
On the Effect of Object Redundancy Elimination in Randomly
Testing Collection Classes

Pablo Ponzio
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Valeria Bengolea
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Simón Gutiérrez Brida
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Gastón Scilingo
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Nazareno Aguirre
Dept. of Computer Science,

University of Rio Cuarto, Argentina

Marcelo Frias
Dept. of Software Engineering,

Buenos Aires Institute of Technology,
Argentina

ABSTRACT

In this paper, we analyze the effect of reducing object redundancy

in random testing, by comparing the Randoop random testing tool

with a version of the tool that disregards tests that only produce

objects that have been previously generated by other tests. As a side

effect, this variant also identifies methods in the software under

test that never participate in state changes, and uses these more

heavily when building assertions.

Our evaluation of this strategy concentrates on collection classes,

since in this context of object-oriented implementations that de-

scribe stateful objects obbeying complex invariants, object variabil-

ity is highly relevant. Our experimental comparison takes the main

data structures in java.util, and shows that our object redun-

dancy reduction strategy has an important impact in testing collec-

tions, measured in terms of code coverage and mutation killing.

ACM Reference Format:

Pablo Ponzio, Valeria Bengolea, Simón Gutiérrez Brida, Gastón Scilingo,

Nazareno Aguirre, and Marcelo Frias. 2018. On the Effect of Object Re-

dundancy Elimination in Randomly Testing Collection Classes. In SBST’18:

IEEE/ACM 11th International Workshop on Search-Based Software Testing ,

May 28–29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3194718.3194724

1 INTRODUCTION

Software testing is widely recognized as an important mechanism

for software quality assurance [3, 8, 10], and due to the inherent

difficulty and cost of its systematic application, techniques for au-

tomated test generation have received significant attention [2, 4–

6, 11, 12, 15, 16]. Evaluating automated test generation techniques

is also challenging, and often demands selecting appropriate case

studies for test generation techniques assessment, especially for

test generation techniques that are somehow affected by scalability

issues. In this context, the implementation of collection classes,

such as lists, sets and maps, has been extensively used [2, 4, 16].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBST’18, May 28–29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5741-8/18/05. . . $15.00
https://doi.org/10.1145/3194718.3194724

Collection implementations are interesting for testing for various

reasons. Firstly, they can be tested in isolation of large system li-

braries and other dependencies. Secondly, They are also relatively

small software components, whose complexity is in the structure

of the code, the conditions involved, and the invariant properties

of the objects they describe. These reasons make them suitable for

techniques that focus in precisely this kind of complexity, such

as symbolic execution based approaches [16], or approaches that

exploit class invariant specifications [4, 7]. Also, object-oriented

implementations of collections, such as those that are typically the

subject of automated testing evaluations, are paradigmatic exam-

ples of object oriented programming, that feature clear and clean

component interfaces that hide intricate implementation details,

describe stateful objects that (should) obbey complex invariants,

but that are also (at least theoretically) unbounded, leading to very

large or even infinite testing domains.

While collection classes have been the subject of so-called “sys-

tematic” automated testing techniques, it has also been shown that

random testing can be rather effective in testing collections, with

performances that are comparable, for many data structures, with

the most effective systematic techniques [14]. In this paper, we

evaluate a variant of feedback-directed random testing, as realized

by the Randoop tool [12], for testing collection classes. This variant

incorporates a mechanism to check test redundancy, based on the

idea of considering a test redundant if it only produces objects that

have already been produced in previous tests. By using this mech-

anism one diminishes object redundancy in tests, preventing one

to save tests that produce objects that have been produced before.

Moreover, as we will explain, this mechanism helps in distinguish-

ing methods that produce object updates from those that do not,

which allows us to provide a specialized treatment for observer

methods, using them more extensively in generating assertions. We

compare this technique with standard feedback-directed random

testing, and show that, in the context of container classes, object re-

dundancy elimination has a significant impact in the quality of the

generated suites, achieving an important margin in code coverage

and mutation killing, over the main classes in java.util.

2 RANDOM TESTINGWITH OBJECT

REDUNDANCY CONTROL

Random testing is the process of evaluating software on randomly

produced tests [5, 11, 12]. Randomly testing software whose inputs

SBST’18, May 28–29, 2018, Gothenburg, Sweden P. Ponzio et al.

are numeric, or in general from basic datatypes, is straightforward;

but doing so on more complex types, in particular class-based ob-

jects, calls for more sophisticated mechanisms. Various approaches

to randomly testing software with complex inputs have arised, in-

cluding some based on defining generators (e.g., [5]) and some that

exploit the classes’ programming interface for object generation

[11, 12]. Among the latter, feedback-directed random testing, as im-

plemented in the Randoop tool, has been particularly successful.

The generation mechanism works as follows. For every datatype,

a set of sequences that produce inputs of such datatype is main-

tained. To start with, a set of initial values is considered (e.g., some

initial common values for basic datatypes, null for reference types,

etc.). Then, to build a new test sequence one starts by randomly

selecting a methodm, among all methods in the software under

test, and randomly choosing, for each of the parameters ofm, test

sequences of the corresponding types, from the already collected

ones. The new test sequence is simply the sequential composition

of the sequences for all parameters, with the call to m with the

generated parameters as a last statement. As an example, consider

class BinarySearchTree, a heap-allocated implementation of dic-

tionaries (sets) over binary search trees with the following methods:

• public BinarySearchTree(), a constructor that builds an

empty dictionary.

• public boolean insert(int elem), an insertion routine that

adds a new element to a dictionary, returning true iff the element

did not already belong to the set.

• public boolean remove(int elem), removes an element

from a dictionary, provided it belonged to the set (it returns true if

removal succeeded, false if the element did not belong to the set).

• public boolean search (int elem), that searches for an

element in the dictionary, and returns true iff it finds it.

• public int smallest(), retrieves the smallest element in

the set, provided it is not empty.

• int size(), returns the number of elements in the set.

• boolean isEmpty(), returns true iff the dictionary has no

elements.

• void removeAll(), removes all the elements in the set.

Assume that the random test generation process starts with ini-

tial values {0, 1, 100} for integers, {true, f alse} for booleans, and

null for BinarySearchTree. Suppose also that the first randomly

selected method for generating a new test sequence is the construc-

tor, BinarySearchTree(). Since this method has no parameters,

the process does not need to provide values for parameters, and a

new test sequence, generating a BinarySearchTree object, is built

containing only this method call. Now suppose that the randomly

selected method in the second iteration of the generation process is

insert(int elem); both a BinarySearchTree object (the receiv-

ing object) and an integer value (argument elem) are required to

build a test. Assuming that the randomly selected values/sequences

for these arguments are the constructor and value 100, respectively,

the new test sequence is the following:

BinarySearchTree t0 = new BinarySearchTree();

int elem0 = 100;

boolean b0 = t0.insert(elem0);

This sequence (let us call it test1) produces a BinarySearchTree

object, the indirect output of insert, as well as a boolean value

(true). The sequence is saved for future test generation iterations.

Randoop’s feedback-directed generation consists of running a test

sequence as soon as it is produced [12]. In this way, the tool can

check whether the test fails or not. If it does not fail, the return

value is saved and an assertion checking that the obtained value

is the result of the call, is added for regression. Failing tests are

discarded for generation: no valid test can be produced by extending

a failing test. For instance, if the above sequence is used for the

generation of a new test sequence (let us call this new one test2),

as the following:

BinarySearchTree t0 = new BinarySearchTree();

int elem0 = 100;

boolean b0 = t0.insert(elem0);

int elem1 = t0.smallest();

and the following assertions are added to the test:

assertTrue(b0 == true);

assertTrue(elem1 == 100);

Of course, some produced sequences may fail, e.g., if one in-

vokes smallest on an empty dictionary. In such cases, the failing

behaviour is captured as a test that is saved (let us call it test3),

but the produced sequence is not added to the set of sequences for

continuing with test generation (failing tests should not be used as

part of newly created tests).

To motivate our approach to reduce object redundancy, let us

mention the following. When using Randoop to randomly generate

tests for BinarySearchTree for 3 seconds, 1307 tests are generated,

summing up 61801 lines of code. These tests produce 10144 objects,

but only 106 different objects. That is, there is a high degree of

redundancy in the number of objects involved in the tests.

Let us now present our approach to reduce object redundancy.

Consider the following additional test for the dictionary implemen-

tation:

BinarySearchTree t0 = new BinarySearchTree();

int elem0 = 100;

boolean b0 = t0.insert(elem0);

int elem1 = t0.smallest();

int elem2 = t0.smallest();

This test (let us call it test4) shares a significant part with test2.

In fact, since smallest is an observer, this test is not exercizing

any new behaviour with respect to test2. Our approach to avoid

generating test4 will be simple: tests of the kind of test2, that do

not produce new objects with respect to previous tests (notice that

this test does not generate anything new compared to test1) are

kept but not extended. In this sense, they receive a similar treatment

to failing tests in standard Randoop. Similarly, tests such as:

BinarySearchTree t0 = new BinarySearchTree();

int elem0 = 100;

boolean b0 = t0.insert(elem0);

t0.removeAll();

(let us call it test5) are produced and stored, but not used for

generating new tests, since, again, it does not produce any new

objects.

There is a difference between tests test4 and test5, however:

the former does not produce any state change in the last statement,

while the latter does change the state. Notice then that while tests

On the Effect of Obj. Redun. Elim. in Random. Test. Coll. Classes SBST’18, May 28–29, 2018, Gothenburg, Sweden

are produced and executed, one can very straightforwardly clas-

sify methods: initially all methods are unclassified, and as soon as

a method is found to produce a state change, it is classified as a

modifier. After generating tests for some time, all methods that

remain unclassified are deemed observers (they have not partici-

pated in any state change in the generated tests), and can be used

to complement generated tests with further assertions, using these

“observers”. This is our generation process, that as it can be seen,

consists of two parts: generation (and method classification), and

tests extension with further assertions.

Notice that our generation approach requires two mechanisms

that standard Randoop did not need: one for checking whether a

test produces an object that has not been produced before, and

one for checking whether the last statement of a test produces a

state change. For the latter, we explicitly observe the states before

and after the last statement in a test. But for the former, since a

precise implementation of object redundancy checking requires

storing all produced objects, and this quickly becomes infeasible,

we consider instead a significantly cheaper approach, that deems

a test redundant if it does not involve any new values for object

fields. More precisely, as tests are generated, the field extensions

[13] (values that fields received in the generated objects) of all fields

in the software under test are increasingly built; a test is considered

redundant if it does not contribute any new value to any field, i.e.,

if it did not extend the current field extensions.

3 EVALUATION

Let us evaluate the described technique on the main data structures

in java.util, more precisely: Linked List (LList), a doubly linked

list implementation of lists, an Array List implementation (AList),

maps on hash tables (HMap), and maps on red-black trees (TMap).

The classes evaluated are exactly those in java.util, in Java JDK

1.7, without any alterations. We ran both standard Randoop (Rand.)

and Randoopwith object redundancy elimination (R. Elim.) on these

case studies, with various increasing limits in test suite sizes (Limit).

Shown results correspond to the average of three runs for each tool.

All experiments were run on 3.2GHz quad-core Intel Core i5-4460

machines, with 4GB of RAM. We measure and report generation

time, test suite size (differs from the corresponding limits due to test

subsumption performed by Randoop), number of different objects

generated by the suites, and test suite quality in terms of statement

coverage, branch coverage and mutants killed.

Let us summarize the results. Firstly, it is important to notice

that our technique’s generation times are comparable with standard

Randoop, despite the fact that our approach involves some impor-

tant overhead. We conjecture this has to do with the size of the

evaluated classes and the limit for suite size, which are both rela-

tively small.We have observed an overhead of roughly 2X compared

with standard Randoop, when larger case studies (in particular, the

defects4f projects) are evaluated. Secondly, for essentially the same

suite size, the degree of redundancy is greatly reduced by our tech-

nique, which is not surprising, since it was the aim of the approach.

Finally, the quality of the produced suites is in general improved by

redundancy elimination (with the exception of Linked List, where

statement/branch coverage and mutants killed saturates at around

limit 10000). In some cases, in particular HashMap and TreeMap

(the most complex data structures analyzed), the improvement in

coverage and mutants killed is rather notorious.

4 RELATED WORK

The problem of producing redundant test cases is an important prob-

lem in automated test generation, and random testing approaches,

as well as other techniques, attempt to tackle it. Randoop in par-

ticular exploits feedback, avoiding the extension of failing tests,

and finally performing a subsumption analysis to reduce test suites,

discarding tests that are part of other, larger tests [1]. Both object

redundancy elimination and method classification are not, as far as

we are aware of, part of any random testing technique.

Other test generation techniques, such as those driven by white-

box criteria, such as Symbolic PathFinder [16], Pex [15] and UDITA

[9], also try to reduce test redundancy. They do so by incorporating

techniques that force them to produce a single test per criterion’s

equivalence class. Thus, they tend to produce suites where different

tests exercise different branches, statements, bounded paths, etc.

These mechanisms are tightly coupled to coverage-driven testing,

and are difficult to transfer to random testing.

5 CONCLUSION

We have assessed a technique to improve feedback-directed random

test generation, that incorporates a mechanism for reducing test

suite redundancy. This mechanism is based on discarding tests that

only produce objects that have already been observed in previous

tests. The technique also provides an on-the-fly classification of

methods as modifiers and observers, and exploits the latter for more

heavily building assertions. Our evaluation, based on a benchmark

of collection classes, shows that in this context this technique pro-

duces test suites with less redundancy in terms of the objects they

involve. Moreover, at the same time the generated suites achieve

important improvements in quality, compared to standard feedback-

directed random testing, measured in terms of coverage, mutation

killing and bug finding.

Random testing has been found to compete with more complex

techniques, in testing collection classes. However, on the more

complex collections, such as those based on red-black trees and

similar structures, random testing is outperformed by some more

systematic (e.g., coverage-driven) techniques. The improvement we

evaluated in this paper may have the potential to boost random

testing in this context, and we plan to investigate this further. We

also plan to evaluate the impact of object redundancy elimination

in other random testing approaches, as well as its consequences in

other aspects of test suite quality, such as test readability.

REFERENCES
[1] Web site of the Randoop test generation tool. https://randoop.github.io/randoop/.
[2] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Ciolek, Marcelo F.

Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato, Nicolás Rosner, and
Ignacio Vissani. Improving test generation under rich contracts by tight bounds
and incremental SAT solving. In Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg, March
18-22, 2013, pages 21–30. IEEE Computer Society, 2013.

[3] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, 2008.

[4] Chandrasekhar Boyapati, Sarfraz Khurshid, andDarkoMarinov. Korat: automated
testing based on java predicates. In Phyllis G. Frankl, editor, Proceedings of the
International Symposium on Software Testing and Analysis, ISSTA 2002, Roma,
Italy, July 22-24, 2002, pages 123–133. ACM, 2002.

SBST’18, May 28–29, 2018, Gothenburg, Sweden P. Ponzio et al.

Table 1: Comparison between Randoop and our Technique, in terms of generation time, suite size, number of different objects

produced, statement coverage, branch coverage and mutants killed.

Limit Gen. time Suite Size No. of Objects Stmt. Cov. Branch Cov. Mut. Killed

Rand. R. Elim. Rand. R. Elim. Rand. R. Elim. Rand. R. Elim. Rand. R. Elim. Rand. R. Elim.

LList

100 0 0 80 81 50 85 214 231 84 96 116 149

200 0 1 166 168 77 135 248 249 102 106 143 164

500 1 2 437 442 141 276 260 263 114 115 161 182

1000 2 5 919 914 224 455 263 265 116 116 171 185

Stmt. 325 2000 5 7 1896 1882 365 749 265 266 118 118 181 188

Mut. 301 3000 8 13 2871 2861 492 967 266 266 118 118 185 189

Branches. 114 5000 13 18 4844 4838 721 1321 267 266 119 118 186 190

10000 36 31 9858 9819 1232 1897 267 267 119 119 190 191

AList

100 0 0 89 88 50 63 139 145 53 62 143 144

200 0 0 171 178 61 84 145 173 57 76 154 195

500 1 2 455 455 90 163 166 184 72 86 193 229

1000 2 4 926 924 124 295 178 188 80 89 210 266

Stmt. 380 2000 6 7 1887 1868 175 534 183 202 85 95 225 285

Mut. 718 3000 8 9 2883 2818 218 780 184 202 87 95 233 296

Branches. 156 5000 18 14 4768 4733 277 1204 184 203 87 95 242 301

10000 31 30 9611 9564 428 2141 190 203 90 96 254 308

HMap

100 0 0 87 85 80 85 133 174 54 86 73 100

200 0 0 174 174 123 131 170 199 80 107 95 130

500 1 1 457 452 236 239 190 201 102 112 124 160

1000 3 1 918 924 369 398 199 203 112 119 143 181

Stmt. 360 2000 6 2 1891 1877 611 701 203 208 115 122 161 201

Mut. 566 3000 9 3 2863 2841 830 971 203 210 115 123 169 206

Branches. 230 5000 17 5 4810 4783 1217 1479 206 212 117 124 175 211

10000 42 13 9692 9645 2041 2599 211 213 121 124 182 217

TMap

100 0 0 87 85 64 76 206 347 69 174 72 206

200 0 1 175 178 106 122 242 386 92 200 101 252

500 1 2 461 460 210 245 323 478 145 266 165 342

1000 1 5 953 946 362 433 332 489 156 264 189 340

Stmt. 872 2000 3 7 1917 1929 592 794 359 508 177 276 217 358

Mut. 942 3000 5 10 2899 2914 801 1131 364 518 183 281 227 368

Branches. 522 5000 8 19 4892 4884 1190 1820 392 532 206 293 255 389

10000 22 42 9895 9850 2001 3457 434 533 233 295 292 391

[5] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. In Martin Odersky and Philip Wadler, editors,
Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000., pages 268–279.
ACM, 2000.

[6] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation
for object-oriented software. In Tibor Gyimóthy and Andreas Zeller, editors,
SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-19) and ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011, pages 416–419. ACM, 2011.

[7] Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F. Frias.
Analysis of invariants for efficient bounded verification. In Paolo Tonella and
Alessandro Orso, editors, Proceedings of the Nineteenth International Symposium
on Software Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16, 2010, pages
25–36. ACM, 2010.

[8] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software
Engineering. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 2002.

[9] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak,
and Darko Marinov. Test generation through programming in UDITA. In Jeff
Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel, editors,
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 225–234.
ACM, 2010.

[10] Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in Software Testing.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[11] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu. Automatic
testing of object-oriented software. In Jan van Leeuwen, Giuseppe F. Italiano,
Wiebe van der Hoek, Christoph Meinel, Harald Sack, and Frantisek Plasil, editors,
SOFSEM 2007: Theory and Practice of Computer Science, 33rd Conference on Current

Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic,
January 20-26, 2007, Proceedings, volume 4362 of Lecture Notes in Computer Science,
pages 114–129. Springer, 2007.

[12] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
directed random test generation. In 29th International Conference on Software
Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007, pages 75–84.
IEEE Computer Society, 2007.

[13] Pablo Ponzio, Nazareno Aguirre, Marcelo F. Frias, and Willem Visser. Field-
exhaustive testing. In Thomas Zimmermann, Jane Cleland-Huang, and Zhendong
Su, editors, Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18,
2016, pages 908–919. ACM, 2016.

[14] Rohan Sharma, Milos Gligoric, Andrea Arcuri, Gordon Fraser, and DarkoMarinov.
Testing container classes: Random or systematic? In Dimitra Giannakopoulou and
Fernando Orejas, editors, Fundamental Approaches to Software Engineering - 14th
International Conference, FASE 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, volume 6603 of Lecture Notes in Computer Science,
pages 262–277. Springer, 2011.

[15] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation for
.net. In Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, Second
International Conference, TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings,
volume 4966 of Lecture Notes in Computer Science, pages 134–153. Springer, 2008.

[16] Willem Visser, Corina S. Pasareanu, and Radek Pelánek. Test input generation
for java containers using state matching. In Lori L. Pollock and Mauro Pezzè,
editors, Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20, 2006, pages
37–48. ACM, 2006.

