
Model Checking Propositional Deontic Temporal
Logic via a µ-calculus Characterization

Araceli Acosta1, Cecilia Kilmurray2,
Pablo F. Castro2,3, and Nazareno M. Aguirre2,3

1 Facultad de Matemática, Astronomı́a y F́ısica, Universidad Nacional de Córdoba,
Córdoba, Argentina, aacosta@famaf.unc.edu.ar

2 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Argentina, {ckilmurray,pcastro,naguirre}@dc.exa.unrc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

Abstract. In this paper, we present a characterization of a propositional
deontic temporal logic into µ-calculus. This logic has been proposed to
specify and reason about fault tolerant systems, and even though is
known to be decidable, no tool realizing its corresponding decision pro-
cedure has been developed. A main motivation for our work is enabling
for the use of model checking, for analyzing specifications in this deontic
temporal logic.
We present the technical details involved in the characterization, and
prove that the model checking problem on the deontic temporal logic
is correctly reduced to µ-calculus model checking. We also show that
counterexamples are preserved, which is crucial for our model checking
purposes. Finally, we illustrate our approach via a case study, including
the verification of some properties using a µ-calculus model checker.

1 Introduction

With the increasing demand for highly dependable and constantly available sys-
tems, being able to reason about computer systems behavior in order to provide
strong guarantees for software correctness, has gained considerable attention,
especially for safety critical systems. In this context, a problem that deserves at-
tention is that of capturing faults, understood as unexpected events that affect
a system, as well as expressing and reasoning about the properties of systems in
the presence of such faults.

Various researchers have been concerned with formally expressing fault tol-
erant behavior, and some formalisms and tools associated with this problem
have been proposed [1, 20, 18, 7, 9, 12, 16, 15, 14, 13]. A particular trend in formal
methods for fault tolerance, that concerns the work in this paper, is based on
the observation that normal vs. abnormal behaviors can be treated as behav-
iors “obeying” and “violating” the rules of correct system conduct, respectively.
From a logical point of view, this calls for a deontic approach, since deontic
operators are especially well suited to express permission, obligation and pro-
hibition, and thus to describe fault tolerant systems and their properties [6].

This idea has been exploited by various researchers in different ways (see for
instance [6, 17, 8, 5]). In this paper, we are concerned with the approach taken in
[5], where a propositional deontic logic (PDL) is introduced, and then extended
with temporal logic features to express temporal behavior with a distinction
between normative (i.e., non faulty) and non normative (i.e., faulty) behaviors,
with straightforward applications to fault tolerance.

In the context of formal approaches to software development, it is gener-
ally recognized that powerful (semi-)automated analysis techniques are essential
for a method to be effectively used in practice. In particular, the possibility of
algorithmically checking whether a PDL formula, or a formula in its temporal
extension DTL, holds for a given system is of great relevance for the take up
of these logics as part of a formal method for fault tolerance. Fortunately, both
PDL and its temporal extension DTL are known to be decidable [5]: a decision
procedure for the logic DTL, based on a tableaux calculus, is proposed in [4].
However, the proposed decision procedure had a theoretical motivation, namely,
proving that the logic was decidable; in fact, this tableaux calculus proved useful
for investigating decidability and the logic’s complexity, but was not devised as
part of a tool for formal verification. Because of this fact, no practical consid-
erations were taken in the definition of this decision procedure, and it has not
been implemented in a tool for the analysis of fault tolerant specifications.

In this paper, we are concerned with the definition of a decision procedure for
PDL and its extension DTL, with the purpose of being used for automated ver-
ification. Our approach consists of characterizing PDL/DTL in µ-calculus, and
then use a µ-calculus model checker in order to verify whether a given system sat-
isfies a fault tolerance property expressed in PDL/DTL. We thoroughly present
our characterization of PDL/DTL in µ-calculus, and show how a fault tolerant
system, captured by a deontic structure, can be analyzed for the satisfaction of
PDL/DTL formulas, describing fault tolerant properties of the system. More-
over, we show that our translation from PDL/DTL into µ-calculus is correct, in
the sense that the model checking problem in PDL/DTL is soundly reduced to
model checking in µ-calculus. Moreover, we also show that counterexamples are
maintained, meaning that every µ-calculus counterexample, resulting from the
verification of a translated property on a translated model, can be mechanically
traced back to a counterexample of the original deontic temporal specification.
Finally, we provide some experimental results using the Mucke µ-calculus model
checker [2], on a small case study illustrating how deontic structures capture
systems with faults, and also illustrating our approach, as well as the details of
our translation.

The paper proceeds as follows. In section 2 we present some preliminaries,
including the syntax and semantics of PDL, as well as those of the µ-calculus.
Section 3 introduces our translation from the core logic PDL to µ-calculus, and a
proof of the correctness of the translation. Section 4 introduces DTL, consisting
of PDL extended with CTL temporal operators, and Section 5 deals with the
translation from DTL to µ-calculus, including a proof of the correctness of this
characterization. The fact that counterexamples are preserved is also studied in

this section. Section 6 presents an example, consisting of a simple system with
faults, and various sample properties regarding this faulty system and its fault
tolerance mechanism. Finally, in Section 7 we draw some conclusions and discuss
our current lines of work.

2 Preliminaries

2.1 A Propositional Deontic Logic (PDL)

We start this section with an introduction to the logic presented in [5], with
some remarks. This logic is a propositional deontic action logic with boolean
operators over actions, which comprises vocabularies and actions.

Definition 1 (Language). A language or vocabulary is a tuple 〈Φ,∆〉, where Φ
is a finite set of propositional variables and ∆ is a finite set of primitive actions.

Primitive actions are used for describing the events that may occur during
the execution of the system. Intuitively, events are identified with state changes.
Primitive actions can be composed using the action operators ∅ (the abort ac-
tion), U (the execution of any action of the system), t (nondeterministic choice
of two actions) and u (parallel execution of two actions). Also, given an action
α, ¬α denotes the execution of an alternative action to α (complementation).
Given a set ∆0 of primitive actions, the set ∆ of action terms is defined as the
closure of ∆0 using the above action operators. From now on, Greek letters are
used as action variables, and lowercase Roman letters are used as propositional
variables.

Given a language 〈Φ0, ∆0〉4, the set Φ of formulas over this language is defined
as the minimal set satisfying the following:

– Φ0 ⊆ Φ,
– >,⊥ ∈ Φ,
– if α, β ∈ ∆, then α =act β ∈ Φ,
– if ϕ,ψ ∈ Φ, then ϕ ∧ ψ ∈ Φ and ¬ϕ ∈ Φ,
– if ϕ ∈ Φ and α ∈ ∆, then 〈α〉ϕ ∈ Φ,
– if α ∈ ∆, then P (α) ∈ Φ, Pw(α) ∈ Φ.

The models of PDL are given by deontic structures, which essentially con-
sist of standard Kripke structures where each arc is colored with one of two
colors: green, intuitively corresponding to allowed transitions, or red, intuitively
denoting forbidden transitions (representing faults). Formally, given a language
〈Φ0, ∆0〉, a deontic structure M over it is a tuple 〈W,R, E , I,P〉, where:

– W is a set of states,
– R : E → W → W is a function that for each e ∈ E returns a function
R(e) :W →W. We say that w

e→ w′ when (R(e))(w) = w′.

4 We will use the 0 subscript when referring to languages for deontic formulas (in PDL
or DTL).

– E is a non-empty set of events.
– I is an interpretation function, such that:
• for each p ∈ Φ0 : I(p) ⊆ W,
• for each α ∈ ∆0 : I(α) ⊆ E ;

function I must also satisfy the following:
I.1 for each αi ∈ ∆0 :| I(αi)−

⋃
{I(αj) | αj ∈ (∆0 − αi)} |≤ 1;

I.2 for each e ∈ E : if e ∈ I(αi) ∩ I(αj) where αi 6= αj ∈ ∆0, then⋂
{I(αk) | αk ∈ ∆0 ∧ e ∈ I(αk)} = {e};

I.3 E =
⋃
αi∈∆0

I(αi).
– P ⊆ W × E is a relationship indicating, for every state, the events that are

allowed in it.

Due to space restrictions, we are unable to provide a thorough explanation of
the intuitions behind the conditions on I. We refer the reader to [5] for a more
detailed explanation. It is worth remarking that the conditions on I imply that
there is a one-to-one mapping between events and subsets of actions; basically,
we can identify every subset of actions as the event that the parallel execution
of these actions produces.

The interpretation mapping I can be extended to action terms, as follows:

– I(¬ϕ) =W − I(ϕ),
– I(ϕ ∧ ψ) = I(ϕ) ∩ I(ψ),
– I(α t β) = I(α) ∪ I(β),
– I(α u β) = I(α) ∩ I(β),
– I(¬α) = E − I(α),
– I(∅) = ∅,
– I(U) = E .

Satisfaction of formulas in a deontic structure is defined, given a deontic
structure M = 〈W,R, E , I,P〉 and a state w ∈ W, as follows:

– w,M |=PDL p⇐⇒ w ∈ I(p) with p ∈ Φ0,
– w,M |=PDL α =act β ⇐⇒ I(α) = I(β),
– w,M |=PDL ¬ϕ⇐⇒ not w,M |=PDL ϕ,
– w,M |=PDL ϕ1 ∧ ϕ2 ⇐⇒ w,M |=PDL ϕ1 and w,M |=PDL ϕ2,
– w,M |=PDL 〈α〉ϕ ⇐⇒ there exists some w′ ∈ W and e ∈ I(α) such that

w
e→ w′ and w′,M |=PDL ϕ,

– w,M |=PDL P (α)⇐⇒ for all e ∈ I(α), we have P(w, e),
– w,M |=PDL Pw(α)⇐⇒ there exists some e ∈ I(α) such that P(w, e).

From this definition, it becomes apparent that the “color” of arcs given by a
deontic structure is captured by the relation P. We have two deontic operators
for permission, the standard one and “weak” permission. Obligation is defined
in terms of these two, as follows:

O(α) = P (α) ∧ ¬Pw(¬α).

2.2 The µ-calculus

The µ-calculus, as other logics with fixed point operators, is an expressive for-
malism useful for investigating the expressiveness and algorithmic complexity of
temporal and modal logics. A detailed introduction to µ-calculus can be found
in [19]. In this section, we briefly recall the basic definitions regarding this for-
malism, since we use it as a target framework for interpreting the logic PDL,
and its extension DTL, introduced in Section 4.

Given a language 〈Φ1, ∆1〉5 and a set V of variables, the set Φµ of µ−calculus
formulas is defined as follows:

– Φ1 ⊆ Φµ
– V ⊆ Φµ
– if ϕ,ϕ1, ϕ2 ∈ Φµ, then ϕ1 ∧ ϕ2 ∈ Φµ and ¬ϕ ∈ Φµ
– if ϕ ∈ Φµ and α ∈ ∆1, then 〈α〉ϕ ∈ Φµ and [α]ϕ ∈ Φµ
– if ϕ ∈ Φµ, then µR.ϕ ∈ Φµ and νR.ϕ ∈ Φµ.

It is required that bound variables appear under an even number of negations.
Models of µ-calculus formulas are Kripke structures. More precisely, given a

language 〈Φ1, ∆1〉, a model for it is a tuple Mµ = 〈S, T, L〉, where:

– S is a set of states.
– L is a function L : Φ1 → ℘(S) assigning to each proposition the set of states

where it is true.
– T is a function T : ∆1 → ℘(S × S) which, given an action, returns a

binary relation whose domain and codomain is S. We say that s
a→ s′ if

(s, s′) ∈ T (a).

Satisfaction in µ-calculus is defined as follows. Given a model Mµ, a state
s ∈ S and a formula ϕ without free variables, s,M |=µ ϕ holds if and only if
s ∈ JϕKMµ

ρ, where ρ is a variable assignment (a mapping assigning values to
variables). The interpretation JϕKMµρ is recursively defined in the following way:

– JpKMµ
ρ = L(p) for p ∈ Φ1,

– JRKMµ
ρ = ρ(R) for R ∈ V ,

– J¬ϕKMµ
ρ = S − JϕKMµ

ρ,
– Jϕ ∧ ψKMµ

ρ = JψKMµ
ρ ∩ JϕKMµ

ρ,

– J〈a〉ϕKMµ
ρ = {s ∈ S | ∃t[s a→ t ∧ t ∈ JϕKMµ

ρ]},
– J[a]ϕKMµ

ρ = {s ∈ S | ∀t[s a→ t ∧ t ∈ JϕKMµ
ρ]},

– JµR.ϕKMµ
ρ is the least fixed point of the function τ : ℘(S)→ ℘(S), defined

as:
τ(T) = JϕKMµ

ρ[R 7→ T]6,

– JνR.ϕKMµρ is defined in the same way, but using the greatest fixed point,

We will use JϕKM instead of JϕKMµ
when no confusion is possible.

5 We will use the 1 subscript when referring to languages for µ-calculus formulas, to
distinguish these from those for the deontic logics.

6 (ρ[R 7→ T]) is the assignment ρ “updated” with the mapping R 7→ T , i.e., it maps
all elements as ρ, except for R which is mapped to T .

3 A µ-calculus Characterization of PDL

In this section, we start with our characterization of deontic temporal logic in
terms of µ-calculus, by first dealing with the deontic logic PDL. As we explained
in section 1, the purpose of this characterization, which we materialize via a
translation Tr, is to be able to use µ-calculus model checkers for the verifica-
tion of fault tolerance properties of systems, specified in PDL and its temporal
extension DTL.

In what concerns this section, we expect to reduce PDL model checking to
µ-calculus model checking, via Tr; that is, whenever we obtain that

Trm(w,M) 6|=µ Tr(ϕ)

then we must have that
w,M 6|=DPL ϕ

and vice versa. Thus, we need the translation from PDL to µ-calculus to satisfy
the following:

w,M |=PDL ϕ⇐⇒ Trm(w,M) |=µ Tr(ϕ).

Theoretically, translations between logics satisfying this property are called for-
ward morphisms [10]. As we will show later on, this property allows us to guar-
antee that the model checking problem is preserved by translation.

Let us start by formally defining our translation.

Definition 2. Let 〈Φ0, ∆0〉 be a language, and M = 〈W,R, E , I,P〉 be a deontic
structure over that language. The mapping Gen : E → ℘(∆0) is defined as:

Gen(e) = {α | α ∈ ∆0 ∧ e ∈ I(α)}

Given an event e, Gen(e) corresponds to the set of actions whose parallel exe-
cution yield event e.

Lemma 1. Gen is injective.
Proof: Let e, e′ ∈ E be events such that Gen(e) = Gen(e′) = {α1, α2, . . . , αn}.
First, notice that because of I.3, n 6= 0.

If n = 1, we have that e, e′ ∈ I(α1), and ∀α ∈ ∆0 − {α1} : e /∈ I(α) ∧ e′ /∈
I(α). Then, {e, e′} ⊆ I(α1)−

⋃
{I(αi) | αi ∈ (∆0 − α1), and because of I.17, it

must be the case that e = e′.
If, on the other hand, n > 1, then there exist αi, αj ∈ ∆0 such that αi 6= αj,

{e, e′} ⊆ I(αi) and {e, e′} ⊆ I(αj). But because of I.28, it must be the case that
e = e′.

Let us now define the translation of PDL models into corresponding µ-
calculus structures. This is, in fact, the first part of translation Tr.

7 For each αi ∈ ∆0 :| I(αi)−
⋃
{I(αj) | αj ∈ (∆0 − αi)} |≤ 1.

8 For each e ∈ E : if e ∈ I(αi) ∩ I(αj) where αi 6= αj ∈ ∆0, then
⋂
{I(αk) | αk ∈

∆0 ∧ e ∈ I(αk)} = {e}.

Definition 3. Let 〈Φ0, ∆0〉 be a language, and M = 〈W,R, E , I,P〉 and w ∈ W
be a deontic structure. The mapping Trm is defined as:

Trm(w,M) = w,Mµ,

where Mµ = 〈S, T, L〉 is a model of the language 〈Φ1, ∆1〉 such that:

– ∆1 = ℘(∆0),
– Φ1 = Φ0 ∪ {Pa | a ∈ ∆1} ∪ {Ea | a ∈ ∆1},
– S =W,

– T = {w Gen(e)−→ w′ | w e−→ w′ ∈ R},
– L(p) = I(p), for every p ∈ Φ0,
– L(Pa) = {w | ∃e ∈ E : (w, e) ∈ P ∧Gen(e) = a}, for every a ∈ ∆1,

– L(Ea) = {s | ∃s′ : s
a−→ s′ ∈ T}.

It is worth noting that, in the above model translation, and since each event
is the result of the parallel execution of a set of actions, we capture each event
as the set of actions whose parallel execution produces it.

Now let us start dealing with the translation of formulas. First, notice that
PDL formulas use action letters from ∆0, whereas µ-calculus formulas use names
coming from ∆1 (i.e., subsets of ∆0). So, our translation must relate both sets.
In order to do so, we define the mapping Set, as follows.

Definition 4. The mapping Set : ∆0 → ℘(∆1) is defined as

Set(α) = {a | a ∈ ∆1 ∧ α ∈ a}.

This mapping is extended recursively to action terms, in the following way:

– Set(∅) = ∅,
– Set(U) = ∆1,
– Set(¬α) = ∆1 − Set(α),
– Set(α t β) = Set(α) ∪ Set(β),
– Set(α u β) = Set(α) ∩ Set(β).

Finally, we are ready to define function Tr, that translates PDL formulas to
µ-calculus formulas.

Definition 5. The translation Tr, mapping PDL formulas to µ-calculus formu-
las, is defined as follows:

– Tr(p) = p, for every p ∈ Φ0,
– Tr(>) = >,
– Tr(⊥) = ⊥,
– Tr(¬ϕ) = ¬Tr(ϕ),
– Tr(ϕ1 ∧ ϕ2) = Tr(ϕ1) ∧ Tr(ϕ2),
– Tr(α =act β) =

∧
a∈(Set(α)∪Set(β))−(Set(α)∩Set(β)) ¬Ea,

– Tr(〈α〉ϕ) =
∨
a∈Set(α)〈a〉Tr(ϕ),

– Tr([α]ϕ) =
∧
a∈Set(α)(Ea → [a]Tr(ϕ)),

– Tr(P (α)) =
∧
a∈Set(α)(Ea → Pa),

– Tr(Pw(α)) =
∨
a∈Set(α) Pa.

3.1 On the Correctness of Tr

Let us briefly discuss some characteristics of the defined translation. Transla-
tions between logical systems have been extensively studied by the community
of Institutions [11, 10]. In this context, logical systems are captured in abstract
terms. The most usual kinds of translations between logical systems are the so
called morphisms and comorphisms (or representations). In both of these cases,
translations of models and formulas go in opposite directions. More precisely, a
morphism between logical systems L and L′ translates models of L into mod-
els of L′, and formulas of L′ into formulas of L, in a property-preserving way.
Comorphisms, on the other hand, behave in the opposite way. Both cases then
have the characteristics of Galois connections.

Our translation differs from morphisms and comorphisms, in the sense that
it maps models and formulas “in the same direction”. This kind of translation
is called forward morphism [10]. Fortunately, this is the kind of morphism that
we need, since forward morphisms are well suited for model checking reduction
(the purpose of our translation). In section 5, we show that traces of a translated
model can be traced back to the traces of the original model. Intuitively, this
means that our translation preserves counterexamples, a crucial property for our
model checking purposes.

The following theorem establishes that our translation is sound with respect
to model checking reduction. It is proved straightforwardly by induction on the
structure of PDL formulas, and resorting to their semantics and the definition
of translation Tr. Due to space restrictions, the proof is not reproduced here.

Theorem 1. Given a language 〈Φ0, ∆0〉, a structure M = 〈W,R, E , I,P〉 and
a state w ∈ W, we have:

w,M |= φ⇔ Trm(w,M) |=µ Tr(φ).

4 A Temporal Extension of PDL

The propositional deontic logic PDL that we introduced previously involves de-
ontic operators for permission and obligation. In order to be able to express fault
tolerance system properties, these deontic operators are combined with temporal
ones, so that we can predicate about system executions. The temporal compo-
nent of the resulting logic, that we call DTL, is a CTL-like logic. Besides the
traditional CTL operators, this logic features an operator called Done, which
enables one to talk about the immediate past. Intuitively, Done(α) is true when
α was the last action executed in the system. Let us formally define this logic.

Definition 6. Given a PDL language (Φ0, ∆0), the set of temporal formulas
over it is defined as the minimal set ΦT satisfying the following:

– Φ ⊆ ΦT ,
– if α ∈ ∆, then Done(α) ∈ ΦT ,
– if ϕ,ψ ∈ ΦT , then ϕ ∧ ψ ∈ ΦT and ¬ϕ ∈ ΦT ,

– if ϕ,ψ ∈ ΦT , then AGϕ ∈ ΦT , ANϕ ∈ ΦT , A(ϕUψ) ∈ ΦT , E(ϕUψ) ∈ ΦT .

Note that Φ represents the set of PDL formulas and ∆ the set of actions
terms as defined on page 3.

Other CTL operators can be defined from the basic ones in the above def-
inition, in the usual way. The temporal operators enable us to reason about
execution traces. Let us define these traces formally.

Definition 7. Given a structure M = 〈W,R, E , I,P〉 and an initial state w0,

a trace or path is a labeled sequence s0
e0→ s1

e1→ s2
e2→ . . . of states and events,

such that for every i: si
ei→ si+1 ∈ R and s0 = w.

The set of all the traces starting in w is denoted by Σ(w0).

Given a trace π, we use the following notation to refer to states and events
in a trace, to refer to subtraces, and to state that a trace is a prefix of another
one:

– π.i = si,
– π→.i = ei,

– π[i, j] (where i ≤ j) is the subpath si
ei→ · · · ej−1→ sj ,

– we say that π′ � π, if π′ is an initial subpath of π; i.e. s0
e′0→ s′1

e′1→ s′2
e′2→

. . . s′k � s0
e0→ s1

e1→ s2
e2→ . . . iff s′i = si for all i ≤ k and e′i = ei for all i < k.

Let us define satisfaction for our deontic temporal logic (DTL). This defini-
tion extends the definition of satisfaction for PDL.

Definition 8. Given a structure M = 〈W,R, E , I,P〉, an initial state w0 ∈ W
and a path π ∈ Σ(w0), the relation |=DTL is defined as follows:

– π, i,M |=DTL ϕ⇐⇒ π.i,M |=PDL, if ϕ ∈ Φ,
– π, i,M |=DTL ¬ϕ⇐⇒ not π, i,M |=DTL ϕ,
– π, i,M |=DTL ϕ ∧ ψ ⇐⇒ π, i,M |=DTL ϕ and π, i,M |=DTL ψ,
– π, i,M |=DTL Done(α)⇐⇒ i > 0 and π→.(i− 1) ∈ I(α),
– π, i,M |=DTL ANϕ⇐⇒ for every π′ ∈ Σ(π.0) such that π[0, i] � π′ we have

that π′, i+ 1,M |=DTL ϕ,
– π, i,M |=DTL AGϕ⇐⇒ for every π′ ∈ Σ(π.0) such that π[0, i] � π′ we have

that ∀j ≥ i : π′, j,M |=DTL ϕ,
– π, i,M |=DTL A(ϕUψ) ⇐⇒ for every π′ ∈ Σ(π.0) such that π[0, i] � π′ we

have that ∃j ≥ i : π′, j,M |=DTL ψ and ∀k : i ≤ k < j : π′, k,M |=DTL ϕ,
– π, i,M |=DTL E(ϕUψ) ⇐⇒ there exists π′ ∈ Σ(π.0) such that π[0, i] � π′

we have that ∃j ≥ i : π′, j,M |=DTL ψ and ∀k : i ≤ k < j : π′, k,M |=DTL ϕ.

Given a structure M = 〈W,R, E , I,P〉, an initial state w0 ∈ W and a formula
ϕ, we say that

M,w0 |= ϕ

if and only if
∀π ∈ Σ(w0) : π, 0,M |=DTL ϕ.

5 Translating DTL Formulas to µ-calculus

Now that we have extended PDL with temporal operators, obtaining the logic
DTL, we need also to extend the definition of Tr, to cope with temporal formulas.
Let us first deal with the translation of models, via a translation that we refer to
as Trtm. This involves explicitly identifying the initial states, which we achieve
via a function called Trs in the definition below.

Definition 9. Let (Φ0, ∆0) be a language, M = 〈W,R, E , I,P〉 a structure over
that language, and w0 ∈ W an initial state in M . The functions Trtm and Trs

are defined as follows:

Trtm(M) = Mµ

Trs(w) = sw∅

where Mµ = 〈S, T, L〉, a µ-calculus model for the language 〈Φ1, ∆1〉, and sw∅ ∈ S
are obtained in the following way:

– ∆1 = ℘(∆0),

– Φ1 = Φ0 ∪ {Pa | a ∈ ∆1} ∪ {Ea | a ∈ ∆1} ∪ {Da | a ∈ ∆1},
– S = {swa | w ∈ W ∧ a ∈ (Im(Gen) ∪ {∅})}, 9

– T = {swa
Gen(e)−→ sw

′

Gen(e) | w
e−→ w′ ∈ R ∧ a ∈ (Im(Gen) ∪ {∅})},

– L(p) = I(p) for every p ∈ Φ0,

– L(Pa) = {w | ∃e ∈ E : (w, e) ∈ P ∧Gen(e) = a} for every a ∈ ∆1,

– L(Ea) = {s | ∃s′ : s
a−→ s′ ∈ T},

– L(Da) = {swa | w ∈ W}.

Let us now deal with the translation of DTL formulas into µ-calculus. Because
of the operator Done, this translation requires characterizing the last executed
action, as it can be seen in the next definition.

Definition 10. The translation Tr from PDL to µ-calculus is extended to DTL
formulas in the following way:

– for ϕ ∈ Φ, Tr(ϕ) is defined as described in Definition 5,

– Tr(¬ϕ) = ¬Tr(ϕ),

– Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ),

– Tr(Done(α)) =
∨
a∈Set(α)Da,

– Tr(ANϕ) = Tr([U]ϕ),

– Tr(ENϕ) = Tr(〈U〉ϕ),

– Tr(AGϕ) = νR.(Tr(ϕ) ∧
∧
a∈∆1

[a]R),

– A(ϕUψ) = µR.(Tr(ψ) ∨ (Tr(ϕ) ∧
∧
a∈∆1

[a]R)),

– E(ϕUψ) = µR.(Tr(ψ) ∨ (Tr(ϕ) ∧
∨
a∈∆1

〈a〉R)).

9 Im(f) denotes the image of f .

5.1 On the Correctness of the Extended Tr

The correctness of the translation extended to DTL is proved by generalizing
the theorem regarding the correctness of the translation on PDL. Let us first
define the translation of paths.

Definition 11. The mapping Trp is defined as follows:

Trp(w0
e0→ w1

e1→ w2
e2→ . . .) = sw0

∅
Gen(e0)→ sw1

Gen(e0)

Gen(e1)→ sw2

Gen(e1)

Gen(e2)→

Notice that, since Gen is injective, given a translated trace π in the target
model, we have a unique trace π′ in the original model, such that Trp(π′) = π.
In other words, the translation of traces is invertible. On the other hand, Trp is
surjective by construction, and therefore we obtain the following Lemma.

Lemma 2. Trp is a bijection.

The following theorem enables us to relate validities in µ-calculus with va-
lidities in the deontic-temporal logic DTL.

Theorem 2. Given a language 〈Φ0, ∆0〉, a structure M = 〈W,R, E , I,P〉, an
initial state w0 ∈ W, and a formula φ, swa ∈ JTr(φ)KTrtm(M) if and only if
∀π, i · π, i,M |=DTL φ when swa = Trp(π).i.

This theorem implies the correctness of the translation of DTL formulas, in
a straightforward way.

Corollary 1. Given a language 〈Φ0, ∆0〉, a structure M = 〈W,R, E , I,P〉, an
initial state w0 ∈ W and a formula ϕ, the following holds:

w0,M |=DTL ϕ↔ sw0

∅ , T rtm(M) |=µ Tr(ϕ)

It is worthwhile remarking that, since there is a bijection between paths (and
states and translated states maintain equivalent properties), for every path in a
translated model that is a counterexample of a given translated property, a trace
in the original model can be systematically constructed, which is guaranteed to
be a counterexample of the original property. In other words, counterexamples
that are obtained using µ-calculus model checkers can be systematically trans-
lated into counterexamples of the original DTL specification.

6 An Example

In this section, we describe a small example illustrating our translation. More-
over, we will use the Mucke model checker [2] in order to verify fault tolerance
properties over this example. Our example consists of a simple communication
scenario, composed of a producer, a consumer, and a channel used for communi-
cating these two. The structures in Figure 1 graphically depict these components.
In order to incorporate faults, and as a consequence the need for fault tolerance,

Fig. 1. A producer, a consumer, and a faulty channel.

Fig. 2. Composition of the producer, consumer and faulty channel.

the channel is assumed to have “noise”, and therefore some messages might be
lost. In order to cope with this fault, the producer and consumer communicate
using a typical protocol that forces the sender to resend the last message until an
acknowledgement is received. The only forbidden action is the one correspond-
ing to “losing” a message held in the channel. The deontic operators will allow
us to indirectly refer to executions exercising normal (permitted) and faulty
(forbidden) transitions.

In this paper, we do not deal in detail with the way components are syn-
chronized. But basically, if an action, normal or faulty, is synchronized with a
faulty action, the composite action is also considered faulty. Therefore, and since
the use of the channel (sending a message) can be synchronized with the cor-
rect “passing” of the message and with the unfortunate event of “losing” it, the
latter will be considered faulty. For this reason, in the system resulting of the
composition of the producer, the consumer, and the channel (see Figure 2), the
faulty actions are snd/lose and snd ack/lose.

In this example, the language of the deontic structure is given by the following
sets of propositional variables and actions:

Φ0 = {waiting, produced, passed, consumed}
∆0 = {produce, consume, snd, rcv, snd_ack, rcv_ack, pass, lose}

The deontic structure for the example is formally the following:

– the set of states W and the transition system R are defined as in Figure 2,
– the set of events is the following:

E = {produce, consume, snd/lose, snd/pass/rcv,

snd_ack/lose, snd_ack/pass/rcv_ack},

– the interpretation of the propositional variables is described in Figure 2, and
the interpretation of actions is given by
• I(produce) = {produce},
• I(consume) = {consume},
• I(snd) = {snd/lose, snd/pass/rcv},
• I(rcv) = {snd/pass/rcv},
• I(lose) = {snd/lose, snd_ack/lose},
• I(pass) = { snd/pass/rcv, snd_ack/pass/rcv_ack},
• I(rcv_ack) = {snd_ack/pass/rcv_ack},
• I(snd_ack) = {snd_ack/lose, snd_ack/pass/rcv_ack}.

– Allowed events are all the arrows in Figure 2, except for those labeled with
snd/lose and snd ack/lose.

Now let us describe the resulting µ-calculus model, obtained by translating
the above deontic structure. Following our description of the translation, the
resulting model is composed of the following ingredients:

– ∆1 = {produce, consume, snd/lose, snd/pass/rcv,

snd_ack/lose, snd_ack/pass/rcv_ack },
– Φ1 = Φ0 ∪ {Pa | a ∈ ∆1},
– S =W = {waiting, produced, passed, consumed},
– T is as described in Figure 2,
– L(p) is as described in Figure 2,
– L(Pa) is true in those states in which we have a transition labeled with a,

other of the two faulty ones,
– L(Ea) is true in those states in which we have a transition labeled with a.

6.1 Expressing Properties of Producer-Consumer

Now that the model has been fully described, we may start specifying intended
properties of this model. Some interesting sample properties are the following:

– Whenever the system is in the waiting state, it is obliged to produce an item.
– After the production of an item, and if no fault occurs, then the system is

obliged to consume.
– If an item has been produced, then no new item can be produced until the

current item has been consumed.
– When a item has been consumed, then no additional items are consumed

until some new item is produced.
– When an item is produced, all possible ways of performing the send action

are allowed.

These properties are captured using DTL rather straightforwardly, thanks to
the deontic component of this logic:

P1 waiting → O(produce)
P2 [produce] [¬lose] O(consume)
P3 produced → A(O(¬produce) U consumed)
P4 consumed→ ANA(¬consumed W produced)
P5 [produce] P (snd)

In order to model check these properties for the above described model, we have
to use our translation Tr from DTL to µ-calculus. This translation gives us the
following µ-calculus formulas for the above DTL properties:

TP1 waiting → Pproduce ∧
∧
a∈δ ¬Pa ,where:

δ = {consume, snd/lose, snd/pass/rcv, snd_ack/lose,

snd_ack/pass/rcv_ack }

TP2 [produce]
(∧

a∈δ [a]
(
Pconsume ∧

∧
a∈δ′ ¬Pa

))
, where:

δ = {produce, consume, snd/pass/rcv, snd_ack/pass/rcv_ack }
δ′ = {produce, snd/lose, snd/pass/rcv, snd_ack/lose,

snd_ack/pass/rcv_ack }.

TP3 produced →
µR.

(
consumed ∨

(∧
a∈δ(Ea → Pa) ∧ ¬Pproduce ∧

∧
a∈∆1

[a] R
))

,

where

δ = {consume, snd/lose, snd/pass/rcv, snd_ack/lose,

snd_ack/pass/rcv_ack }

TP4 consumed →
∧
a∈∆1

[a] ((µR. (produced ∨ (¬consumed
∧
∧
a∈∆1

[a] R
))
∨ νR.

(
¬consumed ∧

∧
a∈∆1

[a] R
)
)

TP5 [produce]
∧
a∈δ(Ea → Pa), where:

δ = { snd/lose, snd/pass/rcv, snd_ack/lose, snd_ack/pass/rcv_ack }

The careful reader might notice that, technically, formula TP4 is not a valid
µ-calculus formula, since an odd number of negations appear under the scope
of fix point operators. However, our use of negation in this case is simply as
a shorthand: ¬consumed can be positively described as the disjunction of all
states different from consumed.

We employed the Mucke model checker to verify these formulas. Properties
P1, P2, P4 were found to hold in the presented model, whereas P3 and P5 are
invalid. The invalidity of P3 could seem surprising at first sight; the counterex-
ample found by the model checker is the following:

produced
snd/lose→ produced

snd/pass/rcv→ passed
consume→ consumed

Notice that the transition labelled by snd/lose is not allowed, and therefore it
is not obligatory, falsifying O(¬produce).

7 Conclusions and Future Work

We have presented an approach for model checking a propositional temporal-
deontic logic, with applications to fault tolerance verification, based on a char-
acterization of this logic into the µ-calculus. This characterization is materialized
via two translations, one capturing deontic structures as Kripke structures for
µ-calculus, and the other translating formulas in the deontic-temporal logic into
µ-calculus. This translation is shown to be correct, in the sense that the model
checking problem in the deontic-temporal logic is reduced to model checking in
µ-calculus. Moreover, we also show that counterexamples are also maintained,
meaning that every µ-calculus counterexample, resulting from the verification of
a translated property on a translated model, can be mechanically traced back
to a counterexample of the original deontic temporal specification. Although the
deontic temporal logic subject of study in this paper was known to be decidable,
the decision procedure for it was not originally conceived for model checking
purposes, and therefore none of the practical considerations we had in our ap-
proach were previously taken. In our opinion, this justifies the relevance of our
work, aiming at automated verification of fault tolerance models.

We also provided a simple example illustrating various points. First, it illus-
trates the use of deontic structures for capturing systems with faults; second, it
allows us to show how fault tolerance properties are straightforwardly captured
by the combination of deontic and temporal operators; and third, it allowed us to
illustrate the translation from deontic temporal logic into µ-calculus. Moreover,
we employed the Mucke model checker in order to verify some sample properties
on the presented model, and found a nontrivial counterexample on a property
that was supposed to hold in the model.

As work in progress, we are developing a tool for fault tolerance system
description and verification, which this work is part of. We are also studying
the complexity of the model checking problem for PDL/DTL in relation to our
translation. It is known that SAT for PDL is in PSPACE [3], but we do not have
yet results regarding DTL, nor the complexity of these logics’ model checking.
Other concerns we are currently investigating are compositional reasoning on the
presented temporal deontic logic, and integrating the presented model checking
approach with the deductive mechanisms for verification presented in [3].

Acknowledgements

The authors would like to thank Pedro D’Argenio and the anonymous referees for
their helpful comments. This work was partially supported by the Argentinian
Agency for Scientific and Technological Promotion (ANPCyT), through grants
PICT PAE 2007 No. 2772, PICT 2010 No. 1690 and PICT 2010 No. 2611, and
by the MEALS project (EU FP7 programme, grant agreement No. 295261).

References

1. C. Bernardeschi, A. Fantechi, and S. Gnesi. Model checking fault tolerant systems.
Softw. Test., Verif. Reliab., 12(4):251–275, 2002.

2. A. Biere. µcke - efficient µ-calculus model checking. In O. Grumberg, editor, CAV,
volume 1254 of Lecture Notes in Computer Science, pages 468–471. Springer, 1997.

3. P. F. Castro. Deontic Action Logics for the Specification and Analysis of Fault-
Tolerance. PhD thesis, McMaster University, Department of Computing and Soft-
ware, 2009.

4. P. F. Castro and T.S.E. Maibaum. A tableaux system for deontic action logic. In
Proceedings of 9th International Conference on Deontic Logic in Computer Science
, Luxembourg. Springer-Verlag, 2008.

5. P. F. Castro and T.S.E. Maibaum. Deontic action logic, atomic boolean algebra
and fault-tolerance. Journal of Applied Logic, 7(4):441–466, 2009.

6. J. Coenen. Formalisms for Program Reification and Fault Tolerance. PhD thesis,
Tenische Universiteit Eindhoven, 1994.

7. F. Cristian. A rigorous approach to fault-tolerant programming. IEEE Trans.
Software Eng., 11:23–31, 1985.

8. T. French, J. Christopher McCabe-Dansted, and M. Reynolds. A temporal logic
of robustness. In B. Konev and F. Wolter, editors, FroCos, volume 4720 of Lecture
Notes in Computer Science, pages 193–205. Springer, 2007.

9. F. Gärtner. Specification for fault-tolerance: A comedy of failures. Technical report,
Darmstadt University of Technology, 1998.

10. J. A. Goguen and G. Rosu. Institution morphisms. Formal Asp. Comput., 13(3-
5):274–307, 2002.

11. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specifi-
cation and programming. In Journal of the Association of Computing Machinery,
1992.

12. T. Janowski. On bisimulation, fault-monotonicity and provable fault-tolerance. In
AMAST, pages 292–306, 1997.

13. L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems. In
Formal Techniques in Real-Time and Fault-Tolerant Systems, Third International
Symposium Organized Jointly with the Working Group Provably Correct Systems
- ProCoS, pages 41–76, 1994.

14. L. A. Laranjeira, M. Malek, and R. M. Jenevein. Nest: A nested-predicate scheme
for fault tolerance. IEEE Trans. Computers, 42:1303–1324, 1993.

15. Z. Liu and M. Joseph. Specification and verification of fault-tolerance, timing, and
scheduling. ACM Trans. Program. Lang. Syst., 21(1):46–89, 1999.

16. A. Lomuscio and M. J. Sergot. A formalisation of violation, error recovery, and
enforcement in the bit transmission problem. Journal of Applied Logic, 2:93–116,
2004.

17. J. Magee and T.S.E. Maibaum. Towards specification, modelling and analysis of
fault tolerance in self managed systems. In Proceeding of the 2006 international
workshop on self-adaptation and self-managing systems, 2006.

18. F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann. Validating
requirements for fault tolerant systems using model checking. In 3rd International
Conference on Requirements Engineering (ICRE ’98), 1998.

19. K. Schneider. Verification of Reactive Systems, Formal Methods and Algorithms.
Springer, 2004.

20. T. Yokogawa, T. Tsuchiya, and T. Kikuno. Automatic verification of fault tolerance
using model checking. In Pacific Rim International Symposium on Dependable
Computing., 2001.

