
dCTL: A Branching Time Temporal Logic for
Fault-Tolerant System Verification

Pablo F. Castro1,3, Cecilia Kilmurray1,
Araceli Acosta2,3, and Nazareno Aguirre1,3

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina,

{pcastro,ckilmurray,naguirre}@dc.exa.unrc.edu.ar
2 Facultad de Matemática, Astronomı́a y F́ısica, Universidad Nacional de Córdoba,

Córdoba, Argentina, aacosta@famaf.unc.edu.ar
3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. With the increasing demand for highly dependable and con-
stantly available systems, being able to reason about faults and their im-
pact on systems is gaining considerable attention. In this paper, we are
concerned with the provision of a logic especially tailored for describing
fault tolerance properties, and supporting automated verification. This
logic, which we refer to as dCTL, employs temporal deontic operators in
order to distinguish “good” (normal) from “bad” (faulty) behaviors, us-
ing deontic permission, prohibition and obligation combined in a novel
way with temporal operators. These formulas are interpreted over tran-
sition systems, in which normal executions are distinguished from faulty
ones. Furthermore, we show that this logic is sufficiently expressive to
describe various common properties of interest in fault tolerant systems,
and show that it features some desirable characteristics that make it
suitable for analysis. Indeed, even though we show that the logic is more
expressive than CTL, we prove that it maintains the time complexity of
the model checking problem for CTL. The logic, its expressiveness and
its use to express properties of fault tolerant systems, are illustrated via
some case studies.

Keywords: Formal Methods, Fault Tolerance, Temporal Logic, Model
Checking.

1 Introduction

With the increasing demand for highly dependable and constantly available sys-
tems, being able to reason about computer systems behavior in order to provide
strong guarantees for software correctness, has gained considerable attention,
especially for safety critical systems. In this context, a problem that deserves at-
tention is that of capturing faults, understood as unexpected events that affect
a system, as well as expressing and reasoning about the properties of systems in
the presence of these faults.

2 Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre

Various researchers have been concerned with formally expressing fault toler-
ant behavior, and some formalisms and tools associated with this problem have
been proposed [6]. Some recent approaches include the use of model checking for
analyzing fault tolerant systems [11], and the employment of synthesis mecha-
nisms for systematically producing controllers that help to achieve fault tolerance
[8]. A particular trend in formal methods for fault tolerance, that we take as a
starting point in this paper, is based on the observation that normal vs. abnor-
mal behaviors can be treated as behaviors “obeying” and “violating” the rules of
correct system conduct, respectively. This leads to a straightforward application
of deontic operators (operators to express permission, obligation and prohibi-
tion) for separating normal from abnormal behaviors, and thus for expressing
fault tolerant systems and their properties [7]. This idea has been exploited by
various researchers in different ways, e.g., for extending a Hoare logic with the
possibility of expressing properties of programs in the presence of exceptions
[7], for specifying normal behavior of components in distributed systems [13],
for specifying fault tolerant systems and their intended properties [3], and the
extension of temporal logics with obligation so that robustness can be expressed
[10], amongst others.

The work we present in this paper is related to the above mentioned deontic
logic approaches to fault tolerance specification and reasoning. We propose a
logic especially tailored for describing fault tolerance properties based on the
use of deontic operators, with an emphasis on expressing intended (temporal)
properties of fault tolerant systems, rather than (axiomatically) prescribing com-
ponent/system behavior. We then share the motivation of related works such as
[13, 3], but components will be described using behavioral models such as tran-
sition systems, and the logic will be reserved for expressing properties regarding
these systems. We maintain a strong concern on automated verification of these
properties. Indeed, this logic, which we refer to as dCTL, is composed of CTL and
deontic operators for distinguishing “good” (normal) from “bad” (faulty) behav-
iors, as other deontic approaches, but the way in which temporal and deontic
operators are combined makes the logic suitable for analysis. Our proposed dCTL
logic is more expressive than CTL, which as we will argue makes it useful for
describing common properties of interest in the context of fault tolerant systems,
but it preserves the complexity of the model checking problem for CTL, as we
show in this paper. Thus, it constitutes a good candidate for describing temporal
properties of fault tolerant systems, when the intention is to use model checking
for their analysis. This is so especially compared to related temporal-deontic ap-
proaches such as RoCTL* [10, 14], for which model checking is currently reduced
to CTL* model checking, and thus is significantly less efficient.

We provide a number of case studies which enable us to illustrate the use
of the logic, and its expressive power. These case studies, though small, repre-
sent simple models of common situations in fault tolerance, and are useful for
assessing the expressiveness of the logic. They are presented simply as transition
systems in which normal states (those resulting from a normal transition), are
distinguished from abnormal ones (those resulting from a fault).

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 3

2 Preliminaries

In this section, we reproduce some basic definitions and facts regarding Kripke
structures and CTL, which are necessary in the presentation of our logic.

2.1 Kripke structures

Kripke structures are a standard vehicle for interpreting modal or temporal logic
formulas as well as for characterizing the operational behavior of reactive systems
[6]. Let AP be a set of atomic propositions. A Kripke structure over AP is a 4-
tuple 〈S, I,R, L〉, where S is a set of elements called states, I ⊆ S is a set of

initial states, R ⊆ S×S is a transition relation between states, and L : S → 2AP

is an interpretation function, which indicates the set of atomic propositions that
hold in each state.

Given a Kripke structure M = 〈S, I,R, L〉, the interpretation of logical con-
nectives and modal operators in a modal logic can typically be defined by re-
sorting to L and the structure of R. For temporal logics, it is usually necessary
to employ the notion of trace to define the semantics of some operators. A trace
is simply a maximal sequence of states, adjacent with respect to R. When a
trace starts in an initial state, it is called an execution of M , with partial execu-
tions corresponding to non-maximal sequence of adjacent states. Given a trace
σ = s0, s1, s2, s3, . . ., the ith state of σ is denoted by σ[i], and the final segment
of σ starting in position i is denoted by σ[i..]. Finally, we will denote by UM the
set of all traces, i.e., maximal sequences of adjacent states, of M .

Without loss of generality, it can be assumed that every state has a successor,
as is customary in various temporal logics [2].

Colored Kripke Structures. We define a colored Kripke structure as a 5-
tuple 〈S, I,R, L,N〉, where 〈S, I,R, L〉 is a Kripke structure and N ⊆ S is a set
of normal states. Arcs leading to abnormal states can be thought of as faulty
transitions, our representation of faults (similar approaches to formally model
faults can be found in the literature, e.g., [12]). Then, normal executions will
be those transiting only through normal states. The set of normal executions
will be denoted by NT . In this paper, we assume that in every colored Kripke
structure, and for every normal state, there exists at least one successor state
that is also normal, and that at least one initial state is normal. This guarantees
that every system has at least one normal execution, i.e., that NT 6= ∅.

2.2 Computation Tree Logic

Computation Tree Logic (CTL) is a branching time temporal logic with impor-
tant applications in model checking [5]. This logic allows for the description of
properties over Kripke structures, by complementing propositional connectives
with path quantifiers and temporal operators, combined in a certain restricted
way. It is a logic of “computation trees” since it allows one to express properties

4 Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre

referring to the tree that is constructed from a Kripke structure, starting from
an initial state, and unfolding the structure to form a (typically infinite) tree.

Let us describe the syntax of the logic. Let AP be a set {p0, p1, . . .} of atomic
propositions; the set Φ of CTL well formed formulas is recursively defined as:

Φ ::= > | pi | ¬Φ | Φ→ Φ | EXΦ | AXΦ | E(Φ U Φ) | A(Φ U Φ)

CTL formulas are interpreted on states over a Kripke structure. Given a
Kripke structure M = 〈S, I,R, L〉, and a state s ∈ S, the semantics of CTL
formulas is defined as follows:

– M, s |= >
– M, s |= pi ⇔ pi ∈ L(s), where pi ∈ AP.
– M, s |= ¬ϕ⇔ not M, s |= ϕ.
– M, s |= ϕ→ ϕ′ ⇔ (M, s |= ¬ϕ) or (M, s |= ϕ′).
– M, s |= EXϕ⇔ for some traces σ such that σ[0] = s, M,σ[1] |= ϕ.
– M, s |= AXϕ⇔ for all traces σ such that σ[0] = s, M,σ[1] |= ϕ.
– M, s |= E(ϕ U ϕ′) ⇔ for some traces σ such that σ[0] = s, there exists a
j ≥ 0 such that M,σ[j] |= ϕ′, and for every 0 ≤ k < j, M,σ[k] |= ϕ.

– M, s |= A(ϕ U ϕ′)⇔ for all traces σ such that σ[0] = s, there exists a j ≥ 0
such that M,σ[j] |= ϕ′, and for every 0 ≤ k < j satisfies M,σ[k] |= ϕ.

Some model checkers, particularly SMV, employ CTL as a language for expressing
temporal properties of systems. The model checking problem for this logic is
known to be linear on the size of the system and the formula being verified, as
opposed to the case of CTL*, a more expressive computation tree logic for which
the model checking problem is exponential on the size of the verified formula [6].

3 A Deontic Computation Tree Logic: dCTL

In this section we introduce dCTL, the logic that will be employed in order to
specify, and later on verify, properties of fault tolerant systems. Formulas in this
logic refer to properties of behaviors of colored Kripke structures, as defined
in the previous section, in which a distinction between normal and abnormal
states (and therefore also a distinction between normal and abnormal traces) is
made. The logic dCTL is defined over CTL, with its novel part being the deontic
operators O(ψ) (obligation), P(ψ) (permission), and R(ψ) (repair or recovery),
which apply on a certain kind of path formula ψ. The intention of these operators
is to capture the corresponding notion of obligation, permission and repair over
traces. Intuitively, these operators have the following meaning:

– O(ψ): property ψ is obliged in every future state reachable via non-faulty
transitions.

– P(ψ): there exists a normal execution, i.e., not involving any faults, starting
from the current state and along which ψ holds.

– R(ψ): property ψ holds in every future faulty state, i.e., resulting from the
immediate occurrence of a fault.

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 5

Clearly, obligation and permission will enable us to express intended properties
which should hold in all normal behaviors and some normal behaviors, respec-
tively. Repair, on the other hand, will enable us to express properties that should
hold when faults occur; they will mainly serve the purpose of imposing restric-
tions on what should happen when faults occur, so that certain properties can
be guaranteed.

These deontic operators have an implicit temporal character, since ψ is a path
formula. As it will be made clearer later on, these operators, in combination with
path formulas of the form ψ ψ′ (operator is an implication between trace
properties), provide some additional expressiveness with respect to CTL, without
augmenting the expressiveness of the standard CTL operators A and E. As we
will argue in the next section, these operators, used in a combined way, will be
useful to state some fault tolerance properties straightforwardly.

Let us present the syntax of our logic. Let AP be a set {p0, p1, . . .} of atomic
propositions; the sets Φ and Ψ of state and path formulas, respectively, are
mutually recursively defined as follows:

Φ ::= > | pi | ¬Φ | Φ→ Φ | A(Ψ Ψ) | E(Ψ Ψ) | O(Ψ Ψ) | P(Ψ Ψ)
| R(Ψ Ψ ′)

Ψ ::= XΦ | Φ U Φ | ΦW Φ

Other boolean connectives (here, state operators), such as ∧, ∨, etc., can be
defined as usual. Also, traditional temporal operators G and F can be expressed,
as G(φ) ≡ φ W ⊥, and F(φ) ≡ > U φ. The standard boolean operators and the
CTL quantifiers A and E have the usual semantics. Notice however that both
CTL quantifiers and deontic operators apply to formulas involving the operator
 . This operator relates two path formulas, and it represents a conditional. For
instance, O(ψ ψ′) indicates that, for every normal trace σ starting in the
current state, if σ satisfies ψ then it also satisfies ψ′. From a more technical
perspective, which will be made clearer in later sections, the operator enables
us to restrict the way in which path formulas can be combined in the scope of a
state operator (a mechanism also exploited in other logics, particularly CTL2).
This will be essential for extending the expressiveness of CTL while retaining its
model checking complexity.

Let us formally state the semantics of our logic. We start by defining the
relationship �, formalizing the satisfaction of dCTL state formulas in colored
Kripke structures:

– M, s � >.
– M, s � pi ⇔ pi ∈ L(s), where pi ∈ AP .
– M, s � ¬ϕ⇔ not M, s � ϕ.
– M, s � ϕ→ ϕ′ ⇔ (M, s � ¬ϕ) or (M, s � ϕ′).
– M, s � A(ψ ψ′) ⇔ M,σ � ψ implies M,σ � ψ′, for all traces σ such that
σ[0] = s.

– M, s � E(ψ ψ′) ⇔ M,σ � ψ implies M,σ � ψ′, for some traces σ such
that σ[0] = s.

6 Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre

– M, s � O(ψ ψ′)⇔ for every σ ∈ NT such that σ[0] = s we have that for
every i ≥ 0, M,σ[i..] � ψ implies M,σ[i..] � ψ′.

– M, s � P(ψ ψ′)⇔ for some σ ∈ NT such that σ[0] = s we have that for
every i ≥ 0, M,σ[i..] � ψ implies M,σ[i..] � ψ′.

– M, s � R(ψ ψ′) ⇔ for every trace σ such that σ[0] = s we have that for
every i ≥ 0: if s[i] /∈ N , then M,σ[i..] � ψ implies M,σ[i..] � ψ′.

The above satisfaction relation makes use of dCTL satisfaction for path formulas,
whose definition is standard:

– M,σ � Xϕ⇔M,σ[1] � ϕ.
– M,σ � ϕ U ϕ′ ⇔ there exists j ≥ 0 such that M,σ[j] � ϕ′ and for every

0 ≤ k < j, it holds that M,σ[j] � ϕ.
– M,σ � ϕ W ϕ′ ⇔ either there exists j ≥ 0 such that M,σ[j] � ϕ′ and for

every 0 ≤ k < j it holds that M,σ[j] � ϕ, or for every j ≥ 0 we have that
M,σ[j] � ϕ.

As usual, we will denote by M � ϕ the fact that M, s � ϕ holds for every state s
of M , and by � ϕ the fact that M � ϕ, for every colored Kripke structure M . We
will often employ the shorthand O(ψ), meaning O(> ψ) (similarly for other
operators and quantifiers). We also apply path operators to state formulas (we
just used > in O(> ψ) as a path formula). This can be done thanks to the
fact that every state formula ϕ can be expressed as a path formula, by ⊥ U ϕ.

The above introduced deontic operators enjoy some useful properties, some
of which we enumerate below. In the following properties, we use ϕ and ϕ′ for
state formulas and ψ for path formulas:

1. O(⊥) ≡ O(ψ)∧O(¬ψ), where ¬ψ denotes the negation of ψ, obtained using
the dual temporal operators of ψ and pushing the negation inwards.

2. O(>) ≡ >
3. P(⊥) ≡ ⊥
4. R(⊥) ` AGϕ↔ O(ϕ)
5. R(⊥) ` EGϕ↔ P(ϕ)
6. R(>) ≡ >
7. R(⊥)→ P(>)
8. O(ϕ) ∧O(ϕ′)→ O(ϕ ∧ ϕ′)
9. O(ϕ) ∨O(ϕ′)→ O(ϕ ∨ ϕ′)

10. P(ϕ ∧ ϕ′)→ P(ϕ) ∧P(ϕ′)
11. P(ϕ) ∨P(ϕ′)→ P(ϕ ∨ ϕ′)
12. R(ϕ) ∧R(ϕ′)→ R(ϕ ∧ ϕ′)
13. R(ϕ) ∨R(ϕ′)→ R(ϕ ∨ ϕ′)

Let us briefly explain these properties. Property 1 states that expressing that
false is obliged (which is equivalent to saying that there will eventually be a fault)
is the same as having contradicting obligations. Property 2 expresses that saying
that true is obliged is equivalent to true. Similar properties hold for the permis-
sion operator. Property 3 indicates that false cannot be allowed. The deduction
rules state that, in the absence of faults, the deontic operators can be expressed

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 7

start

��
p, q
��

p, qoo //

}}

p
��

t // s // r

``

Fig. 1. A simple colored Kripke structure.

using standard CTL. The properties of the operator R state that true always
holds after a fault, while R(⊥) expresses that there will be no further faults in
the future; this last expression implies P(>), i.e., that there exist some good
executions. Properties 8-13 relate the deontic operators to the standard boolean
connectives. Due to space restrictions, we are unable to include the proofs of
these properties in this paper; most of them can be proved straightforwardly
resorting to the semantics of the involved operators.

In order to illustrate the semantics of the deontic operators, consider the
colored Kripke structure in Figure 1, where the set of involved propositional
variables is {p, q, r, s, t}, and each state is labeled by the set of propositional
variables that hold in it. Also, the states that are the target of dashed arcs are
abnormal states, also dashed, while the remaining ones are normal (i.e., dashed
arcs are used for denoting transitions to faulty states, and the only faulty state
in this model is the one labeled with t). It is obvious then that in every state
of normal paths from the state indicated with start, p holds, which in dCTL is
expressed as O(p). Also, there exist normal executions for which p ∧ q always
holds, expressed in dCTL as P(p ∧ q). On the other hand, the repair operator
enables us to express properties regarding faulty states, and therefore also faulty
executions. For instance, we can express that, immediately after every reachable
fault, t holds, and a state in which r holds can be reached. In dCTL, these
properties can be expressed as R(t) and R(Fr), respectively.

Finally, notice that other deontic operators, especially the prohibition, can
be expressed using the above introduced ones. Prohibition can be characterized
as F(ψ) = ¬P(ψ). Intuitively, a (trace) property is forbidden when it cannot
be true in a normal behavior. In other words, if such a property is continuously
true in a trace, this trace contains some faults.

4 Fault Tolerance Reasoning in dCTL

Now that we have introduced our logic, let us start describing its use for express-
ing properties of systems in which faults might occur. We will illustrate the use
of the logic using a few examples of typical fault tolerance situations.

8 Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre

w0

m0

��
,, w1

m1
ll

��

Fig. 2. A simple model of a memory cell, without faults.

4.1 A Memory Cell

Let us consider a system composed of a simple memory cell, which stores a
bit of information and supports reading and writing operations. Such a simple
system can be characterized as the Kripke structure shown in Figure 2, where
each state maintains the current value of the memory cell (mi, for i = 0, 1) and
the last write operation that was performed (wi, for i = 0, 1). Obviously, in this
system the result of a reading depends on the value stored in the cell. Thus, a
property that one might associate with this model, is that the value read from
the cell coincides with that of the last writing performed in the system. This
property can straightforwardly be expressed using CTL, as follows: AG((m0 →
w0)∧ (m1 → w1)). This can be considered part of the requirements specification
that the implementation described in Fig. 2 is expected to satisfy. Of course, this
system expresses ideal behavior and does not take into account faults of any kind,
making the use of the deontic operators unnecessary. So let us consider some
faults in this scenario. Suppose that, when a bit’s value is 1, it can unexpectedly
lose its charge and turn into a 0. In this case, the above implementation cannot
guarantee the specification is satisfied, since it is obvious that, if after writing
1 in the cell the described fault occurs and a reading is performed, a 0 will be
read instead of the last written value 1.

So, the above model must be altered in order to cope with the possibility of
the described fault occurring. A typical mechanism for dealing with this situation
in fault tolerance is via redundancy. For instance, one might decide to implement
the same system now using three memory bits instead of one. Writing operations
are performed simultaneously in the three bits, whereas reading operations will
return the value that is repeated at least twice in the memory bits (known as
voting), and write it back in all three of them. The resulting system is depicted in
Figure 3. Each state in this model is described by a variable wi which records the
last writing operation performed, together with three bits, described by boolean
variables c0, c1 and c2. The occurrence of a fault, which changes a bit with
value 1 to hold a 0, is represented by a dashed line. Faulty states (indicated by
dashed circles) are those resulting from a fault occurrence. Standard continuous
lines denote normal transitions between states, representing reading or writing
operations.

Notice that the reading operation is defined in a different way, in the presence
of redundancy; the read value is the one that is repeated the most, so reading
a 1 can be logically expressed as r1 = (c0 ∧ c1) ∨ (c0 ∧ c2) ∨ (c1 ∧ c2). That is,
the value read is a 1 if there are at least two “one bits” in the memory cell with
redundancy. With r1 defined, r0 is defined simply as its negation.

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 9

w1

111

��

��
ww ''

OO
77

ggBB
??
__

w1

011

��
''

!!

w1

101

ww ''

��

w1

110

��
ww

		

w1

001

�� "" &&

w1

010

�� �� ��

w1

100

xx || ��
w1

000

FF

<<
// w1

000
OO

FF

// w0

000

SS

��

ZZ

Fig. 3. A model of a memory cell, augmented with redundancy to deal with faults.

Now let us discuss the properties one might expect of this augmented memory
cell model. The original requirements of our model need to be updated to refer to
our new implementation for reading a value (mi is replaced by the above defined
ri): AG((r0 → w0) ∧ (r1 → w1)). Of course, this property does not hold in the
model, if faults occur. Still, this property is useful, since its verification, e.g. via
model checking, would produce counterexamples that help us understand the
situations in which our requirements are violated, in scenarios involving faults.

Besides the previous property, one of the most obvious properties one might
be interested in is that, as long as no faults occur, the specification is guaranteed
to hold. This can be thought of as a verification that the fault tolerance mecha-
nism incorporated into to original system does not affect the satisfaction of the
requirements specification when no faults occur. This first example of a fault
tolerance property can be expressed naturally using obligation, in the following
way:

O((r0 → w0) ∧ (r1 → w1))

Let us start expressing properties of faulty scenarios. The motivation for intro-
ducing fault tolerance mechanisms is to be able to maintain the system behaving
correctly even in the presence of faults. Of course, not every faulty scenario will
maintain correct system behavior, so the general invariant property that we orig-
inally had becomes a conditional invariant, asserting that it will hold as long as
fault occurrence is constrained. For example, for our memory cell with redun-
dancy, we could say that the read value will coincide with the last written value
even in the presence of faults, but as long as, whenever a fault occurs, no further

10 Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre

faults happen before a read or write operation is performed. In dCTL, this is
expressed as follows as follows:

R((not-too-broken U bits-coincide) (ri → wi))

where not-too-broken = P(>) ∨ r1 (at most one fault has occurred since last
read/write), and bits-coincide = (c0 ↔ c1) ∧ (c0 ↔ c2) (capturing that the
three bits coincide, always a consequence of a read or write). Notice that the
subformula to the right of is not restricted to normal behaviors, since it
neither uses obligation nor permission operators. But the subformula to the left
of restricts what must happen when faults occur, as we wanted: whenever
a fault occurs the system must transit nonfaulty transitions, until a read or
write operation is performed. This formula is an example of the use of the repair
operation. It also employs P(>), which expresses that the current state is a
normal one (recall the restriction of colored Kripke structures that says that
normal states must have at least a normal successor).

The pattern R(ψ φ) is a useful one in fault tolerance settings: it expresses
that the state property φ is guaranteed to hold even in the presence of faults,
as long as whenever a fault occurs, the system behaves as ψ indicates. Various
interesting engineering questions arise in relation to this pattern (which we do
not deal with in this paper); for instance, given a state formula φ, one might be
interested in synthesizing the weakest formula ψ such that the previous pattern
formula holds.

Another interesting property that dCTL enables us to express is that, regard-
less of how many consecutive faults occur, if the system is in a faulty state, i.e.,
a fault has just occurred (maybe immediately after another fault), the system
always has the chance to behave in a way that the requirements of the system
are reestablished. This is naturally expressed using permission, as follows:

AG(¬P(>) ∧ EXP(>) EGφ)

Since our model does not have unrecoverable faulty states, the formula ¬P(>)∧
EXP(>) captures the property of a state being faulty (it is very easy to capture
faulty states even in the presence of unrecoverable ones). Notice that the above
“error avoidance” property holds in our model, since write operations always take
us back to a state in which the requirements of the system are reestablished.

4.2 A Token Ring Protocol

Let us now consider another example. Suppose that we have a simple system
composed of three connected nodes, whose activities are regulated via a token
ring protocol. In an original system, the three nodes are connected in a ring
topology, and a token is passed through by the nodes so that the node that
has it in a particular time is the one with access to a particular resource, e.g.,
permission to send information across the network. It is not difficult to think
of a few examples of properties that might be thought of as the requirements

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 11

n0
++

22

n1

vv
n2

YY

((
nt

JJ

ltkk

ni: Node i has the token
lt: Lost token
nt: New token created

Fig. 4. A model of a token ring of nodes, where tokens can be lost.

of the system, such as there is always exactly one node who has the token, and
whenever a node has a token, it eventually passes it to the next one in the ring.

A simple fault that can be conceived in this context is one in which, due to
the unreliability of the medium, the token might be lost when being transmitted
from a node to the next one. If the period that each node has the token is fixed,
then a fault detection mechanism can be easily implemented using a timeout (if a
node have not seen the token for more than the time limit for each node, times the
number of nodes). An abstraction of this situation, including the fault detection
and a recovery approach, is depicted in Figure 4. The states ni correspond to
the token being held by node i; when the token is lost, no node has it, and when
the detection of the missing token is established, a new token is created, and
given to node 0.

The requirements on this system can be straightforwardly specified using
CTL, as follows:

AG((n0 ∧ ¬n1 ∧ ¬n2) ∨ (¬n0 ∧ n1 ∧ ¬n2) ∨ (¬n0 ∧ ¬n1 ∧ n2))
AG(ni → AX(ni⊕1))

where ⊕ is addition modulo three. Notice that, for the sake of simplicity, we
assume that each node has the token for exactly one instant of time (in the next
step, the token has to belong to the next node). If one wants to check that these
properties hold when no faults occur in the system, that can be expressed (and
later on verified) using dCTL, in a similar way as for our previous example, i.e.,
by using obligation:

O((n0 ∧ ¬n1 ∧ ¬n2) ∨ (¬n0 ∧ n1 ∧ ¬n2) ∨ (¬n0 ∧ ¬n1 ∧ n2))
O(ni AX(ni⊕1))

The second of the above original requirements, though guaranteed when no faults
occur, fails in any scenario in which at least a fault occurs. This is a case in
which a desirable property needs to be relaxed, rather than given up, due to
faults: the requirement that the token must be passed to the next node in the
next instant is transformed into the token being passed at some future moment
to the next node. That is, the second of our requirements is relaxed into the
following: AG(ni → AF(ni⊕1)). This is a progress property that holds for the
system, provided it behaves in a strongly fair fashion. Notice that, even though

12 Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre

strong fairness in not expressible in CTL, this constraint is typically incorporated
by various model checkers for the verification of liveness properties, and our
property is a progress one, a particular case of liveness.

Another interesting fault tolerance property is one that expresses that faults
are the only responsible of the token being lost. In other words, if the token is
held by a particular node ni, the token will be passed to the next node, or a
fault will occur. This is expressed in dCTL in the following way:

AG(ni → X(¬P(>) ∨ ni⊕1))

With the two simple case studies presented in this section, we tried to show
examples of common properties of interest in the context of fault tolerant sys-
tems that can be, in our opinion, naturally expressed in dCTL. Other more
general properties of fault tolerant systems, such as the concepts of closure and
convergence, as described in [1], can also be expressed in a direct way. Closure
serves the purpose of expressing that, given a state formula φ characterizing a
required property of a system, ϕ is (inductively) preserved by the system by
non-faulty transitions. In dCTL, this is expressed as O(φ AX(ϕ)). Conver-
gence, on the other hand, allows one to express that, from any state satisfying
certain property φ′ (e.g., indicating that the system might be “‘mildy” broken),
if no further faults occur then the system always comes back to a state satisfying
ϕ (i.e., it eventually recovers from the fault). This can be expressed separated
in two parts. First, we express that from any normal state satisfying ϕ′, if we
move through nonfaulty transitions, we can eventually reach a state in which ϕ
holds: O(ϕ′ AF(ϕ)). Second, we say that whenever a fault occurs, if we move
through states that are normal or satisfy ϕ′, then we can eventually reach a state
in which ϕ holds: R(G(ϕ′ ∨P(>)) Fϕ). Some of the properties we dealt with
in our examples can be thought of as variants of these two concepts.

5 Expressivity and Complexity of dCTL

In this section we show some results regarding the expressiveness and complexity
of our logic dCTL. The complexity results enable us to show not only that the
above properties of fault tolerant systems can be automatically checked, but
also that checking them can be done in polynomial time with respect to the
sizes of the model and the verified formula. We start by showing that dCTL
formulas can be model checked, by providing a characterization of our logic
into the more expressive logic CTL∗. This characterization, which is not difficult
to devise, introduces a fresh propositional letter n in the encoding, to “mark”
normal behaviors. This translation is formalized in the following definition.

Definition 1. The translation τ from dCTL formulas over an alphabet AP, to
CTL∗ formulas over the alphabet AP ∪ {n}, for some symbol n /∈ AP, is defined
as follows:

– τ(>) = >.

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 13

– τ(pi) = pi.
– τ(¬ϕ) = ¬τ(ϕ).
– τ(ϕ→ ϕ′) = τ(ϕ)→ τ(ϕ′).
– τ(A(ψ ψ′)) = A(τ(ψ)→ τ(ψ′))).
– τ(E(ψ ψ′)) = E(τ(ψ)→ τ(ψ′)).
– τ(O(ψ ψ′)) = A(Gn→ G(τ(ψ)→ τ(ψ′)))
– τ(P(ψ ψ′)) = E(Gn ∧ G(τ(ψ)→ τ(ψ′)))
– τ(R(ψ ψ′)) = A(G(¬n→ (τ(ψ)→ τ(ψ′))))
– τ(Xϕ) = X(τ(ϕ)).
– τ(ϕ U ϕ′) = τ(ϕ) U τ(ϕ′).
– τ(ϕW ϕ′) = τ(ϕ)W τ(ϕ′).

The above translation from dCTL to CTL∗ is semantics preserving. The fol-
lowing mapping between Kripke structures and colored Kripke structures enables
us to argue about the semantics preservation.

Definition 2. Let M = 〈S,R,L〉 be a Kripke structure defined over an alphabet
AP ∪ {n}. From M , we define the colored Kripke structure M∗ = 〈S,R,L′,N〉
over the alphabet AP, in the following way:

– L′ is L restricted to AP.
– s ∈ N ⇔M, s � n.

The following theorem shows that our embedding of dCTL in CTL∗ is seman-
tics preserving.

Theorem 1. For every M = 〈S,R,L〉 defined over an alphabet AP ∪ {n}, and
every dCTL formula ϕ over AP, the following holds:

M∗ �dCTL ϕ⇔M �CTL∗ τ(ϕ).

Proof. By induction on the structure of formulas.

It is worth noting that our translation of dCTL deontic operators to CTL∗

involves some CTL∗ formulas which are not expressible in CTL. In particular, the
formula ¬P(p Xp), which is translated to A(F¬n∨F(p∧X¬p)) in CTL∗, is not
expressible in CTL, nor in none of its extensions CTL+, ECTL and ECTL+. This
expressiveness result, which follows from properties given in [9], is summarized
in the following theorem.

Theorem 2. The expressive powers of logics CTL, dCTL, CTL+, ECTL, ECTL+

and CTL∗, are related by the following diagram of inclusions:

dCTL

**
CTL

##

;;

// CTL+ // ECTL+ // CTL∗

ECTL

99 44

14 Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre

Proof. A proof of AF(p ∧ X¬p) not being expressible in ECTL+ can be found
in [9] (cf. Theorem 5 therein). We can use a similar argument to prove that
A(F(¬n)∨F(p∧X¬p)) is not expressible in ECTL+ either. Consider the sequence
of models N1, N2, N3, . . . and M1,M2,M3, . . . used in Theorem 5 of [9], and set n
to true in every state of these models. Since we have that Mi, ai � AF(p∧X¬p),
we also have that Mi, ai � A(F(¬n) ∨ F(p ∧ X¬p)). Since it is also the case
that Ni, ai 2 AF(p ∧ X¬p), for every i, then it must be the case that Ni, ai 2
A(F(¬n) ∨ F(p ∧ X¬p)). Taking into account that these structures cannot be
distinguished by ECTL+ formulas, it is straightforward the fact that ¬P(p→ Xp)
is not expressible in ECTL+. Moreover, this formula is not expressible in any of
the logics CTL, ECTL or CTL+, which are sublogics of ECTL+.

This same theorem can also be extended to prove that some dCTL formulas
are not expressible in other related logics, particularly CTL2. The argument for
the proof is essentially the same used in the above proof.

The model checking problem for CTL, ECTL, CTL+ and CTL2 is in P, while
for ECTL+ and CTL∗ this problem is PSPACE-complete. Our logic is more ex-
pressive than CTL and is able to express formulas not expressible in ECTL+,
so a natural concern is whether the model checking problem for our logic is
PSPACE-complete, which would be an unwanted, but reasonable, price paid for
its expressiveness. As we show below, the model checking problem for dCTL
maintains a polynomial complexity. This, combined with the fact that dCTL
is able to express properties not expressible in other known “efficient” (in the
sense that their model checking is in P) sublogics of CTL∗, make our logic a
novel fragment of CTL∗.

Theorem 3. The model checking problem for dCTL is in P.

Proof. The main idea behind the proof is the adaptation of the algorithm de-
scribed in [2] for CTL model checking, to support also checking deontic formulas.
These additional processes can be done in polynomial time, using reachability
algorithms.

Temporal models are implemented as graphs, so our set N of colored Kripke
structures can be captured simply by adding a boolean variable n, set to true in
exactly those states that belong to N (recall that, according to our restriction
on colored Kripke structures, if n is true in some state s, then n is true in
some successor of s). In order to check M � ϕ, we start by calculating the
sets Sat(ψ) = {s | M, s � ψ}, for every subformula ψ of ϕ, starting from the
subformulas at the bottom in the syntax tree of ϕ. The main technical difficulty
is avoiding the exponential blow up in the translation of formulas of the form
A(ψ φ) and E(ψ φ), etc. This blow up is avoided since these quantifiers
always apply to a boolean combination of at most two path formulas. These
formulas can then be checked using the process for the equivalent formulas in
CTL.

It remains to show how to check formulas of the form O(ψ ψ′) and P(ψ
ψ′). For the sake of simplicity, and without loss of generality, we can restrict
the analysis to deontic operators applied to a single path formula (it is known

dCTL: A Branch. Time Temp. Logic for Fault Tolerant Syst. Verification 15

that implications of path formulas in the scope of a path quantifier can be
translated to a state formula of a fixed length). Consider the formula O(ψ),
which is equivalent to A(Gn → G(ψ)). In order to build the set Sat(O(ψ)), we
can restrict the building process to states where n is true, and calculate that
this set of states satisfies A(ψ). This can simply be checked using the model
checking algorithm for CTL. Now consider P(ψ). This formula is equivalent to
the CTL∗ formula E(Gn ∧ Gψ). In order to build the set Sat(P(ψ)), we check
that there exists some path of states satisfying n where Gψ is true; this is done
by checking Eψ for the nodes satisfying n (this can be done in polynomial time,
inductively). Then, s ∈ Sat(P(ψ)) if there is some successor of these states which
satisfies both n and Eψ. Finally, checking R(ψ) demands a similar technique.
In summary, these processes can be performed using a depth-first search, and
the algorithms for checking CTL formulas. Our extra checking processes are
polynomial, therefore the final model checking algorithm is also polynomial with
respect to the size of the model and the length of the formula.

6 Conclusions and Future Work

We have proposed a computation tree logic especially tailored for describing
temporal properties of fault tolerant systems, and employing temporal deon-
tic operators for this purpose. The deontic operators, which help in making a
distinction between normal and abnormal states and behaviors, provide an ex-
pressiveness that is sufficiently rich for describing various properties of interest in
the context of fault tolerance. We showed that some formulas expressible in our
logic cannot be expressed in other known fragments of CTL∗, including ECTL+

and its sub-logics. However, and as opposed to the case for ECTL∗ and CTL∗,
for which the model checking problem is PSPACE-complete, model checking our
logic dCTL is in P.

These results, together with our arguments regarding the usefulness of the
logic for fault tolerance system specification, make it an interesting fragment
of CTL∗. In order to argue about its usefulness, we have developed two small
case studies of fault tolerance situations, which despite their simplicity enabled
us to illustrate the expressivity of the logic. Expressing temporal properties
regarding fault tolerance could alternatively be achieved by a more “low level”
approach, e.g., directly referring to faulty states via some atomic state formula
capturing exactly such states. We believe that our deontic operators provide an
indirect, higher level, way of referring to faults in the expression of fault tolerance
properties, capturing some patterns useful in this context. Moreover, properties
of deontic operators allow one to reason about formal descriptions at a higher
level of abstraction.

We are currently exploring various lines of future work. We are developing
more complex examples, and we are experimenting with the use of a µ-calculus
model checker, Mucke, used as a target to express dCTL formulas. We are also
analyzing alternative deontic operators that would provide an expressive power
equivalent to that of our current version of the logic, but featuring a more intu-

16 Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre

itive reading. Also, we have not been concerned so far about providing an actual
formalism in which the system, the associated faults and the fault tolerance
mechanisms are described, in a methodologically sound way. We plan to develop
such a setting, incorporating our logic in it.

Acknowledgements

The authors would like to thank Pedro D’Argenio and the anonymous referees
for their valuable comments. This work was partially supported by the Argen-
tinian Agency for Scientific and Technological Promotion (ANPCyT), through
grant PICT PAE 2007 No. 2772. The fourth author’s participation was also
supported through ANPCyT grant PICT 2006 No. 2484.

References

1. A. Arora and M. Gouda, Closure and Convergence: A Foundation of Fault-Tolerant
Computing, IEEE Transactions on Software Engineering 19(11), IEEE Press, 1999.

2. C. Baier and J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.
3. P. Castro and T. Maibaum, Deontic Action Logic, Atomic Boolean Algebras and

Fault-Tolerance, Journal of Applied Logic 7(4), Elsevier, 2009.
4. E. Clarke and I. Draghicescu, Expressibility Results for Linear Time and Branching

Time Logic, in Proc. of REX Workshop on Linear Time, Branch. Time and Partial
Order in Logics and Models for Concurrency, LNCS 354, Springer 1988.

5. E. Clarke, E. Emerson and A. Sistla, Automatic Verification of Finite-State Con-
current Systems using Temporal Logic Specifications, ACM Transactions on Pro-
gramming Languages and Systems 8(2), ACM Press, 1986.

6. E. Clarke, O. Grumberg and D. Peled, Model Checking, The MIT Press, 1999.
7. J. Coenen, Specifying Fault Tolerant Programs in Deontic Logic, Computing Sci-

ence Notes 91/34, Dept. of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands, 1991.

8. N. D’Ippolito, V. Braberman, N. Piterman and S. Uchitel, Synthesis of Live Be-
haviour Models for Fallible Domains, in Proc. of International Conference on Soft-
ware Engineering ICSE 2011, IEEE Press, 2011.

9. E. Emerson and J. Halpern, “Sometimes” and “Not Never” revisited: on branching
versus linear time temporal logic, J. ACM 33(1), 1986.

10. T. French, J. McCabe-Dansted and M. Reynolds, A Temporal Logic of Robust-
ness, in Proc. of International Symposium on the Frontiers of Combining Systems
FroCoS 2007, LNCS 4720, Springer, 2007.

11. E. Gnesi, G. Lenzini and F. Martinelli, Logical Specification and Analysis of Fault
Tolerant Systems through Partial Model Checking, Electronic Notes on Theoretical
Computer Science 118, Elsevier, 2005.

12. T. Janowski, On Bisimulation, Fault-Monotonicity and Provable Fault-Tolerance,
in Proc. of International Conference on Algebraic Methodology and Software Tech-
nology AMAST 1997, LNCS 1349, Springer, 1997.

13. J. Magee and T. Maibaum, Towards Specification, Modelling and Analysis of Fault
Tolerance in Self Managed Systems, in Proc. of International Workshop on Self-
Adaptation and Self-Managing Systems SEAMS 2006, ACM Press, 2006.

14. J. McCabe-Dansted, T. French, M. Reynolds and S. Pinchinat, On the Expressivity
of RoCTL*, in Proc. of the 16th International Symposium on Temporal Represen-
tation and Reasoning TIME 2009, IEEE Computer Society, 2009.

