
An Introductory Course on Programming based on Formal 
Specification and Program Calculation 

Javier Blanco
Fa.M.A.F. - U. N.C.

Ciudad Universitaria 5000
Córdoba, Argentina

blanco@mate.uncor.edu

María Marta Novaira
F.C.E.F.Q.yN. - U.N.R.C.

Ruta Nac. 36 km 601 X5804BYA 
Río Cuarto, Argentina

mnovaira@dc.exa.unrc.edu.ar

Leticia Losano
Fa.M.A.F. - U. N.C.

Cuidad Universitaria 5000
Córdoba, Argentina

al@hal.unc.edu.edu.ar

Sonia Permigiani 
F.C.E.F.Q.yN. - U. N. R. C.

Ruta Nac. 36 km 601 X5804BYA
Río Cuarto, Argentina

spermigiani@dc.exa.unrc.edu.ar

Nazareno Aguirre 
F.C.E.F.Q.yN. - U. N. R. C.

Ruta Nac. 36 km 601 X5804BYA
Río Cuarto, Argentina

naguirre@dc.exa.unrc.edu.ar

Gastón Scilingo
F.C.E.F.Q.yN. - U. N. R. C.

Ruta Nac. 36 km 601 X5804BYA
Río Cuarto, Argentina

gaston@dc.exa.unrc.edu.ar

ABSTRACT

We  report  on  our  experience  in  teaching  introductory 
courses on programming based on formal specification and 
program  calculation,  in  two  different  Computer  Science 
programmes.  We  favour  the  use  of  logic  as  a  tool,  the 
notion of program as a formal entity, as well as some issues 
associated  with  efficiency.  We  also  review  and  use  in 
practical  cases  some  program  transformation  strategies, 
such as generalisation, tupling and modularisation. 
We describe our approach, its advantages and drawbacks. 
Furthermore, we present some preliminary results from an 
ongoing qualitative research which intends to characterise, 
describe  and  understand  the  students'  experiences  when 
taking these courses.

Categories and Subject Descriptors
k.3.2  [Computer  and  Education]  Computer  and 
Information  Science  Education  –  computer  science 
education.

General Terms: Algorithms

Keywords:  Computer  science  education,  Formal 
specification,  Program  derivation  and  verification, 
Qualitative research in education, Functional programming.

1. INTRODUCTION
It is generally agreed that teaching introductory courses on 
programming is a very difficult task. Often, such courses 
have various different aims in Computer Science curricula, 
besides providing students with the basics of programming. 
Some of these  «extra» aims are training students in some 
of  the  necessary  technologies  they  will  need  in  later 
courses,  and  provide  a  glance  of  a  bigger  picture  in 
software development, and the many challenges associated 
with it.  It  is not surprising then that  many of the current 

approaches to a first course on programming are related to 
what is thought to be more useful to students in their later 
programming practices, typically strongly based on modern 
and  sophisticated  programming  languages  such  as  Java, 
and including small to medium size programming projects 
where  students  can  experience,  to  some  extent,  some 
typical activities in software development (e.g., separated 
phases  for  analysis,  design  and  implementation,  the 
importance  of  modularity,  testing,  etc)  [15,  16].  This 
situation  generally  leaves  lecturers  with  limited  time  to 
teach  students  the  complexities  associated  with 
“programming  in  the  small”,  and  concentrating  on 
reasoning about small  programs (it  is not  surprising then 
the growing belief amongst practitioners that dealing with 
programming in the small  is  easy).  Also,  it  seems that  a 
now  popular  widely  spread  approach  to  teaching 
programming  in  the  small  is  associated  with  structured 
programming;  moreover,  sometimes  structured 
programming even  comes  with an  emphasis  on program 
verification. 
In  these  cases,  however,  program verification  is  usually 
taught  as  a  task  to  be  performed  after one  constructs  a 
program,  thus  contributing  to  make  students  believe 
verification to be an additional “burden”. Furthermore, due 
to the fact that one usually picks relatively simple problems 
for teaching programming and verification in introductory 
courses,  this  leaves  students  with  the  feeling  that 
verification is not only additional burden, but also optional 
burden  (students  get  the  idea  that  they  have  to  verify 
programs that they already know to be correct). 
In  this  paper,  we  report  on  our  experience  in  teaching 
introductory  courses  on  programming  based  on  formal 
specification  and  program  calculation,  in  two  different 
Computer  Science  programmes,  at  the  National 
Universities of Córdoba and Río Cuarto, in Argentina. The 
motivation of  these  courses  are  overcoming some of  the 
previously described problems, which were experienced in 
our programmes. Our current approach is characterised by 
the use of logic as a necessary tool, right from the start in 

mailto:al@hal.unc.edu.edu.ar
mailto:naguirre@dc.exa.unrc.edu.ar
mailto:mnovaira@dc.exa.unrc.edu.ar
mailto:blanco@mate.uncor.edu
mailto:naguirre@dc.exa.unrc.edu.ar
mailto:spermigiani@dc.exa.unrc.edu.ar


the  formal  specification  of  problems,  and  as  part  of  the 
body  of  rules  for  transforming  these  specifications  into 
programs. In order to make the transformation smooth, and 
not  having  to  deal  with  the  complexities  of  imperative 
languages,  most  of  our  courses  are  based  on  functional 
programming. The connection to imperative programming, 
although limited, is based on program transformation. As it 
will be described later on, we skip many of the important 
“programming in the large” issues, as well as technicalities 
associated with imperative (or object oriented languages). 
We favour instead the use of logic as a tool, the notion of 
program  as  a  formal  entity,  as  well  as  some  issues 
associated  with  efficiency.  We  also  review  and  use  in 
practical  cases  some  important  program  transformation 
strategies,  such  as  generalisation,  tupling  and 
modularisation.  Also,  as  it  will  be  explained  more 
throroughly  later  on,  we  try  to  carefully  choose  the 
exercises, trying to emphasise the cases in which problems 
would  be  extremely  difficult  to  solve  if  they  are  not 
formally manipulated. We describe our approach via one of 
these  cases,  the  segment  of  minimum  sum  problem  in 
section 3. 
In  this  context,  we  are  carrying  out  a  qualitative 
investigation whose primary objetive is characterising and 
understanding  the  learning  processes  associated  with 
programming in the above mentioned introductory courses 
on  programming,  particularly  that  of  the  University  of 
Córdoba, where the course is taught to first-year students. It 
is considered that in the interaction between students just 
starting  the  Computer  Science  programmes  and  the 
instructors two important learning processes are produced, 
namely  learning  important  abilities  such  as  modelling, 
abstraction and arguments for program correctness, as well 
as learning the appropriate practices associated with being a 
good  programmer  (and  a  successful  Computer  Science 
student).  As  a  consequence,  this  process  involves  a 
renegotiation of  language and  student  identities.  We will 
present  some  preliminary  results  of  this  investigation, 
particularly  associated  with  three  problems,  namely  the 
insertion of  students into a new community,  learning the 
programming  languages  and  paradigms,  and 
understanding and using mathematical proofs as tools for  
the development and demonstration of  the correctness of  
computer programs.

2. DESCRIPTION OF THE COURSE

As explained before, the course we are describing here is 
an  introductory  course  on  programming  taught  at  two 
different  Universities.  In  the  National  University  of 
Córdoba, the course is taught during the first two semesters 
of a 5-year Computer Science programme. In the National 
University of Río Cuarto, on the other hand, the course is 
taught during the third and fourth semesters, again of a 5-
year Computer Science programme. In the former, students 
have  no  previous  courses  on  programming or  logic,  but 

they take simultaneously with this course one on discrete 
mathematics.  In  the  latter  case,  when  students  start  the 
course they had already taken a 2-semester introduction to 
imperative  programming  course,  and  a  basic  course  on 
mathematical  logic.  Although  the  course  is  taught  in 
different  contexts  in  the  two  Universities,  we  seek 
achieving the same general goals. 
This  course  is  based  on  two  different  traditions:  formal 
derivation of algorithms and functional programming. We 
follow the idea of teaching the first course in programming 
based on a functional programming approach. One of the 
early documented experiencies was done in the University 
of  Twente  (the  material  used  in  a  later  version  of  that 
course  can  be  found in  [9]).  Functional  programming is 
easier to reason with, since the absence of an implicit state 
allows  the  use  of  pure  equational  logic  and  syntactical 
substitution  on  the  programs.  Furthermore,  proofs  by 
induction  are  the  main  tool  to  both  verify  and  formally 
calculate programs. The a posteriori proof and the formal 
derivation are close enough (actually they are almost the 
same) for the student to recognise that he or she is doing 
both programming and verification at the same time. The 
style of reasoning (e.g., see [8]) is coherent with the one 
that  will  be  used  later  on  in  the  course  to  develop 
imperative  programs,  showing  that  although  the 
computational  models  are  rather  different,  at  the 
programming level some concepts and many abilities can 
be  reused  when  switching  paradigms.  This  part  of  the 
course is based on the long tradition of imperative program 
calculation started by E.W. Dijkstra (cf. [5, 10, 6, 13, 4, 1]) 
and  is  standard  with  the  exception  of  some  particular 
attention to  tail-recursion  as  a  linking tool  between both 
paradigms. 
We tried to keep the new concepts to a minimum and still 
be able to solve many programming problems, avoiding if 
possible  ad  hoc  solutions  and  using  basic  mathematical 
principles  -induction,  syntactical  substitution,  equational 
reasoning, fold/unfold- instead of an operational approach. 
Since for  some of  the subjects treated during the course 
there was little teaching material available (in particular in 
Spanish) when we started the project, one of the authors of 
this  paper  and  other  instructors  wrote  a  book [2]  which 
focuses  mainly  on  the  new  approaches,  i.e.  formal 
derivation  of  functional  programs  from  specifications  in 
Dijkstra-Feijen's style of logic and very little use of higher 
order functions, as well as the translation from functional 
programs into imperative ones.  
Specifically,  we  want  the  students  to  accomplish  the 
following goals: 
• Develop the ability to formalise problems, using logic as 

a tool. 
• View specifications and programs as formal entities, and 

consider  programming  as  the  manipulation  of  these 
formal entities. 

• Obtain  considerable  training  on  using  recursion  as  a 
powerful mechanism for defining functions/programs. 



• Understand  that  reasoning  about  functions  can  be 
exploited not only in functional programming, but also 
in  imperative  programming  (particularly  via 
transformation schemata). 

• Get acquainted with a very elementary theory of abstract 
data types (and its relevance in program development). 

The contents of the course is composed of the following 
three main modules: 
• Logic  and  specifications.  We  employ  an  equational 

version of predicate logic with generalised quantifiers 
[7] (see also [8, 6]). The main goal is to have a suitable 
tool for dealing with large formulae (mainly programs). 
This  logic  is  used  for  both  the  functional  and  the 
imperative paradigms. 

• Construction of functional programs. The students learn 
how  to  formally  construct  functional  programs  from 
specifications, with their corresponding inductive proof 
of correctness. We make an induction guided use of the 
fold/unfold rules,  in  order  to  guarantee termination in 
the  calculated  programs,  as  in  [12].  Operational 
reasoning appears only as a motivation for the axioms 
of the calculus, and for efficiency considerations. In this 
paradigm, programs and specifications are written in the 
same formalism (programs are a subset of the possible 
formulae) [12].  

• Construction  of  imperative  programs.  This  module  is 
rather  traditional.  We  try,  however,  to  use  what  was 
learned in the previous module to help in this process. 
The main tool is to translate functional programs into 
the imperative formalism by using tail recursion, which 
not only allows us to translate the program itself, but 
also its  proof of correctness.  Although the underlying 
computational models are different in the functional and 
imperative paradigms, the students can get the feeling 
that proofs in the two contexts share similar ideas (e.g., 
invariants  can  be  seen  as  a  restricted  way  to  use 
induction).  Also  when  introducing  imperative 
programming,  students  are  faced  to  the  notion  of 
abstract data type. We employ the case of lists (which 
are somehow inherent to functional programming) and 
an  array  based  implementation  of  lists  in  imperative 
programming,  to  show  how  functional  programs 
handling lists are transformed into imperative programs 
manipulating  arrays.  The  usual  formal  concepts  of 
abstraction  function,  representation  invariant  and  the 
like are used superficially. 

3. A SAMPLE EXERCISE

In order to better illustrate our approach, and the notation 
used, let us provide an example, which is an exercise used 
in the course. Consider the problem of, given a list  xs of 
integers, finding the sum of the elements in the segment of 
minimum sum of xs. A segment of xs is simply any sublist 
of xs. So, for instance, if list xs is [1,-4,-2,1,-5,8,-7], then 

the minimum sum segment  of  xs is  [-4,-2,1,-5],  and  its 
sum  equals  -10;  if  we  consider  the  list  [1,2],  then  its 
minimum sum segment  is  [].  A first  step  is  to  formally 
specify  the  problem.  For  this  task,  the  specification 
language  we  use  provides  generalised  quantified 
expressions  (with  general  rules  for  dealing  with  these), 
which can be built out of any binary operator, as long as it 
admits  a  neutral  element,  and  is  associative  and 
commutative. This style is similar to that used in [8]. The 
generalised  expression  corresponds  to  applying  the 
operator  under  consideration  to  a  range  of  values.  The 
operator  Min satisfies the above conditions, and therefore 
can  be  used  in  a  quantified  expression,  allowing  us  to 
straightforwardly specify the problem in the following way: 

minSum.xs =⟨Min as, bs, cs : xs = as⧺bs⧺cs : sum.bs⟩
 
where  sum is  a  function  that  computes  the  sum  of  the 
elements of a list, for which we already have an operational 
version.  Deriving  a  recursive  function  from  the  above 
specification is done via induction on the length of  xs. A 
detailed calculation of  function  minSum can be found in 
[12],  page  147.  The  resulting  recursive  function  is  the 
following:

minSum.[] = 0
minSum.( x ▷ xs) = g.( x ▷ xs) min minSum.xs 

where g is defined as follows:

g.[]            = 0
g.( x ▷ xs)  = 0 min (x + g.xs) 

From  these  functions,  we  can  do  various  things.  For 
instance,  we  can  employ  schemata  for  transforming  the 
above  functions  to  tail  recursive  versions,  and  from the 
resulting  functions  straightforwardly  obtain  imperative 
programs. Also, we could attempt to derive a more efficient 
version of minSum, using transformation strategies (in this 
case, tupling is a suitable one). The resulting more efficient 
version  of  minSum,  obtainable  using  tupling  on  minSum 
and g, is the following:

h.[] =  (0, 0)
h.( x ▷ xs)  = ((x + b) min a, 0 min (x+b)
                            ⟦(a,b) = h.xs⟧

4. RESEARCH METHODOLOGY 

The  employed  research  methodology  is  of  a  qualitative 
nature, i.e., it is centred in a deep comprehension of a social 
phenomenon and not in its measurement. We believe that 
this methodology is well suited, since it will enable us to 
examine  the  various  perspectives  of  a  situation  centred 
around  experiences  and  personal  processes,  such  as 



learning,  comprehending,  teaching,  deciding,  etc.,  which 
are naturally descriptive. 
The descriptions of these phenomena are being developed 
based on the analysis of the written material produced by 
students, protocols of personal interviews, and observations 
during  course  lectures  and  tutorials,  taken  during  18 
months of field work. The gathered data is being analysed 
via an inductive/constructive process [14];  from this data 
and  via  this  process,  categories  and  conjectures  are 
proposed,  whose  validity  is  later  on tested.  This  process 
enables  us to  exploit  the gathered information to  elicit  a 
grounded theory whose categories should be  “applicable 
-not  forced-  and  indicated  by  the  data  in  the  study  (...)  
[and]  significantly  relevant  for,  and  able  to  explain  the  
behaviour of, the study” [14].
It is important to remark that these methods aim at allowing 
the  researcher  to  interpret  the  gathered  data  from  the 
perspective of those involved in the investigated situation, 
i.e., to understand the meaning that the various participants 
associate with the phenomenon under consideration. Thus, 
we believe that this methodology allows us to present, in 
detail, the opinions and views of the participants, expressed 
in their corresponding produced material [11].  

5. PRELIMINARY ANALYSIS OF THE DATA

We  carry  out  this  preliminary  analysis  based  on 
observations  during  course  lectures  and  tutorials, 
conversations  with  instructors,  talks  given  by  former 
students, and some advanced students, reviews of mid-term 
and final  exams, and interviews with three students  who 
finished  the  course,  with  a  good  performance.  As  we 
mentioned,  we  identified  three  main  relevant  problems: 
mathematical proof of program correctness, programming 
languages and paradigms, and insertion of students into a 
new community. The relationships between these problems 
is  an issue to be resolved in later  analyses.  We consider 
these problems from the points of view of three involved 
groups of people: instructors, students, and former students 
who took the course a few years ago, and who have already 
graduated.
Next,  we  will  concentrate  on  the  first  two of  the  above 
mentioned problems. A detailed analysis of the third one is 
part of our work in progress, and we will describe it only 
superficially in this paper.  In  the quotes below,  we have 
marked  those  corresponding  to  students  by  ST,  whereas 
quotes marked as GR correspond to graduates. 

5.1 Point of view of the instructors

Let  us  first  describe  our  point  of  view,  i.e.,  that  of  the 
instructors. We have been using the described approach for 
the past  10 years in the National University of Córdoba, 
and for the past 6 years in the National University of Río 
Cuarto.  The  experience  we  gained  along  these  years 

enabled  us  to  improve  the  course  in  various  respects 
(particularly, collect  better exercises,  with interesting non 
trivial  solutions,  illustrating  some  of  the  benefits  of 
program calculation), and observe various advantages and 
drawbacks associated with the course. 
As  advantages,  we  can  say  that  students  who  get  to 
assimilate  the  principles  taught  in  the  course  have 
demonstrated  to  incorporate  these  in  their  programming 
practices, in particular in later courses. Also, although they 
generally  do  not  use  formal  approaches  in  later 
programming  courses,  the  acquired  skills  in  logic  and 
program manipulation leads to producing better programs 
(with  fewer  bugs  and  clearer),  and  to  a  more  careful 
reasoning  when  programming.  One  important  drawback 
related  to  demostrations  is  that  the  students  usually 
becomes  too  “syntactic”  in  reasoning  about  programs, 
which has  a  negative  impact  in  abstraction.  It  is  usually 
rather difficult for students to “jump” in and out from the 
calculus  (i.e.,  take  perspective  on  the  situation  of  the 
derivation at hand, and decide accordingly). 
With respect to entering a new community, many lecturers 
consider  that  students  have  difficulties  in  founding  their 
studying activities based on problem solving, as opposed to 
the  more  traditional  approach  organised  around  learning 
definitions  and  theoretical  concepts;  instructors  generally 
feel that it is very difficult for students to anticipate how 
much time they  will  need  to  dedicate  to  studying.  As a 
consequence, instructors feel that students cannot achieve 
the rythm of study required in University, in this kind of 
courses.

5.2 Point of view of the Graduates

Three  graduates  from Fa.M.A.F.  gave  talks  to  first  year 
students of the National University of Córdoba, from which 
we  could  gather,  at  least  partially,  their  points  of  view 
regarding the skills acquired in the degree, and the status 
that  graduates  from  Fa.M.A.F.  have  gained  in  the  local 
software industry.

“I am pleased with my career, I think that this is a  
good place where to learn a lot of things, which go  
beyond  learning  a  particular  programming 
language or tool suited for a particular task.  What  
is good is the framework (...) all these things that  
you are being taught right now and ask yourselves  
to  what  purpose  (...)  we  are  using  all  these  (...)  
When  you  understand  how  to  think  about  these 
things,  it  becomes  much  easier  to  solve  more 
complex problems. Now you are learning this, and 
you just can't imagine how complex it becomes as 
time goes on” (GR1).

“Something  really  good  about  studying  here  at  
Fa.M.A.F. is that you receive a technical training, a  



training on the basis, that will allow you not to be  
tied to the technology currently  popular (...)  Here  
you receive a training on the basis that will allow 
you to do something that is essential in the software  
industry,  namely  the  ability  to  be  constantly  
learning new technologies” (GR2). 

From these opinions, we can say that the graduates consider 
that  learning  programming  paradigms  and  formal 
manipulation are two closely related kernels of study. The 
associated  ability  to  apply  methods  and  mathematical 
concepts in program construction is  what later on allows 
them  to  distinguish  as  professionals.  It  is  difficult  for 
students  to  understand  the  relevance  of  these  topics  of 
study during the first year of the programme. In fact, these 
talks  given  by  graduates  aim  at  trying  to  facilitate  the 
insertion  of  students  in  this  new  community;  this  is 
important,  in  particular  due  to  the  heterogeneity  of  the 
vocational expectations of first year students. 

5.3 Point of view of the students

With  respect  to  the  category  insertion  into  a  new 
community,   it  is  rather  surprising that  students  consider 
that the previous education, that obtained during  secondary 
school, is not very important. It seems that the nature of the 
contents, and the methods of study, in secondary school are 
disconnected,  or  at  least  differ  substantially,  from  those 
used in the first year of study in the University. This would 
suggest  a  strong  discontinuity  between  the  contents, 
methods and justifications of the University and secondary 
school. Students also have difficulties, particularly during 
the first months in University, in maintaining the required 
rythm of study. With respect to this issue, students consider 
that every new subject  of study requires a great  learning 
effort,  which  generally  comes  right  after  the  previous 
subject  has  been  comprehended,  and  thus  leaving  a 
sensation  of  having  no  time  for  relaxing.  Also,  students 
remark  the  importance  of  meeting  with students  in  their 
second and third years  of  study,  as  a  way of  identifying 
themselves with people who have been through first year 
already. These meetings, held in the form of talks, would 
allow first year students to realise the changes experienced 
by people that belong to the University.
Even  though  students  get  to  develop  complex  computer 
programs, including implementations of datatypes such as 
dictionaries, addition and multiplication of polinomials, etc, 
they  generally  think  that  their  programs  are  “toy 
implementations”,  thus  feeling  a  separation  between  the 
“real  world”  of  programming,  and  that  learned  in  the 
University.  One  of  the  interviewed  students,  who  had  a 
previous experience in imperative programming, seemed to 
have more learning difficulties than the rest, perhaps due to 
his  previous  knowledge  regarding  programming  being 
structured around an operational model, and its associated 
way of thinking about programs. This issue is  consistent 

with  what  is  observed  in  the  case  of  students  from Río 
Cuarto, where the course is taught in the second year, and 
where surprisingly the results have generally been slightly 
worse than in Córdoba. We believe this might be due to the 
case that, for most students, the approach to programming 
taught  in  the  course  feels  somehow contradictory  to  the 
way they are use to do programming. They also exhibit a 
greater  resistance,  compared  to  students  in  Córdoba,  to 
learning and applying logic for specification. 
With respect to the category  programming languages and 
paradigms,  the  students  found  particularly  difficult  the 
move  from  functional  programming  to  imperative 
programming. They related these problems both with the 
specific aspects of a new programming language and the 
model  of  abstract  machine  of  a  new  paradigm.  Similar 
difficulties are also observed in [3].

“In  functional  programming,  our  programs  were  
always pretty nice stuff, a type declaration, a small  
function and that's it; in imperative programming we 
had a huge bunch of things, constant declarations,  
variable declarations, semi-colons, printf's, etc. Then 
we started learning that semi-colons are necessary 
because  we  need  to  indicate  the  computer  where 
things are separated, printf's are useful for printing  
stuff on the screen, variables are needed because the  
computer needs to know which things are going to be  
variable” (ST2). 

“Up to this  point,  in functional programming,  we 
had seen the computer as function reduction, now 
we  saw  it  as  state  change.  Change  of  what?  Of  
state.  But  what  is  a  state?  Such  and  such.  And  
already in  the next  lecture everybody was talking 
about  state,  and  I  had  no  idea  about  it  (...)  that  
variables  are  modified,  and  that  the  state  is  the 
value of the variables at a given moment in time” 
(ST2). 

Finally,  students  also  remark  that  courses  are  rarely 
oriented to programming languages, and that these do not 
cover the details of the programming languages used. This 
makes them feel disoriented, and in many ocassions cause 
them difficulties in progressing with their work due to a 
lack  of  knowledge  of  a  set  of  commands,  pre-defined 
functions/routines, and other available language constructs: 

“When  we  were  programming,  and  a  new  set  of  
exercises was available,  there usually was a lot  of  
tools  that  we needed  related  to  the language,  and  
that were not taught. While we were trying to solve  
the exercises, the instructors gave us some tips, but  
we  still  had  that  feeling  of  being  lost  (...)  For 
example, the issue of C libraries, compiling, etc (...)  
what makes it hard is that you need new things in the  
language  which  are  not  taught  (...)  You  start  



programming and you get to a point where you ask  
yourself 'how do I do this?' You ask an instructor and  
he says Ah! You need to use such and such functions  
from the Prelude,  or load a particular library (...)  
During the lectures we see things more in detail, but  
when you have to actually implement things is  not  
the same,  even if  you know what a loop is,  if  you 
don't know the commands you need to use and their  
right syntax you can't do it (...) you always encounter  
this  kind of  minor details,  which are  not  minor at  
all” (ST1). 

With  respect  to  the  problem  mathematical  proof  of  
program correctness,  we can make a few remarks.  First, 
learning to handle the logical formalism that is used in the 
courses, and studying particular proof strategies, and using 
these for solving problems, enable the students, according 
to  their  opinion,  to  better  understand  the  notion  of 
mathematical proof in general, even as seen and studied in 
other courses. This became evident during the interviews, 
when  we  asked  the  students  if  they  could  draw  some 
relationship between the  courses  related  to  programming 
and the courses on mathematics:

“There  is  some  relationship  (...)  what  was  really  
useful  for  me  was  the  courses  on  algorithms  for  
other courses, particularly the topics on logic and  
propositional calculus.  Because when they said 'it  
implies'  or  'and',  in  the  courses  on  algorithms  I  
learned how to deal with all this, so when I was told  
'this thing and this thing imply something else' (...)  
'if  this  happens  then  this  holds'.  Well,  that  really  
helped, I mean what we learned in the courses on 
algorithms to grasp the essence of theorems, what  
they really mean” (ST2). 

Having available a first-order calculus enables the students 
to deal with proofs at a syntactic level that is not exploited 
in  courses  related  to  mathematics  in  their  programme of 
study,  where  proofs  are  dealt  with  in  a  semantic  level. 
Students  tend  to  absorve  this  difference  as  a  concrete-
abstract contrast: 

“Using  symbols  (...)  in  mathematics  (..)  for  us 
symbols are simply a formalism to express how you  
start, but we actually never, or rarely operate with 
symbols. In the courses on algorithms on the other  
hand, we do operate with symbols, 'it exists' means 
that there is some for which it holds, and that can be  
true  or  false.  'For  all'  means  that  it  holds  or  it  
doesn't  for  all  elements,  and  that  can  be  true  or  
false. In mathematics it is like this: 'let's see, let us  
suppose  that  if  this  holds,  then  this  should  also  
hold.'  In  the  algorithms  courses  things  are  much  
more concrete. That relationship was very difficult  
to  understand  in  the  beginning,  but  once  I  

understood  it,  it  allowed me to  better  understand 
mathematics. [This would be related to] the level of  
abstraction in which we deal with things. It is much  
less abstract in the algorithms courses, I mean the 
way we deail with mathematical symbols, don't you  
think? (...) We do not have summations to infinity,  
we have summations with precise bounds, or for the 
elements in a list, don't you think?”(ST1). 

 
Furthermore,  students  find  it  difficult  to  achieve  a 
“creative” usage of the formalism employed in the courses. 
This  creativity,  we  believe,  would  be  related  to  the 
possibility of the students themselves being able to develop 
mechanisms  for  solving  problems.  According  to  this 
perspective,  students  who  cannot  develop  these 
mechanisms,  are  limited  to  imitate  those  mechanisms 
presented by the instructor: 

“One of the major difficulties that I had experienced  
was  due  to  the  lack  of  creativity  that  I  had  for  
tackling  things   (...)  I  mean,  in  discovering  a 
method,  in  having  original  ideas,  right?  Because 
one can learn a system, a mechanical way of doing  
something, and you do it. But when you are told '  
OK,  let's  see  how  you  do  this'  and  you  have  to  
create  something,  and  in  this  creative  process  
originality plays a great role, right? Of all the many 
possibilities of approaching the problem you have to  
choose  one.  I  believe  I'm  quite  limited  in  this  
respect” (ST1). 

“Immediately after I start, in the first few topics, I  
feel a bit lost (...) And that's why I see as important  
the originality issue. In the beginning, even though I  
am given  (...)  the tools,  I  don't  know how to  use  
them, you have to be ingenuous to know how to use  
them,  and I  see  sometimes that  my friends in  the  
class can do it (...) some very naturally, for whom 
the start  seems to be much more smooth than for 
me.  However,  for those for whom the work is  not  
that smooth, the way forward is seeing many times  
how it has to be done, so that it can be mechanised.  
The process of (...) grabbing the tools and ordering  
them for their use. That's the hardest part for me. In  
particular when during the course you are required  
to constantly change that process and the way you  
use the tools. That's when creativity comes into play  
(...) [While I progress with the sets of exercises] that  
starts disappearing, and the difficulties only remain  
in very specific topics” (ST1).

In  order  to  adequately  interpret  the  quantitative  data 
associated with the success rate in passing these courses, it 
is important to take into account that public Universities in 
Argentina  are  free,  generally  with  no  requirements  for 
registering  for  a  degree.  This  is  the  case  of  all  degrees 



offered by Fa.M.A.F and U.N.R.C.. In these contexts, the 
desertion during the first  year  of  study is  typically  high, 
independently  of  the  degree  in  which  the  students  are 
registered.  Moreover,  students  can  finish  each  course  in 
their programme of study in two different conditions, as a 
regular  (course  passed)  or  not  regular  (course  failed) 
student.  They have then to pass  a  final  exam, for  which 
they have  a number  of  available  dates,  along  two years. 
Students that finished the course as not regular usually have 
to  solve  a  few  extra  exercises,  compared  to  regular 
students, but are still allowed to take the final exam. This 
situation  makes  it  difficult  to  gather  useful  quantitative 
data,  in  order  to  compare  our  approach  with  other 
alternative  introductory  courses  on  programming.  With 
respect  to  the performance of  students  during  2008,  191 
students  registered  to  take  the  course,  39  of  which 
abandoned the course before the first examinations. Of the 
remaining 150, 43% finished the course successfully, i.e., 
as regular students. During the first three opportunities for 
taking the final exam, 59 students took it, and 37 passed it. 

5. CONCLUSIONS

We  have  described  an  approach  to  a  first  course  on 
programming strongly  based  on  formal  specification and 
program  calculation,  that  we  have  been  using  in  the 
National  Universities  of  Río  Cuarto  and  Córdoba  in 
Argentina. Overall, we have been satisfied with the results. 
One of the main advantages we found is the use of very few 
conceptual  tools  (syntactical  substitution,  induction, 
equational reasoning, formalization and abstraction) which 
appear  recurrently  through  the  whole  course  and  are 
comprehensive  enough  to  develop  a  whole  theory  an 
practice of programming. Furthermore, these tools will be 
needed in many more courses in the curriculum, allowing 
the students to  improve their  understanding and mastery. 
The different techniques introduced prove to be useful to 
solve  problems  in  unexpected  ways  (many  programs 
obtained by these methods can only be understood through 
the  construction  steps). Moreover,  the  belief  in  the 
correctness  of  the  programs  strongly  relies  on  the 
calculations  and  cannot  be  attained  via  operational 
reasoning. An early exposition to the usefulness of formal 
methods  appears  to  be  a  cornerstone  for  developing  the 
problem  solving  skills  that  are  then  acknowledged  and 
required by the software industry. 
We  have  found,  via  a  qualitative  analysis,  three  main 
problems. As future work, we plan to refine the analyses 
presented here, further exploring the relationships between 
the discussed categories, and enriching the work with new 
categories, that we believe will emerge as a result of the 
analysis.  Another  issue  that  we  plan  to  explore  is  how 
students  conceive  the  relationship  between  proof  and 
derivation. This is considered crucial by the instructors of 
the studied courses, and could not be explicitly visualised 

by any of the students during the interviews. Of course, we 
hope that  as  a  result  of  the  analyses  we will  be able to 
reformulate  and  improve  various  points  of  the  course. 
Furthermore,  we  also  consider  important  integrating  the 
contents  and  methods  of  the  first  two  years  of  the 
programmes of study of Córdoba and Río Cuarto. 
In the next few years, we are confident that we will have a 
more detailed and complete description of the phenomena 
described in this work. This would enable us to explain the 
differences between the conceptualisations of  the various 
actors involved in the negotiation processes, regarding the 
significance of  the discussed phenomena,  as  produced in 
the classrooms. 

7. REFERENCES

[1] Backhouse,  R.  Program  Construction:  Calculating  
Implementations  from  Specifications,  John  Wiley  & 
Sons, 2003.

[2] Blanco,  J.,  Smith,  S.  and  Barsotti,  D.  Cálculo  de 
Programas, Fa.M.A.F, U.N.C., 2008.

[3] Clack, C. and Myers, C. The Dys-Functional Student in 
LNCS 1022,  289-309, Springer, 1995.

[4] Cohen, E. Programming in the 1990s: An Introduction  
to  the  Calculation  of  Programs,   Springer-Verlag, 
1990.

[5] Dijkstra,  E.  A  Discipline  of  Programming,  Prentice 
Hall, 1976.

[6] Dijkstra, E. and  Feijen, W. A Method of Programming, 
Addison-Wesley, 1988.

[7] Dijkstra, E. and Scholten, C.  Predicate Calculus and 
Program  Semantics,  Monographs  in  Computer 
Science, Springer-Verlag, 1990

[8] Dijkstra, E. and Schneider, F.  A Logical Approach to  
Discrete  Math,  Monographs  in  Computer  Science, 
Springer-Verlag, 1993.

[9] Fokkinga,  M.,  Werkcollege  Functioneel  
Programmeren, University of Twente, 1996.

[10] Gries, D. The Science of Programming, Monographs in 
Computer Science, Springer-Verlag, 1981.

[11] Hazzan, O., Dubinsky, Y., Eidelman, L., Sakhnini, V. 
and  Teif,  M.  Qualitative  Research  in  Computer 
Science Education. SIGCSE Bulletin, Vol. 38, 408-412, 
2006.

[12] Hoogerwoord, R. The Design of Functional Programs:  
A  Calculational  Approach,  PhD  Thesis,  Eindhoven 
University of Technology, The Netherlands, 1989.

[13] Kaldewaij,  A.  Programming:  The  Derivation  of  
Algorithms, Prentice Hall, 1990.

[14] Lincoln, Y. and Guba, E.  Naturalistic Inquiry, SAGE 
Publication, 1985.

[15] Liskov,  B.  and  Guttag,  J.  Program  Development  in 
Java:  Abstraction,  Specification  and  Objetc-oriented 
Design, Pub-AW, 2000.

[16] Meyer,  B.  Object-Oriented  Software  Construction, 
Prentice Hall,  2000.


	1. INTRODUCTION

