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ABSTRACT

In this paper, we analyze the effect of reducing object redundancy

in random testing, by comparing the Randoop random testing tool

with a version of the tool that disregards tests that only produce

objects that have been previously generated by other tests. As a side

effect, this variant also identifies methods in the software under

test that never participate in state changes, and uses these more

heavily when building assertions.

Our evaluation of this strategy concentrates on collection classes,

since in this context of object-oriented implementations that de-

scribe stateful objects obbeying complex invariants, object variabil-

ity is highly relevant. Our experimental comparison takes the main

data structures in java.util, and shows that our object redun-

dancy reduction strategy has an important impact in testing collec-

tions, measured in terms of code coverage and mutation killing.
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1 INTRODUCTION

Software testing is widely recognized as an important mechanism

for software quality assurance [3, 8, 10], and due to the inherent

difficulty and cost of its systematic application, techniques for au-

tomated test generation have received significant attention [2, 4–

6, 11, 12, 15, 16]. Evaluating automated test generation techniques

is also challenging, and often demands selecting appropriate case

studies for test generation techniques assessment, especially for

test generation techniques that are somehow affected by scalability

issues. In this context, the implementation of collection classes,

such as lists, sets and maps, has been extensively used [2, 4, 16].
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Collection implementations are interesting for testing for various

reasons. Firstly, they can be tested in isolation of large system li-

braries and other dependencies. Secondly, They are also relatively

small software components, whose complexity is in the structure

of the code, the conditions involved, and the invariant properties

of the objects they describe. These reasons make them suitable for

techniques that focus in precisely this kind of complexity, such

as symbolic execution based approaches [16], or approaches that

exploit class invariant specifications [4, 7]. Also, object-oriented

implementations of collections, such as those that are typically the

subject of automated testing evaluations, are paradigmatic exam-

ples of object oriented programming, that feature clear and clean

component interfaces that hide intricate implementation details,

describe stateful objects that (should) obbey complex invariants,

but that are also (at least theoretically) unbounded, leading to very

large or even infinite testing domains.

While collection classes have been the subject of so-called “sys-

tematic” automated testing techniques, it has also been shown that

random testing can be rather effective in testing collections, with

performances that are comparable, for many data structures, with

the most effective systematic techniques [14]. In this paper, we

evaluate a variant of feedback-directed random testing, as realized

by the Randoop tool [12], for testing collection classes. This variant

incorporates a mechanism to check test redundancy, based on the

idea of considering a test redundant if it only produces objects that

have already been produced in previous tests. By using this mech-

anism one diminishes object redundancy in tests, preventing one

to save tests that produce objects that have been produced before.

Moreover, as we will explain, this mechanism helps in distinguish-

ing methods that produce object updates from those that do not,

which allows us to provide a specialized treatment for observer

methods, using them more extensively in generating assertions. We

compare this technique with standard feedback-directed random

testing, and show that, in the context of container classes, object re-

dundancy elimination has a significant impact in the quality of the

generated suites, achieving an important margin in code coverage

and mutation killing, over the main classes in java.util.

2 RANDOM TESTINGWITH OBJECT

REDUNDANCY CONTROL

Random testing is the process of evaluating software on randomly

produced tests [5, 11, 12]. Randomly testing software whose inputs
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are numeric, or in general from basic datatypes, is straightforward;

but doing so on more complex types, in particular class-based ob-

jects, calls for more sophisticated mechanisms. Various approaches

to randomly testing software with complex inputs have arised, in-

cluding some based on defining generators (e.g., [5]) and some that

exploit the classes’ programming interface for object generation

[11, 12]. Among the latter, feedback-directed random testing, as im-

plemented in the Randoop tool, has been particularly successful.

The generation mechanism works as follows. For every datatype,

a set of sequences that produce inputs of such datatype is main-

tained. To start with, a set of initial values is considered (e.g., some

initial common values for basic datatypes, null for reference types,

etc.). Then, to build a new test sequence one starts by randomly

selecting a methodm, among all methods in the software under

test, and randomly choosing, for each of the parameters ofm, test

sequences of the corresponding types, from the already collected

ones. The new test sequence is simply the sequential composition

of the sequences for all parameters, with the call to m with the

generated parameters as a last statement. As an example, consider

class BinarySearchTree, a heap-allocated implementation of dic-

tionaries (sets) over binary search trees with the following methods:

• public BinarySearchTree(), a constructor that builds an

empty dictionary.

• public boolean insert(int elem), an insertion routine that

adds a new element to a dictionary, returning true iff the element

did not already belong to the set.

• public boolean remove(int elem), removes an element

from a dictionary, provided it belonged to the set (it returns true if

removal succeeded, false if the element did not belong to the set).

• public boolean search (int elem), that searches for an

element in the dictionary, and returns true iff it finds it.

• public int smallest(), retrieves the smallest element in

the set, provided it is not empty.

• int size(), returns the number of elements in the set.

• boolean isEmpty(), returns true iff the dictionary has no

elements.

• void removeAll(), removes all the elements in the set.

Assume that the random test generation process starts with ini-

tial values {0, 1, 100} for integers, {true, f alse} for booleans, and

null for BinarySearchTree. Suppose also that the first randomly

selected method for generating a new test sequence is the construc-

tor, BinarySearchTree(). Since this method has no parameters,

the process does not need to provide values for parameters, and a

new test sequence, generating a BinarySearchTree object, is built

containing only this method call. Now suppose that the randomly

selected method in the second iteration of the generation process is

insert(int elem); both a BinarySearchTree object (the receiv-

ing object) and an integer value (argument elem) are required to

build a test. Assuming that the randomly selected values/sequences

for these arguments are the constructor and value 100, respectively,

the new test sequence is the following:

BinarySearchTree t0 = new BinarySearchTree();

int elem0 = 100;

boolean b0 = t0.insert(elem0);

This sequence (let us call it test1) produces a BinarySearchTree

object, the indirect output of insert, as well as a boolean value

(true). The sequence is saved for future test generation iterations.

Randoop’s feedback-directed generation consists of running a test

sequence as soon as it is produced [12]. In this way, the tool can

check whether the test fails or not. If it does not fail, the return

value is saved and an assertion checking that the obtained value

is the result of the call, is added for regression. Failing tests are

discarded for generation: no valid test can be produced by extending

a failing test. For instance, if the above sequence is used for the

generation of a new test sequence (let us call this new one test2),

as the following:

BinarySearchTree t0 = new BinarySearchTree();

int elem0 = 100;

boolean b0 = t0.insert(elem0);

int elem1 = t0.smallest();

and the following assertions are added to the test:

assertTrue(b0 == true);

assertTrue(elem1 == 100);

Of course, some produced sequences may fail, e.g., if one in-

vokes smallest on an empty dictionary. In such cases, the failing

behaviour is captured as a test that is saved (let us call it test3),

but the produced sequence is not added to the set of sequences for

continuing with test generation (failing tests should not be used as

part of newly created tests).

To motivate our approach to reduce object redundancy, let us

mention the following. When using Randoop to randomly generate

tests for BinarySearchTree for 3 seconds, 1307 tests are generated,

summing up 61801 lines of code. These tests produce 10144 objects,

but only 106 different objects. That is, there is a high degree of

redundancy in the number of objects involved in the tests.

Let us now present our approach to reduce object redundancy.

Consider the following additional test for the dictionary implemen-

tation:

BinarySearchTree t0 = new BinarySearchTree();

int elem0 = 100;

boolean b0 = t0.insert(elem0);

int elem1 = t0.smallest();

int elem2 = t0.smallest();

This test (let us call it test4) shares a significant part with test2.

In fact, since smallest is an observer, this test is not exercizing

any new behaviour with respect to test2. Our approach to avoid

generating test4 will be simple: tests of the kind of test2, that do

not produce new objects with respect to previous tests (notice that

this test does not generate anything new compared to test1) are

kept but not extended. In this sense, they receive a similar treatment

to failing tests in standard Randoop. Similarly, tests such as:

BinarySearchTree t0 = new BinarySearchTree();

int elem0 = 100;

boolean b0 = t0.insert(elem0);

t0.removeAll();

(let us call it test5) are produced and stored, but not used for

generating new tests, since, again, it does not produce any new

objects.

There is a difference between tests test4 and test5, however:

the former does not produce any state change in the last statement,

while the latter does change the state. Notice then that while tests
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are produced and executed, one can very straightforwardly clas-

sify methods: initially all methods are unclassified, and as soon as

a method is found to produce a state change, it is classified as a

modifier. After generating tests for some time, all methods that

remain unclassified are deemed observers (they have not partici-

pated in any state change in the generated tests), and can be used

to complement generated tests with further assertions, using these

“observers”. This is our generation process, that as it can be seen,

consists of two parts: generation (and method classification), and

tests extension with further assertions.

Notice that our generation approach requires two mechanisms

that standard Randoop did not need: one for checking whether a

test produces an object that has not been produced before, and

one for checking whether the last statement of a test produces a

state change. For the latter, we explicitly observe the states before

and after the last statement in a test. But for the former, since a

precise implementation of object redundancy checking requires

storing all produced objects, and this quickly becomes infeasible,

we consider instead a significantly cheaper approach, that deems

a test redundant if it does not involve any new values for object

fields. More precisely, as tests are generated, the field extensions

[13] (values that fields received in the generated objects) of all fields

in the software under test are increasingly built; a test is considered

redundant if it does not contribute any new value to any field, i.e.,

if it did not extend the current field extensions.

3 EVALUATION

Let us evaluate the described technique on the main data structures

in java.util, more precisely: Linked List (LList), a doubly linked

list implementation of lists, an Array List implementation (AList),

maps on hash tables (HMap), and maps on red-black trees (TMap).

The classes evaluated are exactly those in java.util, in Java JDK

1.7, without any alterations. We ran both standard Randoop (Rand.)

and Randoopwith object redundancy elimination (R. Elim.) on these

case studies, with various increasing limits in test suite sizes (Limit).

Shown results correspond to the average of three runs for each tool.

All experiments were run on 3.2GHz quad-core Intel Core i5-4460

machines, with 4GB of RAM. We measure and report generation

time, test suite size (differs from the corresponding limits due to test

subsumption performed by Randoop), number of different objects

generated by the suites, and test suite quality in terms of statement

coverage, branch coverage and mutants killed.

Let us summarize the results. Firstly, it is important to notice

that our technique’s generation times are comparable with standard

Randoop, despite the fact that our approach involves some impor-

tant overhead. We conjecture this has to do with the size of the

evaluated classes and the limit for suite size, which are both rela-

tively small.We have observed an overhead of roughly 2X compared

with standard Randoop, when larger case studies (in particular, the

defects4f projects) are evaluated. Secondly, for essentially the same

suite size, the degree of redundancy is greatly reduced by our tech-

nique, which is not surprising, since it was the aim of the approach.

Finally, the quality of the produced suites is in general improved by

redundancy elimination (with the exception of Linked List, where

statement/branch coverage and mutants killed saturates at around

limit 10000). In some cases, in particular HashMap and TreeMap

(the most complex data structures analyzed), the improvement in

coverage and mutants killed is rather notorious.

4 RELATED WORK

The problem of producing redundant test cases is an important prob-

lem in automated test generation, and random testing approaches,

as well as other techniques, attempt to tackle it. Randoop in par-

ticular exploits feedback, avoiding the extension of failing tests,

and finally performing a subsumption analysis to reduce test suites,

discarding tests that are part of other, larger tests [1]. Both object

redundancy elimination and method classification are not, as far as

we are aware of, part of any random testing technique.

Other test generation techniques, such as those driven by white-

box criteria, such as Symbolic PathFinder [16], Pex [15] and UDITA

[9], also try to reduce test redundancy. They do so by incorporating

techniques that force them to produce a single test per criterion’s

equivalence class. Thus, they tend to produce suites where different

tests exercise different branches, statements, bounded paths, etc.

These mechanisms are tightly coupled to coverage-driven testing,

and are difficult to transfer to random testing.

5 CONCLUSION

We have assessed a technique to improve feedback-directed random

test generation, that incorporates a mechanism for reducing test

suite redundancy. This mechanism is based on discarding tests that

only produce objects that have already been observed in previous

tests. The technique also provides an on-the-fly classification of

methods as modifiers and observers, and exploits the latter for more

heavily building assertions. Our evaluation, based on a benchmark

of collection classes, shows that in this context this technique pro-

duces test suites with less redundancy in terms of the objects they

involve. Moreover, at the same time the generated suites achieve

important improvements in quality, compared to standard feedback-

directed random testing, measured in terms of coverage, mutation

killing and bug finding.

Random testing has been found to compete with more complex

techniques, in testing collection classes. However, on the more

complex collections, such as those based on red-black trees and

similar structures, random testing is outperformed by some more

systematic (e.g., coverage-driven) techniques. The improvement we

evaluated in this paper may have the potential to boost random

testing in this context, and we plan to investigate this further. We

also plan to evaluate the impact of object redundancy elimination

in other random testing approaches, as well as its consequences in

other aspects of test suite quality, such as test readability.
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