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SUMMARY

While the effectiveness of bounded-exhaustive test suites increases as one increases the scope for the
bounded-exhaustive generation, both the time for test generation and for test execution grow exponentially
with respect to the scope. In this article, a set of techniques for reducing the time for bounded-exhaustive
testing, by either reducing the generation time or reducing the obtained bounded-exhaustive suites, are
proposed. The representation invariant of the software under test’s input, implemented as a repOK routine,
is exploited for these reductions in two ways: (i) to factor out separate representation invariants for disjoint
substructures of the inputs, and (ii) to partition valid inputs into equivalence classes, according to how these
exercise the repOK code. The first is used in order to split the test input generation process, since disjoint
substructures can be independently generated. The second is used in order to reduce the size of a bounded-
exhaustive test suite, by removing from the suite those tests that are equivalent to some tests already present
in the suite.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A major challenge in Software Engineering is the development of methodologies and techniques to
ensure the correctness of software systems, i.e., to provide guarantees that a given system correctly
fulfils the purpose for which it was built [10]. Testing plays an important role in ensuring correctness,
as it is, despite its inherent incompleteness, a very effective and widely used mechanism for software
verification. This technique essentially consists of executing a piece of software, whose correctness
needs to be assessed, in a number of different situations, or test cases. These cases often correspond
to instantiating parameters of the software with different inputs, and in order to increase the chances
of detecting bugs, one typically seeks these inputs to be as many and as varying as possible, so that
the software under test is more thoroughly exercised [29].
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Since inputs are a primary means for executing software in different scenarios, test-input
generation is a highly relevant task in testing. While it may be easy for basic datatypes and when
the programs to test are simple, for most programs test input generation is in general a difficult task:
one often has to come up with inputs satisfying complex constraints in order to make the software
run through particular paths or exhibit particular behaviours. Test generation in general, and test
input generation in particular, have traditionally been done manually, but in the last few years,
various approaches and tools have been developed to perform automated test generation, including
techniques based on random generation [7, 21], SAT/SMT constraint solving [26, 1], and different
forms of model checking and search [5, 11, 15, 27].

A particularly challenging problem in the context of automated test generation is that of
systematically producing test inputs for programs that manipulate complex data structures, like
directed graphs, linked lists or balanced trees. This is a difficult problem because this kind of input
is typically required to satisfy structural constraints such as balance, acyclicity, connectedness,
etc., to be valid. An approach that has been very successful to test programs handling complex
data structures (as well as programs in other domains with similar characteristics) is bounded-
exhaustive testing [5, 15, 18, 11, 8]. This technique consists of generating all the inputs that
satisfy the constraints corresponding to the wellformedness of the generated structures, within
certain prescribed bounds, or scopes. Tools following this approach usually involve some form of
constraint-solving, e.g., based on search, model checking, or combinations of these.

The rationale behind bounded-exhaustive testing dwells on the small-scope hypothesis [12],
which conjectures that in some contexts, if a program has bugs, then most of these bugs can be
reproduced using small inputs. There are situations, however, where larger scopes are necessary to
achieve coverage and detect bugs. For instance, some insertion and deletion procedures in balanced
trees require structures of larger sizes to force rotations or enable other rebalancing mechanisms;
so, if one wants to cover the rebalancing cases, the smaller scopes are insufficient. But, while
the effectiveness of bounded-exhaustive test suites increases as one increases the scope for the
bounded exhaustive generation, both the time for test generation and the time for test execution
grow exponentially with respect to the scope. More precisely, in many cases, considering a particular
scope for bounded exhaustive testing might be necessary to cover certain input classes of interest,
but it may also require excessive time for test generation. Moreover, even in situations where the
generation process can be completed, the obtained suite may be so large that the time required
to execute it would be prohibitive. For instance, if one wants to test a merge routine on binomial
heaps, building its corresponding bounded exhaustive test-suite bounding by 7 nodes both binomial
heaps (merge is a binary operation on heaps) takes over 15 hours on a modern workstation, and has
11,538,197,056 tests; despite the fact that one may be willing to spend 15 hours for the generation,
actually testing the routine on such large suite is impractical.

In this paper, a set of techniques are proposed, to overcome the above described problems. These
techniques aim at reducing the time for bounded exhaustive testing, by either reducing the test
generation time, or adequately reducing the obtained bounded exhaustive suites. They do so by
exploiting the representation invariant, i.e., the constraint that indicates whether a structure is well-
formed or not, of the inputs of the software under test. More precisely, the presented techniques
require the representation invariant to be provided imperatively, as a repOK routine [16], which is
used for two tasks:
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REPOK-BASED REDUCTION OF BOUNDED-EXHAUSTIVE TESTING 3

• to factor out separate representation invariants for disjoint substructures of the inputs, and
• to partition valid inputs into equivalence classes, according to how these exercise the repOK

code.

The first of the above tasks aims at improving the generation of bounded exhaustive suites,
and applies when inputs are composed of disjoint substructures. These are treated separately, by
independently generating suites for each of the (disjoint) substructures. This approach has various
advantages, especially because tools for bounded exhaustive test generation typically have their
efficiency tied to the way in which repOK is implemented. In particular, if the inputs are composed
of two separate substructures s1 and s2, then checking the overall wellformedness by checking
first the wellformedness of s1 and then that of s2 can be completely different, from the point
of view of efficiency, from checking first s2 and then s1. If the generation of the substructures
are independent, the effort of repOK “engineering” is reduced for efficiency purposes. Moreover,
disjoint substructures can be exploited for parallelising the generation stage, and even if these are
sequentially generated, the problem of reconsidering every valid structure of the second substructure
for each valid one of the first substructure, is avoided.

The second of the above mentioned tasks aims at reducing the time for testing, by adequately
reducing bounded exhaustive suites. This approach works on the observation that the repOK code
provides information regarding the “variability” of the inputs. Essentially, if one considers a white
box coverage criterion on the repOK, one can define an equivalence relation between valid test
inputs. Different valid test inputs will be considered equivalent if they exercise the repOK code in a
similar way, according to the selected white-box testing criterion. These equivalences between test
cases are exploited for filtering tests, leaving out of the suite those tests that are equivalent to some
test already present in the suite. This proposal corresponds to the definition of a black-box testing
criterion with respect to the code under test, defined in terms of white-box testing criteria with
respect to the representation invariant for the inputs of the code under test. Namely, this criterion
specifies when two different inputs are to be considered equivalent disregarding the structure of
the code under test (hence, black-box), by considering only the structure of repOK routine (hence,
white-box).

In summary, the above mentioned tasks contribute to bounded exhaustive testing in the following
way. Firstly, by separately generating disjoint substructures one reduces the space of candidate
inputs to be considered, and therefore also the time spent in input generation. This separate
generation is applicable in cases in which inputs are composed of disjoint substructures; it produces
bounded exhaustive suites, i.e., it does not affect the produced suites with respect to standard
bounded exhaustive generation, but it produces these suites more efficiently. On the other hand,
the other introduced technique aims at reducing the time spent in testing by reducing the sizes of
already generated bounded exhaustive suites, according to a selected white-box testing criterion
over the repOK code of the structure under test.

To assess the effectiveness of these techniques, some case studies are carried out. These case
studies show that, for structures composed of non trivial disjoint substructures, the generation time
can be significantly improved by independently generating the substructures. Regarding the second
introduced technique, the case studies show that when some repOK-based input equivalences are
used to reduce the sizes of bounded-exhaustive test suites up to two orders of magnitude, the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



4 V. BENGOLEA, N. AGUIRRE, D. MARINOV AND M. FRIAS

test suites obtained have an effectiveness comparable to that of the corresponding “full” bounded-
exhaustive test suites, in terms of their mutant-killing ability.

2. PRELIMINARIES

Test Coverage Criteria. A test coverage criterion is a means for measuring how well a test
suite exercises a program under test. Coverage criteria are mainly classified into black-box and
white-box [29, 9]; the former disregard the structure of the program under test, while the latter
may pay special attention to the structure of the program under test. Black-box coverage criteria
“see” the code under test as a black box, taking into consideration only the specification of the
program. An example of a known black-box criterion is equivalence partitioning coverage, which
consists of partitioning the space of program inputs into equivalence classes, defined in terms of the
specification of the expected inputs for the program under test. White-box coverage criteria analyse
the code of the program under test, and how the tests in the test suite exercise it, in order to measure
coverage. A simple well-known white-box coverage criterion is decision coverage, which, in order
to be satisfied, requires each decision point in the program under test (conditions in if-then-else
statements, loops, etc.) to evaluate to true and false when different tests in the suite are exercised.

Test-Input Generation for Complex Structures. In the context of test-input generation for
complex structures, two approaches can be distinguished, namely the generative approach and the
filtering approach [11]. The former works by generating instances of the input structure by calling
a generator routine, that combines calls to constructors and insertion routines on the structure. The
latter builds candidate structures using only its structural definition, and then employs a predicate
that characterises valid structures, known as a representation or class invariant, in order to filter
out the invalid candidates. The representation invariant can be defined declaratively, e.g., using
some contract-specification language such as JML [6], or operationally, i.e., via a routine that, when
applied to a candidate, returns true if and only if the candidate is a valid one. The latter are typically
called repOK routines [16].

Given a class C, newly created objects of C must satisfy the representation invariant, i.e., their
public constructors must ensure the representation invariant holds when they terminate. Also, public
methods that modify objects (e.g., insertion and deletion routines) of class C must preserve the
representation invariant, i.e., assuming that the representation invariant holds before calling the
method, this method must ensure that the representation invariant also holds when it terminates. As
put forward by Liskov et al. [16], developers should equip their complex structures’ implementations
with repOK routines, since these routines will greatly help in debugging the implementations.
These repOK routines can be called in tests, to evaluate the fact that certain methods establish or
preserve the invariant, or directly within a class’ methods and constructors, just before they return,
as described above.

Bounded-Exhaustive Testing. Bounded-exhaustive testing is a testing technique that has proved
useful in certain testing contexts, in particular, testing programs that manipulate complex data
structures. Examples of such programs include libraries of data structures such as AVL trees, graphs,
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linked lists, etc., and programs that manipulate source code (where source code can be viewed as
data with a complex structure) such as compilers, type checkers, refactoring engines, etc.

Bounded-exhaustive testing produces, for a given program under test and a user-provided scope,
consisting of a bound on the size of inputs (maximum number of objects for class-based types,
ranges for basic datatypes), all valid inputs whose size lies within the scope, and then tests the
program using the produced test suite. The rationale behind the approach is that many bugs
in programs manipulating complex structures can be reproduced using small instances of the
structures. Thus, by testing a program on all possible input structures bounded in size by some
relatively small scope one would be able to exhibit many bugs.

3. INDEPENDENT GENERATION OF DISJOINT SUBSTRUCTURES

In this section, a technique to build bounded exhaustive test suites, by reducing the state space
explored during generation and based on the use of the repOK of the structure, is presented. This
technique fits better with filtering approaches to test generation, since in these contexts having a
representation invariant is often a requirement. In particular, this technique applies to the cases in
which the code under analysis manipulates complex structures made up of parts allocated in disjoint
portions of the heap. Roughly speaking, the proposed technique consists of generating the disjoint
parts of the given structure separately, by factoring out separate representation invariants for disjoint
substructures of the inputs, which are then put together to obtain the final structure.

The technique is based on the observation that, during the generation process, many ill-formed
structures are produced by combining well-formed parts with ill-formed ones. The proposed
approach reduces the candidate state space by avoiding these kinds of ill-formed structures by
individually constructing sub-structures that are disjoint in the heap, and then combining them to
get well-formed complete structures. In this way, only well-formed sub-structures are combined.
In order to describe more precisely the technique, let C be a class for which a bounded exhaustive
suite with scope k has to be built, and let repOK be C’s imperative representation invariant. The
proposed technique consists of the following steps:

• Identify substructures s1, s2, . . . , sn of instances of class C, which are disjoint, in the sense
that these are always allocated in independent parts of the heap in instances of C that satisfy
repOK, and which, put together, conform C (i.e., s1, s2, . . . , sn are a partition of C).

• Define auxiliary data structures S1, S2, . . . , Sn to represent the disjoint substructures
previously identified.

• From repOK, obtain representation invariants repOK1,repOK2, . . . ,repOKn such that,
if an instance c of C satisfies repOK, then the “subinstance” csi of c, corresponding to
substructure si, satisfies repOKi.

• Generate independently bounded exhaustive suites for S1, S2, . . . , Sn, with scope k.
• Combine instances of the bounded exhaustive suites constructed previously, to build instances

of C.
• Filter out those instances of C that do not satisfy repOK.
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A simple example to illustrate the technique is the following. A data structure available as part
of Apache Commons collections is node caching linked list. This data structure corresponds to an
implementation of lists that tries to reduce object creation and garbage collection by maintaining a
list of deleted nodes in a cache. Essentially, the structure consists of a dummy circular doubly linked
list, the actual contents of the list, and a singly linked list of cached nodes. The structural definition
of NodeCachingLinkedList, including the LinkedListNode class used in the structure, is
shown in Figure 1.

Now suppose that a developer needs to test a routine manipulating a node caching linked list,
and that he/she decides to do so by bounded exhaustive testing. That is, the routine will be tested
for all valid node caching linked lists, within certain scope (bound in the number of nodes, ranges
for values, etc). Basically, the objects to be produced are composed of a dummy circular doubly
linked list (referenced by a header), and a singly linked list of cached nodes (referenced by a
firstCachedNode header). Notice that these two substructures are disjoint, i.e., in every valid
instance of the class, no node belongs to both lists.

public class NodeCachingLinkedList {
private LinkedListNode header;
private int size;

private LinkedListNode firstCachedNode;
private int cacheSize;
private int maximumCacheSize;
...

}

public class LinkedListNode {
Object value;
LinkedListNode previous;
LinkedListNode next;
...

}

Figure 1. Structural definition of classes NodeCachingLinkedList and LinkedListNode.

Consider the following generation scenario: All the instances of NodeCachingLinkedList
containing up to 8 nodes, with size up to 3 for the dummy circular doubly linked list and size up
to 4 for the cache, are generated using a bounded exhaustive test input generation tool. Notice that
the additional node, with respect to the sum of the sizes of the two lists, has to do with the fact
that the circular doubly linked list has a dummy head node, which is not taken into consideration
in the corresponding size fields. In this generation using the tool Korat, 13,164 candidate structures
are explored, 450 of which are valid. Many of the invalid visited candidates are composed of a
valid dummy circular doubly linked list with an invalid cache, or vice versa. Figure 2 shows such
a candidate that is visited during the bounded exhaustive generation, where a well-formed list of
size 3 (plus a dummy header) is set in combination with an invalid cache list (the cache list should
be singly linked, i.e., all previous references must be set to null, which is not the case in this
example). This kind of invalid candidates, composed of valid substructures combined with invalid
ones, are rather common in structures with disjoint substructures. Moreover, their number increases
as the scope is increased, and is an important source of inefficiency in the bounded exhaustive
generation process.
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Figure 2. Ill-formed instance of NodeCachingLinkedList.

If it is known that different parts of a structure are always disjoint, as in the above case, one
may take the representation invariant for the whole structure, and slice the repOK code in order
to obtain independent “smaller” representation invariants that predicate on the disjoint portions
of the structure. These repOK’s on smaller structures can be used to independently generate the
substructures, which are then combined to form instances of the whole structure.

Some technical questions arise at this point. First, how can one determine whether every instance
of the data structure is always composed of disjoint substructures? This information may be
obtained from different sources, the most obvious being that it is provided by the developer, i.e.,
the developer is in charge of detecting which parts of the structure may be generate separately, and
provides this information as an input of the separate generation process. For instance, for the case
of NodeCachingLinkedList, the required information is that the cache list referenced by field
firstCachedNode is disjoint from the structure referenced by field header, i.e., the circular
double linked list. Another way of obtaining this information is from the scope definition. Basically,
providing the scope in order to perform bounded exhaustive test generation consists of building
domains for different fields in the structure to be generated. If disjoint domains are provided for
fields of the same type, one can take advantage of this information for processing the repOK, as
indicated above. As an example, suppose that bounds on the number of objects and possible values
for fields, to be used to build instances of the structure, are given using a programmatic notation.
Following the NodeCachingLinkedList example, one may define the scope as follows:

...
Domain EntriesList = createDomain(LinkedListNode , numEntry)
EntriesList.setNullAllowed();
Domain EntriesCache = createDomain(LinkedListNode , numEntry)
EntriesCache.setNullAllowed();
setScope(header, EntriesList);
setScope(header.*next, EntriesList);
setScope(header.*previous, EntriesList);
setScope(firstCachedNode, EntriesCache);
setScope(firstCachedNode.*next, EntriesCache);
setScope(firstCachedNode.*previous, EntriesCache);
...
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In this case, two domains are defined, namely EntriesList and EntriesCache, both
composed of numEntry instances of LinkedListNode (plus null). Then, the scopes for
different fields are defined, in this case clearly stating that the fields of the lists referenced by
header and firstCachedNode do not share objects. One may exploit this valuable information
in the detection of disjoint portions of the structure.

Finally, the information about disjoint parts of a structure may be present in the repOK,
either explicitly or implicitly. For instance, for the case of NodeCachingLinkedList, the
representation invariant may include checking that the cache and the circular list do not share nodes.

Another important technical question has to do with how repOK may be automatically processed
in order to obtain separate representation invariants for the disjoint substructures. This is not a trivial
issue, and it is clear that, in many cases, the original repOK may not be fully “modularised”: even
though by slicing the original one may obtain useful “local” representation invariants, there might
be “global” wellformedness conditions that have to do with the relationship between the disjoint
substructures (notice that this global representation invariant is in fact included in the steps of the
technique). For instance, if NodeCachingLinkedList was used to implement a set, and the
cache was checked for membership before an insertion (so that creating a new node is avoided),
then part of the repOK might state that the cache and the circular linked list do not share stored
values. In many cases this separation process is straightforward. Consider, for instance, a routine
that one wishes to test that receives as parameters more than one structure. Some examples of this
situation are a merge routine for binomial heaps (takes two binomial heaps), set union/intersection
for set implementations, and even membership, insertion and deletion routines, which usually take
two parameters, the collection to be modified or queried, and the value to insert, delete or search
for. In all these cases, the input is composite, and the repOK for the input is the conjunction of the
repOK’s for the parameter structures.

These issues, although important, are beyond what is studied in this paper. For the first, it is
simply assumed that the information about disjoint substructures is provided by the developer. For
the second, the processing of repOK performed in this article for the purpose of experimentation
is a straightforward slicing that examines which part of the structure being visited is relevant to
each sentence in the processed representation invariant. Thus, besides the “local” repOK methods
constructed for each substructure, a “global” one is obtained composed of sentences in which more
than one disjoint substructure may be involved.

As an example, consider a representation invariant for NodeCachingLinkedList, shown
in Figure 3. This repOK checks whether a structure is a well-formed node caching linked list by
checking various things: (i) that the list is a well-formed circular doubly linked list, (ii) that cache
size does not exceed the maximum size, (iii) that the size of the list is consistent with the number
of nodes in it, (iv) that the cache list is acyclic, and (v) that the size of the cache is consistent with
the number of nodes in the list. This repOK could be split in two: a part referring only to the
circular list (and its corresponding size field), and another one referring only to the cache list (and
its corresponding size field). These two “local” repOK’s are shown in Figure 4.

Later on in this paper, this technique is assessed for a number of case studies.
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public boolean repOK() {
if (header == null) return false;
if (header.next == null) return false;
if (header.previous == null) return false;
if (cacheSize > maxCacheSize) return false;
if (MAXIMUM_CACHE_SIZE != 20) return false;
if (size < 0) return false;

int cyclicSize = 0;
Node n = this.header;
do{

cyclicSize++;
if (n.previous == null) return false;
if (n.previous.next != n) return false;
if (n.next == null) return false;
if (n.next.previous != n) return false;
if (n != null) n = n.next;

} while (n != header && n != null);

if (n == null) return false;
if (size != cyclicSize - 1) return false;
int acyclicSize = 0;
Node m = firstCachedNode;
Set<Node> visited = new HashSet<Node>();
visited.add(firstCachedNode);
while (m != null){

acyclicSize++;
if (m.previous != null) return false;
if (m.value == null) return false;
m = m.next;
if (!visited.add(m)) return false;

}
if (cacheSize != acyclicSize) return false;
return true;

}

Figure 3. Representation invariant for class NodeCachingLinkedList.

3.1. On the Correctness of the Technique

The correctness of separate generation of disjoint substructures is now discussed. The technique is
sound and complete with respect to bounded exhaustive generation, in the sense that an instance is
produced by bounded exhaustive generation for scope k if and only if this instance is produced by the
separate generation approach, also for scope k. The proof of this fact is relatively straightforward.
Notice that soundness is trivial due to the last step in the separate generation approach, that filters
out from the bounded exhaustive suite produced by the separate generation approach those instances
that do not satisfy repOK. Regarding completeness, the argument is the following. Let c be an
instance of class C that satisfies repOK, and that is within scope k. For each substructure Si of
C, there is an instance csi subsumed in c, that is within scope k, too (since it is a subinstance of
c, which is bounded by k). Moreover, since c satisfies repOK, csi satisfies repOKi (see step 3 in
the separate generation approach). Then, instance csi is produced as part of the bounded exhaustive
generation for substructure Si. Since this is a fact for every substructure Si, cs1 , . . . , csn are built
by the corresponding bounded exhaustive “local” generations. The combination of cs1 , . . . , csn

corresponds to c (S1, . . . , Sn are a partition of C), which satisfies repOK, and therefore is produced
by the separate generation approach.
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public boolean repOK() {
if (header == null)

return false;
if (header.next == null)

return false;
if (header.previous == null)

return false;
if (size < 0)

return false;
int cyclicSize = 0;
Node n = header;
do{

cyclicSize++;
if (n.previous == null)

return false;
if (n.previous.next != n)

return false;
if (n.next == null)

return false;
if (n.next.previous != n)

return false;
if (n != null)

n = n.next;
}while(n!=header && n!=null);
if (n == null)

return false;
if (size != cyclicSize - 1)

return false;
return true;

}

public boolean repOK() {
if (cacheSize > maxCacheSize)

return false;
if (MAXIMUM_CACHE_SIZE != 20)

return false;
int acyclicSize = 0;
Node m = firstCachedNode;
Set<Node> visited = new HashSet

<Node>();
visited.add(firstCachedNode);
while (m != null){

acyclicSize++;
if (m.previous != null)

return false;
if (m.value == null)

return false;
m = m.next;
if (!visited.add(m))

return false;
}
if (cacheSize!= acyclicSize)

return false;
return true;

}

Figure 4. Representation invariants for the disjoint substructures of NodeCachingLinkedList.

4. REDUCING BOUNDED-EXHAUSTIVE TEST SUITES

As it was previously described, bounded-exhaustive testing forces the tester to use very small
bounds in some cases, because the sizes of bounded-exhaustive suites rapidly become too large,
and consequently using these exhaustively for testing becomes in many cases impractical. In this
section, an approach to help in reducing bounded-exhaustive test suites is presented. The approach
assumes, as for the technique presented in the previous section, the availability of an imperative
implementation of the representation invariant of the structure for which the bounded-exhaustive
suite was produced. Thus, this technique also fits better with filtering approaches to test generation,
as the one presented in the previous section.

The reduction process works by defining a family of coverage criteria and employing the repOK
routine (i.e., the imperative implementation of the representation invariant) to define equivalence
relations on the set of inputs. Then, according to some reduction rate on the bounded-exhaustive
suite, test cases are discarded if they are “equivalent” to some test cases remaining in the suite.

It is worth to remark that this criterion defines a mechanism to consider inputs to be equivalent
that takes into account the structure of the repOK, but disregards the code under test. This makes
the approach black box, although it employs white box criteria on the code of the repOK routine.
Since the technique is based on the repOK as a specification of the inputs, it assumes this routine
to be correct, i.e., to faithfully capture the constraints that make inputs valid.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



REPOK-BASED REDUCTION OF BOUNDED-EXHAUSTIVE TESTING 11

To describe how the technique works, it is essential to describe how coverage criteria using
repOK are defined. Let C be a class, and let repOK be the imperative implementation of
its representation invariant. As an example to drive the presentation, consider the Java classes,
implementing binary trees of integers, given in Figure 5. The representation invariant for this class
must check that the linked structure starting with root is indeed a tree, i.e., that it is acyclic and
with a single parent for every reachable node except the root, and that the value of size agrees with
the number of nodes in the structure. Checking that this property holds for a binary tree object can
be implemented as in the method from class BinaryTree, taken from the examples distributed
with the Korat tool [5], shown in Figure 6.

public class BinaryTree {
private Node root;
private int size;

...
}

public class Node {
private int key;
private Node left;
private Node right;

...
// setters and getters
// of the above fields
...

}

Figure 5. Partial Java definition of binary trees.

public boolean repOK() {
if (root == null) return size == 0;
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node) workList.removeFirst();
if (current.getLeft() != null) {

if (!visited.add(current.getLeft())) return false;
workList.add(current.getLeft());

}
if (current.getRight() != null) {

if (!visited.add(current.getRight())) return false;
workList.add(current.getRight());

}
}
return (visited.size() == size);

}

Figure 6. Imperative representation invariant for class BinaryTree.

Now suppose that one needs to test a routine that receives as a parameter a binary tree, e.g., a
binary tree traversal routine. Notice that, as a (black-box) criterion for testing the traversal routine,
a partition of all possible binary tree structures can be defined according to the way the different
structures “exercise” the repOK routine. The motivation is basically that tests that exercise the
code of repOK in the same way can be considered similar, and therefore can be thought of as
corresponding to the same class.

Still it is necessary to define what “exercise in a similar way” means. This can be done, in
principle, by choosing any white-box coverage criterion, to be applied to repOK. For instance,
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Figure 7. Sample binary trees. The first and second exercise repOK in the same way, according to decision
coverage.

decision coverage on repOK can be considered; in this case, two inputs to the traversing routine
(the code under test) would be considered equivalent if they make the decision points in repOK to
evaluate to the same values. Thus, for instance, of the three trees in Figure 7, the first and the second
would be considered equivalent, but none of these would be equivalent to the third one (notice that,
as opposed to the other two, predicate current.getRight() != null never evaluates to true
in this case). Notice that the decision points in the code under test are not taking in account for this
criterion.

In general, notice that any white-box testing criterion Crit gives rise to a partition of the input
space of the program under test, with each class in the partition usually capturing some path or
branch condition expressed as a constraint on the inputs. Given a program under test P , a criterion
Crit, and an input c, JcKPCrit denotes the partition c belongs to, i.e., the set of all inputs that exercise
the code of P in the same way c does, according to Crit. The technique defined in this section works
by defining equivalence relations on the set of inputs. Let C be a repOK-equipped class, and let
Crit be a selected white-box coverage criterion. Given two valid objects c1 and c2 of C, i.e., two
objects satisfying C’s representation invariant, c1 is considered to be equivalent to c2 (according to
repOK under Crit), if and only if Jc1KrepOKCrit = Jc2KrepOKCrit .

In the above example, one of the simplest white-box coverage criteria was considered to be
applied to repOK; of course, choosing more sophisticated coverage criteria (e.g., path coverage,
condition coverage, MCDC, etc.) would yield finer grained equivalence relations on the state space
of the input data type.

Once one has decided the white-box criterion to be applied to repOK, one can use it to reduce
bounded-exhaustive suites. The approach followed for doing so is the following. Suppose that you
have used some mechanism for generating a bounded-exhaustive test suite, to be used for testing,
with N tests in it. Moreover, you have realised that you will not have enough resources to analyse
the program under test for all these cases. Instead, you have resources to test your system for a
fraction of this suite, for instance N/10. In this case, the following steps can be followed:

• Determine the number of possible equivalence classes of inputs (depends both on the white-
box criterion chosen on repOK and the complexity of repOK’s code).
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REPOK-BASED REDUCTION OF BOUNDED-EXHAUSTIVE TESTING 13

• Set a maximum maxq for the number of tests for every single equivalence class q. For instance,
divide the size of the test suite to be built (in the example N/10) by the number of equivalence
classes, and set this as a maximum.

• Process the bounded-exhaustive test suite, leaving at most maxq tests for each equivalence
class q of inputs.

As it was mentioned above, the result of applying the above process strongly depends on the
selected white-box criterion. Moreover, this process strongly depends on the structure of the repOK
routine too. For instance, an if-then-else with a composite condition could alternatively be written as
nested if-then-else statements with atomic conditions; such structurally different but behaviourally
equivalent programs may have very different equivalence classes, for the same white-box criterion,
and therefore this approach may result in different reduced suites.

In the section 5, the technique presented in this section will be assessed, as well as the one
presented in the previous section, for a number of case studies.

4.1. On the Correctness of the Technique

As opposed to the technique introduced in the previous section, the repOK-based reduction
of bounded exhaustive suites is sound, but not complete, with respect to bounded exhaustive
generation. Again, soundness is relatively trivial, since repOK-based reduction works by first
generating a bounded exhaustive suite, and then filtering out some cases according to some coverage
criterion and the maximum number of test inputs to be considered per equivalence class.

The technique is also complete with respect to equivalence class coverage, in the sense that
every equivalence class q coverable within scope k will be covered by the reduced suite, as long
as the value maxq (maximum number of tests for equivalence class q) is greater than zero for
every equivalence class q. In this respect, consider the following argument. Let B be a bounded
exhaustive suite for class C and scope k. Let Crit be a white-box criterion to apply over repOK,
the representation invariant for class C. Assume that there exists an equivalence class q for which
its maximum is greater than zero, which is covered by B, but not covered by the reduced suite BCrit.
Then, there exists an instance c of C which is present in B, which covers class q and obviously is
not in BCrit. Moreover, since q is not covered by BCrit, there is no input in BCrit corresponding to
equivalence class q. Since c was left out of BCrit, it was removed during the suite reduction process
over B. This can only happen if the limit maxq of instances was met in the reduction, meaning
that we already have inputs in BCrit that cover class q (since maxq is positive), thus arriving to
a contradiction. Therefore, repOK-based reduction is complete with respect to equivalence class
coverage.

5. EXPERIMENTAL EVALUATION OF THE TECHNIQUES

Various case studies for assessing the techniques introduced in the previous two sections are
described below.

For the case of independent generation of disjoint substructures, the evaluation is based on
three case studies, corresponding to analyses of routines on selected heap-allocated data structures,
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14 V. BENGOLEA, N. AGUIRRE, D. MARINOV AND M. FRIAS

namely binomial heaps, node caching linked lists, and AVL trees. The selected routines for these
structures correspond to merge of two binomial heaps, addAll, an operation that adds all the
items in a given list to an AVL tree, and getFirst on node caching linked lists.

For the case of repOK-based test suite reduction, the analyses are based on several routines on
binomial heaps, binary search trees, doubly linked lists, and red black trees, and different coverage
criteria on repOK, in order to perform the filtering. Three coverage criteria were selected: decision
coverage, path coverage and a variant of decision coverage, which the authors of this paper believe
to be useful in the context of bounded exhaustive test suite filtering. This criterion, which is referred
to as counting decision coverage (CDC), takes into account the number of times each decision in a
program evaluates to true and false.

When available, implementations of the above mentioned structures provided in the Roops
benchmark [22] were used.

The first presented technique deals with bounded exhaustive generation. The approach is relevant
for any bounded exhaustive test generation tool, in particular for those based on a filtering approach.
The experiments were carried out using the tool Korat [5]. The second technique does not deal with
bounded exhaustive generation, but with reducing already computed bounded exhaustive suites. It
is worth mentioning however that bounded exhaustive suites for various scopes, on which filtering
is applied, were generated also using Korat.

5.1. Case Studies for Separate Generation of Disjoint Substructures

For each of the structures for which separate generation is evaluated, the repOK code was taken
and automatically split it into various repOK’s asserting over disjoint portions of the structure, or
over “disjoint” parameters (different parameters of a routine) as in the cases of merge of binomial
heaps and addAll of AVL trees.

For the three selected cases studies we get different local repOk’s predicating on separated
portions of the original structures. These RepOK’s were used in order to automatically generate
inputs using Korat [5], in a bounded exhaustive fashion and up to a number of different bounds to
analyse scalability.

For these experiments, the processing of repOK is a straightforward slicing with respect to
the part of the structure being visited by each sentence in the processed RepOK code. More
precisely, the slicing achieved on repOK is based on the definition-use graph [14] built on the
repOK implementation. This graph is constructed from the control flow graph of the repOK code
incorporating information regarding which variables are used (and defined) in each node and edge
of the graph. Then, this graph is used to compute all statements in repOK that may affect the value
of some given variables, related to some part of the structure.

Besides the “local” repOK’s, a “global” one is obtained taking those sentences in which more
than one disjoint substructure may be involved.

Since we used Korat, we obtained candidates vectors representing substructures. This valid
candidate vectors returned by Korat on different substructures were saved to subsequently combine
them to build candidate vectors (and objects from them) corresponding to the whole structure,
and to check, when necessary, the “global” repOK (if further constraints, besides those sliced in
the representation invariants for the substructures, had to be checked). For each case study, the
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Scope BE Korat Disj. Generation
Explored Time Explored Time

4,1,2,2 132 1485 0.207 s 183 0.42 s
6,2,3,2 1014 13,610 0.309 s 859 0.45 s
8,3,4,2 6840 102,426 0.654 s 3254 0.524 s
10,4,5,2 43,560 698,155 1.598 s 11,024 0.65 s
12,5,6,2 269,724 4,433,071 6.872 s 34,649 1.021 s
14,6,7,2 1,646,058 26,602,064 43.54 s 102,974 2.317 s
16,7,8,2 9,967,920 152,594,160 274.444 s 292,988 9.534 s
18,8,9,2 60,108,828 844,607,873 1768.611 s 805,192 54.092 s

Table I. Bounded exhaustive vs. separate bounded exhaustive generation of disjoint substructures for
NodeCachingLinkedList, as the number of nodes increases.

time needed to perform this process was measured, including the time required to build all the
(sub)structures, plus the time required to combine them.

Finally, the developers are in charge of providing the information about which parts of the
structure are disjoint. That is, the process used to generate structures by separated generation
assumes, in these experiments, that this information is provided as an input.

5.1.1. Node Caching Linked Lists. The first case study involves bounded exhaustive test generation
for NodeCachingLinkedList, the caching circular doubly linked list presented in Section 3.
Tables I and II show, for different scopes (each scope specifies the maximum number of nodes in
the structure, the maximum size of the dummy circular doubly linked list, the maximum size of the
cache and the number of keys allowed in the structure), the sizes of bounded-exhaustive suite (BE),
the number of explored candidates (Explored) and the time expended during generation (Time).
This information is provided both for bounded exhaustive generation and for disjoint generation,
i.e., the independent generation (and a posteriori combination) of the disjoint substructures of
NodeCachingLinkedList. Notice that the number of valid inputs is reported only once, since
it is the same for both cases. These two tables show how the number of visited structures, and
the time it takes to perform the visit, grows as the scope is increased, in two different dimensions.
Table I shows how these numbers change as the number of nodes is increased, while maintaining
the number of keys, whereas Table II shows how these numbers progress as the number of keys is
increased, maintaining the number of nodes. As it can be seen, the disjoint generation technique
proves effective very quickly (the highlighted rows of the tables indicate the cases in which the
presented technique outperforms, with respect to time, traditional bounded exhaustive generation).
In this case study, it is self evident that the technique provides a significant advantage with respect
to the number of explored candidates. For instance, for scope 16,7,8,2, the 152,594,160 candidates
explored by bounded exhaustive generation are reduced to 292,988 visited candidates with the
presented technique, with a significantly smaller time consumption (274.444 s vs. 9.534 s). Figures 8
and 9 provide a more graphical representation of the information in Tables I and II, showing how,
for this case study, this technique increases scalability in the generation.

5.1.2. Binomial Heaps. This case study corresponds to bounded exhaustive test generation of pairs
of binomial heaps. As it was mentioned previously, this kind of bounded exhaustive generation is
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Scope BE Korat Disj. Generation
Explored Time Explored Time

8,3,4,2 6840 102,426 0.654 s 3254 0.525 s
8,3,4,3 60,860 902,178 1.634 s 11,604 0.955 s
8,3,4,4 353,340 5,101,182 6.216 s 31,094 0.952 s
8,3,4,5 1,515,150 20,787,504 22.392 s 68,948 1.754 s
8,3,4,6 5,222,000 67,420,914 70.544 s 134,214 3.604 s
8,3,4,7 15,289,560 185,298,006 192.722 s 237,764 8.339 s
8,3,4,8 39,475,620 449,407,158 477.14 s 392,294 19.799 s
8,3,4,9 92,246,330 988,610,772 1018.966 s 612,324 48.154 s

Table II. Bounded exhaustive vs. separate bounded exhaustive generation of disjoint substructures for
NodeCachingLinkedList, as the number of keys increases.
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Figure 8. Bounded exhaustive vs. separate bounded exhaustive generation of disjoint substructures for
NodeCachingLinkedList, as the number of nodes increases (graphical representation).
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Figure 9. Bounded exhaustive vs. separate bounded exhaustive generation of disjoint substructures for
NodeCachingLinkedList, as the number of keys increases (graphical representation).
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typical of testing situations involving routines receiving more than one structure as a parameter
(e.g., union and intersection routines in set implementations). For the particular case of binomial
heaps, a relevant ‘binary’ routine is merge, a routine manipulating pairs of binomial heaps. This
routine takes as parameters a pair of binomial heaps, and produces a binomial heap corresponding
to the union of the two parameters. As it was mentioned, in cases such as this one the repOK comes
already modularised, since it simply corresponds to the conjunction of repOK’s for the different
parameters. Table III shows, for different scopes, the sizes of the respective bounded exhaustive
suites (BE), the number of explored candidates (Explored) and the time expended in generation
(Time), both for traditional bounded exhaustive generation and for separate generation of disjoint
substructures. Again, the number of valid inputs is reported once since it is the same in both cases.
The scope in this case specifies the maximum number of elements for both heaps, and the range
for the keys of the nodes, from zero to the specified value. Again, the disjoint generation technique
is effective in this case study (the highlighted rows of the tables indicate the cases in which the
presented technique outperforms, with respect to time, traditional bounded exhaustive generation),
in number of visited structures, and consequently in generation time. For instance, for scope 6, the
disjoint generation technique required visiting 42,815 structures, as opposed to the 274,808,123
structures visited by bounded exhaustive generation. Figure 10 provides a graphical representation
of the information in Table III.

Scope BE Korat Disj. Generation
Explored Time Explored Time

2,2 36 348 0.26 s 58 0.427 s
3,3 784 5389 0.499 s 235 0.45 s
4,4 14,400 150,448 0.866 s 1666 0.559 s
5,5 876,096 3,125,314 7.187 s 8122 1.641 s
6,6 57,790,404 274,808,123 693.116 s 42,815 64.499 s
7,7 TO TO 261,788 13470.976 s

Table III. Bounded exhaustive vs. separate bounded exhaustive generation of pairs of BinomialHeap.

5.1.3. AVL Trees. The last case study for separate generation of disjoint substructures corresponds
to AVLTree and SinglyLinkedList. The motivation is the bounded exhaustive test input
generation for a routine receiving these two data structures as parameters, such as an addAll

routine, adding all the elements in a collection (in this case, a linked list) into an AVL tree. Tables IV
and V show, for different scopes (where each scope specifies the maximum number of nodes in the
tree, the range for the size of the tree, the maximum number of nodes in the list, the range for the
size of the list, and the number of keys allowed in the tree and the list, in this order), the sizes of
the corresponding bounded-exhaustive suites (BE), the number of explored candidates (Explored)
and the time spent during generation (Time). This information is provided for bounded exhaustive
generation, and for the separate generation of AVL trees and linked lists. Although a larger scope
is necessary for the technique to outperform traditional bounded exhaustive generation, again the
experimental results for this case study clearly show the benefits of the technique. Figures 12 and
11 provide a more graphical representation of the information in Tables IV and V, showing how, for
this case study.
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Figure 10. Bounded exhaustive vs. separate bounded exhaustive generation of pairs of BinomialHeap
(graphical representation).

Scope BE Korat Disj. Generation
Explored Time Explored Time

2,0,2,3,0,2,6 1591 2925 0.303 s 442 0.546 s
3,0,3,4,0,3,6 14,763 22,878 0.533 s 3951 0.669 s
4,0,4,5,0,4,6 181,935 243,217 1.253 s 22,122 1.052 s
5,0,5,6,0,5,6 1,427,643 1,790,743 4.255 s 80,288 2.62 s
6,0,6,7,0,6,6 8,789,959 10,724,428 25.836 s 232,025 10.719 s
7,0,7,8,0,7,6 52,739,911 63,672,425 166.652 s 772,602 52.568 s
8,0,8,9,0,8,6 316,439,623 380,739,460 1076.359 s 2,511,653 339.56 s

Table IV. Bounded exhaustive vs. separate bounded exhaustive generation of pairs composed of an AVL tree
and a linked list, as the number of nodes in these structures is increased.

Scope BE Korat Disj. Generation
Explored Time Explored Time

6,0,6,7,0,6,2 635 6884 0.339 s 5609 0.628 s
6,0,6,7,0,6,3 12,023 27,594 0.511 s 10,505 0.829 s
6,0,6,7,0,6,4 136,525 202,784 1.175 s 26,313 1.124 s
6,0,6,7,0,6,5 1,210,922 1,569,144 3.882 s 75,438 2.384 s
6,0,6,7,0,6,6 8,789,959 10,724,428 25.836 s 232,025 10.719 s
6,0,6,7,0,6,7 52,020,403 61,244,650 152.977 s 685,649 50.262 s
6,0,6,7,0,6,8 254,354,457 292,245,608 756.38 s 1,831,897 242.524 s
6,0,6,7,0,6,9 1,053,448,702 1,188,984,604 3154.268 s 4,389,842 953.695 s

Table V. Bounded exhaustive vs. separate bounded exhaustive generation of pairs composed of an AVL tree
and a linked list, as the number of keys in these structures is increased.

5.2. Case Studies for RepOK-based Test Suite Reduction

First, a description of the structure of the experiments is presented. The repOK code for each of
the structures analysed in this section was taken, and automatically instrumented to obtain, from a
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Figure 11. Bounded exhaustive vs. separate bounded exhaustive generation of pairs composed of an AVL
tree and a linked list, as the number of nodes in these structures is increased (graphical representation).
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Figure 12. Bounded exhaustive vs. separate bounded exhaustive generation of pairs composed of an AVL
tree and a linked list, as the number of keys in these structures is increased (graphical representation).

repOK call on a given valid structure, the equivalence class the structure belongs to, for each of the
selected criteria. The instrumented repOK methods were ran on tests of the bounded-exhaustive
test suite to collect their equivalence class information, then reduced test suites were built that
select from a bounded-exhaustive test suite some test cases for each (coverable) equivalence class
corresponding to the criterion. In particular, the bounded-exhaustive test suites were reduced by
one and two orders of magnitude, i.e., 10% and 1% of the starting test suite size. The test cases
selected for the reduced test suite are the first generated/encountered test cases for each of the
coverable equivalence classes. Note that other selections could be possible, e.g., randomly selecting
an appropriate number of test cases for each equivalence class. The selection has been made taking
at most Nr/M test cases for each equivalence class, where Nr is the size of the reduced test suite
(e.g., 10% of the bounded-exhaustive suite) and M is the number of equivalence classes. In both
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cases (10% reduction and 1% reduction), when the bounded-exhaustive test suite was too small to
reduce it to 10% (or 1%) of its original size, at least one test case for each covered equivalence class
has been taken. Notice that, the number of covered classes (CC) is also reported, that is the number
of different coverable equivalence classes for each of the selected criteria.

To measure the effectiveness of the approach, some sample routines manipulating the data
structures selected for analysis were taken. These routines were merge, insert, delete and
find for binomial heaps, isPalindromic for doubly linked lists, insert, delete and
search for search trees, and add, remove and contains on red-black trees. Mutants of
these routines were generated and the effectiveness of the different suites, bounded-exhaustive and
reduced, was measured with respect to their mutant killing ability. Also, the “one per class” (OPC)
suites, consisting of exactly one test per coverable equivalence class (i.e., a minimal suite with the
same coverage as the corresponding bounded-exhaustive suite), were considered in the assessment.
In order to generate mutants, muJava [20] was used. The achieved mutants are those obtained by
the application of 12 different method-level mutation operators [17], including arithmetic, logical
and relational operator replacement, when these ones were applicable to the selected routines.

It is worth to underline the relationship between covered classes (CC) and “one per class” (OPC)
suites. CC is the number of covered equivalence classes for each of the selected criteria. The “one
per class” suites are the ones built taking one test case for each of these covered classes. More
precisely, the test cases selected to construct the “one per class” suites are the first generated test
cases for each of the coverable equivalence classes.

Some potential threats to the validity of the experimental results were analysed. The case studies
represent, in the opinion of the authors, typical testing situations in the context of the implementation
of complex, heap allocated data structures (a main target for bounded-exhaustive testing). Case
studies of varying complexities were chosen, including data structures with simple, intermediate,
and complex constraints (e.g., linked lists, search trees and binomial heaps, respectively). Since
the approach depends on the structure of repOK, implementations of these routines were taken
as provided in Korat, instead of providing ad-hoc implementations. Also, for evaluation purposes,
coverage criteria of varying complexities were selected: the rather simple decision coverage, the
more thorough path coverage, and an intermediate one, counting decision coverage.

Counting decision coverage (CDC) is a coverage criterion introduced in this paper, and defined
as follows. Given a program under test P and two inputs c1 and c2 for P , c1 and c2 are equivalent
according to P under CDC if and only if, for every decision point cond in P , the number of times
cond evaluates to true (resp. false) when P is executed for c1 equals the number of times cond
evaluates to true (resp. false) when P is executed for c2. The authors believe CDC to be useful in the
context of bounded exhaustive testing since, in general, there is a relationship between the size of a
structure and the number of times a particular decision point in the corresponding repOK evaluates
to true or false (think of conditions inside loops). As a consequence, as the size of a structure
increases, the number of equivalence classes will also increase, and hence the variety of cases in
the reduced suites obtained using this criterion. For instance, while decision coverage considers as
equivalent the first two trees in Figure 7, CDC will distinguish them.

5.2.1. Binomial Heaps (merge). The first case study to assess the approach to filtering bounded
exhaustive suites involves testing the merge routine, which manipulates pairs of binomial heaps.
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This is an example of a case in which the bounded-exhaustive suites quickly become too large,
making bounded-exhaustive testing impractical. Table VI shows, for various scopes, the sizes of
bounded-exhaustive (BE) suites and suites with repOK-based reductions to 10% and 1%, for
the three mentioned white-box coverage criteria applied to repOK. For each criterion, it is also
indicated the number of equivalence classes of inputs that have been covered (CC, for covered
classes). The scope in this case specifies the maximum number of elements for both heaps, and the
range for nodes’ keys, from zero to the specified value. Since the bounded-exhaustive suites have
been generated using Korat, these exclude symmetric cases on reference fields (Korat provides a
symmetry-breaking mechanism as part of its generation process).

As mentioned before, the effectiveness of the suites is measured using mutation testing. The
merge routine was mutated, obtaining a total of 113 mutants not equivalent to the original program.
Then, the ability to kill mutants using the bounded-exhaustive suite, the reduced test suites and the
minimal “one per equivalence class” (OPC), that is, the suite generated by taking exactly one input
for each covered class (CC), was assessed. Table VII reports the results indicating the remaining
live mutants, and highlighting the cases in which the mutation score of the reduced suites matched
that of the corresponding bounded-exhaustive suite. Notice that the reduced test suites for all the
coverage criteria analysed were in most cases as effective as the bounded-exhaustive suites, for
mutant killing, even with suites of 1% the size of the bounded-exhaustive ones.

5.2.2. Binomial Heaps (insert, delete and find). The second case study for the filtering
technique involves routines manipulating a single binomial heap, namely insert, delete and find.
Table VIII shows, for various scopes, the sizes of bounded exhaustive (BE) suites and suites with
repOK-based reductions to 10% and 1%, for the three mentioned white box coverage criteria
applied to repOK; again for each criterion, the number of equivalence classes of inputs that have
been covered (CC columns) is reported. The scope in this case simply indicates the size of the
corresponding binomial heap.

Again, the effectiveness of the suites (bounded exhaustive, reduced to a 10% and 1%, and one
per equivalence class (OPC), i.e, the suite generated by taking exactly one input for each covered
class) is measured using mutation testing. Routines insert, delete and find were mutated
(the number of mutants not equivalent to the original program obtained were 97, 170 and 28,
respectively), and the effectiveness of the different suites on mutant killing was assessed. Table IX
reports the results of the analysis for this case study, indicating the remaining live mutants in each
case, and highlighting the cases in which the mutation score of the reduced suites matched that of
the corresponding bounded exhaustive suite.

In this case, the reduced suites were not as effective as the previous case study, especially for
the delete routine. However, notice that the results are still very good, taking into account the
reduction in size of the suites. For instance, for scope 8 and counting decision coverage, the 10%-
reduced suite only misses one mutant (18 vs. 17 out of 170) compared to the bounded-exhaustive
suite. This missed mutant corresponds to an insertion of a “post-increment operator” in the code
under test. The problem is that capturing this mutant depends on exactly which value in the heap is
deleted and where the value is placed in the heap, i.e., in which node it resides. Since the coverage
criteria on repOK only take into account the structure of the binomial heap, but not where the
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Scope BE Decision Cov.
10% 1% CC

2,2 36 3 3 3
3,3 784 76 4 4
4,4 14,400 1200 144 4
5,5 876,096 49,420 7506 4
6,6 57,790,404 2,455,826 342,166 4

Scope BE Count. Decision Cov.
10% 1% CC

2,2 36 9 9 9
3,3 784 59 16 16
4,4 14,400 1060 119 25
5,5 876,096 42,500 6460 36
6,6 57,790,404 1,993,860 315,698 49

Scope BE Path Cov.
10% 1% CC

2,2 36 9 9 9
3,3 784 59 16 16
4,4 14,400 1060 119 25
5,5 876,096 42,500 6460 36
6,6 57,790,404 1,993,860 315,698 49

Table VI. Sizes of bounded-exhaustive and suites with repOK-based reductions, for testing binomial heap’s
merge.

Scope BE Decision Cov. Count. Dec. Cov. Path Cov.
10% 1% OPC 10% 1% OPC 10% 1% OPC

2,2 34 96 96 96 38 38 38 38 38 38
3,3 4 9 82 82 4 10 10 4 10 10
4,4 3 3 9 82 3 3 8 3 3 8
5,5 3 3 3 82 3 3 8 3 3 8
6,6 3 3 3 82 3 3 8 3 3 8

Table VII. Measurement of effectiveness of bounded-exhaustive and reduced test suites, on mutant killing
for merge (table reports mutants remaining live).

value to be deleted resides, we have “too coarse” equivalence classes and the inputs that exercise
the mutated code in this case were removed.

5.2.3. Doubly Linked Lists (isPalindromic). The next case study corresponds to the routine
isPalindromic, which checks whether a given sequence of integers (implemented over a doubly
linked list) is a palindrome. Table X shows, for various scopes, the sizes of bounded exhaustive (BE)
suites and suites with repOK-based reductions to 10% and 1%, for the three mentioned white box
coverage criteria applied to repOK. The number of equivalence classes of inputs covered by each
case is also indicated (CC columns). The scopes in this case correspond to the number of entries in
the list, the range for the size of the list, and the number of integer values allowed in the list.

The routine isPalindromic was mutated, obtaining 21 mutants not equivalent to the original
program. The effectiveness of the suites was assessed measuring how many of these mutants were
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Sc. BE Decision Cov. Count. Dec. Cov. Path Cov.
10% 1% CC 10% 1% CC 10% 1% CC

2 12 3 3 3 3 3 3 3 3 3
3 84 8 4 4 8 4 4 8 4 4
4 480 40 4 4 40 5 5 40 5 5
5 4680 264 38 4 339 40 6 339 40 6
6 45,612 1938 270 4 2772 367 7 2772 367 7
7 751,912 37,650 3814 4 33,052 4947 8 33,052 4947 8
8 4,829,952 241,568 24,220 4 217,662 29,494 9 217,662 29,494 9

Table VIII. Sizes of bounded-exhaustive and suites with repOK-based reductions, for testing binomial
heap’s operations insert, delete and find.

Sc. Oper.(#Muts) BE Decision Cov. Count. Dec. Cov. Path Cov.
10% 1% OPC 10% 1% OPC 10% 1% OPC

2 insert(97) 34 42 42 42 42 42 42 42 42 42
delete(170) 110 138 138 138 138 138 138 138 138 138
find(28) 0 12 12 12 12 12 12 12 12 12

3 insert(97) 23 24 32 32 24 32 32 24 32 32
delete(170) 67 92 135 135 92 135 135 92 135 135
find(28) 0 8 12 12 8 12 12 8 12 12

4 insert(97) 23 23 32 32 23 32 32 23 32 32
delete(170) 63 85 135 135 87 135 135 87 135 135
find(28) 0 6 12 12 6 12 12 6 12 12

5 insert(97) 23 23 23 32 23 23 32 23 23 32
delete(170) 47 76 87 135 51 71 135 51 71 135
find(28) 0 2 6 12 2 6 12 2 6 12

6 insert(97) 23 23 23 32 23 23 32 23 23 32
delete(170) 19 51 85 135 34 39 101 34 39 101
find(28) 0 2 6 12 0 3 12 0 3 12

7 insert(97) 23 23 23 32 23 23 32 23 23 32
delete(170) 17 23 68 135 21 35 101 21 35 101
find(28) 0 0 5 12 0 0 12 0 0 12

8 insert(97) 23 23 23 32 23 23 32 23 23 32
delete(170) 17 40 56 135 18 34 101 18 34 101
find(28) 0 2 5 12 0 0 12 0 0 12

Table IX. Measurement of effectiveness of bounded-exhaustive and reduced test suites, on mutant-killing
for insert, delete and find for binomial heaps (table reports mutants remaining live).

killed by the different suites. Table XI reports the results of the analysis for this case study, indicating
the mutants that remained live in each case, and highlighting those cases in which the reduced suites
matched the mutation score of the bounded exhaustive suites.

In this case study, reduced test suites are again as effective as the bounded-exhaustive ones, in
most of the cases, even reduced to 1% of the size of the bounded-exhaustive ones.

5.2.4. Search Trees (insert, delete and search). The next case study involves the data
structure Search Tree, and its insertion, deletion and search routines. Table XII shows, for various
scopes, the sizes of bounded exhaustive (BE) suites and suites with repOK-based reductions to
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Scope BE Decision Cov.
10% 1% CC

4,0,4,4 156 8 2 2
4,0,4,8 820 42 5 2
5,0,5,5 1555 78 8 2

5,0,5,10 16,105 806 81 2
6,0,6,6 19,608 981 99 2

6,0,6,12 402,234 20,112 2,012 2
7,0,7,7 299,593 14,980 1,498 2

7,0,7,14 12,204,241 610,213 61,022 2
Scope BE Count. Decision Cov.

10% 1% CC
4,0,4,4 156 10 4 4
4,0,4,8 820 50 7 4
5,0,5,5 1555 100 13 5

5,0,5,10 16,105 777 108 5
6,0,6,6 19,608 1035 136 6

6,0,6,12 402,234 15,786 2,193 6
7,0,7,7 299,593 13,239 1,781 7

7,0,7,14 12,204,241 402,933 55,918 7
Scope BE Path Cov.

10% 1% CC
4,0,4,4 156 10 4 4
4,0,4,8 820 50 7 4
5,0,5,5 1555 100 13 5

5,0,5,10 16,105 777 108 5
6,0,6,6 19,608 1035 136 6

6,0,6,12 402,234 15,786 2,193 6
7,0,7,7 299,593 13,239 1,781 7

7,0,7,14 12,204,241 402,933 55,918 7

Table X. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for testing
isPalindromic operation for doubly linked lists.

Scope BE Decision Cov. Count. Dec. Cov. Path Cov.
10% 1% OPC 10% 1% OPC 10% 1% OPC

4,0,4,4 13 13 21 21 13 20 20 13 20 20
4,0,4,8 13 13 21 21 13 13 20 13 13 20
5,0,5,5 11 13 20 21 11 13 20 11 13 20

5,0,5,10 11 13 13 21 11 11 20 11 11 20
6,0,6,6 11 11 13 21 11 11 20 11 11 20

6,0,6,12 11 11 13 21 11 11 20 11 11 20
7,0,7,7 11 11 11 21 11 11 20 11 11 20

7,0,7,14 11 11 11 21 11 11 20 11 11 20

Table XI. Measurement of effectiveness of bounded-exhaustive and reduced test suites, on mutant-killing
for isPalindromic for doubly linked lists (table reports mutants remaining live).

10% and 1%, for the three mentioned white box coverage criteria applied to repOK; again for each
criterion, it is also indicated the number of equivalence classes of inputs that have been covered (CC

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



REPOK-BASED REDUCTION OF BOUNDED-EXHAUSTIVE TESTING 25

columns). The scopes indicate the maximum number of nodes in the tree, the range for the size field
of the tree, and the number of keys allowed in the tree.

Routines insert, delete and searchwere mutated (the number of mutants obtained were 9,
24 and 4, respectively), and the effectiveness of the different suites on mutant killing was assessed.
Table XIII reports the results obtained for the analysis, indicating the remaining live mutants in each
case, and highlighting the cases in which the mutation score of the reduced suites matched that of
the corresponding bounded exhaustive suite.

In this case study, reduced test suites are again as effective as the bounded-exhaustive ones,
in most of the cases, with less effectiveness in the delete routine. Notice however that the
mutant-killing score is still very good for delete in the reduced suites, with counting decision
coverage at a 10% almost matching the bounded-exhaustive suite in scope 6,0,6,9 (2 vs. 0 out of
24 mutants). These two mutants correspond to a relational operator replacement and a conditional
operator insertion. In this case these two mutants result to be equivalent. These mutants are missed
by the reduced suites for a similar reason that mutants were missed on binomial heaps. Inputs are
distinguished by structural conditions of the trees, number of non-null left and right children. When
the delete operation is tested, the chances of exercising the mutated part of the code under test
depend not only on the structure of the tree but also on the item to be deleted, and where it is located
in the tree.

Scope BE Decision Cov. Count. Dec. Cov. Path Cov.
10% 1% CC 10% 1% CC 10% 1% CC

3,0,3,3 45 5 5 5 7 7 7 9 9 9
3,0,3,4 148 10 5 5 14 7 7 9 9 9
3,0,3,6 822 70 5 5 72 7 7 78 9 9
3,0,3,8 2,760 228 25 5 242 21 7 248 27 9
5,0,5,8 29,416 1836 240 5 2634 278 16 2888 260 65
6,0,6,9 167,814 10,158 1095 5 14,430 1605 22 16,665 1576 197

Table XII. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for testing delete,
insert and search operations of Search Tree.

5.2.5. Red-Black Trees (remove, add and contains). The last case study presented involves
routines manipulating red-black trees. These routines are remove, add and contains.
Table XIV shows, for various scopes, the sizes of bounded exhaustive (BE) suites and suites with
repOK-based reductions to 10% and 1%, for the three mentioned white box coverage criteria
applied to repOK; again, for each criterion it is also indicated the number of equivalence classes of
inputs that have been covered (CC columns). The scopes indicate the maximum number of nodes in
the tree, the range for the size field of the tree, and number of keys allowed in the tree.

In this case study, paths and sizes were for some scopes too large to enable the analysis. Thus,
in this case study, a bounded version of path coverage is considered, namely path coverage without
taking into account repetitions of edges (known as simple path coverage [29]).

Routines remove, add and contains were mutated (the number of mutants obtained not
equivalent to the original program were 138, 115 and 32, respectively), and the results of the analysis
are reported in Table XV. In this case study, reduced test suites showed better effectiveness for the
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Scope Op.(#Muts) BE Decision Cov. Count. Dec. Cov. Path Cov.
10% 1% OPC 10% 1% OPC 10% 1% OPC

3,0,3,3 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,4 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,6 delete(24) 2 12 12 12 12 12 12 12 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

3,0,3,8 delete(24) 2 9 12 12 9 12 12 9 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

5,0,5,8 delete(24) 0 9 16 16 9 12 12 9 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

6,0,6,9 delete(24) 0 9 16 16 2 9 12 0 12 12
insert(9) 0 0 0 0 0 0 0 0 0 0
search(4) 0 0 0 0 0 0 0 0 0 0

Table XIII. Measurement of effectiveness of bounded-exhaustive and reduced test suites, on mutant-killing
for insert, delete and search of Search Tree (table reports mutants remaining live).

Scope BE Decision Cov. Count. Decision Cov. Simple Path Cov.
10% 1% CC 10% 1% CC 10% 1% CC

4,0,4,4 164 14 7 7 16 16 16 108 108 108
4,0,4,8 6408 500 62 7 608 64 16 169 157 157
5,0,5,5 575 53 7 7 30 30 30 97 97 97

5,0,5,10 56,790 2732 496 7 5313 532 30 245 165 157
6,0,6,6 1962 174 14 7 184 16 46 113 113 113

6,0,6,12 412,140 10,411 2,652 7 38,579 4,017 46 505 229 157
7,0,7,7 6377 469 61 7 570 66 66 154 142 142

7,0,7,14 3,045,266 89,960 11,654 7 284,408 29,449 66 2211 465 157

Table XIV. Sizes of bounded-exhaustive suites and suites with repOK-based reductions, for testing
remove, add and contains operations of Red-Black Tree.

contains routine, matching in many cases the mutant-killing score of the bounded-exhaustive
suites. For the other two routines it was not the same, although they achieved a very good mutant-
killing score in many cases (e.g., counting decision coverage for add in scope 7,0,7,7 missed only
4 out of 115 and for remove in scope 7,0,7,14 missed only 3 out of 138 compared to the bounded-
exhaustive suite). About the missed mutants, this case does not differ too much from the already
presented ones, the mutated parts are located deep in the code under test and the ability to capture
those mutations, depends on exactly where the node to be deleted/added is placed in the tree, but
this property is not taken into account by the coverage criteria applied to repOK.
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Sc. Op.(#Muts) BE Decision Cov. Count. Dec. Cov. Simple Path Cov.
10% 1% OPC 10% 1% OPC 10% 1% OPC

4,0,4,4 remove(138) 43 78 78 77 66 66 66 43 43 43
add(115) 27 47 79 79 79 79 79 33 33 33
contains(32) 2 4 5 5 5 5 5 2 2 2

4,0,4,8 remove(138) 43 62 77 77 61 66 66 78 78 78
add(115) 27 29 32 79 29 47 79 42 51 51
contains(32) 2 2 3 5 2 4 5 4 4 4

5,0,5,5 remove(138) 39 77 78 77 64 64 64 64 64 64
add(115) 27 32 79 79 79 79 79 45 45 45
contains(32) 2 3 5 5 5 5 5 4 4 4

5,0,5,10 remove(138) 39 51 73 77 48 63 64 78 78 78
add(115) 25 29 31 79 28 32 79 38 47 67
contains(32) 2 2 2 5 2 3 5 4 4 4

6,0,6,6 remove(138) 37 62 78 77 42 62 62 67 67 67
add(115) 25 31 47 79 44 79 79 51 51 51
contains(32) 2 2 4 5 3 5 5 4 4 4

6,0,6,12 remove(138) 37 49 56 77 46 57 62 78 78 78
add(115) 25 29 29 79 26 29 79 36 38 67
contains(32) 2 2 2 5 2 2 5 4 4 4

7,0,7,7 remove(138) 37 56 77 77 37 62 62 72 72 72
add(115) 25 29 32 79 29 79 79 42 51 51
contains(32) 2 2 3 5 2 5 5 4 4 4

7,0,7,14 remove(138) 37 46 51 77 40 46 62 72 78 78
add(115) 25 31 47 79 25 29 79 36 38 68
contains(32) 2 2 2 5 2 2 5 4 4 4

Table XV. Measurement of effectiveness of bounded-exhaustive and reduced test suites, on mutant-killing
for add, remove and contains for red-black tree (table reports mutants remaining live).

6. RELATED WORK

Various approaches deal with bounded exhaustive test generation, and how to tackle scalability
issues. With respect to improving the bounded exhaustive testing time, Jagannath et al. [13] present
various techniques for reducing the costs of bounded-exhaustive testing. These techniques are sparse
test generation, which attempts to reduce the time to the first failing test (but not the suite); oracle-
based test clustering, which groups together failing tests to reduce the time for inspection of failing
tests; and structural test merging, whose purpose is to generate smaller suites of larger tests by
merging together smaller test inputs. Of these three, the latter is related to the work presented in
this paper, since it has as a purpose to reduce the size of the test suite. In fact, it is related to
both techniques in this paper, since it reduces the generation time (by a structural manipulation)
and also reduces the size of the obtained test suite. However, the approach is rather different to
both presented techniques, since (i) smaller inputs are encoded as larger inputs, as opposed to the
separate generation technique for disjoint substructures, that works in the opposite direction with
respect to test granularity, and (ii) bounded exhaustiveness is preserved in structural test merging
(although sets of small inputs are encoded as a single large input), whereas in the test suite reduction
technique bounded exhaustiveness is dropped by selecting only some tests. The same differences
apply to other works based on test granularity [23].
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The technique for improving test generation by considering separately disjoint substructures is
also related to other approaches improving the generation of bounded exhaustive suites, such as
works on parallelisation of bounded exhaustive generation. Misailovic et al. [19] presented an
approach for parallelising the bounded exhaustive test generation. Since, the separate generation for
disjoint substructures can be independently performed, it is a straightforward approach for bounded
exhaustive parallelisation. The disjoint generation technique is however significantly different from
that presented by Misailovic et al. [19], since in the latter the candidate vectors encoding the possible
instances are analysed in order to split the generation work, without taking into account semantic
information about the structures being generated (as in the case of the disjoint generation technique,
which requires information on the disjointness of substructures).

Besides the work presented by Bengolea et al. [4] (which this paper extends), there exist some
approaches that are related to the work presented in this paper with respect to the reduction of
bounded-exhaustive test suites. The work presented by Aguirre et al. [2] is strongly related to the
work presented in this paper, especially because both approaches are based on the use of coverage
criteria. However, the approach presented by Aguirre et al. [2] differs from the work in this paper
in two aspects. First, it requires the user to provide the coverage criterion to perform the suite
reduction, as opposed to the work here, where the coverage criterion is a standard one applied
to the representation invariant. Second, the previous approach targets the improvement in the test
generation process, whereas the work in this paper concerns the reduction of bounded-exhaustive
test suites to reduce the time for testing.

Other researchers have studied the effects of reducing test suites in finding bugs, e.g. Yu et al. [28].
The work in this paper is related, but a specific approach for test-suite reduction is proposed here
(as opposed to studying the effects of test-suite reductions in general), and bounded-exhaustive test
suites are specifically targeted.

For the case of bounded exhaustive test case generation of structurally complex, heap allocated
inputs, various tools have been proposed. Among these, Java PathFinder [27], Alloy [12], CUTE
[25] and Korat [5], which is used for the experiments in this paper (a thorough comparison between
these tools for bounded exhaustive test generation is reported by Siddiqui et al. [24]), may be cited.
An alternative tool for performing the experiments could have been used, although as is discussed by
Siddiqui et al. [24], Korat is generally the most efficient, which justifies this selection. Although the
experiments in this paper involved Korat, the technique applies to other tools that perform bounded
exhaustive generation by filtering. Examples of such tools are Alloy [12], UDITA [11] (which also
supports a generative approach) and AsmL [3].

7. CONCLUSIONS AND FURTHER WORK

Bounded exhaustive test generation is an effective testing technique in various contexts, such as
that of testing complex heap allocated data structures. In many cases, however, both the time for
test generation and for test execution grow exponentially with respect to the scope employed for
bounded exhaustive generation. This fact, combined with the developer’s need to use “larger” scopes
in order to cover interesting cases or achieve a certain level of coverage (or, in general, improve the
chances of finding bugs), makes in many cases either the generation or the use of the generated
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suites impractical. In this paper, two approaches have been presented to reduce the time employed
in bounded exhaustive testing, one that aims at reducing the time for test generation by enabling the
independent generation of disjoint substructures of the inputs, and the other aiming at reducing the
testing time, by reducing the size of bounded exhaustive suites by filtering redundant cases (for a
particular notion of redundancy, also presented in this work).

These techniques make use of the representation invariant of the code under test, usually
implemented as a repOK routine. This repOK routine is used in these techniques in two different
ways: in the case of independent generation of substructures, the representation invariant is used to
factor out separate representation invariants for disjoint substructures of the inputs. In the case of
test suite reduction, the representation invariant is used to define black-box criteria for the program
under test, based on the definition of equivalence relations of inputs, defined in terms of white-box
criteria on the repOK routine. As it is studied in this paper, these repOK based techniques may have
a significant impact in bounded exhaustive testing. For the first technique, this is so because when
inputs are composed of disjoint substructures, these substructures can be independently generated.
This has various advantages, such as the parallelisation of the generation. Even if the generation of
the substructures is performed sequentially, the problem of reconsidering every valid structure of the
second substructure for each valid one of the first substructure, is avoided. The presented technique
for test filtering is motivated by the observation that, if two inputs exercise the representation
invariant code “in the same way”, they might be considered “equivalent”, and this fact exploited
to define a black box coverage criterion for the code under test. As the experiments show, the
resulting coverage criteria are meaningful in the context of bounded exhaustive testing, and suites
are significantly reduced by filtering while maintaining the mutant killing ability of exhaustive
suites. Especially for counting decision coverage in the biggest scopes, few mutants are missed only
in some of the cases. More experimental evaluation could be done comparing these new black box
criteria with testing of equivalence classes over the code under test, using statement coverage and
even more sophisticated white box criteria. However keeping the equivalence classes independent of
the code under test, as in the case of repOK-based reduction, has a valuable advantage: the obtained
suite could be use to test any method of the structure on which it is generated as opposite of white
box testing, where the equivalence classes are generated to test a particular method.

The introduced techniques rely on programs being equipped with their corresponding contract
specifications. While writing contracts for code is not a wide-spread practice, recent efforts, most
notably the work on JML, Code Contracts and similar frameworks, favour contract specification by
integrating these as part of development environments, e.g., through libraries with special sentences
to capture preconditions, postconditions, invariants, etc. Although the techniques presented in this
paper require an imperative representation invariant, these are still relevant in contexts where
declarative representation invariants, of the kind associated with JML and Code Contracts, are
employed. Declarative languages for contracts are typically accompanied by run-time contract-
checking environments, making these declarative contracts “executable”; the code corresponding
to their run-time evaluation would correspond to what is is referred here as repOK. When reducing
the bounded-exhaustive test suite’s size, the idea of using white-box criteria on the representation
invariant is indeed the definition of a new black-box coverage criterion, for programs whose inputs
count on a representation invariant.
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There are various lines for further work related to the techniques presented in this paper. The
effectiveness of parallelising the generation of disjoint substructures has not been yet assessed. It
is of course expected that this will improve the generation time compared to what is presented in
this paper. Such an approach to the parallelisation of bounded exhaustive generation must also be
compared with other works parallelising bounded exhaustive test generation, such as that presented
by Misailovic et al. [19]. Some important technical issues are interesting sources for further lines
of work. One has to do with analysing different sources of information in order to determine the
disjointness of substructures of a given structure. The analysis of such sources, such as finitisation
procedures, other user provided information and even the processing of the representation invariant,
is an important problem to tackle, in particular if it is desirable to fully automate it. Another issue
is the effective processing of the repOK in order to obtain “local” versions of it for the different
disjoint substructures. This work is currently being done by a simple slicing mechanism based on
definition-use graphs, but more sophisticated approaches may yield better “local” repOK’s.
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