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Abstract

Various tools for program analysis, including run-time assertion checkers and
static analyzers such as verification and test generation tools, require formal
specifications of the programs being analyzed. Moreover, many of these tools
and techniques require such specifications to be written in a particular style,
or follow certain patterns, in order to obtain an acceptable performance from
the corresponding analyses. Thus, having a formal specification sometimes is
not enough for using a particular technique, since such specification may not
be provided in the right formalism. In this paper, we deal with this problem
in the increasingly common case of having an operational specification, while
for analysis reasons requiring a declarative specification. We propose an evolu-
tionary approach to translate an operational specification written in a sequen-
tial programming language, into a declarative specification, in relational logic.
We perform experiments on a benchmark of data structure implementations,
for which operational invariants are available, and show that our evolutionary
computation based approach to translating specifications achieves very good
precision in this context, and produces declarative specifications that are more
amenable to analyses that demand specifications in this style. This is assessed
in two contexts: bounded verification of data structure invariant preservation,
and instance enumeration using symbolic execution aided by tight bounds.

1. Introduction

Many software validation and verification activities require a description of
the software under analysis, since many analyses typically consist in checking
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compliance of the software against some prescribed intended behavior [18]. For-
mal specifications have gained an important relevance in such contexts, mainly
due to their unambiguous interpretation and the increasing availability of tech-
nologies for their automated analysis, which are making them part of effective
software analysis approaches. Indeed, automated analysis techniques that re-
quire some sort of formal specification have proved to be useful mechanisms to
aid in many software development activities, including challenging tasks that
are usually performed manually, such as fault localization [25, 46], test gener-
ation [4, 38, 6], bug finding [23, 33], program verification [2, 21] and program
repair [20, 40].

While all of the above-mentioned automated analysis techniques employ for-
mal specifications, the specific notation and style, or specification paradigm
involved, often differ accross techniques. In particular for the context of pro-
gram specification, two major specification styles can be identified, the opera-
tional and the declarative. In the operational style, specifications are captured
through code, e.g., via a routine that checks whether the internal representation
of a given object is consistent [32]. Examples of techniques using an operational
style are those reported in [4, 45]. On the other hand, the declarative style
often uses a logical formalism for expressing the same kind of property. Some
examples are the use of first-order logic complemented with closure operators,
as put forward by notations such as JML [5] and Alloy’s relational logic [22],
and first-order logic with spatial operators, as in separation logic [2].

With the proliferation of notations and, more importantly, with the adop-
tion of different specification styles by different tools, there is an emergence of
techniques that profit from formal specifications only when these are expressed
in particular notations or styles. For instance, the test generation tool Korat
[4] requires a specification to be provided operationally (as a repOK routine) to
automatically produce test inputs. It implements an effective and very efficient
“perfect” symmetry-breaking mechanism, preventing the tool from generating
isomorphic structures and contributing to its overall performance, that is par-
ticularly tied to the operational specification. This makes it very difficult and
ineffective to use the technique to generate tests for, say, an object-oriented pro-
gram equipped with a JML contract, or to profit from the symmetry-breaking
technique in other contexts where non-operational specifications are available.
On the other hand, tools for verification based on declarative notations, e.g.,
TACO [15], can exploit mechanisms such as tight bounds [14], whose computa-
tion are also strongly tied to declarative notations, and cannot straightforwardly
nor effectively be computed from operational specifications. This situation is
combined with the increasing need for cross-usage of automated analysis tools.
A sample scenario arises with current techniques for fault localization and pro-
gram repair, that require tests for their application; combining such tools with
automated test generation is an obvious approach that integrates automated
analysis technologies (see, e.g., [1]).

The need to take advantage of analysis techniques (and indirectly to profit
from the optimizations inherent to their corresponding contexts) that are avail-
able in one style of specification to another, or combine techniques that apply
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to different specification styles, calls for mechanisms to allow us to translate
specifications from one style to another. Moreover, it is often the case that
even when semantics-preserving translations are available to translate between
different formalisms, the existence of such translations is still unsatisfactory. In-
deed, such translations are generally guided by the syntax and semantics of the
related formalisms, but do not take into account automated analysis. That is,
these translations can produce translated specifications that, although “correct”
in the sense that they preserve the semantics of the original specifications, are
ineffective for the analysis mechanisms of the target notations, due to the viola-
tion of (many times implicit) patterns for optimal exploitation of analysis. For
instance, Korat requires repOK methods to “fail as soon as possible”, in the sense
that these methods should try to decide when a structure does not satisfy the
predicate visiting the least possible elements of the structure, for test generation
to be effective. Similarly, the efficiency of tools like Alloy are in many cases very
dependent on how specifications are written; analyzing specifications with large
numbers of (existential) quantification often fails during preprocessing (e.g., in
translation to CNF to use SAT-based verification), while expressing equivalent
specifications through simple transformations (e.g., skolemizations) can have a
drastic impact in analysis efficiency. Appropriate translations should take these
issues into account, which clearly are beyond the syntax and semantics of the
involved languages.

In this paper, we present an evolutionary approach to solve a particular in-
stance of the above-described translation problem, namely the translation from
an operational specification of a representation invariant, written in an imper-
ative sequential programming language, to a declarative invariant specification,
in relational logic. In our context, the given operational specification is simply
a routine that verifies whether a given object satisfies some properties or not,
as used in [32, 4, 38] (where Java methods that check the internal consistent
representation of Java objects are employed). The produced declarative spec-
ification, that should express the same properties as the operational one, is a
logical formula written in Alloy’s relational logic [22], a first-order logic com-
plemented with closure operators, used, e.g., in [28, 26, 8, 20]. Our translation
approach is based on the use of a genetic algorithm [19] to look for a specification
of an invariant in relational logic matching a given operational specification, in
the sense that it accepts the same structures. Individuals in the genetic algo-
rithm represent candidate declarative specifications. The original operational
specification is used to define the fitness of individuals, essentially by counting
the number of (bounded) structures that do not satisfy the candidate invariant
but should satisfy it (according to the operational invariant), and those that do
satisfy the candidate invariant but should not satisfy it (again, according to the
operational invariant). Fitness also incorporates some additional criteria that
allow the genetic algorithm to produce more compact translated specifications.

We assess our approach in various directions. Firstly, we evaluate our al-
gorithm’s effectiveness and efficiency on a benchmark of data structure imple-
mentations, translating their corresponding operational representation invari-
ants. As our experiments show, our genetic algorithm is able to find with
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precision equivalent declarative invariants in a relatively small number of gen-
erations. We also analyze the precision of the obtained invariants, comparing
them with invariants automatically inferred using two related tools, Daikon [12]
and Deryaft [34]. Secondly, we analyze the impact of standard parameters of
genetic algorithms, like population size and mutation rate, in the performance
of our technique. Finally, we assess the use of our learned invariants in prac-
tical contexts: we show that verifying invariant preservation using our learned
specifications outperforms invariant preservation verification with specifications
obtained using an existing semantics-preserving translation, for the mentioned
data structure implementations; and we show that instance enumeration (test
input generation) using symbolic execution is improved when aided by tight
bounds, where the latter are computed using our learned declarative specifica-
tions.

This paper is a journal extension of [36]. The additional contributions, with
respect to the original conference submission, are the following: (i) an improved
genetic algorithm, in particular in relation to how the fitness of candidate specifi-
cations is measured, (ii) additional data structures considered for the evaluation
of efficiency, effectiveness and precision of our technique to translate operational
specifications into declarative ones, (iii) an experimental evaluation of the im-
pact of various parameters of the genetic algorithm, including our approach to
producing the initial population, the population size, and the mutation rate,
and (iv) an evaluation of the impact of our learned declarative specifications in
aiding symbolic execution through tight bounds (whose computation requires
declarative logical specifications). We have also provided further details on the
mechanisms behind our genetic algorithm, including further precisions on how
mutation and crossover are implemented.

The remainder of the paper is organized as follows. In Section 2, we mo-
tivate our approach by presenting an illustrating example, that in particular
shows the need to translate across different specification styles. In Section 3 we
present our evolutionary algorithm for learning declarative specifications from
operational ones, including detailed descriptions of how candidate specifications
are captured as chromosomes, and how these are evaluated during the genetic
algorithm’s search. In Section 4 we experimentally evaluate our approach’s ef-
fectiveness and efficiency, on a benchmark composed of various data structure
implementations. This section also contains an evaluation of the impact of pa-
rameters of the genetic algorithm in its performance, and the profit that the
learned specifications provide in some practical analysis contexts. Section 5
compares our technique with related work, and finally, in Section 6, we present
our conclusions and lines for further work.

2. A Motivating Example

In order to motivate our approach, let us consider an analysis scenario involv-
ing a simple data structure, singly linked lists. This data structure is captured
through classes SinglyLinkedList and Node, as defined in Figure 1. Assume,
for instance, that we would need to verify that a routine manipulating such
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public class SinglyLinkedList {
private Node header;
private int size;
...

}

public class Node {
private int element;
private Node next;
...
//setters and getters
//of the above fields
...

}

Figure 1: Java classes defining singly linked lists.

public boolean repOK() {
if (header == null) return size == 0;
Set<Node> visited = new java.util.HashSet<Node>();
visited.add(header);
Node current = header;
while (true) {

Node next = current.getNext();
if (next == null) break;
if (!visited.add(next)) return false;
current = next;

}
if (visited.size() != size) return false;
return true;

}

Figure 2: Operational version of the representation invariant for singly linked lists.

data structure, e.g., an insertion routine, preserves the representation invariant
of lists, i.e., inserting an element in a valid list retrieves also a valid list. In
order to proceed with this verification, we then need a specification of what it
means for singly linked lists to be valid. A particular specification, with a style
put forward in [32], consists in capturing the representation invariant of the
structure (i.e., the intended validity condition for singly linked lists) through
a boolean routine, that checks whether the condition holds or not for a given
structure. An example of such a method, named repOK() as usual, indicating
that singly linked lists must be acyclic and their number of nodes must coincide
with the value in the size field, is shown in Figure 2.

A substantially different approach to the operational style of using code to
write specifications, is based on the use of some suitable logical formalism, for
the same task. This alternative approach has been extensively used, from the
seminal works of Hoare and Floyd, where first-order logic is used to express
assertions regarding program states, to more modern languages such as JML
[5] and Alloy [22], which due to further expressive power needs, have extended
first-order logic with closure or reachability predicates. In particular, notice
that first-order logic is not sufficiently expressive to capture the acyclicity on
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one sig Null { }

sig List { }

sig Node { }

pred repOK[thiz: List, header: List-> one Node+Null,
next: Node -> one Node+Null, size: List -> one Int] {

(all n: thiz.header.*next | n !in n.ˆnext) and
(# (thiz.header.*next - Null) = thiz.size)

}

Figure 3: Declarative version of the representation invariant for singly linked lists, in Alloy’s
relational logic.

singly linked lists, in our example. A declarative predicate, expressed in Alloy’s
relational logic, and capturing exactly the same property as method repOK()
in Figure 2, is shown in Figure 3. A brief description of the Alloy notation is
given in order to better understand this specification. Signatures declare sets
of atoms (i.e., data domains), with different signatures describing disjoint sets.
The one modifier for Null indicates this domain is a singleton; it is a standard
way of declaring constants in Alloy. Predicates are “parameterized” formulas,
i.e., formulas with free variables. Variables need to be typed, but types are
not limited to domains (signatures), they can also be relations. For instance,
repOK predicates over a list (thiz, since this is a reserved word in Alloy), a
function header mapping list atoms to either a node or null, and a function
next mapping nodes to either a node or null. The intution here is that header,
next and size are the relations that capture how lists relate to their head nodes,
nodes are related to their “next” nodes, and lists are related to their sizes, in the
heap. The body of the predicate is composed of a quantified formula (all is the
universal quantifier), and can be understood directly, considering that operators
* and ˆ denote reflexive-transitive and transitive closures, respectively, # denotes
cardinality, and propositional connectives are denoted by and (conjunction), or
(disjunction), ! (negation) and implies (implication); operator !in denotes
nonmembership. The body of the formula states then that no node reachable
from the header of the list can reach itself through next, and that the size of
the list coincides with the number of nun-null nodes reachable from the header
of the list (including the header). For further details regarding Alloy, we refer
the reader to [22].

To illustrate the need for effective translations across different specification
styles, suppose that we only count with the operational invariant, specified
through method repOK() in Java. While this specification is suitable for gener-
ating test inputs using Korat [4] (in fact, this particular example is taken from
Korat’s set of case studies [30]), if we want to perform bounded verification us-
ing a tool like TACO [14, 15], then this specification becomes unsuitable, since
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TACO expects a logical specification. However, it is possible to translate an
operational specification into an equivalent declarative specification (equivalent
in bounded contexts), e.g., using the translations embedded in tools like TACO
[14, 15] and CBMC [31]. The logical specification resulting from the translation
of the repOK() method shown in Figure 2 is shown in Figure 4. This specifica-
tion1, while correct with respect to the semantics of the original (again, for a
particular bounded scope), is unsuitable for verification. For instance, verifying
that method insert preserves the representation invariant for lists of size at
most 12 takes 3839 seconds when using the invariant in Figure 2, whereas it
takes 1648 seconds when using the invariant in Figure 3. As we will show later
on in this paper, such a difference in efficiency becomes more notorious in more
complex data structure invariants (see Section 4).

The above described problem is the motivation for our approach. As we
explain in the following section, we have developed an evolutionary algorithm
to translate from operational specifications into declarative ones, with the aim of
obtaining better suited specifications, from the point of view of analysis. More
precisely, our aim is to obtain, from operational specifications such as that in
Figure 2, declarative specifications closer to that in Figure 3 (as opposed to that
in Figure 4), that would allow us to perform certain automated analyses more
efficiently.

3. An Evolutionary Algorithm for Learning Declarative Specifica-
tions

As we mentioned in previous sections, our objective is to compute a declar-
ative specification Φ in relational logic, from an operational specification Φop,
written in a sequential programming language. To do so, we design a genetic
algorithm, that we describe below. Genetic algorithms [19] are non-exhaustive
guided search algorithms, based on a hill climbing strategy [44]. The search
space is composed of a generally very large set of individuals, that encode can-
didate solutions. The search objective is to find an individual with sought-for
features, which should represent a solution to the problem. As opposed to classic
search algorithms, genetic algorithms progress by maintaining a population, a
set of candidate solutions, which is evolved, generating new individuals through
recombination and mutation operators, and then selecting a number of indi-
viduals in the population that will be passed to the next generation. Genetic
operators enable the algorithm to explore the search space, with selection re-
ducing the search by prioritizing individuals of higher quality. The quality of an
individual is measured by a fitness function, a heuristic function used to guide

1Basically, this specification corresponds to the pre-post relation of program repOK, for a
maximum number of 3 iterations. Predicate parameters are the pre and post state variables
(underscript zero is for pre states, while underscript one is for post states, with result being
the variable representing the program output), and the predicate body includes a number of
existentially quantified variables representing intermediate values for variables (we omitted
the existential quantification for the sake of brevity).
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pred repOK[thiz_0: List, header_0: List ->one (Node + Null),
size_0: List ->one Int, next_0: Node ->one (Node + Null),
result_0, result_1: boolean] {

nodesToVisit_1 = thiz_0.size_0 and
current_1 = thiz_0.header_0 and ((lt[thiz_0.size_0, 0] and
result_1 = false and current_1 = current_4 and
nodesToVisit_1 = nodesToVisit_4 ) or (not lt[thiz_0.size_0,0]
and ((current_1 = current_4 and
nodesToVisit_1 = nodesToVisit_4 ) or
(gt[nodesToVisit_1, 0] and current_1 != Null and
nodesToVisit_2 = sub[nodesToVisit_1, 1] and
current_2 = current_1.next_0 and ((current_2 = current_4 and
nodesToVisit_2 = nodesToVisit_4 ) or (gt[nodesToVisit_2, 0]
and current_2 != Null and nodesToVisit_3 = sub[nodesToVisit_2,1] and
current_3 = current_2.next_0 and ((current_3 = current_4 and
nodesToVisit_3 = nodesToVisit_4 ) or (gt[nodesToVisit_3, 0]
and current_3 != Null and nodesToVisit_4 = sub[nodesToVisit_3, 1] and
current_4 = current_3.next_0)))))) and not (gt[nodesToVisit_4, 0] and
current_4 != Null) and ((eq[nodesToVisit_4, 0] and
current_4 = Null and result_1 = true) or
(not (eq[nodesToVisit_4, 0] and
current_4 = Null) and result_1 = false))))
}

Figure 4: Declarative representation invariant for singly linked lists, obtained using a
semantics-preserving translation from repOK in Figure 2.

the search. This function applies to individuals, and its result is generalizable
to a population (e.g., the fitness of a population may be taken as the fitness of
its “fittest” individual). This function captures the features sought for in the
search, and thus can be used as a halting criterion (e.g., the algorithm may
stop after finding an individual with fitness above a certain threshold). Finally,
individuals are often called chromosomes, and represented as vectors of genes
that capture their characteristics. This idea is strongly related to how new in-
dividuals are constructed: by representing candidates as vectors of independent
characteristics, one can build new candidates by combining part of the char-
acteristics of an individual with part of the characteristics of another, or by
randomly changing a characteristic of a given individual. These two operations
are called crossover and mutation, respectively, and are the traditional mech-
anism to build new candidates out of existing ones in genetic algorithms. For
further details, we refer the reader to [35].

3.1. Genes and Chromosomes to Represent Candidate Specifications
In order to capture candidate specifications, we start by taking the struc-

ture’s signature, i.e., its type description, and building a type graph. A type
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List+Null

thiz

int Node+Null

size header

element

next

Figure 5: Type graph for singly linked lists.

graph for a structure is automatically built from its fields and their types; nodes
represent types, while arcs capture fields. As an example, consider the type
graph for linked lists, as defined in Figure 1, shown in Figure 5.

Type graphs are used to form expressions, that will constitute the candidate
specifications. Expressions are built out of paths in the graph. To make expres-
sions finite, recursive fields are traversed at most once, and further “iteration”
is represented through closure operators. For instance, from the type graph in
Figure 5, the following expressions are computed:

thiz
thiz.size
thiz.header
thiz.header.next
thiz.header.element
thiz.header.next.element
thiz.header.*next
thiz.header.*next.element

Moreover, in type graphs with multiple arcs connecting the same source and
target nodes, their “union” is also considered for building expressions. Thus, for
instance, for binary trees, there will be expressions of the form thiz.root.left,
thiz.root.right, as well as thiz.root.(left+right).

These expressions are complemented with constants, e.g., Null, 0, none
(empty set), to build expressions (integer expressions are also generated by
applying the cardinality operator to non-singleton expressions). Also, the ex-
pressions cardinalities are taken into account (notice that the first 6 expressions
above denote singletons, whereas the last two denote sets of any cardinality).
Genes, the basic (independent) units that characterize chromosomes (in our
case, representing candidate specifications) can be:

• boolean constant true,

• an atomic formula built from the expressions originating in the type graph
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(including considered constants), respecting relational logic’s grammar
and taking into account types and cardinalities (e.g., thiz.header !=
Null, thiz.header.*next = none, etc),

• a quantified formula, involving a (bound) variable x, and two expressions,
one for x’s scope, the other for “predicating” in relation to x (e.g., all n:
thiz.header.*next.element | n != 0, the two expressions here being
thiz.header.*next.element and 0); the first of these expressions is con-
strained to be a “set” expression, not a singleton.

Notice that, according to Alloy’s grammar, the second item above includes, for
every atomic formula α, its negation ¬α. This is due to the fact that “boolean”
operators in Alloy include their negated counterparts (e.g., = and !=, in and
!in) [22].

A chromosome c is simply a vector of the previously described genes, and
the specification represented by c is the conjunction of its genes:

c =
[
g0 g1 g2 . . . gn−1

]
⇒ spec(c) = g0 ∧ g1 ∧ g2 ∧ ... ∧ gn−1

As opposed to what is common in genetic algorithms, our chromosomes have
varying lengths, and genes’ positions are disregarded. That is, if a gene belongs
to a chromosome, it is part of the corresponding conjunction, independently of
whether it is at the beginning of the conjunction, or in any other position; this
is of course due to the well known associativity and commutativity properties
of conjunction.

3.2. Initial Population
The creation of the initial population consists of two steps. As a first step,

we use the provided operational specification Φop to generate a set of instances
that satisfy the specification (the positive instances), and a set of instances
that do not satisfy the specification (the negative instances). These can be
generated using any automated test input generation approach (requiring an
operational specification). These are just samples of a few valid and invalid
inputs, that will be used as part of the next step. They can be generated using,
e.g., Korat, and collecting the first few valid instances generated, and invalid
ones explored in the process. In our case, as we describe in the validation
section, we translate the operational repOK into a relational logic predicate
for a very small scope, using the semantics-preserving translation for bounded
programs, and employ SAT solving to produce 2 valid and 2 invalid instances,
i.e., 2 instances satisfying the obtained predicate, and 2 not satisfying it. As
a second step, we take the set of expressions computed from the type graph
(described in the previous section) and the instances collected in the first step,
to create the initial chromosomes. The process works, for each expression expr
and positive (resp. negative) instance o, as follows:
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• If expr denotes a singleton, and evaluating it in the positive (resp. nega-
tive) instance o results in value v, we create a size 1 chromosome containing
the gene expr = v (resp. expr != v). For instance, if the expression is
thiz.header, and the header in the positive (resp. negative) instance o
is N0, we generate a single gene chromosome for expression thiz.header
= N0 (resp. thiz.header != N0).

• If the expression expr denotes a set of any cardinality, of a non-basic
type, then a size 1 chromosome with the expression all n: expr | n !=
null is generated. Moreover, for every field f such that expr.f is a legal
expression, a size 1 chromosome with the expression all n: expr | n
!= n.f is generated. For instance, from the expression thiz.header.*next,
we generate chromosomes with the expressions all n: thiz.header.*next
| n != null, and all n: thiz.header.*next | n != n.next.

• If the expression expr denotes a numeric value, then for every expres-
sion expr’ denoting a set, we create a size 1 chromosome containing
the formula expr = #(expr’). For instance, from our motivating ex-
ample we will generate a chromosome containing the formula thiz.size
= #(thiz.header.*next).

Notice that only the first of the above items involves the initial (positive and
negative) instances. The other two items only depend on the expressions gen-
erated from the type graph.

All our initial chromosomes are size 1 chromosomes. These will serve as the
basic units from which to generate more complex candidate specifications, as
our genetic operators, defined below, show.

3.3. Genetic Operators
As mentioned previously, genetic operators are used to explore the search

space by generating new individuals from a population. One way to do this is
by combining parts of existing chromosomes through the crossover operator.
We use one-point crossover to build new chromosomes, by randomly selecting a
point to “split” two chromosomes, and combining the initial (resp., final) part of
one of them with the final (resp., initial) part of the other. If both chromosomes
have size 1, then their crossover is the union of their genes.

The other mechanism to generate new individuals in a genetic algorithm is
by randomly changing characteristics of existing individuals, a process called
mutation. Our genetic algorithm supports the following rich set of mutations:

• Gene deletion: it is the simplest mutation, and it can be applied to any
gene. It changes the gene to true, and is equivalent to removing the gene
from the chromosome.

ci =
[
g0 g1 g2

]
c′i =

[
g0 true g2

]

11



• Operator replacement: this mutation replaces an operator by another.
Relational equality and relational containment are replaced by their negated
counterparts, and vice versa. Integer comparison operators such as =, !=,
<, >, <= or >=, are replaced by other operators in this set. Quantified
formulas are also mutated by changing the quantifier, e.g., all is replaced
by some, and vice versa.

ci =
[
g0 thiz.size = 2 g2

]
c′i =

[
g0 thiz.size != 2 g2

]
• Expression extension: it uses the type graph and the join operator to

extend a navigational expression with a new field.

ci =
[
g0 all n : ...| n != n.left g2

]
c′i =

[
g0 all n : ...| n != n.left.right g2

]
• Value insertion: it replaces a sub-expression of the gene with a constant

of the corresponding type.

ci =
[
g0 all n: ...| n != n.next g2

]
c′i =

[
g0 all n: ...| n != N0 g2

]
• Integer addition/substraction: it applies to genes that involve inte-

gers. It simply adds or substracts a constant k to an integer expression.

ci =
[
g0 thiz.size = # (thiz.header.*next) g2

]
c′i =

[
g0 thiz.size = # (thiz.header.*next) - k g2

]
• Closure insertion/deletion: it inserts or removes closure operators

from expressions, taking into account the expressions types and arities.

ci =
[
g0 thiz.header.next g2

]
c′i =

[
g0 thiz.header.*next g2

]
As usual in genetic algorithms, these mutations are applied to randomly

picked genes of chromosomes in the current population.

3.4. Fitness of Candidate Specifications
Our fitness function applies to chromosomes representing candidate specifi-

cations, and is meant to assess how close are the corresponding candidates to
the desired specification. Of course, we do not have the desired specification (it
is what we are trying to build), so a direct comparison is impossible. However,
we do have the operational specification Φop, so we can (indirectly) compare
candidate specifications against this one.
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In order to compute the fitness f(c), we employ both Φop and the candidate
solution c, whose fitness we want to assess. We take advantage of a semantics-
preserving translation that given a scope (a bound in the number of iterations
or nested recursive calls performed by Φop), can translate Φop into an equiva-
lent, for the given scope, declarative specification Φ′op in relational logic. We
use a very small scope for the translation, since as we mentioned (and as we
show in the evaluation section), the obtained specifications very quickly become
impractical for analysis. We then first check for the satisfiability of formula:

Φ′op ∧ ¬Φc

for the same scope used for the translation of Φop. Recall that Φ′op results from
the translation of Φop into relational logic, for a very small scope (we use 3 in
our experiments). Φc represents the specification corresponding to candidate c
(the conjunction of its genes). If the above formula is satisfiable, it means that
there exist cases, within the small scope considered, that should be accepted by
c, but are not. In such a case, we assign a fitness value 0 to c, i.e., f(c) = 0. If
instead the above formula is unsatisfiable, we consider formula:

¬Φ′op ∧ Φc

and we enumerate the instances that, for the considered scope, satisfy this
formula. Here, any enumeration procedure would fit the purpose (although dif-
ferent approaches may significantly vary in performance). We use a SAT-based
approach that performs a field-exhaustive enumeration [41]. Intuitively, this
enumeration skips structures that cover the same values for fields as previously
generated structures, and produces more variability with fewer inputs (cf. [41]).
We define f(c) as follows:

f(c) = (MAX− neg(c)) +
(

1
len(c) + 1

)
where MAX is a constant larger than any possible number of negative cases (can
be calculated as all possible assignments to fields, within the given scope); neg(c)
is the number of cases that satisfy Φc and do not satisfy Φ′op (the result of the
above enumeration); and len(c) is the length of c, i.e., its number of non-trivial
genes (genes that are not the constant true).

The rationale for this definition of the fitness function has to do with the fact
that we attempt to over approximate (in the sense that the useful candidates
are weaker than the specification we are searching for) the sought-for specifica-
tion. This motivates also how we capture candidate specifications. Thus, when
a positive case is not accepted by a candidate, we will simply consider it unfit.
Fitness for other candidates has two parts. First, the fewer the “counterexam-
ples”, the better; second, the smaller the specification, the better. This last part
can be thought of as a penalty related to formula length, that will make the
genetic algorithm tend towards producing smaller formulas. Of course, this is
a secondary issue, and this is why it contributes a fraction to the fitness value,
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as opposed to the actual driving acceptance criterion, namely, the number of
counterexamples approaching to zero.

It is worth mentioning that, despite the fact that we use a semantics-preserving
translation to take, for a very small scope, the operational specification Φop into
the declarative context, this is not actually a requirement of our approach. We
may, as we did for a preliminary version of our technique [36], use the oper-
ational specification Φop to produce a set of positive and negative examples,
i.e., instances that satisfy and do not satisfy Φop, respectively, and use these to
evaluate the fitness of a candidate c; this approach simply evaluates how many
of the positive and negative instances satisfy the specification Φc, and defines
the fitness of c as described above. To generate the instances, any test input
generation mechanism that requires an operational specification, e.g. [4, 49],
could be used.

3.5. Selection
The selection operation determines which individuals are to be kept in the

next generation. Our selection operation focuses in two aspects. Firstly, it
maintains a predefined amount of the fittest individuals. To do that, the in-
dividuals are sorted by decreasing order according to their fitness values, and
then the top individuals are selected. Secondly, the selection also keeps all the
individuals of size 1 that represent valid properties, i.e., those whose fitness is
greater than zero (accept all the instances that satisfy Φop). This last selection
policy allows the algorithm to maintain all the discovered valid properties, that
may be part of the best individuals approximating the sought-for specification.

3.6. Overall Structure of the Genetic Algorithm for Learning Specifications
The previously described elements are the constituting parts of our genetic

algorithm. These are put together following the general structure of a genetic al-
gorithm, namely: producing the initial population, and then iteratively selecting
individuals to expand the population generating the offspring (using crossover
and mutation), and discard some individuals to control population size (using
the selection mechanism), until a maximum number of generations is reached,
or a suitable individual is produced. The initial population is generated by pro-
ducing size 1 chromosomes, covering combinations of the previously described
expressions. Both the initial population and the succeeding ones are limited in
size to 100 individuals.

As described above, the selection of chromosomes for crossover is based on
a “fittest-first” policy. We select the fittest 10% and randomly pick pairs from
these for crossover. For mutation, high-fitness chromosomes have a mutation
probability of 0.3, and low-fitness chromosomes have a mutation probability of
0.6. Moreover, for high-fitness chromosomes that are solutions to the problem
(i.e., those that have no counterexamples) the only possible mutation is gene
deletion. This is due to the fact that, since we already have a solution, we only
want to find a more concise equivalent expression by removing redundant parts
of the invariant.
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Finally, the algorithm stops after 20 evolutions, or generations, have been
produced. Whenever a satisfying specification is generated (i.e., one that has no
counterexamples), it is stored and the time measured, but the algorithm is not
stopped, in an attempt to produce shorter (i.e., more concise) specifications.

The rationale behind our selection of the above values for the genetic al-
gorithm’s parameters (population size, number of generations, probability for
crossover and mutations, etc.) is not arbitrary. We learned adequate values for
these parameters from trial-and-error runs of our genetic algorithm, on a single
case study, namely singly linked lists. Trial-and-error is a common mechanism
used, in the context of evolutionary computation, to appropriately set parame-
ters of the evolutionary search. It is important to remark that, while we selected
these values based on experimentation, a single case study was involved in the
experiments leading to parameter selection, and the same selected values were
employed on all cases of our experimental validation. We have also performed
some a posteriori analysis regarding how some of these parameters affect the
performance of the algorithm, in particular the population size, and the muta-
tion probability. These analyses are described as part of the next section.

4. Validation

In this section we perform an experimental assessment of our evolutionary
approach to learning declarative specifications from operational ones. All exper-
iments were run on a workstation with Intel Core i7 2600, 3.40 Ghz, and 16 Gb
of RAM. The genetic algorithm has been implemented using JGAP [24], run-
ning on Java OpenJDK 1.7, on an Ubuntu 16.04 LTS x86 64 operating system.
The first part of our evaluation analyzes how fast our algorithm is able to learn
a declarative specification from an operational one. We do so for data structure
invariants, on a number of data structure implementations with increasingly
complex invariants. These are implementations of

• singly linked lists;

• sorted singly linked lists;

• circular linked lists;

• doubly linked lists;

• binary trees;

• binary search trees;

• heaps;

• (binary) directed acyclic graphs; and

• red-black trees.
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All these structures and their corresponding operational invariants have been
taken from Korat’s set of accompanying examples, or are simple variants of
these. Our genetic algorithm implementation, as well as all case studies con-
sidered in this paper, can be found and reproduced following the details in
https://sites.google.com/view/alloy-learning/.

For each case study, we ran the algorithm 10 times, with a limit of 20 gen-
erations (evolutions of the genetic algorithm population). For generating the
chromosomes in the initial population, we only use 2 positive and 2 negative in-
stances (and the expressions produced from the type graph, of course), obtained
by translating the corresponding repOK into a relational logic predicate (using
the semantics-preserving translation with a scope of 3), and querying for sat-
isfiability of the obtained predicate and its negation. We report the minimum,
maximum and average runs, indicating the number of generations g that were
necessary, and the time t in seconds required for learning the corresponding
invariant. We report the cost of computing the first invariant (the time and
generations required to get a suitable invariant), and the cost of computing the
“best” invariant (the algorithm continues running after an invariant has been
found, to try to optimize it, e.g., making it more concise). These results are
summarized in Table 1.

The second part of our assessment is concerned with evaluating the impact
of different parameters, in the performance of our algorithm. Let us start with
the generation of the initial population. Recall that, as described in the pre-
vious section, our genetic algorithm’s initial population is composed of size 1
chromosomes only. In order to measure the impact of this decision, we analyzed
two different versions of our algorithm, one that starts with randomly gener-
ated chromosomes of varying sizes (using the same approach to generate genes
described in the previous section), and another version where the initial popula-
tion is composed only of size 1 chromosomes. Tables 2 and 3 report the average
costs of computing the first and “best” invariant using an initial population
of chromosomes with varying sizes, and when using size 1 chromosomes as the
initial population, (cf. Section 3.5), respectively. In both cases, the selection
policy for the analysis is the “fittest first” policy, disregarding the size of the
chromosomes.

Continuing with the analysis of the impact of different parameters on the
performance of our genetic algorithm, we executed the algorithm with different
parameter configurations and measured the corresponding likelihood of opti-
mality Lopt(k) . The Lopt(k) is defined as the estimated probability that the
algorithm will reach an optimal solution in k generations. It is calculated from n
executions of k generations of the algorithm, as m/n, where m is the number of
runs that produced an optimal solution [47]. This measure allows us to analyze
the effectiveness of the algorithm when selecting different parameter values. All
the executions of this performance measure were performed in three case stud-
ies of different complexities, namely, Singly Linked List, Binary Heap and Red
Black Tree. Figure 6 shows how Lopt(50) varies, for different population sizes,
from 20 to 100. As expected, the effectiveness of the algorithm increases as the
population size is greater, showing substantial effectiveness for a population size
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of about 60 (we used 100 in our experiments).
We also measured Lopt(50) when varying the mutation probability, with a

fixed population size of 100 and also with a population size of 40. Figure 7
shows the impact of different mutation probabilities with a population size of
100. As it can be seen from the table, in all the cases the effectiveness of the
algorithm increases with higher mutation probabilities. While typically high
mutation probabilities have a negative impact in the effectiveness of genetic
algorithms, our algorithm performs rather well with high probabilities. This, in
our opinion, has to do with the following. On one hand, our initial population
starts with size one chromosomes; a high mutation probability allows us to be
likely to explore many mutations of size one chromosomes, whose “valid” cases
we maintain across generations. Secondly, our state space exploration is highly
driven by mutation; crossover simply “builds” conjunctions, but is the mutation
what generates the “conjuncts”. Generating the conjuncts is what the initial
population and mutation are concerned with; our “keep the valid conjuncts”
policy is what enables crossover to build appropriate conjunctions.

Figure 6: Lopt(50) varying the population size
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The second part of our analysis evaluates our learned specifications in ver-
ification contexts. We first compare our approach with a semantics preserving
translation from operational specifications into declarative ones, in a specific
verification scenario. We verify, for increasingly larger scopes (i.e., maximum
sizes of the corresponding structures), that the insertion routines of the data
structures considered for analysis, preserve the corresponding structure’s rep-
resentation invariant. We use DynAlloy [13] for this task, using the original
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Figure 7: Lopt(50) varying the mutation probability with a population size value of 100
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operational specification translated into relational logic as described in [13, 14],
and our learned declarative specification. Running times are reported in min-
utes:seconds, in Table 4 (we set a timeout of 1 hour, and marked those analyses
exceeding the timeout as TO). Notice that we used different scopes for different
kinds of structures. In particular, linear data structures admit larger scopes for
analysis, compared to tree-like structures.

As an additional analysis context, we consider generalized symbolic execu-
tion [27]. An important mechanism for extending the application of symbolic
execution to programs manipulating heap-allocated data is lazy initialization,
put forward in [27]. This mechanism can even profit from operational precon-
ditions or invariants, to prune paths during symbolic execution analysis. More
recently, in [17, 42], the lazy initialization mechanism has been enhanced by the
use of precomputed tight bounds. Essentially, during lazy initialization, a par-
tially symbolic heap is incrementally concretized as a program is symbolically
executed, concretizing symbolic data as soon as it is accessed by the program
(hence the “lazy” adjective). During this concretization, all possible concrete
values for a symbolic value are considered, leading to different paths in the sym-
bolic execution. What pre-computed tight bounds provide is a reduction in the
number of cases to consider, based on how the data is constrained. For instance,
if a list is assumed to be acyclic, and we are concretizing the “next” pointer of a
given node in the list, lazy initialization would try all possible concretizations,
including those that point to previous nodes; tight bounds reduce these cases
to only two possible ones: it can either be null, or point to a new node (with
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all its attributes symbolic), since these are the only two cases that do not vio-
late acyclicity). This improves the performance of lazy initialization, but with
an additional cost: bounds are computed from declarative specifications, and
thus the developer needs to provide two versions of the same specification: the
operational one typical of the symbolic execution context, and the declarative
one used for computing the tight bounds. We then compare standard lazy ini-
tialization, with lazy initialization aided by tight bounds (with two different
techniques put forward in [42]), where the required declarative specification is
automatically learned from the operational specification, using our evolution-
ary technique. Tables 7 and 8 compare the symbolic execution analysis times
of standard lazy initialization (LI), with two techniques that use tight bounds
computed with our learned specifications, bounded lazy initialization (BLI) and
refined bounded lazy initialization (RBLI, which reduces cases, based on the
bounds, as the partially symbolic heap gets concretized), for various routines of
two data structures, binary trees and red-black trees. Again, times are given in
minutes:seconds, experiments were run with a set timeout of 1 hour, and those
cases exceeding the timeout are marked as TO. These results show that, by
employing our learned specifications to compute tight bounds, symbolic execu-
tion over these data structures is improved, by some significant margin in some
cases.

Finally, we analyze the precision of the obtained invariants, in comparison
with related techniques. We compare our learned invariants with automatically
inferred ones using Daikon [12] and Deryaft [34]. Daikon computes likely invari-
ants from run-time information, and thus requires tests to exercise the program
under analysis, and perform the inference. We fed Daikon with randomly pro-
duced tests, computed using Randoop [38]. Derayft is a tool for generating
constraints of complex data structures from instances; it takes a handful of
concrete data stuctures and generates a predicate that represents the invariant.
Since Daikon computes invariants for all involved classes, when an invariant
refers to an auxiliary class, e.g., Node, we report the inferred invariant as being
a property of all nodes of the structure. Invariants inferred by Daikon are JML
expressions. We show these as relational logic expressions for easier compari-
son. The comparison with the invariants obtained with Daikon is summarized
in Table 5. In the case of Deryaft, the output is a Java predicate that represents
the invariant, i.e., a boolean routine that takes an input structure and returns
true if and only if it satisfies the invariant. While such output is operational, the
produced (likely) invariant is composed of a set of “catalogue” properties (e.g.,
acyclicity, sortedness, etc.), which have known declarative counterparts. Table 6
compares the generated properties for each case study using our approach, with
the properties generated by Deryaft for the same data structures.

4.1. Assessment
Let us now evaluate our experimental results. First, consider the running

times for our genetic algorithm. For most structures and in most runs, we are
able to compute invariants in a few seconds. Our most complex data structure
considered, red-black trees, takes in some cases a few minutes (about 2.5 minutes
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Table 1: Experimental Results corresponding to learning declarative invariants from opera-
tional ones, using our evolutionary algorithm.

First Invariant Found Best Invariant Found
Data Min Max Avg Min Max Avg

Structure g t g t g t g t g t g t
s. linked lists 1 1 1 3 1 2 1 1 3 6 2 3
s. linked sort. lists 1 1 3 6 1 4 2 2 7 18 4 11
s. circular lists 1 2 1 3 1 2 1 2 3 4 1 3
doubly linked lists 2 5 4 19 3 11 2 7 5 39 5 23
binary trees 1 10 1 15 1 12 3 61 9 211 7 156
binary search trees 1 4 2 8 1 6 4 16 7 42 4 32
heaps 1 6 3 22 2 11 2 19 8 110 6 70
binary DAGs 1 3 1 5 1 5 1 3 4 25 2 16
red-black trees 2 10 3 17 2 14 9 71 18 406 11 234

Table 2: Experimental Results corresponding to learning declarative invariants from oper-
ational ones, using “fittest first” selection policy and initial population of chromosomes of
varying sizes.

First Invariant Found Best Invariant Found Times learned
Data Avg Avg

Structure g t g t
s. linked lists 5 10 6 12 1/10
s. linked sort. lists 10 18 11 21 9/10
s. circular lists 1 3 2 9 10/10
doubly linked lists 3 17 6 29 10/10
binary trees 13 128 16 311 8/10
binary search trees - - - - 0/10
heaps 15 139 17 186 4/10
binary DAGs 8 56 9 58 5/10
red-black trees - - - - 0/10

Table 3: Experimental Results corresponding to learning declarative invariants from opera-
tional ones, using “fittest first” selection policy and initial population of size 1 chromosomes.

First Invariant Found Best Invariant Found Times learned
Data Avg Avg

Structure g t g t
s. linked lists 1 2 3 6 10/10
s. linked sort. lists 2 6 5 19 10/10
s. circular lists 1 2 2 7 10/10
doubly linked lists 3 10 5 24 10/10
binary trees 2 20 8 280 10/10
binary search trees 1 10 5 60 10/10
heaps 2 15 7 80 10/10
binary DAGs 1 6 3 19 10/10
red-black trees 2 29 12 301 9/10

in the worst case) to compute an invariant. In general, our algorithm runs very
efficiently.

Regarding the efficiency of our computed invariants as opposed to the op-
erational ones for bounded verification, our declarative invariants show a sub-
stantial profit in analysis, with the sole exception of our simplest case study,
singly linked lists. In this case study, and for our largest considered scope, the
invariant obtained by a semantics-preserving translation from the operational
one is actually better than the one produced with our approach, in verification
time (although very slightly). In all other cases, verification with our produced
invariants outperforms verification with those directly translated from the op-
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Table 4: Comparison of operational invariants vs our computed declarative invariants, verify-
ing invariant preservation in bounded scenarios.

Data Structure Rel. Op. Rel. Op. Rel. Op. Rel. Op.
Scopes 5 12 15 20

s. linked lists < 00:01 < 00:01 00:01 00:03 00:07 00:10 01:46 01:38
s. linked sorted lists < 00:01 < 00:01 00:30 01:54 03:25 10:16 21:51 TO
doubly linked lists < 00:01 < 00:01 00:01 00:03 00:03 00:08 00:22 01:23
s. circular lists < 00:01 < 00:01 00:02 00:04 00:10 00:22 01:37 02:18

Scopes 5 7 8 9
binary trees < 00:01 00:01 00:01 01:05 00:10 28:06 01:25 TO
binary search trees 00:01 00:09 01:32 01:13 49:11 TO TO TO
heaps 00:01 00:03 00:48 02:45 01:54 49:52 06:54 TO
binary DAGs < 00:01 00:03 00:01 00:54 00:06 07:14 00:43 50:15
red-black trees < 00:01 00:01 00:01 01:40 00:13 36:22 01:16 TO

erational ones. Notice that learning pays off exceedingly, comparing the time
taken in learning and the speed up achieved when replacing the “translated”
invariant with the “learned” one. In the context of symbolic execution, the im-
provement provided by tight bounds computed with our learned invariants over
lazy initialization is also significant in some cases. For instance, for bfs from
BinTree, RBLI (that uses bounds computed with the learned invariant) is more
than 4 times faster than LI for scope 12. In other cases the margin is smaller,
but it is worth mentioning that the bounds computation is amortized across all
methods from the same class, and thus learning the declarative invariant and
computing the bounds pays off.

Of course, neither of the first two parts of our analysis is meaningful if our
invariants are imprecise. Our third part of the analysis confirms that our learned
invariants are rather precise, compared to the expected outcome. Indeed, in all
cases except red-black trees, we learn an invariant that is actually equivalent
to the repOK. In order to check equivalence, besides manually inspecting the
obtained invariants, we bounded-exhaustively enumerated instances satisfying
repOK using Korat, for various selected bounds, and compared the number of
obtained instances with the number of bounded instances satisfying our obtained
Alloy specification, for the corresponding bounds. In the case of red-black trees,
we are able to learn most of the expected invariant, except for the “black height”
portion of it. This part of the invariant states that “the number of black nodes in
all paths from the root to a leaf is the same”. Such constraint is not expressible
with the expressions that our genetic algorithm considers, and thus constitutes
a limitation of our approach.

In relation to the alternative mechanisms to generate invariants that we con-
sidered for comparison, if we compare with Daikon, our approach computes more
precise specifications. Indeed, as our third table shows, Daikon is able to com-
pute weaker invariants, sometimes erroneous ones, resulting from properties that
consistently hold for the tests used for inference, but are not true in the general
case, compared to our computed specifications. For instance, for doubly linked
lists and binary search trees, Daikon computes some likely invariants that fail
to hold in the general case; as a sample case, property this.header.previous
== this.last.next, that Daikon computes, only holds for non-empty doubly
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Table 5: Comparison of our learned invariants with automatically inferred ones using Daikon.
Our approach Daikon

s. linked lists
(all n: thiz.header.*next | not (n in n.ˆ next)) and
eq[#(thiz.header.*next - Null), thiz.size]

thiz.header != Null and gte[thiz.size,0]

s. linked sort. lists
(all n: thiz.header.*next | not (n in n.ˆnext))
eq[#(thiz.header.*next - Null),thiz.size] (all
n: thiz.header.*next-Null | (n.next != Null) =>
lte[n.element,n.next.element])

thiz.header!=Null and gte[thiz.size,0] and
eq[thiz.header.element,0]

s. circular lists
(all n: thiz.header.*next | (n in n.ˆnext)) and
eq[#(thiz.header.*next), thiz.size]

thiz.header=Null and gte[thiz.size,0]

doubly linked lists
(all n: thiz.header.*(next + prev) | n = n.prev.next)
and eq[#(#(thiz.header.*(next + prev) - Null)),
thiz.size]

this.header.prev = Null and gte[thiz.size,0]

binary trees
(all n : thiz.root.*(left + right) | (n.left.*(left
+ right)) & (n.right.*(left + right)) in Null) and
(eq[thiz.size,#(thiz.root.*(left + right) - Null)])
and (all n : thiz.root.*(left + right) | n !in n
.ˆ(left+right))

#(thiz.rootˆ(left+right))>=0 and
gte[thiz.size, 0] and (all n:Node |
#(n.ˆ(left+right)) >= 0) and (all n:Node
| #(n.left.ˆ(left+right)) >= 0) and (all
n:Node | #(n.right.ˆ(left+right)) >= 0)
and (all n:Node | #(n.left.ˆ(left+right))
<= #(n.ˆ(left+right))) and (all
n:Node | #(n.right.ˆ(left+right)) <=
#(n.ˆ(left+right)))

binary search trees
(eq[thiz.size,#(thiz.root.*(left + right)
- Null)]) and (all n : thiz.root.*(left
+ right) | n !in n .ˆ(left+right)) and
(all n: thiz.root.*(left+right) | (all x:
n.left.*(left+right) - Null| lt[x.element,n.element])
and (all x: n.right.*(left+right) - Null|
gte[x.element,n.element]) )

(all n:Node | n.left.element < n.element) and
(all n:Node | n.right.element > n.element) and
gte[thiz.size,0]

heaps
(all n: thiz.root.*(left+right)| n
!in n.ˆ(left+right)) and eq[thiz.size,
#(thiz.root.*(left + right) - Null)] and (all n
: thiz.root.*(left+right) | n.left.*(left+right)
& n.right.*(left+right) in Null) and (all
n:thiz.root.*(left+right) | ((n.left!=Null) =>
gte[n.element,n.left.element]) and ((n.right!=Null)
=> gte[n.element,n.right.element]))

thiz.rootˆ(left+right)>=0 and
gte[thiz.size, 0] and (all n:Node |
#(n.ˆ(left+right)) >= 0) and (all n:Node
| #(n.left.ˆ(left+right)) >= 0) and (all
n:Node | #(n.right.ˆ(left+right)) >= 0)
and (all n:Node | #(n.left.ˆ(left+right))
<= #(n.ˆ(left+right))) and (all
n:Node | #(n.right.ˆ(left+right)) <=
#(n.ˆ(left+right)))

binary DAGs
(all n: thiz.root.*(left+right)-Null| n !in
(n.ˆnext)) and eq[thiz.size,#(thiz.root.*(left+right)
- Null)]

--

red-black trees
all n: thiz.root.*(left+right)| n !in
n.ˆ(left+right)) and eq[thiz.size,
#(thiz.root.*(left+right)-Null)] and (thiz.root.color
!= Red) and (all n : thiz.root.*(left+right) |
n.left.*(left+right) & n.right.*(left + right) in
Null) and (all n : thiz.root.*(left+right)-Null
| n.color=Red => ((n.left.color!=Red) and
(n.right.color!=Red)))

(thiz.root.color = Black) and gte[thiz.size,
0]
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Table 6: Comparison of our evolutionary approach with Deryaft, in generating data structure
invariants.

Properties Our approach Deryaft
s. linked lists

Acyclicity 3 3

Size consistency 3 7

s. linked sort. lists
Acyclicity 3 3

Size consistency 3 7

Order 3 3

s. circular lists
Cyclicity 3 7

Size consistency 3 7

doubly linked lists
Next-Previous relation 3 7

Size consistency 3 7

binary trees
Acyclicity 3 3

Disjoint subtrees 3 3

Size consistency 3 7

binary search trees
Acyclicity 3 3

Order 3 3(incomplete)
Size consistency 3 7

heaps
Acyclicity 3 3

Disjoint subtrees 3 3

Order 3 3

Size consistency 3 7

binary DAGs
Acyclicity 3 3(raises an error)
Size consistency 3 7

red-black trees
Acyclicity 3 3

Root color 3 7

Disjoint subtrees 3 3

Color rule 3 7

Black height 7 7

Size consistency 3 7

linked lists (the implementation is acyclic, without sentinel). Regarding Deryaft,
although the tool showed some precision in a number of case studies, it failed
to produce a suitable invariant in several cases. This precision problem, in our
opinion, has to do with the fact that Deryaft tries to build an invariant only
from positive examples, as opposed to our case. In our experiments, we provided
Deryaft the same set of positive examples that we used to compute the fitness in
our algorithm, which are generated from the operational specification φop (the
input of our algorithm).
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Table 7: Analysis time for class BinTree

Method Technique S04 S05 S06 S07 S08 S09 S10 S11 S12
bfs LI 00:01 00:01 00:02 00:03 00:07 00:18 01:02 04:23 15:06

BLI 00:01 00:01 00:02 00:03 00:05 00:14 00:48 03:08 11:10
RBLI 00:01 00:01 00:02 00:02 00:04 00:08 00:21 01:09 03:38

dfs LI 00:01 00:01 00:02 00:03 00:05 00:16 00:56 03:43 14:38
BLI 00:01 00:01 00:02 00:02 00:05 00:12 00:43 02:31 11:15
RBLI 00:01 00:01 00:01 00:02 00:04 00:10 00:35 02:12 08:55

repOK LI 00:01 00:02 00:03 00:06 00:17 00:54 03:09 11:47 41:35
BLI 00:01 00:02 00:03 00:06 00:16 00:51 02:59 10:12 37:04
RBLI 00:01 00:02 00:03 00:06 00:15 00:44 02:31 08:11 29:31

Table 8: Analysis time for class TreeSet

Method Technique S04 S05 S06 S07 S08 S09 S10 S11 S12
bfs LI 00:01 00:02 00:04 00:09 00:29 01:44 06:32 23:51 1:27:29

BLI 00:01 00:02 00:04 00:09 00:28 00:40 05:39 23:09 1:21:16
RBLI 00:01 00:02 00:04 00:08 00:26 01:26 05:05 19:20 1:10:02

dfs LI 00:01 00:01 00:02 00:03 00:07 00:21 01:20 05:20 21:44
BLI 00:01 00:01 00:02 00:03 00:05 00:16 00:57 04:14 15:53
RBLI 00:01 00:01 00:02 00:02 00:05 00:13 00:52 03:09 12:42

repOK LI 00:03 00:13 01:14 07:44 50:54 TO
BLI 00:03 00:12 01:13 07:35 51:13 TO
RBLI 00:03 00:12 01:09 07:24 48:36 TO

5. Related Work

Translating between formal languages has a long tradition both in Logic and
in Computer Science. There exist translations and mappings between logical
systems that have been used for automated analysis purposes, as well as for
complexity and decidability arguments (see, e.g., [7]). This kind of approach
has been borrowed by formal methods, in particular heavyweight ones, whose
associated analysis mechanism is in general deductive verification, with the aim
of using a proof system for a given formalism to reason about specifications in a
different one (see, e.g., [3]). In general, the emphasis has been in sound, many
times partial, syntactic mechanisms to define semantics-preserving translations,
that enable conservative analyses of the source specifications in the target for-
malism. With the advent of lightweight formal methods, the conservativeness
requirement can sometimes be dropped, as is the case e.g., with the (incom-
plete) SAT-based checking of Alloy specifications [22]. In these works the use
of imprecise search based techniques such as the one presented in this paper is
not observed, as far as we are aware of. However, learning techniques associ-
ated with formal specification has been applied in the past. Some examples are
the use of the L* algorithm to assist assume-guarantee reasoning [39] and the
inference of loop invariants through a combination of mutation (as in genetic
programming) and static checking [16]. The first attempts to learn specifica-
tions of a routine from calls it receives from the environment, while the second
applies specifically to loop invariants, thus differing from our presented work.
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Other related works are, of course, the preliminary version of our technique pre-
sented in [36], the works on specification inference as put forward in techniques
like Daikon [12] and Deryaft [34] (that we compared with in this paper), and
our recent work in [37]. As opposed to the work presented in this paper, the
approach in [37], while it also uses a genetic algorithm, is less powerful since
it only learns invariants composed of properties from a given catalog, in the
style of [34] but considering both positive and negative instances. Our current
approach is thus more general, and it does not require a provided catalog.

Model synthesis is also an active line of research related to our work. In the
general case, synthesis techniques assume a specification, and work on synthe-
sizing operational models that satisfy it (cf. [48, 11, 29, 9]), thus working on a
different direction compared to our presented work.

6. Conclusions and Future Work

The increasing availability of automated technologies based on formal meth-
ods is evidencing a lack of formal specifications accompanying software systems,
while at the same time contributes to showing their necessity. Indeed, many
tools for program analysis, including run time assertion checkers, and static
analysis tools for verification, fault localization, test generation and bug finding,
require formal specifications. In this paper, we argued about the fact that, even
in cases in which one has a formal specification available, many times this speci-
fication is unsuitable for the kind of analysis, tool or technique, one is interested
in. We studied this situation in the particular case in which an operational spec-
ification, represented as code, is available, but one requires such specification to
be provided in a logical setting. We proposed an evolutionary algorithm that
produces such declarative specifications from operational ones, and showed that,
for a benchmark composed of data structures of varying complexities, the algo-
rithm is able to learn adequate declarative representation invariants, from their
operational counterparts. Moreover, we showed that these learned invariants are
better suited for analysis, in particular bounded verification, than performing
an existing semantics preserving translation of the operational ones and using
those for the same analysis. We also showed that the learned invariants can
contribute to improving other automated analysis settings, in particular lazy
initialization, and that our algorithm produces, for the analyzed case studies,
specifications that are significantly more precise than those generated by related
specification inference tools.

The presented work opens several lines for future work. As we explained
in the paper, we have concentrated on properties of linked structures, and the
whole design of our algorithm and the expressions it supports makes it infeasi-
ble to learn some relevant properties (the black height invariant for red-black
trees is an example of this situation illustrated in the paper). An obvious line of
research is work on a generalization of our approach, to enable learning a richer
set of specifications. Our case studies are so far limited to data structure repre-
sentation invariants, so analyzing our approach on other kinds of programs, is
also part of our plans. In particular, in attempting to learn specifications from
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larger programs we will come into scalability issues, that will need to be tackled.
Finally, our operational-to-declarative approach enables interconnecting analy-
sis techniques and tools, some of which we have mentioned in the paper. We
plan to take advantage of our evolutionary algorithm to implement such tool
cross usages.
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[14] J. P. Galeotti, N. Rosner, C. López Pombo and M. F. Frias, Analysis of in-
variants for efficient bounded verification, in Proceedings of the 19th Inter-
national Symposium on Software Testing and Analysis ISSTA 2010, ACM,
2010.
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