract counterexample reaching state

mcPressure != TooLow ^ mWaterPres != 14 in two steps, the abstraction predicate

mWaterPres <= 24 is discovered. A lazy abstraction approach would introduce this new

predicate only in states in which mcPressure != TooLow (the mode where the abstract trace

failed to be concretized), leading to a new abstract transition system, shown in Figure 5(b). In

this abstract transition system, infeasible states, that need to be checked for feasibility, are crossed,

and again valid and infeasible transitions are depicted with solid and dotted arrows, respectively.

On the other hand, if a standard predicate abstraction approach is used, then the new abstraction

predicate will be used in all states, leading to more states and more detailed transitions, as shown in

Figure 5(c). Notice how, even for this very small example, the number of states and transitions that

need to be checked for feasibility, increases significantly.

Lazy abstraction, originally introduced by Henzinger et al. [33], has proved to have an important

impact in abstraction based verification tools. This is acknowledged by the effectiveness of tools

like BLAST [7], and the increased scalability observed in various applications of the concept of

lazy abstraction [6, 46, 1, 15, 52].

3. LAZY PREDICATE ABSTRACTION FOR SCR

The end of the previous section motivates the approach that is introduced here, to analyze SCR

requirements specifications via (lazy) predicate abstraction. Given a specification Spec, and some

invariant property φ to verify on Spec, the approach starts by disregarding the NAT constraints in it,

obtaining a relaxed specification RSpec. Then, a lazy predicate abstraction is performed, to attempt

to verify φ on RSpec; since RSpec is weaker than Spec, the satisfaction of φ on RSpec implies its

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

12 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

mcPressure = TooLow

&& mWaterPres=14

mcPressure = TooLow

&& mWaterPres!=14

mcPressure != TooLow

&& mWaterPres!=14

(a)

mcPressure != TooLow

&& mWaterPres=14

mcPressure = TooLow

&& mWaterPres=14

&& mWaterPres<=24

mcPressure = TooLow

&& mWaterPres!=14

&& mWaterPres>24

mcPressure != TooLow

&& mWaterPres!=14

(b)

mcPressure != TooLow

&& mWaterPres=14

mcPressure = TooLow

&& mWaterPres=14

&& mWaterPres>24

mcPressure = TooLow

&& mWaterPres!=14

&& mWaterPres<=24

mcPressure = TooLow

&& mWaterPres=14

&& mWaterPres<=24

mcPressure = TooLow

&& mWaterPres!=14

&& mWaterPres>24

mcPressure != TooLow

&& mWaterPres!=14

&& mWaterPres<=24

(c)

mcPressure != TooLow

&& mWaterPres=14

&& mWaterPres<=24

mcPressure = TooLow

&& mWaterPres=14

&& mWaterPres>24

mcPressure = TooLow

&& mWaterPres!=14

&& mWaterPres<=24

mcPressure != TooLow

&& mWaterPres=14

&& mWaterPres>24

mcPressure != TooLow

&& mWaterPres!=14

&& mWaterPres>24

Figure 5. A simple example illustrating the difference between lazy abstraction and predicate abstraction.

satisfaction on Spec. The lazy predicate abstraction applied on RSpec is, in essence, a traditional

lazy abstraction with automated counterexample guided abstraction refinement, tailored to exploit

specific characteristics of SCR specifications.

Notice that the approach consists of two abstraction steps. The first is the relaxation resulting

from the removal of the NAT constraints; the second is the lazy predicate abstraction. One may

then obtain three kinds of counterexamples: (i) spurious counterexamples resulting from the lazy

predicate abstraction, i.e., executions that are feasible in the abstract model but infeasible in RSpec;

(ii) spurious counterexamples resulting from the removal of NAT constraints, i.e., executions that

are both feasible in the abstract model and in RSpec, but are infeasible in Spec; and (iii) real

counterexamples, i.e., abstract counterexamples that can be reproduced both in Spec and RSpec,

and thus constitute actual violations to the property φ. Different approaches are employed to deal

with the first two, which are described later on in the paper.

Since, despite its importance, the first abstraction is rather straightforward, let the current

focus be on the second abstraction, the lazy predicate abstraction tailored to SCR specifications.

This abstraction, whose preliminary version was originally introduced by Degiovanni et al. [19],

maintains the same precision as the concrete specification as far as the modes are concerned, while

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 13

having a degree of precision in all other respects that may vary for different modes, i.e., is lazy (in

the sense of the term as used by Henzinger et al. [33]) with respect to modes.

Let us provide a high level overview of how this abstraction process works, with references to

the rest of the section, where further technical details are provided. The abstraction process can

be captured as an algorithm, LPA-SCR, that takes as inputs an SCR specification Spec, and an

invariant property ϕprop that one wants to prove true in Spec (alternatively, reachability analyses

like those required for test generation can be performed with exactly the same mechanism). LPA-

SCR attempts to construct an abstract reachability tree for Spec, by using the abstract transition

relation postA to expand forwardly the successors of already created abstract states. During the

construction of the tree, LPA-SCR checks that any newly created abstract state satisfies ϕprop. If

LPA-SCR constructs the whole abstract reachability tree with all states satisfying ϕprop, then it has

computed an overapproximation of the set of reachable states of Spec, that in turn constitutes a proof

that ϕprop holds in Spec. However, LPA-SCR might find abstract states where ϕprop does not hold.

An abstract execution (a path in the abstract reachability tree) σA ending in a state where ϕprop does

not hold constitutes an abstract counterexample. LPA-SCR invokes a decision procedure (MathSAT)

to figure out if σA encodes a real (concrete) execution t of Spec violating ϕprop. If such a t exists,

LPA-SCR returns it as a witness of the violation of ϕprop and terminates. If there is no concrete

execution for σA, σA is determined to be a spurious counterexample. In this case, LPA-SCR employs

an interpolation based process, further discussed in section 3.5, to extract support predicates from

σA, that refine the current abstract reachability tree and get rid of σA. After the refinement, LPA-

SCR resumes the construction of the abstract reachability tree trying to verify ϕprop in Spec. LPA-

SCR falls in the well-known category of counterexample guided abstraction refinement algorithms

(CEGAR), that is, it realizes an abstraction algorithm that increases the precision of the abstract

model as needed, using the information encoded in spurious counterexamples.

The rest of this section is devoted to the technical details of the abstraction process, including a

precise definition for algorithm LPA-SCR. This abstraction is better introduced if the SCR semantics

is provided in a different way, modularizing the global transition relation of a specification with

respect to modes and input events, as presented below. A fixed SCR specification Spec is assumed,

with mode class M = {m1, . . . ,mk}, whose associated LTS is referred to as ΣSpec = (S, S0, E, T).

3.1. Mode explicit SCR semantics

The mode explicit semantics for SCR defined here splits each input event e = (mv, v, v0) into several

input events with fixed modes for the current and next states when e is triggered. In this way, in the

mode explicit semantics, after triggering an event in the current state, it is known exactly what the

mode of the next state will be. The reachable states of the mode explicit and the traditional semantics

are guaranteed to be the same (Theorem 3.3). Hence, an invariant property is satisfied in the mode

explicit semantics of Spec if and only if it is satisfied in the original semantics; then, the abstraction

algorithm referring to the mode explicit semantics can be safely implemented.

A mode-explicit input event is a triple em = (m, e,m0), where m,m0 are modes, and e =

(mv, v, v0) is an input event in the original semantics. Triggering mode-explicit event em takes the

system from state s to s0 if MD(s) = m (the mode of s is m), MD(s0) = m0 (the mode of s0 is

m0), s(mv) = v and s0(mv) = v0. The set of all mode-explicit input events is denoted by EM⇥M ;

by considering all possible combinations of events with source/target modes, it is guaranteed that

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

14 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

no behaviours are lost with respect to the original semantics. The expression (m,mv,m0) denotes

the set of mode-explicit input events modifying monitored variable mv that transition from a state

in mode m to a state in mode m0, i.e., (m,mv,m0) = {(m, e,m0) 2 EM⇥M | 9(v, v0) 2 γmv · e =

(mv, v, v0) 2 E}.

The mode-explicit semantics for SCR is given by the LTS Σ
M⇥M
Spec = (S, S0, E

M⇥M , T). Notice

that here, the set of input events EM⇥M is used in the definition of the LTS, instead of E as in

the original semantics. For each input event em 2 Σ
M⇥M
Spec , T (s, em) = s0 is denoted by s

em
; s0.

Also, for monitored variable mv, s
mv
; s0 indicates that there exists a mode-explicit input event

em 2 (MD(s),mv,MD(s0)) such that s
em
; s0.

The following results prove that ΣM⇥M
Spec and ΣSpec produce the same sets of reachable states.

Lemma 3.1

For every execution σ of ΣSpec = (S, S0, E, T) there exists an execution σm of Σ
M⇥M
Spec =

(S, S0, E
M⇥M , T) such that #σ = #σm, and σ.i = σm.i for each 0  i  #σ + 1.

Proof

The proof proceeds by induction on the length of σ. For the base case, if #σ = 0, σ : s0
λ
; s0,

and the mode-explicit execution satisfying the conditions of this lemma is σm : s0
λ
; s0. For

the inductive case, assume that σ : s0
es
; s with es 2 E⇤, #σ = k, and that s

e
; s0, where e =

(mv, v1, v2). By the inductive hypothesis, there exists σm : s0
esm
; s, for some event sequence

esm 2 (EM⇥M)⇤, such that #σ = #σm, and σ.i = σm.i for each 0  i  #σ + 1. Let us call

m1 = MD(s),m2 = MD(s0). Then, event em = (m1, e,m2) 2 EM⇥M is enabled in s and s
em
; s0,

completing the proof.

Lemma 3.2

For every execution σm of Σ
M⇥M
Spec = (S, S0, E

M⇥M , T) there exists an execution σ of ΣSpec =

(S, S0, E, T) such that #σm = #σ, and σm.i = σ.i for each 0  i  #σm + 1.

Proof

Again, the proof proceeds by induction on #σ. The base case can be proved as in Lemma 3.1. For the

inductive case, assume that σm : s0
esm
; s with esm 2 (EM⇥M)⇤, #σm = k, and that s

em
; s0, where

em = (m1, e,m2), m1 = MD(s),m2 = MD(s0), e = (mv, v1, v2). By the inductive hypothesis,

there exists σ : s0
es
; s, for some event sequence es 2 E⇤, such that #σm = #σ, and σm.i = σ.i

for each 0  i  #σ + 1. But clearly s
e
; s0 for e = (mv, v1, v2) 2 E, and the Lemma holds.

Theorem 3.3

For every SCR specification Spec, Reach(ΣM⇥M
Spec)=Reach(ΣSpec).

Proof

Follows from Lemmas 3.1 and 3.2 and the definition of Reach.

3.2. Modularizing the transition relation

In order to improve the abstraction algorithm, the transition function T of ΣM⇥M
Spec is modularized.

That is, a set of simpler functions T1, . . . , Tk is derived from T , that when combined are equivalent

to T , but that can be used separately in the process of abstraction, allowing for an improvement in

analysis performance. Two different modularizations are proposed, described below.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 15

3.2.1. Event-based modularization. Notice that if a monitored variable mv is changed in a

transition, by the One-Input assumption all the other monitored variables cannot change during the

same transition. Furthermore, events that do not depend on mv are not triggered in this situation

(formally, event e is said to depend on mv if e refers to some entity n such that n is mv or

(n,mv) 2 Dnew+). Thus, for each monitored variable mv, a simplified version Tmv of the transition

function T is computed by removing formulas of the table functions coming from events that do not

depend on mv. So, when an event e 2 mv is triggered, Tmv is equivalent to T , i.e., Tmv(s, e) = T (s, e)

for any state s 2 S. Notice that this modularisation step can only be performed with event and mode

transition tables, as condition tables are not described in terms of events.
As an example, recall table functions FtOverriden and FmcPressure, defining term tOverriden

and mode class mcPressure, respectively (section 2.1). The modularization of FtOverriden and
FmcPressure with respect to events mReset are as follows:

tOverriden’ =

FtOverridenmReset (mBlock,mReset,mcPressure,tOverriden,mBlock’,mReset’,mcPressure’) =
8

<

:

false if (mcPressure = TooLow ^ mReset’ = On ^ mReset = Off)_

(mcPressure = Permitted ^ mReset’ = On ^ mReset = Off)

tOverriden otherwise

mcPressure’ = FmcPressuremReset (mWaterPres,mcPressure,mWaterPres’) =
�

mcPressure true

Notice that the only event in the table defining tOverriden (Figure 1(b)) that depends on

mReset is @T(mReset = On) (second row second column of the table). Thus, this is the only

event considered in the modularized table function FtOverridenmReset . On the other hand, none of

the events in the mode transition table defining mcPressure (Figure 1(a)) depend on mReset

(mReset cannot trigger a mode change). Hence, FmcPressuremReset always returns the original value

of mcPressure.

Considering that mv1, . . . ,mvj are the monitored variables of Spec, the abstraction algorithm

first modularizes T as described above, obtaining Tmv1
, . . . , Tmvj

. It is important to remark that

this process is completely automated, as the dependencies (relation Dnew+ and the dependency

relation for events) can be automatically determined from a syntactic analysis of Spec [10]. Then,

when computing the abstract successors for an abstract state with respect to event Tmvi
(1  i  j),

the algorithm selects the corresponding Tmvi
to be applied. As evidenced by the example above,

the modularized transition functions can be encoded more succinctly as logic formulas than the

whole transformation function T . This presents two advantages for the abstraction algorithm:

the computation of abstract successors becomes faster (as it calls a decision procedure with a

smaller formula), and the precision of the computed abstract model is increased, as in practice

the interpolation based refinement procedure (section 3.5) computes stronger interpolants with the

reduced formulas (section 5).

3.2.2. Mode-based modularization. The mode explicit semantics enables the abstraction algorithm

to perform a different modularization of the transition relation, exploiting the fact that, when a

mode explicit input event is triggered, it is known exactly which modes participate in the previous

and next system states. For every pair m,m0 of modes, a simpler transition relation Tm,m0 will be

derived from T by removing all the events and conditions that cannot occur when transitioning

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

16 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

from m to m0. That is, from a pair m and m0 of source and target modes, Tm,m0 is constructed by

discarding from T all rows that involve events that do not start at m, or that do not transition to m0.

As for the previous modularization, the abstraction algorithm will employ Tm,m0 to compute the

abstract successors when an event e = (m, ·,m0) is triggered (e modifies any monitored variable,

but the modes of the previous and next states are m and m0, respectively). Consider for instance

that event e = (High, ·,High) is triggered, that is, being in mode High, a change is produced by

event e but the system stays in mode High. FcSafetyInjectionHigh,High and FtOverridenHigh,High for

table functions FcSafetyInjection defining cSafetyInjection (Figure 1(c)) and FtOverriden

defining tOverriden (Figure 1(b)) are as follows:

cSafetyInjection =

FcSafetyInjectionHigh,High (mcPressure,tOverriden) =
�

Off if mcPressure = High

tOverriden’ =

FtOverridenHigh,High (mBlock,mReset,mcPressure,tOverriden,mBlock’,mReset’,mcPressure’) =
�

tOverriden true

Notice how in these cases, only formulas with source mode High are kept. Observe in particular

that in FtOverriden there is only one formula with source mode High, which consists of the event

@F(mcPressure=High). However, @F(mcPressure=High) is clearly not enabled when the

target mode is High, thus FtOverridenHigh,High
always returns the old value of tOverriden.

Mode-based and event-based modularizations can be combined to produce smaller parts of the

transition relation T , “slicing” it in relation to modes and events of interest. Indeed, the abstraction

used in this paper applies a modularization by events first, and then the mode-based modularization.

That is, for each input event e = (m,mv,m0), a transition relation Tm,mv,m0 is obtained by first

computing Tmv as in the previous section, and then applying the mode-based modularization to Tmv.

3.3. The Abstraction Setting

As mentioned previously, the abstraction algorithm presented in this paper is based on the lazy

predicate abstraction framework presented in [33]. Lazy abstraction allows different degrees of

precision in different parts of the abstract model (i.e., different sets of support predicates), as

opposed to previous predicate abstraction approaches where abstraction predicates were considered

global [24]. Since lazy predicate abstraction was originally devised to analyze C programs [33], it

localizes support predicates to program locations. Thus, to construct an abstract state with location l,

lazy abstraction only considers the support predicates corresponding to l. In addition, the abstraction

refinement algorithm of lazy abstraction is defined in such a way that newly discovered abstraction

predicates are added only to the program locations where they are necessary.

In SCR specifications, mode classes define a partition of the set of system’s states, and one

introduces modes to split the system’s state when the system needs to react differently to events

according to the mode of operation. Therefore, it is proposed here to keep the same set of abstraction

predicates for all states that share the same mode, in an SCR specification. The abstraction

refinement procedure for the algorithm is also designed to add discovered predicates “locally”, in

the sense that they will refine all states within the same mode.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 17

Following [33], the abstract domain used by the lazy abstraction approach algorithm is defined

as follows, using LIA formulas (the language of the quantifier free linear integer arithmetic) to

characterize abstract states. LIA is chosen because it is decidable, and because there exists an

interpolation algorithm for LIA that is used for the abstraction refinement procedure (section 3.5).

Let ΣM⇥M
Spec be the mode explicit LTS associated with Spec. An abstract state of the abstraction

approach presented in this paper will be defined as a set of mode explicit atomic regions, defined as

follows.

Definition 3.1. A mode explicit atomic region is a tuple a = (m,ϕ,Π) composed of a mode m 2 M ,

a function mapping modes to support (abstraction) predicates Π : M 7! 2LIA, and a boolean

formula ϕ over the predicates of Π(m).

Intuitively, region a = (m,ϕ,Π) represents the set of states with mode m that satisfy ϕ, denoted

with the region’s concretization [a]. Notice that the modes in abstract regions are maintained explicit.

The abstraction approach performs an abstraction process that is precise with respect to modes, and

allows for different degrees of precision for states with different modes.

In addition, for any mode explicit atomic regions (m1,ϕ1,Π1) and (m2,ϕ2,Π2), the following

operations are defined:

• [(m1,ϕ1,Π1)] = [m1 ^ ϕ1], where [f], for f 2 LIA, denotes the set of states described by f .

• (m1,ϕ1,Π1) t (m2,ϕ2,Π2) = (m1,ϕ1 _ ϕ2,λm.Π1(m) [Π2(m)) if m1 = m2; ? other-

wise.

• (m1,ϕ1,Π1) u (m2,ϕ2,Π2) = (m1,ϕ1 ^ ϕ2,λm.Π1(m) [Π2(m)) if m1 = m2; ? other-

wise.

• If em = (m1,mv,m
0
1), post((m1,ϕ1,Π1), em) = (m0

1,ϕ
post
em

,Πls), where ϕpost
em

is the

strongest postcondition of ϕ1 with respect to event em, and Πls(m
0
1) is the least superset of

Π(m0
1) which contains all the predicates in ϕpost

em
. Otherwise, if em = (m2, ·, ·) and m1 6= m2,

then post((m1,ϕ1,Π1), em) = ?.

Notice that the strongest postcondition ϕpost
em

can be defined by the following LIA formula:

ϕpost
em

= ϕ1 ^ em ^ Tm1,mv,m
0

1

= ϕ1 ^ (m1 ^ mv
0 6= mv ^ γmv(mv,mv

0) ^m0
1) ^ Tm1,mv,m

0

1

where primed variables denote the value of entities in the state returned by post, and the predicate

γmv(mv,mv
0) indicates that monitored variable mv changed satisfying the NAT constraints.

Definition 3.2. Let A be the set of mode explicit atomic regions. A mode explicit region structure

R = (R,?,t,u, post, [.]) for ΣM⇥M
Spec consists of:

• R ✓ 2A. That is, each mode explicit region r 2 R is a set of mode explicit atomic regions.

• [r] =
S

a2r[a], for all r 2 R.

• For r1, r2 2 R, the following definitions are considered:

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

18 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

– r1 t r2 = r1 [r2 [{a1 t a2 | a1 2 r1, a2 2 r2},

– r1 u r2 = {a1 u a2 | a1 2 r1, a2 2 r2},

– post(r1, em) =
S

a2r1
post(a, em).

R above is the algorithm’s abstract domain. Notice that it is very similar to the abstract domain

of the lazy predicate abstraction for C programs presented by R. Jhala [38]. The main differences

are that, in the algorithm as presented in this paper, program locations are replaced by modes of

the specification in atomic regions, and the call stack is eliminated, as there are no procedure

abstractions in SCR.

In order to construct abstract states, the following abstraction function is employed.

Definition 3.3. The abstraction function α : LIA⇥ 2LIA 7! LIA is defined by:

α(ϕ, P) =
^

p2P

{p|ϕ ! p} ^
^

p2P

{¬p|ϕ ! ¬p}

Intuitively, α takes a formula ϕ and a set of abstraction predicates P as inputs, and returns a

formula representing the predicate abstraction [24] of ϕ with respect to P . Formula α(ϕ, P) always

returns a (LIA) predicate involving a conjunction of predicates and negations of predicates from P .

Notice that α(ϕ, P) is an abstraction of the original ϕ, in the sense that the states it represents is a

superset of the states described by ϕ. α(ϕ, P) is said to overapproximate ϕ, i.e., [ϕ] ✓ [α(ϕ, P)].

To implement α, one needs to be able to decide whether a predicate p 2 P or its negation are

implied by ϕ. The MathSAT SMT solver [11] is an example of a tool that is suitable for this task.

The abstraction structure that is the basis of the present approach can now be introduced.

Definition 3.4. A mode explicit abstraction structure is a tuple A = (R, postA,⇥), where:

• R is a mode explicit region structure,

• For r 2 R and mode explicit input event em = (m1,mv,m2), the abstract strongest

postcondition operator is defined by postA(r, em) =
S

a2r postA(a, em). For an atomic mode

explicit region a = (m,ϕ,Π), postA is defined by:

– postA((m,ϕ,Π), em) = (m2,α(ϕ
post
em

,Π(m2)),Π) if m = m1.

– postA((m,ϕ,Π), em) = ? if m 6= m1.

• For region r, r.Π is defined as
S

(·,·,Π)2r Π. For r1, r2 2 R with Π1 = r1.Π and Π2 = r2.Π,

the precision preorder is defined by: r1 ⇥ r2 iff 8m 2 M.Π2(m) ✓ Π1(m)

Intuitively, for a mode explicit event em = (m1,mv,m2), postA((m1,ϕ,Π), em) returns a region

with em’s target mode m2, and the set of states obtained by abstracting the result of executing the

concrete post on ϕ, with respect to the set of abstraction predicates associated with mode m2.

Based on the proof strategy by Henzinger et al. [33], the following theorems guarantee that the

above-introduced abstraction of Spec characterizes an overapproximation of Spec’s behaviours.

Theorem 3.4

For any r 2 R, em 2 EM⇥M , post(r, em) v postA(r, em).

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 19

Proof

To prove this result, it has to be proved that [post(r, em)] ✓ [postA(r, em)]. Then, if for any mode

explicit atomic region a 2 r, [post(a, em)] ✓ [postA(a, em)], the theorem follows by definition of

[.]. Let us prove that [post(a, em)] ✓ [postA(a, em)].

Let a = (m,ϕ,Π) and em = (m0,mv,m00). If m 6= m0, by definition we have post(a, em) = ? and

postA(a, em) = ?, and therefore [post(a, em)] ✓ [postA(a, em)]. If m = m0, then [post(a, em)] =

[(m00,ϕpost
em

,Πls)] = [m00 ^ ϕpost
em

] and [postA(a, em)] = [(m00,α(ϕpost
em

,Π(m00)),Π)] =

[m00 ^ α(ϕpost
em

,Π(m00))]. Since α is an abstraction function, then [ϕpost
em

] ✓ [α(ϕpost
em

,Π(m00))].

Hence, [m00 ^ ϕpost
em

] ✓ [m00 ^ α(ϕpost
em

,Π(m00))] and the proof is finished.

Theorem 3.5

If r, r0 2 R, such that r ⇥ r0, then for any em 2 EM⇥M , postA(r, em)⇥ postA(r0, em).

Proof

Let Πr = r.Π and Πr0 = r0.Π0 be the mappings from modes to support predicates of regions r and

r0, respectively. As r ⇥ r0, by definition of ⇥, for all mode m 2 M , Πr(m) ✓ Πr0(m). By definition

of postA, the region postA(r, em) will contain the same mapping of r, i.e., Πr. Similarly, the

mapping of region postA(r0, em) will be the same of region r0, i.e., Πr0 . Then, as Πr(m) ✓ Πr0(m),

by definition of ⇥, it follows that postA(r, em)⇥ postA(r0, em).

Theorem 3.6

If r, r0 2 R, such that, r v r0, then for any em 2 EM⇥M , postA(r, em) v postA(r0, em).

Proof

Suppose an atomic region (m,ϕ,Π) 2 postA(r, em). By definition of postA, there must exist an

atomic region a 2 r such that postA(a, em) = (m,ϕ,Π). Because of the hypothesis r v r0, the

atomic region a must also belong to region r0 (i.e., a 2 r0). Then, (m,ϕ,Π) = postA(a, em) 2

postA(r0, em).

3.4. SCR abstraction algorithm

The SCR abstraction algorithm just presented, shown in Algorithm 1, is a version of the original

lazy predicate abstraction put forward by Henzinger et al. [33] tailored to SCR specifications. It

employs the mode explicit abstraction structure of definition 3.4, i.e., its abstract domain consists

of the mode explicit region structures of definition 3.2, and operator postA is used to compute the

successors of abstract states (regions). In addition, the present abstraction assumes that the transition

relation of Spec has been modularized (by modes and events) following the steps given in section

3.2, before executing the algorithm.

Let us further explain some details of the LPA-SCR algorithm. In this algorithm, a node of the

abstract reachability tree is denoted by n : r, where n is the node’s name, and r the abstract region

(definition 3.2) associated with the node. In addition, Π is a function storing the set of abstraction

predicates currently associated with each mode. Let init be the predicate describing the initial state

of Spec, and assume that minit is the mode of state init. In line 2, LPA-SCR initializes Π with

ϕprop as the only available predicate for each mode (except for minit that additionally includes

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

20 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

Algorithm 1 SCR abstraction algorithm

1: function LPA-SCR

2: Π = {minit ! {init}} [λm.{ϕprop}, for all m 2 M
3: r0 = {(minit,α(init,Π(minit)),Π)}
4: create an unmarked root node r : r0
5: while there are unmarked nodes do

6: pick an unmarked node n : rn
7: if there exists (·,ϕn, ·) 2 rn such that ϕprop does not appear positively in ϕn then

8: - - the property may not hold at node n
9: - - σA is the abstract error trace starting at the root r and ending at n

10: σA = r : r0
σ
! n : rn

11: - - check if there is a feasible concrete error trace t represented by σA

12: - - if infeas., σA is spurious, Π0 : M ! 2LIA are the discovered interpolants

13: (feasible, t,Π0) = solve(σA)
14: if feasible then

15: - - σA contains concrete error trace t
16: return t
17: else

18: - - σA is spurious

19: let n0 : r0n be the oldest ancestor of n in σA such that

20: there exists (m0
n, ·, ·) 2 r0n with Π

0(m0
n) 6= ;

21: let n00 : r00n be the parent of n0 : r0n in σA

22: - - refine the abstract reachability tree starting at n00

23: drop the subtrees of n00

24: unmark n00

25: - - update Π to include the discovered interpolants Π0

26: Π = λm.(Π(m) [Π
0(m))

27: else if rn v r0n for some node n0 : r0n marked as uncovered then

28: - - n is covered by n0

29: mark n as covered

30: else

31: - - construct the abstract successors of n
32: for each em = (m,mv,m0), such that m,m0 2 M and mv is a monitored variable do

33: r0n = postA(rn, em)
34: if r0n 6= ? then

35: create an unmarked node n0 : r0n and an edge n : rn
em! n0 : r0n

36: mark n as uncovered

37: return region
F
{ru|u : ru is a node marked as uncovered}

predicate init). Π will grow monotonically throughout the execution, as abstraction predicates will

be added to Π each time the refinement algorithm discovers new predicates to get rid of spurious

counterexamples. For simplicity, Π is made a global variable in the algorithm (instead of being part

of each region), and it is assumed that the operator postA employs Π to compute abstract successors.

Lines 3 and 4 construct the root node r : r0 of the abstract reachability tree, where r0 consists

of an atomic region with mode minit, predicate α(init,Π(minit)) (the predicate abstraction of init

with respect to the predicates in Π(minit)), and (the initial) Π as support predicates.

After the initialization, in the main loop (lines 5–35), LPA-SCR performs an iterative process,

where each step consists of either: (i) deciding if the abstract counterexample found (a node violating

ϕprop) represents a concrete counterexample, or the abstract model has to be refined to get rid of

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 21

this spurious violation, (ii) marking a node of the tree as covered due to its region already being

computed elsewhere in the tree, or (iii) expanding the abstract reachability tree by constructing

the abstract successors of a node. During this process, the algorithm marks already visited nodes to

avoid processing them twice. When the abstract successors of a node are built, the node is marked as

uncovered. Conversely, a node is marked as covered when its region has been computed in another

part of the tree. When the whole abstract reachability tree has been computed, the regions of the

nodes marked as uncovered determine the set of reachable states of the tree, which constitute a

proof of the validity of ϕprop in Spec.

In line 6 the algorithm takes an unmarked node n : rn and decides to perform (i), (ii) or (iii) above,

depending on the characteristics of rn. In case (i), the condition in line 7 is true, that is, ϕprop does

not appear positively in rn’s predicate. In such case, we have an abstract counterexample σA starting

at the root of the tree and ending at n –see line 10. Then, the algorithm needs to invoke the decision

procedure with σA as input, to find out if there exists a concrete execution violating ϕprop encoded

in σA. This is carried out by function solve in line 12, that represents an invocation to the decision

procedure (the SMT solver MathSAT). The result of executing solve is a triple (feasible, t,Π0). If

there exists a concrete execution violating ϕprop contained in σA, feasible is set to true, and the

witness concrete execution stored in variable t (Π0 is undefined in this case). Then, as feasible is

true, LPA-SCR returns the execution t witnessing that ϕprop does not hold in Spec (lines 13-15).

Otherwise, if σA is spurious, solve sets feasible to false, and returns in Π
0 a mapping with the

predicates needed to get rid of the spurious execution. As mentioned earlier, the computation of Π0

is carried out by the interpolation based refinement algorithm of section 3.5. If σA is spurious, in

lines 18-19 the algorithm finds out the oldest ancestor n0 of n in σA that needs to be refined, that is,

an n0 such that Π0 does not contain any new predicate to add to any of the nodes in the path from

the root r to n0. Then, in lines 20-22 LPA-SCR drops the subtrees that must be refined taking into

account the newly discovered predicates Π0, that is, the subtrees starting from the parent n00 of n0. In

addition, in line 23 n00 is unmarked, so it becomes eligible again for the computation of its abstract

successors in a later iteration, but this time including the new set of predicates allowing to discard

σA. Finally, in line 25 Π is updated to include the newly discovered predicates Π
0. Notice that the

predicates in Π
0 are added locally to the modes where they were discovered, whereas in the original

lazy abstraction approach they are added locally to the corresponding program locations [33].

If node n : rn does not violate ϕprop, LPA-SCR considers case (ii) above. Thus, in line 26 LPA-

SCR checks if there exists another uncovered (marked) node n0 : r0n such that the set of states

represented by r0n includes those represented by rn (denoted by rn v r0n). Notice that this is a

very simple syntactic check: if a support predicates p in r0n is set to true (resp. false), then p should

be true (resp. false) in rn too. When rn v r0n, LPA-SCR does not need to continue expanding n,

since all of n’s successors must be checked to satisfy ϕprop in its own part of the reachability tree,

and the set of states defined by any successor of n0 is included in the set of states defined by some

successor of n (more precisely, for any event em 2 EM⇥M , postA(rn, em) has to satisfy ϕprop, and

postA(rn, em) v postA(r0n, em)). In this case, n is said to be covered by n0, and LPA-SCR marks n

(as covered) so it is not picked up again in future iterations.

Finally, when cases (i) and (ii) do not apply, in line 29 LPA-SCR starts the computation of the

successors of node n : rn. This corresponds to case (iii) above. Thus, in lines 31-34 LPA-SCR

creates an unmarked node n0 : r0n with r0n = postA(rn, em) for each event em = (m,mv,m0), where

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

22 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

m,m0 2 M and mv is a monitored variable. In addition, it adds an edge to the reachability tree from

n to n0 (line 34). Then, n is marked as uncovered to indicate that its abstract successors have been

computed (line 35).

In the next section, the refinement algorithm implemented by the solve procedure is explained in

greater detail.

3.5. Interpolation based abstraction refinement

To get rid of spurious counterexamples, LPA-SCR employs an interpolation based abstraction

refinement approach, introduced first for the original lazy abstraction by Henzinger et al. [34]. In

this section, the details of how this refinement approach is applied to remove the kind of spurious

counterexamples that appear in LPA-SCR, are explained. The reader interested in learning more

about interpolation is referred to the work of Henzinger et al. [34].

Definition 3.5. Let ϕ1,ϕ2 be two formulas such that their conjunction is unsatisfiable. An

interpolant for (ϕ1,ϕ2) is a formula ψ such that: (i) ϕ1 implies ψ, (ii) ψ ^ ϕ2 is unsatisfiable,

(iii) ψ only contains variables that appear both in ϕ1 and ϕ2.

For some logics (including LIA), interpolants can be extracted automatically from the proof of

unsatisfiability of ϕ1 ^ ϕ2, in an efficient way.

Let us now discuss how LPA-SCR uses interpolation to get rid of spurious counterexamples.

Assume that σA is a spurious counterexample returned by LPA-SCR, and let σA = σA
1 : σA

2 be a

splitting of σA into a disjoint prefix σA
1 and suffix σA

2 . In addition, let ϕ1 (resp. ϕ2) be an encoding of

prefix (resp. suffix) σA
1 (σA

2) as a logical formula. Notice that σA is unsatisfiable since it is spurious.

Hence, ϕ1 ^ ϕ2 is unsatisfiable as well. Thus, an interpolant ψ can be computed for (ϕ1,ϕ2). By (i)

above, ψ represents an overapproximation of the states obtained by executing prefix σA
1 (and it is

clearly true after the execution of σA
1). By (ii), it follows that suffix σA

2 cannot be executed starting

from states satisfying ψ. Therefore, ψ is the abstraction predicate we need to rule out σA
1 : σA

2 .

The actual implementation of solve (invoked in line 12 of Algorithm 1 to get rid of σA) repeats

the above process for each feasible splitting of σA (into nonempty prefixes and suffixes). Let σA

be composed of nodes n1 : r1, n2 : r2, . . . , nk : rk. Because σA is an execution computed by LPA-

SCR, there must exist events e1, . . . , ek�1 such that postA(ri, ei) = ri+1, for i = 1 . . . k � 1. An

invocation of solve with σA yields formulas ψ1,ψ2, . . . ,ψk�1, such that each ψj (j = 1 . . . k � 1)

is an interpolant for prefix n1 : r1 . . . nj : rj and suffix nj+1 : rj+1 . . . nk : rk. ψ1,ψ2, . . . ,ψk�1 are

the abstraction predicates required to refine the current reachability tree and rule out σA.

The encoding of spurious counterexamples into logical (LIA) formulas will be used to build

formulas (ϕ1,ϕ2) for prefixes and suffixes, that will then be fed to the decision procedure that carries

out the computation of interpolants. Let σA be as above. Assume that each region ri contains exactly

one mode explicit atomic region, i.e., ri = {(mi,ϕi,Π)}. The encoding of σA as a LIA formula is:

(m1 ^ ϕ1) ^ (m2 ^ ϕ2) ^ . . . ^ (mk ^ ϕk). That is, each state of σA adds a conjunction of its mode

and its predicate to the resulting formula. Notice that this encoding can be applied to any prefix and

suffix of σA.

Now, assume that solve(σA) yields formulas ψ1,ψ2, . . . ,ψk�1. Intuitively, each ψi is an

overapproximation of the execution n1 : r1, n2 : r2, . . . , ni : ri, at abstract state ni. But as ri =

{(mi,ϕi,Π)} (i = 1 . . . k � 1), and LPA-SCR’s abstraction is precise with respect to modes, mi

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 23

P

LPA-SCR

Concretization

+

Predicate
Discovery

Fail
refinement

(no)

abstract

counterexamplePred

Relaxing NAT

relation

Spec RSpec

(yes)

(no)

Property

valid

concrete

counterexample

(yes)

Refinement

Figure 6. Overview of our approach.

is the mode where ψi is relevant for discarding σA. Thus, solve returns the computed interpolants

as a mapping Π
0, such that for all mi, Π

0(mi) is the set of all interpolants that are relevant at mode

mi. In this way, LPA-SCR avoids adding the interpolants as global abstraction predicates. Indeed,

in LPA-SCR the abstraction predicates are local to the modes where they are useful for ruling out

σA. This allows LPA-SCR to speed up the computation of abstract successors, as it is often the case

that a lesser number of (relevant) abstraction predicates have to be considered when they are added

locally to modes. The original interpolation based refinement algorithm for LPA is similar, but it

employs program locations instead of modes to localize abstraction predicates.

The assumption made in this paper, that there is only one atomic region per abstract state, enables

LPA-SCR to simplify the formulas that will be fed to the decision procedure, which in turn allows

for the computation of simpler interpolants. Thus, the implementation of LPA-SCR enforces this

assumption (although it could be dropped without compromising correctness).

It is important to remark that the implementation of solve employs the MathSat SMT solver [11]

to compute interpolants (for LIA formulas).

4. ABSTRACTION WITH CONSTRAINT RELAXATION

The overall analysis approach proposed in this paper has been described before, with its lazy

abstraction component analyzed in detail. It remains to describe, in more detail, the constraint

relaxation that is performed prior to abstraction. Figure 6 depicts the main stages of the overall

approach. In this Figure, it can be seen that the process takes an SCR specification Spec and an

invariant property P as inputs. It then tries to verify that P holds in Spec, in a completely automated

way. As a result of the verification process it either returns that P holds (property valid in the

Figure), or P does not hold and an execution of Spec that violates P is generated, or the analysis is

inconclusive (Fail).

A verification attempt consists of two main steps. First, a relaxed specification RSpec is

constructed, by removing NAT constraints of the monitored numeric variables of Spec. This step is

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

24 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

discussed in detail below, in section 4.1. Then, the counterexample guided abstraction refinement

procedure (CEGAR) described in the previous section is executed, trying to prove that RSpec

satisfies P.

The CEGAR procedure (Algorithm 1 of section 3.4) is invoked with RSpec and P as inputs. If

LPA-SCR proves that P is valid in RSpec, then P is also valid in Spec (Theorem 4.1 of section

4.1 states that RSpec is a conservative abstraction of Spec). Hence, the whole process terminates

informing the user that P holds. Otherwise, LPA-SCR returns an abstract counterexample: an

execution σR of RSpec that may or may not represent an execution of the original Spec violating

P. (This happens because an abstract counterexample of RSpec might involve input events that are

forbidden by Spec’s NAT.)

A second CEGAR process is in charge of dealing with abstract counterexamples σR that were

deemed concretizable with respect to RSPec. This is implemented by the refinement module of

Figure 6. First, the concretization leverages existent model checking techniques [10] to explore the

state space of abstract counterexample σR, looking for an actual execution σ of Spec violating P. If

such a σ exists, the process terminates returning σ as a witness of the violation of P. The details for

the concretization procedure are given in section 4.2. If σR does not encode a concrete execution of

Spec, it is said that σR is spurious. The predicate discovery module tries to learn a logical predicate

Pred from spurious σR (also using model checking), such that Pred encodes the cause of the σR’s

spuriousness. Furthermore, when added to RSpec, the discovered predicate Pred discards σR as a

valid execution of RSpec (and possibly other spurious counterexamples), allowing LPA-SCR to start

over. However, the refinement algorithm is not complete, and it might fail in some cases. When this

happens, the process must return Fail, as it cannot continue trying to prove P .

The remainder of this section is devoted to the technical details of the constraint relaxation phase,

as well as the spuriousness checking of RSPec counterexamples with respect to Spec.

4.1. Relaxing NAT constraints

Recall from previous sections that the behaviour of a monitored variable mv can be modelled as

a binary relation γmv, called the transition relation for mv. For example, the transition relation for

variable mWaterPres in SIS is as follows:

γmWaterPres = {(x, x0) | x0 6= x ^ 0  |x0 � x|  10 ^ x, x0 2 {0 . . . 5000}}

In this formula, constraint 0  |x0 � x|  10 is imposed by SIS’ NAT. The relaxation step consists

of removing the NAT constraints that limit the behaviour of monitored numeric variables. In the SIS

example, removing the aformentioned NAT constraint yields a new SCR specification, RSIS, where

the behaviour of mWaterPres is described by relation γR
mWaterPres below:

γR
mWaterPres = {(x, x0) | x0 6= x ^ x, x0 2 {0 . . . 5000}}

This achieves the desired effect of letting mWaterPres vary arbitrarily within its domain.

In general, let γmv below be the transition relation of monitored numeric variable mv in Spec:

γmv = {(x, x0) : x0 6= x ^ NAT(x, x0) ^ x, x0 2 TY (mv)}

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 25

where NAT(x, x0) is a constraint imposed by NAT and x, x0 2 TY (mv) enforces the right types for

x and x0. The relaxation step removes NAT(x, x0) from γmv, producing a new specification γR
mv as

below:

γR
mv = {(x, x0) : x0 6= x ^ x, x0 2 TY (mv)}

This process applies the above procedure for each monitored numeric variable mv of Spec, to

produce RSpec. If the LTS for Spec is ΣSpec = (S, S0, E, T) and mv1, . . . ,mvk are Spec’s monitored

variables, then the LTS for RSpec is ΣRSpec = (S, S0, E
R, T), with:

mvR
i = {(mvi, v, v

0) | (v, v0) 2 γR
mvi

} ER =

k[

i=1

mvR
i

Notice that, for monitored variable mvi that is unconstrained by NAT we have that γmvi
= γR

mvi
.

In contrast, if γmvi
was altered by the relaxation, then γmvi ✓ γR

mvi
. Therefore, mvi ✓ mvR

i for

i = 1 . . . k, and in turn E ✓ ER. Intuitively, this means that all the input events of Spec are events

of RSpec and that there might be events of RSpec that are not events of Spec. For example,

e = (mWaterPres,14,904) 2 ER (e is an event of RSIS) but e /2 E (e is infeasible in SIS).

By the above, an execution σR of RSIS that contains infeasible events of SIS is not a valid

execution of RSIS. Conversely, all the executions σ of SIS are valid in RSIS. This implies that RSpec

is an abstraction of Spec: it possesses the same executions of Spec plus many others. It should be

clear now that the reachable states of Spec are a subset of the reachable states of RSpec.

Theorem 4.1

Let ΣSpec,ΣRSpec be the LTS associated with Spec and RSpec, respectively.

Then, Reach(ΣSpec) ✓ Reach(ΣRSpec)

Thus, RSpec is a conservative abstraction of Spec: any invariant property that holds in RSpec also

holds in Spec. For this reason, when our analysis process proves an invariant property P in RSpec it

can conclude that P holds in Spec.

As discussed earlier, and evidenced by the experiments in section 5, the relaxation of NAT greatly

speeds up the execution of LPA-SCR, as a significantly smaller number of abstraction predicates are

required for proving properties of RSpec (recall the discussion at the end of section 2). However,

executing LPA-SCR with RSpec and property P might return an execution σR of RSpec violating

P . An execution σR is called an RSpec counterexample, that might or might not encode a valid

execution of Spec violating P . In the next section, it is discussed how this approach analyzes RSpec

counterexamples, building real counterexamples of Spec, or getting rid of them if they are spurious.

4.2. Dealing with RSpec counterexamples

The general form of an RSpec counterexample, returned by LPA-SCR during an attempt to prove

property P , is shown below:

σR = sA0 mvR0 sA1 mvR1 . . .mvRm�1 sAm (1)

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

26 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

Furthermore, S0 ✓ [sA0], post
A(si,mvi) = si+1 for all i, and P must not appear positively in ϕm

(otherwise σR would not represent a violation of P).

Counterexamples σR of RSpec are dealt with differently depending on whether they only involve

feasible events of Spec or not. In the first case, one has mvRi = mvi for any monitored variable mvi.

Hence, σR only represents valid executions of Spec. The solve procedure of LPA-SCR (Algorithm

1) can be employed to generate a valid execution of Spec violating P from σR. Notice that σR must

represent some valid execution of RSpec, otherwise it would have been removed by the refinement

algorithm of LPA-SCR.

In the second case, there is mvRi 2 ER such that mvRi /2 E, that is, σR involves at least an event

of RSpec that is infeasible in Spec. Therefore, σR might represent executions that are infeasible in

Spec due to NAT. Thus, using solve to generate a concrete execution from σR might produce a

spurious counterexample: an execution that is infeasible in Spec.

Model checking is employed to generate only feasible executions of Spec from the latter type of

abstract counterexamples, avoiding false positives. To simplify the explanation of the technique, let

us assume that there is only one event mvj in (1) such that mvRj /2 E (extending the technique for

the general case is trivial). Then, (1) can be rewritten as:

σR = sA0 mv0 sA1 . . . sAj mvRj sAj+1 . . . s
A
m�1 mvm�1 sAm (2)

All feasible executions of Spec represented by σR, denoted by [σR], have to be explored to find out

if there exists one that violates P.

Let us formally define what it means for an execution σ of Spec to be represented by σR.

σ 2 [σR] , 9s0 2 [sA0], . . . , sk 2 [sAk] | s0
mv0
; s1 . . . sj

mvj
+

; sj+1 . . . sk�1
mvk�1

; sk

Notice that the effect of mvRj (2 ER) is “simulated” by executing a sequence of events

corresponding to mvj 2 E: this is denoted by sj
mvj

+

; sj+1 (see section 2.1.2 for the definition

of mvj
+). Also, observe that due to the definition of [σR], the resulting σ is an execution of Spec.

This process encodes [σR] in Promela, the input language of the model checker SPIN, and

then asks SPIN to find a counterexample σ 2 [σR] of P . The encoding consists of a modified

version of the approach introduced by Bharadwaj and Heitmeyer [10] for the analysis of whole

SCR specifications. The approach by Bharadwaj and Heitmeyer [10] is discussed in section

4.2.2. In section 4.2.1, an example illustrating the concepts introduced in this section is also

provided. Furthermore, this example will be employed in section 4.2.3, where the encoding of

counterexamples in Promela is described.

4.2.1. An example. Let P be the following (invalid) SIS property: mcPressure =

Permitted ^ tOverriden! mWaterPres 6= Permit-1. Feeding LPA-SCR with RSIS

and P yields the abstract counterexample σR
RSIS of Figure 7.

In this figure, below each abstract state sAi , the formula yielded by [sAi] is indicated, describing

all the states represented by sAi . The pc=i annotations in the Figure can be ignored for the moment.

σR
RSIS indicates how to obtain an execution σ of SIS (σ 2 [σR

RSIS]) violating P . It states that

one must start at the initial state (represented by sA0 in the Figure) and modify monitored variable

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 27

sA0

TooLow ^ ¬mBlock^

¬tOverriden^

mWaterPres=14

sA1

Permitted ^

¬mBlock^

¬tOverriden ^

mWaterPres 6=
Permit-1

sA2

Permitted ^

mBlock^

tOverriden ^

mWaterPres 6=
Permit-1

sA3

Permitted ^

mBlock^

tOverriden ^

mWaterPres = Permit-1

mWaterPresR (pc=0) mBlock (pc=1) mWaterPresR (pc=2)

Figure 7. Graphical representation of abstract counterexample σ
R
RSIS .

mWaterPres several times, until a state with mode Permitted and where mWaterPres is not

equal to Permit-1 yet, is reached (represented by sA1). Then, the block switch has to be activated,

making the system behaviour overridden in the next state (tOverriden holds at sA2). Notice that

P is satisfied at states characterized by sA2 . But, modifying mWaterPres to make it equal to

Permit-1 leads to a state where P does not hold (represented by sA3).

Section 4.2.3 describes the proposed encoding for [σR
RSIS]. Let us now discuss the original SCR

encoding in Promela put forward by Bharadwaj and Heitmeyer [10].

4.2.2. Encoding SCR specifications in Promela. This section explains the approach by Bharadwaj

and Heitmeyer [10] by means of an example, using the SIS specification. For further details, the

reader is referred to the work of Bharadwaj and Heitmeyer [10]. A snippet of the translation of SIS

into Promela is shown in Figure 8.

Variable declarations are omitted in Figure 8 due to space restrictions. However, it is worth

mentioning that two SPIN variables (with the right type) must be declared for each SIS entity, storing

the pre and post values of the entity at each transition of the system. For example, the Promela code

involves variables mWaterPres and mWaterPresP (of numeric type), denoting the pre and post

values of mWaterPres, respectively. In addition, it is assumed that all variables are initialized to

their values in the SIS initial state.

Recall that the system described by an SCR specification is always reacting to input events

triggered in its environment. Hence, the behaviour of the system is modelled as an infinite loop:

see lines 1-44 of Figure 8. Each iteration of the loop atomically performs the following sequential

steps: a unique input event (modifying a monitored variable) is triggered nondeterministically (lines

3-19); the SCR transition function (defined by the tables) is used to compute the next state of the

system, by propagating the changes carried out by the input event to the remaining entities (lines

21-39); the new values for variables become the current values, so the next iteration starts at the

newly computed state (lines 40-41). The atomic keyword of line 2 makes SPIN to execute each

iteration indivisibly.

The translation heavily employs Promela’s if..fi statements. These are typical nondeterministic

guarded alternative command: exactly one guarded command whose guard is true at the current

state is picked for execution. True guards can be ommited, as is the case with the outer if of lines

3-19. Thus, each of the inner if’s of lines 4-7, 8-11, 12-18 model the execution of a different input

event. For example, the new value of mBlock can be set to Off in line 5, if it is currently On (the

guard is mBlock!=Off), and vice versa in line 6.

To understand the translation of the SCR transition function, consider the available mode

transitions when the current mode is TooLow, depicted in lines 23-26 of the Figure. Line 24 states

that when the water pressure is currently below constant Low and it becomes greater or equals to

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

28 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

1 do ::
2 atomic{
3 if /* an input event is triggered nondeterministically */
4 :: if /* mBlock is modified */
5 :: mBlock!=Off -> mBlockP = Off
6 :: mBlock!=On -> mBlockP = On
7 fi;
8 :: if /* mReset is modified */
9 :: mReset!=Off -> mResetP = Off

10 :: mReset!=On -> mResetP = On
11 fi;
12 :: if /* mWaterPres is modified respecting NAT */
13 :: mWaterPresP = mWaterPres + 1
14 :: mWaterPresP = mWaterPres - 1
15 :: ...
16 :: mWaterPresP = mWaterPres + 10
17 :: mWaterPresP = mWaterPres - 10
18 fi;
19 fi;
20 d_step{ /* encoding of the transition relation defined by tables */
21 if /* mode transition table */
22 :: mcPressure == TooLow ->
23 if

24 :: (mWaterPresP >= Low) && (!(mWaterPres >= Low)) ->
25 mcPressureP = Permitted;
26 :: else skip;
27 fi;
28 :: mcPressure == Permitted ->
29 if

30 :: (mWaterPresP < Low) && (!(mWaterPres < Low)) ->
31 mcPressureP = TooLow;
32 :: (mWaterPresP >= Permit) && (!(mWaterPres >= Permit)) ->
33 mcPressureP = High;
34 :: else skip;
35 fi;
36 :: mcPressure == High ->
37 if

38 :: (mWaterPresP < Permit) && (!(mWaterPres < Permit)) ->
39 mcPressureP = Permitted;
40 :: else skip;
41 fi;
42 fi;
43 /* event and condition tables */
44 mBlock = mBlockP; mReset = mResetP; mWaterPres = mWaterPresP;
45 mcPressure = mcPressureP;
46 tOverriden = tOverridenP;
47 cSafetyInjection = cSafetyInjectionP;
48 }/* end of d_step */
49 }/* end of atomic */
50 od

Figure 8. Promela encoding for SIS.

Low, then the system must transition to mode Permitted. In any other case, the mode must be

kept the same; this is achieved by Promela’s skip command in line 26.

Some final remarks on the translation of the transition function are in order. The d step keyword

of line 20 orders SPIN to execute the transition function atomically and deterministically. That is,

d step enables SPIN to pick a fixed, deterministic way of executing any nondeterminism in the

code enclosed by it, thereby improving its runtime performance. This works well for the transition

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 29

function because it is deterministic. In addition, the transition function must respect the dependency

relation D of the specification. If entity e1 depends on entity e2, i.e., the value of e2 must be

computed before the value of e1, then the Promela code for the table defining e2 must appear before

the code for the table defining e1.

4.2.3. Encoding RSpec counterexamples in Promela. This section describes how the encoding of

the previous section is adapted to deal with RSpec’s counterexamples. Again, the presentation is

driven by means of an example. Let σR
RSIS be the counterexample given in Figure 7, explained in

section 4.2.1. Part of the Promela code describing the set of executions (of Spec) represented by

σR
RSIS ([σR

RSIS]) is shown in Figure 9.

As in the previous encoding, it is assumed that variables are initialized to their values at the initial

state. Let w be the number of events in σR
RSIS . An integer variable pc such that pc=i, 0  i < w,

is introduced to indicate that events modifying variable mvi of σR
RSIS are being executed. Notice

the pc=i annotations within brackets at the left of each event in Figure 7. In addition, pc=w holds

at the last state of σR
RSIS (although pc=3 is not shown in the Figure). Notice that the last (abstract)

state of σR
RSIS represents states violating the property being verified, P . Thus, pc=w indicates that

a violation contained in σR
RSIS has been found. Variable pc is set to 0 at the initial state.

The encoding of [σR
RSIS] consists of a main loop (lines 1-41), where each iteration triggers an

input event modifying the monitored variable corresponding to the current value of pc. At the

beggining of each iteration the approach asserts that pc!=3, using Promela’s assert clause (line

4). If the model checker is currently at a state that violates the assert, i.e., pc=3, it returns the

whole execution that took it from the initial state to the current state. Due to the encoding, this is an

execution of Spec contained in [σR
RSIS] that violates P . Otherwise, the model checker continues its

execution starting from the line following the assert.

In lines 5-9 monitored variable mVar is selected according to the value of pc (see the pc=i

annotations in Figure 7). Then, in lines 10-27 an input event modifying mVar is triggered

nondeterministically –the guards added to the outermost if ensure that only mVar can be modified

at the current iteration.

In lines 28-32 the transition relation is employed to obtain the new system state, resulting from

executing the selected event (modifying mVar). As before, the last step is executed atomically and

deterministically (see the comments about d step in the previous section).

The key step of the encoding is how pc is updated. This is done in lines 33-40. Figure 7 starts

at an abstraction of the initial state, s0
A, where pc=0. pc=0 has associated event mWaterPresR,

meaning that several events modifying mWaterPres have to be executed until s1
A is reached and

pc becomes 1. Intuitively, line 34 indicates that a feasible option when pc=0 is to stay with pc=0,

hence executing another event modifying mWaterPres. The other possible option is, when s1
A

has been reached, to set pc=1, as shown in line 35. This means that one event modifying mBlock

has to be executed (since mBlock is not an event of RSIS), and transition to pc=2. This is done

in line 36. The event associated to pc=2 is mWaterPresR again, and proceeds similarly as when

pc=0.

If the model checker reaches a state with pc=3 it returns a witness of P not holding in Spec.

Otherwise, [σR
RSIS] is spurious (it does not represent any feasible execution of Spec), and must be

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

30 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

1 do ::
2 atomic{
3 /* If we reach the last state a witness has been found */
4 assert (pc!=3);
5 if /* pick a monitored variable mVar according to PC */
6 :: pc==0 -> mVar=c_WP
7 :: pc==1 -> mVar=c_BL
8 :: pc==2 -> mVar=c_WP
9 fi;

10 if /* an event modifying mVar is triggered */
11 :: (mVar==c_BL) -> if /* mBlock is modified */
12 :: mBlock!=Off -> mBlockP = Off
13 :: mBlock!=On -> mBlockP = On
14 fi;
15 :: (mVar==c_RS) -> if /* mReset is modified */
16 :: mReset!=Off -> mResetP = Off
17 :: mReset!=On -> mResetP = On
18 fi;
19 :: (mVar==c_WP) -> if /* mWaterPres is modified */
20 :: mWaterPresP = mWaterPres + 1
21 :: mWaterPresP = mWaterPres - 1
22 :: ...
23 :: mWaterPresP = mWaterPres + 10
24 :: mWaterPresP = mWaterPres - 10
25 fi;
26 :: else -> break

27 fi;
28 d_step{
29 /* encoding of the transition relation defined by SCR tables */
30 mBlock = mBlockP; mReset = mResetP; mWaterPres = mWaterPresP;
31 mcPressure = mcPressureP;
32 tOverriden = tOverridenP;
33 cSafetyInjection = cSafetyInjectionP;
34 }/* end of d_step */
35 if

36 :: pc==0 -> skip

37 :: pc==0 && (mcPressure==Permitted && !mBlock &&
38 !tOverriden && mWaterPres!=Permit-1) -> pc++
39 :: pc==1 && (mcPressure==Permitted && !mBlock &&
40 tOverriden && mWaterPres!=Permit-1) -> pc++
41 :: pc==2 -> skip

42 :: pc==2 && (mcPressure = Permitted && mBlock &&
43 tOverriden && mWaterPres==Permit-1) -> pc++
44 fi;
45 }/* end of atomic */
46 od

Figure 9. Promela encoding of the SIS counterexample σ
R
RSIS of Figure 7.

removed from RSpec for the analysis to continue the verification process. This is the topic of the

next section.

A comparison of Figures 8 and 9 shows the main advantage of analyzing abstract

counterexamples instead of the whole specification: the order of execution of input events is

(mostly) fixed in abstract counterexamples, whereas they can be triggered in any order in the whole

specification. Thus, there are significantly less interleavings to be considered by the model checker

when analysing abstract counterexamples, and therefore it can achieve better runtime performance.

The experimental evaluation presented in section 5 supports this claim.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 31

Finally, it is important to remark that the ideas underlying this analysis approach are independent

of the selection of a specific model checking tool, and it can be easily adapted to work with different

model checkers.

4.3. Refinement phase

The refinement module of the RSpec analysis takes as input a spurious RSpec counterexample σR,

deemed as spurious by the concretization approach of the previous section, and attempts to produce

a predicate Pred that discards σR when added to RSpec. That is, counterexample σR originates

from an abstract counterexample that could be concretized with respect to the relaxed specification

(without NAT constraints), but which was unrealizable once NAT constraints are taken into account.

Let us now introduce some notation that will be useful in the rest of this section. Let σR be as in

formula (1) (section 4.2). The prefix of σR up to state i, i  m, is denoted by σR(..i). Notice that

the concretization operator is well defined for prefixes of abstract counterexamples. Thus, [σR(..i)]

denotes the concretization of the prefix σR(..i).

In order to attempt to learn Pred from σR, the refinement approach starts looking for the cause of

infeasibility of σR in a forward manner. That is, it starts an iterative process, initializing a variable

i in 1, and finishing when i = m. At each iteration, the approach checks whether [σR(..i)] contains

at least an execution of Spec, using the technique presented in the previous section (i.e., translating

[σR(..i)] to Promela and running SPIN over the translation). If such an execution exists, [σR(..i)] is

not spurious and i is increased by one to start the next iteration. Once the smallest spurious prefix

[σR(..i)] is found, it will proceed by considering that transition sAi�1 mvRi�1 sAi might be the culprit.

The approach consists simply in employing a model checker, in the same way as done in the

previous section, to explore [sAi�1 mvi�1
R sAi], i.e., to try to find an execution σ of Spec that takes

the system from a state represented by sAi�1 to another state represented by sAi , via the execution

of an event modifying variable mvi�1. If no such execution exists, then one can take Pred =

[sAi�1] ^mvRi�1) ¬[sAi]; this ensures that starting at a state where [si�1] holds, the execution of

event mvRi�1 of RSpec cannot lead to a state where [sAi] holds. Pred is then added to RSpec, allowing

the analysis to get rid of the spurious σR. On the other hand, if there exists a sequence σ witnessing

[sAi�1 mvi�1
R sAi], then the assumption that the last transition was responsible of the spuriousness

was misleading. In this case the process simply terminates the analysis, regarding it inconclusive.

Notice that this lightweight approach for refinement is incomplete: the last transition is considered

in isolation, so the feasibility of the transition may not imply the feasibility of the whole prefix. One

may of course find an appropriate refinement for RSpec, to remove the spurious counterexample,

but the approach would derive in a second, standard CEGAR process again. By taking this simpler

approach one may be missing cases, of course. However, as shown in the experimental evaluation,

for the analyzed models one seldom falls into this situation.

To learn about the spuriousness of sAi�1 mvRi�1 sAi the approach employs a translation from

SCR to the input language of the model checker ALV, similar to the one presented by Bultan and

Heitmeyer [12] (and conceptually similar to the translation to Promela given in the previous section).

This translation will not be discussed here; the interested reader should refer to the work of Bultan

and Heitmeyer [12]. The choice of ALV over SPIN here is based on an experimental comparison

of the efficiency of both model checkers when analyzing sAi�1 mvRi�1 sAi . While in the experiments

SPIN was often (much) better at generating witnesses for abstract counterexamples, ALV had a

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

32 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

(large) edge in proving them spurious. This might have to do with the different natures of the tools:

SPIN is an explicit model checker (it stores traversed states explicitly), whereas ALV is symbolic

(it represents set of states by formulas, in an attempt to reduce the required memory space). This

conclusion matches that of Bultan and Heitmeyer [12], who also compared these model checkers.

Furthermore, ALV makes it easier to describe a set of initial states, as in sAi�1 mvRi�1 sAi , than SPIN,

and ran faster in the experiments when a large number of initial states were present. As ALV suffers

from performance problems when generating witnesses, a timeout of 1 minute is set for the analysis

of sAi�1 mvRi�1 sAi . If ALV does not answer before the timeout, the refinement process fails.

sA0

TooLow ^ mWaterPres=14

sA1

Permitted ^ mWaterPres>=Permit

mWaterPresR

Figure 10. A spurious counterexample σ
R of RSIS

4.3.1. Refinement example. Consider the counterexample σR (of RSIS) shown in Figure 10, that

took place during the experiments of section 5. In σR the system starts at the initial state,

and moves to an abstract state with mode Permitted where mWaterPres>=Permit holds,

by executing RSIS’ event mWaterPresR. However, σR is spurious in the original SIS, as

mWaterPres>=Permit triggers a transition to mode High (starting from mode Permitted),

and the only way to go back to a state in mode Permitted is when mWaterPres takes a

value lower than Permit. ALV can prove that σR is infeasible in SIS in a few seconds. Then,

the refinement process produces the following predicate that removes σR from RSIS:

Pred = (mcPressure=TooLow ^ mWaterPres’ 6= mWaterPres)

¬(mcPressure’=Permitted ^ mWaterPres’>=Permit))

5. EXPERIMENTAL EVALUATION

The experimental evaluation is presented in order to answer the following research questions:

RQ1) Is the lazy abstraction approach (algorithm LPA-SCR) better suited than traditional lazy

abstraction to analyse SCR specifications?

RQ2) is the whole analysis approach more efficient than alternative techniques to analyze SCR

specifications maintaining the original level of detail?

In order to answer RQ1, in section 5.1, the effects of localizing abstraction predicates to modes

and modularizing the transition relation, when analyzing SCR specifications, is evaluated. To answer

RQ2, the whole analysis process is compared with alternative techniques for automated test case

generation and verification of properties of SCR specifications, in Sections 5.2 and 5.3, respectively.

The evaluation is based on various case studies taken from the literature on SCR specification and

analysis [21]. These are: a cruise control system (ccs), the safety injection system (sis) used as a

running example throughout this article, an aircraft’s autopilot (autopilot), and a car overtaking

protocol for coordinating smart vehicles (car3prop). All the experiments were run on an 2.6GHz

Intel Core 2 Duo PC with 3GB of RAM (2.5GB maximum memory set for the analysis tools),

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 33

running GNU/Linux 3.0. The prototype tool implementing the proposed analysis approach as well

as the case studies reported here can be downloaded from http://dc.exa.unrc.edu.ar/

staff/rdegiovanni/case-studies/SCR_Analysis.zip.

Generating Test Cases from SCR specifications

Let us briefly explain in what consists the test case generation problem for SCR specifications.

Intuitively, a test case is a run of the SCR specification (see Section 2.1.2) that covers certain

functionality. More precisely, a test case is a sequence of input events, together with the outputs

that the events produce in the SCR specification. Then, these test cases can be used for validation

(contrasting if the actual specification captures the user expected behaviour) and verification

(checking if the implementation meets the requirements specification).

In order to use the presented approach to generate test cases for SCR specifications, we follow

various different techniques based on model checking, that have been introduced in the literature

[5, 21, 22]. First, one needs to build all test predicates corresponding to the coverage criterion of

interest. Each of these test predicates characterizes a particular equivalence class of test cases, in the

corresponding test criterion. Then, for each test predicate P , a trap property TP = ¬P is generated.

Then, the presented approach is executed with the property TP as input. If the approach generates a

counterexample for TP , then a run that reaches a state satisfying P , i.e., a test case for P , has been

found. Otherwise, P is an infeasible test predicate.

Several different coverage criteria have been proposed for SCR specifications. In order to assess

the presented approach, the following are considered:

• Table coverage (T): Every cell of every table is covered at least once.

• Split mode coverage (SM): If a cell refers to various modes, the cell is covered for each of the

modes separately.

• Disequality split (DS): Expressions containing disequality operators are covered for the

“cases” of the disequality, e.g., � is split into > and =.

• Boundary coverage (B): Boundary values of disequalities in expressions are covered. For

example, y > C (with x and C integers) is split into x = C + 1 and x > C + 1.

• Modified Condition Decision Coverage (MCDC): Each literal (condition) is shown to

independently affect the value of the expression (decision) it is part of.

5.1. Assessing the Lazy Abstraction Algorithm

The goal in this section is to measure the effect of the two key features of the lazy abstraction

algorithm presented in this paper, in Section 3: modes are used for localizing abstraction predicates,

and the SCR transition relation is modularized according to modes and events. Notice that here it is

not the full approach what is being assessed (in particular, the effect of relaxing the NAT relation of

the specification is not evaluated). The SCR lazy abstraction algorithm is evaluated using different

configurations:

• LPA: Standard lazy predicate abstraction, with modes not part of the initial abstraction,

support predicates local to regions, and no modularization of the transition relation.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

34 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

• LPA + m.: LPA plus modes in the initial abstraction, and support predicates local to modes.

• LPA + mt.: LPA plus a modularized transition relation.

• LPA + m. + mt.: The LPA-SCR algorithm, which employs all the optimization techniques

discussed above, including m. and mt.

This experimental evaluation compares different configuration of the approach presented in this

paper, to assess how its different components affect performance. In order to be able to observe the

impact, models that are amenable to all configurations have to be used. This unfortunately is not

the case for most of the original versions of the models considered in this paper: the only model

that can in fact be analyzed as is with all configurations is car3prop, because it does not feature

numeric domains. To have a more representative analysis the literature was sought for versions of the

considered models that can be subject to all analyses. As a result of this search, reduced versions for

two of the cases were found, namely autopilot reduced and sis reduced [21]. To have

a hint of the extent of the simplification in the specifications, e.g., autopilot reduced deals

with integer variables in the range [0..500], while the original autopilot has these same variables

over the range [0..10000].

Table I summarizes the results of the experiment. The first row of the table shows the name of

the case study, and in brackets, the number of test predicates to be covered. Column runs indicates

the number of times a technique had to be executed in order to generate tests cases to cover all

of the test predicates, for all criteria. Column c/i/u displays the number of covered (c), infeasible

(i), and uncovered (u) test predicates. Covered predicates are those for which a test case could

be generated, infeasible predicates are those marked unrealizable by the corresponding technique,

and uncovered predicates represent cases where the technique was inconclusive (errors). For the

covered test predicates, the number of runs needed is indicated in brackets, since a single run can

cover several test predicates. Column time indicates how many seconds took a technique to generate

tests cases for all the considered test predicates. It is important to remark that any individual run that

lasted more than one hour, was stopped and marked the corresponding test predicate as uncovered.

CS car3prop (498 TPs.) sis reduced (91 TPs.) autopilot reduced (409 TPs.)

runs c/i/u time runs c/i/u time runs c/i/u time

LPA 110 402(14)/90/6 33620 19 80(4)/11/0 8496 21 395(7)/10/4 23497

LPA + m. 114 401(17)/96/1 8858 21 80(10)/11/0 5319 81 347(19)/10/52 113401

LPA + mt. 118 402(22)/74/22 69197 20 80(9)/11/0 13032 51 389(31)/10/10 22201

LPA-SCR 119 402(29)/96/0 1795 23 80(12)/11/0 4724 54 399(44)/10/0 3951

Table I. Assessment of our LPA-SCR algorithm.

The results in Table I point out that the LPA-SCR approach is 6X faster than standard lazy

predicate abstraction (LPA). More importantly, it is able to cover all the test predicates, as opposed

to the alternatives. This happens because either lazy abstraction needs to handle many (non local to

modes) abstraction predicates, or it had to rediscover too many predicates (see below), making the

abstract model too expensive to construct within the given time limits.

In the LPA-SCR algorithm, support predicates are local to modes instead of regions. It was argued

earlier in this paper that, due to the structure of tables, regions with the same mode tend to share the

support predicates. In order to validate this hypothesis, a few test predicates were randomly chosen

for each case study, and gathered the total number of predicates required to generate each test case,

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 35

the maximum number of times a predicate has been rediscovered for different regions with the same

mode during standard abstraction, and the number of abstract nodes constructed by each approach.

These results are summarized in Table II.

CS LPA LPA-SCR

nodes predicates most repeated nodes predicates

car3prop P1 41 94 30 76 11

car3prop P2 48 75 33 75 8

sis reduced P1 916 158 50 936 65

sis reduced P2 113 25 8 113 17

autopilot reduced P1 1037 126 21 1192 32

autopilot reduced P2 965 126 21 1120 32

Table II. Predicates local to modes vs. predicates local to regions.

Clearly, LPA-SCR is improved by localizing support predicates using the modes of the

specification, as this allows it to significantly reduce the number of support predicates needed,

and the number of invocations to the abstraction refinement procedure. The aforementioned results

are the main cause of the good behaviour (the competitive performance) of LPA-SCR against lazy

abstraction, shown in Table I. It is important to remark that models involving numeric variables over

large ranges, such as sis, are those in which standard LPA expends more effort in rediscovering

support predicates. This difference becomes notoriously more evident when the original SCR

specifications are analyzed (recall that here reduced versions of the models were considered), where

more predicates are needed, and so, rediscovered.

5.2. Experimental Results for Test Generation

In this section, the approach REL-LPA-SCR is assessed against alternative techniques for automated

test case generation of SCR specifications. In particular, a broad assessment of several model

checkers for this task was presented by Fraser and Gargantini [21]. Then, the approach is compared

against the model checkers used by Fraser and Gargantini [21], on the case studies already

mentioned: ccs, sis, autopilot and car3prop. It is important to remark that, for the

experiments in this section, the full specifications are considered, maintaining numeric data as in

the original description of the specifications (i.e., not manually reduced versions as in the work of

Fraser and Gargantini [21]). Several model checkers with different features are considered (explicit

state, symbolic and bounded model checkers) for this comparison: SPIN, NuSMV, Cadence SMV

and SAL. Three new tools are also considered: CPAChecker [8], a tool for predicate analysis of C

programs, based on lazy abstraction and interpolation-based refinement; Randoop [44], a feedback-

directed random test generation tool for Java programs; and Evosuite [20], an automated test case

generation tool for Java programs based on evolutionary computation. CPAChecker is an example

of a modern, efficient CEGAR-based model checker. The other two tools are examples of state-

of-the-art technology for automated test case generation, that are known to perform very well

in practice, and do not suffer from the scalability issues that model checkers are often subject

to. To run CPAchecker, a C program per each case study was built, where the nondeterminism

associated with the alterations on monitored variables is captured through auxiliary routines of the

kind VERIFIER nondet int(), that the tool provides. To run both Randoop and Evosuite,

a Java class per each case study was developed, in which public methods capture the changes in

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

36 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

the monitored variables; by producing tests that exercise these classes through their corresponding

APIs, test sequences for the corresponding cases are produced. All classes and auxiliary programs

are provided as part of the bundle for reproducing the experiments, reported earlier in this paper.

These tools were run using a variety of settings, and only the best result produced by each tool is

reported. When a model checking tool is not mentioned for one of the case studies, it means that it

performed significantly worse than the other model checkers. All tools except for Randoop were run

once per test predicate. Randoop, on the other hand, since it is not driven by coverage, was let to run

for a whole hour, and then the resulting suite was evaluated, to analyze how many test predicates

were covered.

Table III shows the results of this experiment. For each case study and technique, the table shows

the number of times the tool was invoked (runs), the number of covered (c), infeasible (i), and

uncovered (u) test predicates (when the technique is inconclusive). In each of the covered cases, it

has been indicated, between parentheses, the number of tests produced by each tool, as a single test

may cover several test predicates. As in the previous section, here all the test criteria are considered

to obtain the test predicates (indicated in the table next to the name of each case study). The column

time indicates the total running time, in seconds, for each tool. Additionally, for the whole analysis

approach, the time consumed by the LPA-SCR algorithm, the time required by the model checkers to

build a feasible counterexample (M.C. Conc.), and to produce the constraints that remove spurious

violations (M.C. Ref.), are distinguished. Since the original (large) specifications are dealt with, the

timeout for covering a single test predicate is set to 5 minutes, and a total analysis time of 5 hours

for each technique. The only exception was Evosuite; a test suite per each predicate to be covered

was produced; since the tool has a default timeout of 2 minutes to attempt to achieve coverage, the

tool was run with this default configuration and the total generation time was summed up; the tool

may achieve generation before the timeout, but continues to run to improve (e.g., reduce the size)

of the test suite. While this provided an advantage to the tool, it still performed worse that other

approaches, so the whole results were reported instead of only those that could be covered within

the 5 hours timeout.

Let us discuss the results presented in Table III. The first issue to notice is that the presented

technique is able to generate test cases for almost all predicates (only one error in the autopilot

due to the incompleteness of the abstraction refinement approach), even when other tools fail to do

so. This is more evident in large case studies, like ccs and autopilot, where the models contain

many monitored variables with large numeric domains.

In the largest case study, the ccs model (31 variables, where 10 are numeric with ranges from

0 to 999999), the presented approach (REL-LPA-SCR) does not fail for any test predicate, whereas

most other tools consistently fail due to the huge state space to be explored. SPIN is the only model

checker able to generate test cases for some predicates (about 25% of the total). However, it can only

handle “easy” test predicates, that is, those for which the corresponding tests can be generated by

exploring just a small part of the state space (notice that SPIN never marks any predicate infeasible,

since it cannot explore the entire state space). Being an explicit state model checker, SPIN is very

fast in generating test cases, but it generally runs out of memory quickly for large models.

The second largest specification, autopilot (10 variables, 6 of those are numeric with range

from 0 to 10000), shows a similar behaviour to css, although the model checkers can cover more

test predicates in this case (close to 70% with SPIN). Despite the fact that the presented approach is

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 37

Runs Tests (c/i/u) Time LPA-SCR Time M.C. Conc. M.C. Ref.

autopilot (409 TPs.)

SPIN 169 288(48)/0/121 2351 - - -

Cad. SMV 378 36(5)/0/373 timeout - - -

SAL/SMC 296 116(3)/0/293 timeout - - -

CPAchecker 409 275(275)/8/126 118323 - - 27315

Randoop 1 201(160025)/0/208 3600 - - -

Evosuite 409 0/0/409 21275 - - -

REL-LPA-SCR 234 398(223)/10/1 1390 227 848 313

ccs (582 TPs.)

SPIN 582 164/0/418 3456 - - -

Cad. SMV 582 0/0/582 timeout - - -

CPAchecker 582 328(328)/83/171 183661 - - 29545

Randoop 1 139(192073)/0/443 3600 - - -

Evosuite 582 0/0/582 62696 - - -

REL-LPA-SCR 457 482(357)/100/0 4657 1402 1602 1472

sis (91 TPs.)

SPIN 19 80(8)/11/0 146 - - -

NuSMV 27 80(16)/11/0 995 - - -

Cad. SMV 31 80(20)/11/0 420 - - -

SAL/SMC 27 80(16)/11/0 38 - - -

CPAchecker 91 24(24)/11/56 50530 - - 20672

Randoop 1 24(153782)/0/67 3600 - - -

Evosuite 91 0/0/91 6484 - - -

REL-LPA-SCR 70 80(59)/11/0 156 13 111 30

car3prop (498 TPs.)

NuSMV 142 402(46)/96/0 261 - - -

Cad. SMV 160 402(64)/96/0 78 - - -

SAL/BMC 133 402(37)/81/15 56 - - -

CPAchecker 498 345(345)/15/138 130025 - - 19947

Randoop 1 264(289)/0/234 3600 - - -

Evosuite 498 259(13526)/0/239 65730 - - -

REL-LPA-SCR 460 402(364)/96/0 2509 2059 450 0

Table III. Comparison between the whole analysis approach (REL-LPA-SCR) and other test generation tools
in the generation of test cases for SCR.

clearly better in this case study, this is the only case in which our approach reports one error: it runs

out of time (5 minutes) when SPIN is run to build a concrete counterexample. Similar to the ccs,

notice that no model checker can mark a predicate as infeasible for the autopilot, due to the big

state space to be explored.

However, for small specifications some model checkers can be faster than the presented approach.

For example, the sis case study contains just three monitored variables (only one of those is

numerical), so it does not represent a big problem for the model checkers. In particular, SAL (a

bounded model checker) is faster than the presented approach, but the times obtained with the

technique are still comparable with the other model checkers. For the car3prop model, all the

model checkers are faster than the approach. It is important to remark that car3prop does not

have any numeric variable, and has a large number of monitored variables. Thus, the absence of

numeric variables allows model checkers to explore the full state space very efficiently. On the

other hand, the presented analysis approach does not benefit from relaxing the NAT relation, and

due to the characteristics of the model, it has to introduce a high number of abstraction predicates,

yielding worse running times than the model checkers.

CPAchecker is included in this evaluation to have a comparison with a standard CEGAR based

model checking approach. While the case studies had to be encoded as C programs (extended with

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

38 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

nondeterministic assignments and other elements), this is not different from other encodings in

Promela, that have been described earlier in the paper. The tool showed a poor performance in

comparison with the technique; we believe that the constraint relaxation, as well as the SCR-tailored

abstraction, contributed to this difference. Experiments in Section 5.1 provide some evidence in this

direction. The number of predicates introduced for abstraction refinement made the tool timeout

in a significant number of cases. Indeed, while covered/infeasible reachability properties typically

demand about 16 refinement predicates in average, those that timeout require 159 in average,

confirming the motivation in the paper (the most significant difference was observed in the sis

case study, with an average of 10 introduced predicates for those cases that finished as infeasible or

covered, and an average of 329 introduced predicates for those that timeout).

Randoop and Evosuite are examples of well-regarded tools for test generation in the context of

Java programs. While Randoop can produce a very large set of test cases very efficiently, the length

necessary in many cases to reach some states of interest makes it very difficult for this tool to achieve

good test predicate coverage. Evosuite targets coverage, so it was attempted to encode reachability

of the predicates of interest as a guidance to the tool. Again, the tool could cover many cases, but

it does not even meet the performance of some standard model checking tools. It seems that this

particular test generation scenario is better suited for the latter kind of tools.

Finally, from Table III, it is observed that the abstraction time was significantly lower than the

time spent in model checking (with the only exception of car3prop). This provides evidence

to support the initial hypothesis, which establishes that many interesting properties can be proved

without considering the specific values taken by numeric variables. However, for the properties in

which the precise value of numeric variables is important, model checking has to be relied upon to

generate the concrete test cases and refine the relaxed specification, a process much more expensive

than the presented abstraction algorithm.

5.3. Experimental Results for Verification

Let us now concentrate in showing that REL-LPA-SCR can also be used for efficiently verifying

properties of SCR specifications. Different state of the art tools, like the SCR Toolset [29] (generally

using SPIN to perform the analysis) and the (infinite state) model checker ALV [12], have been used

for verifying state and transition invariants for SCR specifications. However, they reported that these

techniques requires a “manual” abstraction of the specification, in order to reduce the state space and

be able to successfully complete the analysis of the specification. But, as these manually reduced

specifications are not publicly available, the result of running the model checkers (SPIN and ALV)

on the original specification are reported. CPAchecker is also included in this evaluation. Thus, the

goal in this section is to evidence that REL-LPA-SCR can verify properties without any manual

abstraction, as opposed to the related techniques. Since the original (large) specifications are dealt

with in this section, the timeout for verifying a single property is set to 1 hour for each technique.

Theorem proving based approaches are not taken into account for the comparison, because the focus

is on automated verification techniques.

The state and transition invariants mentioned by Heitmeyer et al. [29], Bultan and Heitmeyer [12]

and Bharadwaj et al. [9] are considered: 11 properties for the ccsmodel, 4 for the sis and 2 for the

autopilot, respectively. In particular, 9 properties in the ccs models are valid invariants, 3 in

the sis and 2 in the autopilot. Notice that car3prop is not included in this evaluation. This

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 39

has to do with the fact that, in the literature, no property verification scenarios were found regarding

this case study. Table IV summarizes for each tool the number of properties that were verified to

be valid (v), the number of generated counterexamples (c), and the number of times the tool was

inconclusive (i). The time, in seconds, needed for each tool to analyzed the whole set of properties

for each case study, is also reported.

The approach presented in this paper behaves considerably better than the model checkers SPIN,

ALV and CPAchecker. From the point of view of efficiency, the technique is in general several

orders of magnitude faster than alternative techniques. The approach is able to verify and generate

counterexamples for properties in both simple and complex SCR specifications, that contain numeric

variables. Notice that the only case in which this approach behaves worse than a model checker is

the sis example, where SPIN is faster for the same reasons we explained in the previous section,

when SPIN was faster for test case generation. However, SPIN fails in analyzing the bigger case

studies. In the case of ALV, it shows a better behaviour than SPIN when analyzing the ccs case

study, being able to verify 6 (simple) properties, and even to generate one counterexample (the

same handled by SPIN). However, ALV’s performance gets worse when analyzing specifications

that contain numeric variables, as in the cases of the autopilot and sis. It is also important to

remark that, from the point of view of effectiveness, the approach had in these case studies, no case

reported as inconclusive.

Props. (v/c/i) Time

autopilot (2 properties)

SPIN 0 / 0 / 2 7200
ALV 0 / 0 / 2 7200
CPAchecker 1 / 0 / 1 3657
REL-LPA-SCR 2 / 0 / 0 1

ccs (11 properties)

SPIN 0 / 1 / 10 36004
ALV 6 / 1 / 4 14652
CPAchecker 5 / 2 / 4 16654
REL-LPA-SCR 9 / 2 / 0 44

sis (4 properties)

SPIN 3/1/0 1
ALV 2/0/2 7202
CPAchecker 3 / 0 / 1 3640
REL-LPA-SCR 3/1/0 5

Table IV. Comparison between the whole analysis approach (REL-LPA-SCR) and model checkers in the
verification of properties for SCR specifications.

6. RELATED WORK

The SCR Toolset [29] provides a wide set of tools to perform different kinds of analysis to SCR

specifications, e.g., syntax checking, consistency analysis, and the verification of properties via

theorem proving and model checking [4, 12, 29]. In particular, some of these tools enable one

to perform verification via model checking, which either require manual abstractions from the

developer, or do not scale well. With respect to testing, the simulator in the SCR toolset allows

the developer to load specific scenarios, which are in principle provided by the engineer, and check

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

40 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

whether certain associated assertions are violated or not in the particular executions described by

the scenarios.

Gargantini and Heitmeyer [22] used a model checker for automatically obtaining executions

transiting through particular modes of the SCR specification. Later on, Fraser and Gargantini [21]

made a thorough comparison between various model checkers (symbolic, bounded, explicit state,

etc.) in order to automatically generate test cases from tables, and analyzed the achieved coverage

and scalability issues. With respect to test generation, the evaluation of the technique presented in

this paper is based on case studies analyzed by Fraser and Gargantini, and the comparison with

model checkers uses Fraser and Gargantini’s framework of model checkers for test case generation

from SCR tables. Bultan and Heitmeyer [12] employed the ALV infinite state model checker to

analyze SCR tables. As they mentioned, ALV is not well suited for finding counterexamples, and

so, neither it is for generating test cases. Then, ALV was not considering for assessing the approach

presented in this paper for this task. The approach has been then compared with most of the above

mentioned works, which shows that the technique is more effective than other approaches for larger

requirements models.

To the best of the authors’ knowledge, automated abstraction techniques have been applied

to tabular requirements specifications infrequently, particularly for testing purposes. Bharadwaj

and Heitmeyer [10] applied abstraction to SCR specifications, for scalability purposes related to

model checking. That approach is based on the removal of irrelevant variables (slicing) to the

property of interest, and the transformation of “internal” variables into monitored ones, with the

aim of removing detailed variables (e.g., numerical variables). Nevertheless, they only provide

experimental results using a few properties over two small SCR specifications. Later on, Heitmeyer

et al. [29] assessed these abstraction techniques under a broader set of examples, mentioning the

need of performing different kinds of manual ad-hoc abstractions in order to succesfully complete

the analysis of some properties via model checking. In contrast to these techniques, the approach

presented in this paper performs the abstraction process in a fully automated way, and is capable of

dealing with the SCR specification maintaining the original level of details, as shown in section 5.3.

Many successful approaches to verification and test generation have been proposed. Some of

these are based on SMT solving, abstraction, combinations and variants. Most works target code

analysis rather than requirements specifications. In particular, lazy abstraction with abstraction

refinement based on interpolation was used for automatically generating tests leading to the

reachable locations of a program, with successful applications in device drivers and security critical

programs [5]. Other related and successful approaches are those by Henzinger et al. [34] and

Chaki et al. [14]. The LPA-SCR algorithm of the approach presented in this paper is based on

that put forward by Beyer et al. [5], which employs lazy abstraction [33] for test generation, but

targets requirements specifications. As opposed to programming domains, in which abstraction was

successfully applied [16], requirement specifications are not “control intensive”, thus constituting

a novel interesting domain. Furthermore, the LPA-SCR algorithm was especially tailored for SCR

requirements specifications, exploiting their particular characteristics in order to make the analysis

of interesting SCR specifications feasible.

Other automated tools such as Pex [49] and SPF [51] successfully implement automated white

box test case generation for .NET and Java programs, respectively. These target code, and are

based on symbolic execution instead of predicate abstraction with automated refinement. Two

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 41

representatives of well regarded tools for automated test case generation have been considered in

this paper, one that is driven by white-box criteria, namely Evosuite [20], and a black-box driven

tool based on random test generation, namely Randoop [44]. The experiments showed that while

these tools perform very well in achieving high coverage and mutation score in the context of test

generation from code [44, 20], the setting considered in this paper seems to be inherently different,

with the high degree of nondeterminism in specification that has been mentioned earlier in this

paper, leading these tools to a weaker table coverage compared with model checking tools.

Finally, it is worth to mention that this paper extends and improves the work presented by

Degiovanni et al. [19]. The main difference that work is the way in which specifications with

large numerical domains are handled. Particularly, while Degiovanni et al. [19] proposed to split

the domain of numerical variables in several smaller intervals, helping the abstraction process

to converge, that solution had two major drawbacks: it is not trivial to decide how to split the

intervals, and the analysis is very slow, for relatively simple specifications. The new abstraction

based approach presented in this paper performs a fully automated abstraction process that, as we

showed in section 5, allows us to efficiently analyze SCR specifications (maintaining the original

level of detail).

7. CONCLUSIONS

The requirements process is an important phase in the development of quality software, that

demands requirements specification frameworks to aid requirements elicitation, specification and

refinement. Formal approaches such as SCR, the subject of this article, have an increased potential

to expose ambiguities, missing cases and errors in requirements specifications, but their successful

application depends greatly on having adequate and powerful automated tool support. A well known

limitation in automated analysis is the so called state explosion problem, which has been tackled in

various ways, including abstraction based techniques. In this paper, a number of features inherent

to SCR tabular requirements specifications, that can be exploited to improve their abstraction-

based automated analysis, have been identified. These observations led to a 2-stage abstraction

process, that involves a first relaxation stage, where certain constraints are disregarded from the

specification, and a second, more classical, counterexample guided abstraction refinement process.

It is during the latter that features of SCR specifications are exploited to modularize and simplify

requirements specifications for abstraction-based analysis, while the former treats a particular kind

of specification element (numerical variables over large domains) to aid the latter.

The approach was assessed through a detailed comparison with alternative techniques for test

generation and property verification of SCR specifications, on case studies that have been widely

used in the literature. This approach showed better efficency and scalability than existing techniques,

and was capable of analyzing all our case studies at their original level of detail, unlike other

approaches that failed in several cases, most notably in those whose specifications involved

monitored numerical variables with large domains.

The motivation for dealing with “larger” specifications is straightforward: it contributes to the

scalability in this kind of analysis, and facilitates the validation and verification activities. On

the one hand, for test generation it is important that the generated tests maintain the level of

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

42 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

abstraction/detail expected by users, and present in the implementation. Otherwise, the tests have

to be manually adapted by the engineer in order to be useful in the original context; a slow, tedious

an error prone process. On the other hand, properties verified in reduced models might exhibit

violations in the original, larger specification. Thus, using reduced specifications is only useful to

increase the engineer’s confidence in the correctness of the specification, but are less effective in

ensuring the absense of errors.

ACKNOWLEDGEMENTS

This material is based upon work partially supported by Argentina’s ANPCyT through grants PICT

2012-1298, 2013-2624, 2015-2341 and 2015-2088, and by NPRP grant NPRP-4-1109-1-174 from

the Qatar National Research Fund (a member of Qatar Foundation).

REFERENCES

1. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise and N. Sharygina, Lazy Abstraction with Interpolants for Arrays,

in Proc. of LPAR 2012, LNCS 7180, Springer, 2012

2. M. Archer, C. Heitmeyer, and E. Riccobene, Proving invariants of I/O automata with TAME, Automated Software

Engineering, 9:201232, 2002.

3. I. Alexander, N. Maiden, Scenarios, Stories, Use Cases, Wiley, 2004.

4. J. Atlee and J. Gannon, State-Based Model Checking of Event-Driven System Requirements, IEEE Trans. Software

Eng. 19(1), IEEE Press, 1993.

5. D. Beyer, A. Chlipala, T. Henzinger, R. Jhala and R. Majumdar: Generating Tests from Counterexamples, in Proc.

of ICSE 2004, IEEE, 2004.

6. D. Beyer, T. Henzinger and G. Théoduloz, Lazy Shape Analysis, in Proc. of CAV 2006, LNCS 4144, Springer,

2006.

7. D. Beyer, T. Henzinger, R. Jhala and R. Majumdar, The Software Model Checker BLAST, STTT 9(5-6), Springer,

2007.

8. D. Beyer and M. Keremoglu, CPAchecker: A Tool for Configurable Software Verification, in Proceedings of CAV

2011, Springer, 2011.

9. R. Bharadwaj and C. Heitmeyer, Applying the SCR Requirements Method to a Simple Autopilot, in Proc. of NASA

Langley Formal Methods Workshop, 1997.

10. R. Bharadwaj and C. Heitmeyer, Model Checking Complete Requirements Specifications Using Abstraction,

Automated Software Engineering 6(1), Springer, 1999.

11. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio and R. Sebastiani, The MathSAT 4 SMT Solver, in Proc. of

CAV 2008, LNCS 5123, Springer, 2008.

12. T. Bultan and C. Heitmeyer, Applying Infinite State Model Checking and Other Analysis Techniques to Tabular

Requirements Specifications of Safety-Critical Systems, Design Automation for Embedded Systems, 12(1-2), 2008.

13. R. W. Butler, An Introduction to Requirements Capture Using PVS: Specification of a Simple Autopilot. NASA

Technical Memorandum 110255. NASA Langley Research Center, May 1996.

14. S. Chaki, E. Clarke, A. Groce, S. Jha and H. Veith. Modular Verification of Software Components in C, Trans. on

Software Engineering 30(6), IEEE, 2004.

15. A. Cimatti, I. Narasamdya and M. Roveri, Boosting Lazy Abstraction for SystemC with Partial Order Reduction, in

Proc. of TACAS 2011, LNCS, Springer, 2011.

16. E. Clarke, A. Gupta, H. Jain and H. Veith, Model Checking: Back and Forth between Hardware and Software, in

Verified Software: Theories, Tools, Experiments, LNCS 4171, Springer, 2008.

17. P. Courtois and D. Parnas, Documentation for safety critical software, in Proc. of the ICSE’93, ACM, 315-323,

1993.

18. S. Das and D. Dill, Successive Approximation of Abstract Transition Relations, in Proc. of the IEEE Symposium

on Logic in Computer Science LICS 2001, IEEE Press, 2001.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

IMPROVING LAZY ABSTRACTION FOR SCR SPECS. THROUGH CONSTRAINT RELAX. 43

19. R. Degiovanni, P. Ponzio, N. Aguirre and M. Frias, Abstraction Based Automated Test Generation from Formal

Tabular Requirements Specifications, in Proceedings of International Conference on Tests and Proofs TAP 2011,

Zurich, Switzerland, LNCS 6706, Springer, 2011.

20. G. Fraser and A. Arcuri, EvoSuite: automatic test suite generation for object-oriented software, in Proceedings of

the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering

ESEC/FSE 2011, ACM, 2011.

21. G. Fraser and A. Gargantini, An Evaluation of Model Checkers for Specification Based Test Case Generation, in

Proc. of ICST 2009, LNCS, Springer, 2009.

22. A. Gargantini and C. Heitmeyer, Using Model Checking to Generate Tests from Requirements Specifications, in

Proc. of ESEC/FSE 1999, LNCS, Springer, 1999.

23. C. Ghezzi, M. Jazayeri y D. Mandrioli, Fundamentals of Software Engineering, Prentice-Hall, 2002.

24. S. Graf and H. Saı̈di, Construction of abstract state graphs with pvs, in Proc. of CAV 1997, Springer-Verlag.

25. C. Heitmeyer, Requirements Models for Critical Systems, Software and Systems Safety - Specification and

Verification, IOS Press, 2011.

26. C. Heitmeyer and J. McLean, Abstract requirements specifications: A new approach and its application, IEEE TSE

, 580-589, 1983.

27. C. Heitmeyer, B. Labaw, D. Kiskis, Consistency Checking of SCR-Style Requirements Specifications, en

Proceedings de IEEE International Symposium on Requirements Engineering, York, U.K. IEEE 1995, doi:

10.1109/ISRE.1995.512546.

28. C. Heitmeyer, R. Jeffords and B. Labaw, Automated consistency checking of requirements specifications, Trans. on

Soft. Eng. and Methodology, 5(3), ACM, 1996.

29. C. Heitmeyer, M. Archer, R. Bharadwaj and R. Jeffords, Tools for constructing requirements specifications: the

SCR Toolset at the age of ten, Computer Systems: Science & Engineering, 20(1), 2005.

30. C. Heitmeyer, M. Pickett, E. Leonard, I. Ray, D. Aha, J. Trafton and M. Archer, Building High Assurance Human-

Centric Decision Systems, Automated Software Engineering 22(2), Springer, 2015.

31. C. Heitmeyer and E. Leonard, Obtaining Trust in Autonomous Systems: Tools for Formal Model Synthesis and

Validation, in Proceedings of IEEE/ACM 3rd. FME Workshop on Formal Methods in Software Engineering, IEEE

CS, 2015.

32. K. Heninger, J. Kallander, D. Parnas and J. Shore, Software Requirements for the A-7E Aircraft, NLR Memorandum

Report 3876, US Naval Research Lab., 1978.

33. T. Henzinger, R. Jhala, R. Majumdar and G. Sutre, Lazy abstraction, in Proc. of POPL 2002, ACM, 2002.

34. T. Henzinger, R. Jhala, R. Majumdar and K. McMillan, Abstractions from proofs in in Proc. of POPL 2004, LNCS,

Springer, 2004.

35. G. J. Holzmann, Design and Validation of Computer Protocols, Prentice-Hall, 1991.

36. G. J. Holzmann, The SPIN Model Checker - primer and reference manual, Addison-Wesley, 2004.

37. P. Jalote, An Integrated Approach to Software Engineering, 3rd. Edition, Springer, 2005.

38. R. Jhala, Lazy Abstraction, PhD thesis, 1999.

39. J. Kirby Jr., Example NRL/SCR software requirements for an automobile cruise control and monitoring system,

Technical Report TR-87-07, Wang Institute of Graduate Studies, 1987.

40. E. Letier, J. Kramer, J. Magee and S. Uchitel, Deriving Event-Based Transition Systems from Goal-Oriented

Requirements Models, in Automated Software Engineering, Volume 15, Issue 2, pp 175–206, 2008.

41. N. Leveson, M. Heimdahl, H. Hildreth and J. Reese, Requirements Specifications for Process-Control Systems,

Trans. on Software Engineering, 20(9), IEEE, 1994.

42. N. Maiden and I. Alexander, Scenarios, stories, use cases: through the systems development life-cycle, J. Wiley and

sons, Chichester, 2004.

43. K. McMillan, Interpolation and SAT-Based Model Checking, in Proceedings of the 15th International Conference

on Computer Aided Verification CAV 2003, LNCS 2725, Springer, 2003.

44. C. Pacheco, S. K. Lahiri, M. D. Ernst and T. Ball, Feedback-Directed Random Test Generation, in Proceedings of

International Conference on Software Engineering ICSE 2007, IEEE, 2007.

45. D. Parnas and J. Madey, Functional Documentation for Computer Systems, Science of Computer Programming,

25(1), Elsevier, 1995.

46. B. Schlich, Model checking of software for microcontrollers, ACM Trans. Embedded Comput. Syst. 9(4), ACM,

2010.

47. W. Stevens, G. Myers and L. Constantine, Structured Design, IBM Systems Journal, 13 (2), 115-139, 1974.

48. I. Sommerville, Software Engineering, 8th Edition, Addison-Wesley, 2006.

49. N. Tillmann and J. Halleux, Pex-White Box Test Generation for .NET. In Proc. of TAP 2008, LNCS, Springer, 2008.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

44 R. DEGIOVANNI, P. PONZIO, N. AGUIRRE AND M. FRIAS

50. A. J. Van Schouwen, D. Parnas, J. Madey, Documentation of requirements for computer systems, in Proc. of IEEE

RE’93, 198-207, 1993.

51. W. Visser, C. Pǎsǎreanu and S. Khurshid, Test input generation with Java PathFinder, in Proc. of ISSTA 2004,

ACM, 2004.

52. Y. Vizel, O. Grumberg and S. Shoham, Lazy abstraction and SAT-based reachability in hardware model checking,

in Proc. of FMCAD 2012, IEEE, 2012.

Copyright © 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)

Prepared using stvrauth.cls DOI: 10.1002/stvr

