
From Operational to Declarative Specifications using a Genetic
Algorithm

Facundo Molina
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Renzo Degiovanni
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Germán Regis
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Pablo Castro
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Nazareno Aguirre
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Marcelo Frias
Dept. of Software Engineering,

Buenos Aires Institute of Technology,
Argentina

ABSTRACT

In specification-based test generation, sometimes having a formal
specification is not sufficient, since the specification may be in a
different formalism from that required by the generation approach
being used. In this paper, we deal with this problem specifically
in the context in which, while having a formal specification in
the form of an operational invariant written in a sequential pro-
gramming language, one needs, for test generation, a declarative
invariant in a logical formalism. We propose a genetic algorithm
that given a catalog of common properties of invariants, such as
acyclicity, sortedness and balance, attempts to evolve a conjunction
of these that most accurately approximates an original operational
specification. We present some details of the algorithm, and an
experimental evaluation based on a benchmark of data structures,
for which we evolve declarative logical invariants from operational
ones.

ACM Reference Format:

Facundo Molina, Renzo Degiovanni, Germán Regis, Pablo Castro, Nazareno
Aguirre, and Marcelo Frias. 2018. From Operational to Declarative Specifi-
cations using a Genetic Algorithm. In SBST’18: IEEE/ACM 11th International

Workshop on Search-Based Software Testing , May 28–29, 2018, Gothenburg,

Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3194718.
3194725

1 INTRODUCTION

Various approaches to automated test generation require a spec-
ification in order to automatically generate tests or test inputs.
Examples of these are test generation tools based on symbolic or
concolic execution [10, 17], tools that generate inputs from program
invariants [2, 9], and tools that combinatorially generate inputs
and use specifications for filtering [7]. However, not all tools use
the same specification formalism; some tools require specifications
to be given as operational predicates, i.e., as program routines in
a programming language [2, 10] (e.g., so called repOK routines are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBST’18, May 28–29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5741-8/18/05. . . $15.00
https://doi.org/10.1145/3194718.3194725

class invariants captured operationally through a program); others
support constraints in a logical formalism [5, 9]; and a few are able
to combine different formalisms [4, 7, 15].

An issue that arises with the availability of multiple specification
formalisms is that many times one does count with a specification,
but this specification is not provided in the right language for the
use of a given test generation approach. For instance, one may
have a class invariant for a given Java class, written as a repOK

routine, but in order to use, say a SAT-solving based generation
mechanism, such invariant has to be somehow translated to an
appropriate logical formalism. This is particularly relevant with the
increasing growth of tools and techniques for program analysis, and
the potential combined use of these tools, which may be inhibited
by the “mismatch” in the specification styles required by the tools
involved. A concrete example of this situation can be observed, for
instance, in bounded lazy initialization with SAT support [16], where
a combination of symbolic execution and SAT solving requires the
user to provide two equivalent program invariants, one given as a
repOK routine (used for lazy initialization), and the other as a logical
specification (used for computing bounds and pruning symbolic
execution).

This is exactly the problem we are interested in, in this paper.
The problem is relevant because even in the case in which a trans-
lation from one formalism to the other is available, the “target”
specifications resulting from the translations may be unsuitable for
analysis reasons. For example, one can indeed translate a Java repOK
routine into Alloy’s relational logic [8], through the use of transla-
tions that capture programming language constructs in the logic,
as those embedded in some program analysis tools [3, 5]. But the
obtained logical formulas (that capture program executions) lead
to unacceptable performances if these are used for test generation.

To deal with the above situation, we propose a genetic algorithm,
that given a catalog of properties commonly used as part of invari-
ants, such as acyclicity, sortedness and balance, appropriately spec-
ified in relational logic, attempts to evolve the conjunction of these
that most accurately approximates an original operational speci-
fication, given as a repOK routine. We present some details of the
algorithm, and an experimental evaluation based on a benchmark
of data structures, for which we evolve declarative logical invari-
ants from operational ones. The experiments show that declarative
invariants that very precisely approximate provided operational
ones can be efficiently produced.

SBST’18, May 28–29, 2018, Gothenburg, Sweden Molina et al.

2 MOTIVATION

To motivate our approach, let us consider an implementation of
lists given as heap allocated doubly linked lists, as shown in Fig-
ure 1. Suppose that we are interested in testing that a routine that
manipulates such data structure, for example the insertion routine,
works as expected, or in particular, that it preserves the representa-
tion invariant of doubly linked lists. To perform automated testing
in this context, we would need a specification establishing when
a given list is valid, both to be used for assertions in tests, as for
automatically producing test inputs satisfying such specification.
As put forward in [12], one can specify the representation invariant
as a boolean routine, the repOK(), that returns true iff the structure
it is applied to satisfies the corresponding representation invariant.
In the case of doubly linked lists, this routine, shown in Figure 2,
must state two points: first, header holds a cyclic linked list, and
second, the number of nodes in the list coincides with the value in
field size.

Some test generation tools, notably those based on constraint-
solving [5, 9], can profit from specifications written in a logical

formalism, in contrast with the previously mentioned operational

repOK routines. Indeed, some constraint-solving based approaches
can more efficiently generate test inputs if invariants are given
in a declarative formalism like JML or Alloy [8]. These languages
offer a different specification “paradigm”, and properties such as
reachability, (a)cyclicity and the like, are typically captured through
some transitive closure expressions. As an example, Figure 3 shows
a declarative predicate, in Alloy’s relational logic, that expresses an
invariant equivalent to property repOK() of Figure 2.

public c l a s s Doub lyL inkedL i s t {
pr ivate Node header ;
pr ivate int s i z e ;
. . .

}

public c l a s s Node {
pr ivate int e lement ;
pr ivate Node nex t ;
pr ivate Node p r ev i ou s ;
. . .
/ / s e t t e r s and g e t t e r s

/ / o f t h e above f i e l d s

. . .
}

Figure 1: Java classes defining doubly linked lists.

Having the operational invariant specified through routine repOK()
enables the use of various tools for test generation that expect this
kind of property (e.g., Korat [2], where the doubly linked list ex-
ample was taken from, in one such tool). But if we need to use a
tool that expects the specification to be given declaratively (e.g.,
those in [1, 9]), our repOK is of little use. Even though one may em-
ploy a translation from operational specifications into declarative
specifications (in bounded contexts), like those provided in tools
like TACO [5, 6] and CBMC [11], the obtained specifications are
in general unsuitable for analysis. In particular, the excessive use
of quantifiers to capture program executions lead to specifications

public boolean repOK () {
S e t v i s i t e d = new j a v a . u t i l . HashSet () ;
v i s i t e d . add (header) ;
Ent ry c u r r e n t = header ;
while (true) {

Ent ry nex t = c u r r e n t . nex t ;
i f (nex t == null) return fa l s e ;
i f (nex t . p r e v i ou s != c u r r e n t)

return fa l s e ;
c u r r e n t = nex t ;
i f (! v i s i t e d . add (nex t)) break ;

}
i f (c u r r e n t != header) return fa l s e ;
i f (v i s i t e d . s i z e () != s i z e) return fa l s e ;
return true ;

}

Figure 2: Operational version of the representation invari-

ant for doubly linked lists.

one sig Null { }

sig List { }

sig Node { }

pred repOK[thiz : List , header : List ->one Node+Null ,

next : Node -> one Node+Null] {

(all n : thiz.header .*(next+prev) | n=n.prev.next)

and #(thiz.header .*(next+prev)-Null) = thiz.size

}

Figure 3: Declarative version of the representation invariant

for doubly linked lists, in Alloy’s relational logic.

that are very costly to compile, that many times do not pass, in the
context of SAT-based test generation, the CNF generation phase.

The following section will describe our proposal to tackle this
problem, which in essence consists of taking a catalog of properties
that are commonly part of invariant specifications, appropriately
characterized in the target formalism (in our case, Alloy’s relational
logic), and using a genetic algorithm to evolve an expression (a
conjunction in our case) involving properties from the catalog, that
more closely approximate a given operational invariant.

3 THE GENETIC ALGORITHM

As we mentioned in previous sections, our objective is to generate
a declarative specification Φ that most accurately approximates
an operational specification Φop , by combining common invari-
ant properties taken from a catalog. Below we describe the main
components of the genetic algorithm designed for this purpose.

3.1 Genes and Chromosomes for Candidate

Specifications

In order to capture candidate specifications, we simply define chro-
mosomes as vectors of integer genes. Each chromosome has as
many genes as there are properties in the catalog, and the value
of each gene can be 0, 1 or 2. If the i-th gene has value 0, then the
i-th formula of the catalog is negated; if the gene has value 1, then

From Operational to Declarative Specs using a Genetic Algorithm SBST’18, May 28–29, 2018, Gothenburg, Sweden

the i-th formula is considered positively; finally, if the gene has
value 2, then the i-th formula is disabled (not part of the candidate
specification). Thus, the candidate specification represented by a
given chromosome is the conjunction of the formulas obtained from
the interpretation of the genes, depending on their respective val-
ues. For instance, if the catalog is composed by the (ordered) set
of formulas { f0, f1, f2, f3, f4}, then chromosome [0, 1, 2, 0, 2] will
represent the specification ¬f0 ∧ f1 ∧ ¬f3.

In our experiments, the initial population is produced by gener-
ating all individuals with exactly one positive gene (value 1), and
all the others disabled (value 2). That is, we initially have as many
individuals as specifications in the catalog. The maximum size for
the population is set to 100.

3.2 Genetic Operators

Genetic operators are used to produce the search space, by gen-
erating new individuals from existing ones in a population. The
main mechanism to achieve this is by combining parts of existing
chromosomes through crossover. We use one-point crossover to
build new chromosomes, by randomly selecting a point to “split”
two chromosomes, and combining the initial (resp., final) part of
one of them with the final (resp., initial) part of the other. In our
experiments, we use a crossover rate of 35%.

The second mechanism to generate new chromosomes is muta-

tion, i.e., the generation of a new individual by randomly changing
characteristics of an existing one. Since in our case genes only have
three possible values (0,1 or 2), our mutation operator simply ran-
domly sets a value in the range [0, 2] with a probability of 1/12, of
each gene to be mutated.

3.3 Fitness of Candidate Specifications

Our fitness function is meant to assess how close are the corre-
sponding candidates to the desired specification, and is the most
important part of our algorithm. We exploit the operational specifi-
cation Φop , to (indirectly) compare candidate specifications against
this one. In order to do so, we automatically generate from Φop

a set of positive and negative examples. These are instances that
satisfy and do not satisfy Φop , respectively. These instances can be
generated using any test input generation mechanism that requires
an operational specification, e.g., [2]. We use an ad hoc variant of
Korat, that generates inputs using that “cover” different values for
object fields. The number of generated positive and negative cases
is limited to a provided bound k .

Fitness f (c) for a chromosome c is computed as follows. First, we
build the specification Φc corresponding to c , and evaluate whether
the positive and negative cases satisfy Φc . If any positive case fails
with Φc , meaning that there are cases that should be accepted
but our specification rejects them, then f (c) = 0. Instead, if the
candidate has only negative cases (cases that should not pass the
specification but do so), fitness is defined as follows:

f (c) = (MAX − neg(c)) +

(

1

len(spec(c)) + 1

)

whereMAX is a constant larger than k , the total number of negative
cases; neg(c) is the number of negative cases that satisfy Φc ; and
len(spec(c)) is the length of c , i.e., the number of formulas from the
catalog present in the conjuction.

The rationale for this definition of the fitness function has to do
with the fact that we attempt to over approximate the sought-for
specification. Thus, when a positive case is not accepted by a can-
didate, we will simply consider it unfit. Fitness for other candidates
has two parts. First, the fewer the “counterexamples”, the better;
second, the smaller the specification, the better. This last part can
be thought of as a penalty related to formula length, that will make
the genetic algorithm tend towards producing smaller formulas.

3.4 Selection

The selection operation determines which individuals are to be kept
in the next generation. Our selection operation is very simple. It
maintains a predefined amount of the fittest individuals by sorting
all the chromosomes by decreasing order according to their fitness
values, and then selecting the top individuals. This simple selection
mechanism results useful in our problem since the algorithm will
tend to keep the chromosomes representing specifications contain-
ing formulas with less negative cases that do not satisfy Φop (recall
that the higher the fitness value, the fewer counterexamples the
formula has).

4 EVALUATION

Our evaluation is based on invariants of the following data struc-
tures taken from Korat’s case studies: singly linked lists; sorted
singly linked lists; circular linked lists; doubly linked lists; binary
trees; binary search trees; heaps; (binary) directed acyclic graphs;
and red-black trees. The genetic algorithm has been implemented
using JGAP, and the experiments were run on a workstation with
Intel Core i7 2600, 3.40 Ghz, and 16Gb of RAM. The catalog for our
genetic algorithm is composed of properties commonly found in
invariants, with distinguishing cases for linear structures (struc-
tures with a single reference field per node) and n-ary (tree-like)
structures (e.g., binary trees). More precisely, for linear structures
we considered 23 properties, including (a)cyclicity, circularity, etc.,
the relationship between number of reachable nodes and integer-
typed fields, and ordering constraints. For n-ary structures, on the
other hand, we considered 28 properties, including all of the linear
cases, and other properties such as disjointness across different
fields, balance, etc.

For each case study, we ran the algorithm 10 times, with a limit
of 20 generations (i.e., evolutions of the genetic algorithm popula-
tion). Table 1 reports the minimum, maximum and average runs,
indicating the number of generations (g) and the time (t) in seconds,
that were necessary to obtain declarative invariants. We distinguish
between the cost of computing the first suitable invariant, and the
cost of computing the “best” invariant (the algorithm continues
running, trying to make it more concise). In all these cases the
obtained invariants were indeed equivalent to their corresponding
operational ones. Some results were surprising, e.g., an acyclicity
property indirectly captured via cardinality constraints:

(thiz.size = # thiz.head.*next - Null) and

not (thiz.size = # thiz.head.*next)

5 RELATED WORK AND CONCLUSION

The problem of automatically producing specifications has been
extensively studied. In the context of Alloy, the approach in [13]

SBST’18, May 28–29, 2018, Gothenburg, Sweden Molina et al.

Table 1: Experimental Results corresponding to learning declarative invariants from operational ones, using our evolutionary

algorithm.

First Invariant Found Best Invariant Found

Data Min Max Avg Min Max Avg
Structure Gen Sec. Gen Sec. Gen Sec. Gen Sec. Gen Sec. Gen Sec.

s. linked lists 2 4 5 12 4 8 3 5 6 27 4 12

s. linked sort. lists 2 8 7 23 5 16 3 10 7 32 5 19

s. circular lists 2 6 3 16 2 10 2 6 4 20 3 13

doubly linked lists 1 8 5 35 3 24 1 8 5 35 3 25

binary trees 3 35 6 146 5 102 3 35 8 296 6 148

binary search trees 3 14 6 75 5 42 3 14 6 75 5 44

heaps 6 39 18 90 9 58 6 39 19 116 13 83

binary DAGs 2 3 4 10 3 7 2 3 4 10 3 7

red-black trees 7 95 15 242 12 171 7 112 20 303 15 225

is based solely on positive examples, as opposed to our case. The
work in [14] also uses genetic algorithms, but attempts to evolve
navigational expressions, as opposed to our (simpler) case based on
a specification catalog. Our approach is easier to extend to support
new properties, a limitation of [14].

In summary, we have presented an approach to compute a declar-
ative specification in Alloy’s relational logic from an operational
one in Java, based on a genetic algorithm. The approach considers
a catalog of common invariant properties and tries to achieve a
conjunction of these that approximates the original invariant. It
produces valid and invalid cases from the operational specifica-
tion, which are then used as part of the fitness function driving
the algorithm, to “grade” specification candidates. Our preliminary
experimental evaluation shows promising results.

We plan to further develop our approach, and in particular to
search for more general specification patterns to consider in speci-
fication catalogs. We also plan to incorporate our operational-to-
declarative translation mechanism in the context of BLISS [16],
to simplify the requirements for users of the technique to only
providing an operational invariant.

REFERENCES
[1] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Ciolek, Marcelo F.

Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato, Nicolás Rosner, and
Ignacio Vissani. Improving test generation under rich contracts by tight bounds
and incremental SAT solving. In Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg, March
18-22, 2013, pages 21–30. IEEE Computer Society, 2013.

[2] Chandrasekhar Boyapati, Sarfraz Khurshid, andDarkoMarinov. Korat: automated
testing based on java predicates. In Phyllis G. Frankl, editor, Proceedings of the
International Symposium on Software Testing and Analysis, ISSTA 2002, Roma,
Italy, July 22-24, 2002, pages 123–133. ACM, 2002.

[3] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verification
of code with SAT. In Lori L. Pollock and Mauro Pezzè, editors, Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2006, Portland, Maine, USA, July 17-20, 2006, pages 109–120. ACM, 2006.

[4] Kyle Dewey, Lawton Nichols, and Ben Hardekopf. Automated data structure
generation: Refuting common wisdom. In Antonia Bertolino, Gerardo Canfora,
and Sebastian G. Elbaum, editors, 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pages
32–43. IEEE Computer Society, 2015.

[5] Juan P. Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and Marcelo F.
Frias. TACO: efficient sat-based bounded verification using symmetry breaking
and tight bounds. IEEE Trans. Software Eng., 39(9):1283–1307, 2013.

[6] Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F. Frias.
Analysis of invariants for efficient bounded verification. In Paolo Tonella and
Alessandro Orso, editors, Proceedings of the Nineteenth International Symposium

on Software Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, pages
25–36. ACM, 2010.

[7] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak,
and Darko Marinov. Test generation through programming in UDITA. In Jeff
Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel, editors,
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 225–234.
ACM, 2010.

[8] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. MIT Press,
2006.

[9] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov, and Sarfraz
Khurshid. Testera: A tool for testing java programs using alloy specifications.
In Perry Alexander, Corina S. Pasareanu, and John G. Hosking, editors, 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2011), Lawrence, KS, USA, November 6-10, 2011, pages 608–611. IEEE Computer
Society, 2011.

[10] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized symbolic
execution for model checking and testing. In Hubert Garavel and John Hatcliff,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 9th
International Conference, TACAS 2003, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April
7-11, 2003, Proceedings, volume 2619 of Lecture Notes in Computer Science, pages
553–568. Springer, 2003.

[11] Daniel Kroening and Michael Tautschnig. Cbmc – c bounded model checker.
In Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 389–391, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[12] Barbara Liskov and John Guttag. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1st edition, 2000.

[13] Muhammad ZubairMalik, Aman Pervaiz, Engin Uzuncaova, and Sarfraz Khurshid.
Deryaft: a tool for generating representation invariants of structurally complex
data. In Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors, 30th
International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, pages 859–862. ACM, 2008.

[14] Facundo Molina, César Cornejo, Renzo Degiovanni, Germán Regis, Pablo F.
Castro, Nazareno Aguirre, and Marcelo F. Frias. An evolutionary approach to
translate operational specifications into declarative specifications. In Leila Ribeiro
and Thierry Lecomte, editors, Formal Methods: Foundations and Applications - 19th
Brazilian Symposium, SBMF 2016, Natal, Brazil, November 23-25, 2016, Proceedings,
volume 10090 of Lecture Notes in Computer Science, pages 145–160, 2016.

[15] Nicolás Rosner, Valeria S. Bengolea, Pablo Ponzio, Shadi Abdul Khalek, Nazareno
Aguirre, Marcelo F. Frias, and Sarfraz Khurshid. Bounded exhaustive test input
generation from hybrid invariants. In Andrew P. Black and Todd D. Millstein,
editors, Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of SPLASH
2014, Portland, OR, USA, October 20-24, 2014, pages 655–674. ACM, 2014.

[16] Nicolás Rosner, Jaco Geldenhuys, Nazareno Aguirre,WillemVisser, andMarcelo F.
Frias. BLISS: improved symbolic execution by bounded lazy initialization with
SAT support. IEEE Trans. Software Eng., 41(7):639–660, 2015.

[17] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation for
.net. In Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, Second
International Conference, TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings,
volume 4966 of Lecture Notes in Computer Science, pages 134–153. Springer, 2008.

