
Bounded Exhaustive Test Input Generation from
Hybrid Invariants

Nicolás Rosner
Dept. of Computer Science

FCEyN, University of Buenos Aires
Buenos Aires, Argentina

nrosner@dc.uba.ar

Valeria Bengolea,
Pablo Ponzio

Dept. of Computer Science
FCEFQyN, University of Rio Cuarto

Rio Cuarto, Argentina
{vbengolea, pponzio}
@dc.exa.unrc.edu.ar

Shadi Abdul Khalek
Google, USA

ak.shadi@gmail.com

Nazareno Aguirre
Dept. of Computer Science

FCEFQyN, University of Rio Cuarto
and CONICET

Rio Cuarto, Argentina
naguirre@dc.exa.unrc.edu.ar

Marcelo F. Frias
Dept. of Software Engineering
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Abstract
We present a novel technique for producing bounded exhaus-
tive test suites from hybrid invariants, i.e., invariants that are
expressed imperatively, declaratively, or as a combination of
declarative and imperative predicates. Hybrid specifications
are processed using known mechanisms for the imperative
and declarative parts, but combined in a way that enables
us to exploit information from the declarative side, such as
tight bounds computed from the declarative specification,
to improve the search both on the imperative and declara-
tive sides. Moreover, our technique automatically evaluates
different possible ways of processing the imperative side,
and the alternative settings (imperative or declarative) for
parts of the invariant available both declaratively and imper-
atively, to decide the most convenient invariant configuration
with respect to efficiency in test generation. This is achieved
by transcoping, i.e., by assessing the efficiency of the dif-
ferent alternatives on small scopes (where generation times
are negligible), and then extrapolating the results to larger
scopes.
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We also show experiments involving collection classes
that support the effectiveness of our technique, by demon-
strating that (i) bounded exhaustive suites can be computed
from hybrid invariants significantly more efficiently than do-
ing so using state-of-the-art purely imperative and purely
declarative approaches, and (ii) our technique is able to auto-
matically determine efficient hybrid invariants, in the sense
that they lead to an efficient computation of bounded exhaus-
tive suites, using transcoping.

Keywords automated test generation; bounded exhaustive
testing; SAT solving; Korat; Alloy; transcoping

1. Introduction
It is widely acknowledged that software testing is a major
engineering approach for guaranteeing software quality [17].
Software testing is essential for software development, but it
is also highly time-consuming, so that automating testing-
related tasks becomes crucial in helping software developers
and encouraging adoption of testing practices. Some testing
tasks, such as test execution, are easily automated. Others,
in particular test input generation, are typically very hard
to automate. Despite the inherent complexity of automat-
ing test input generation, various techniques and tools have
been proposed to automatically produce test inputs, includ-
ing some based on random generation [5, 26] as well as oth-
ers based on several different forms of constraint solving or
model checking [1, 2, 14, 21, 32].
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Most tools and techniques for test input generation re-
quire a specification of the inputs of the program under anal-
ysis. This specification can be imperative, as is the case with
Korat [2], UDITA [14] and Symbolic PathFinder [32], or
it can be declarative, i.e., provided as a formula in some
logical formalism. Tools like TestEra [21], TACO [11] and
Forge [7] lie in the latter category. This essentially leads to
two families of approaches: imperative-specification-based
and declarative-specification-based, depending on the kind
of language used to express the specifications of inputs.

Although the aforementioned tools for test generation are
powerful, they often exhibit some common issues from the
point of view of the end user. In particular, since generation
approaches are often tightly coupled to particular kinds of
specifications (imperative or declarative), once a tool or test
generation approach is chosen, one is forced to write specifi-
cations within a particular paradigm, i.e., either imperatively
or declaratively. This may not be a problem when attempt-
ing to generate test cases for programs with simple inputs
(e.g., parameters of basic datatypes, or inputs with just a few
elementary conditions), where input specification is usually
straightforward. But it certainly is a limitation when deal-
ing with programs that manipulate complex data, where in-
put specification often becomes elaborate. Indeed, in many
cases, and in particular in the context of heap-allocated data
structures, input specifications tend to be complex and com-
prise several conditions on the inputs. Having to express all
of them in the same style may turn out to be unnatural for
engineers, and consequently prone to errors.

Input specification is rendered even more complex by
the fact that most test generation mechanisms are sensitive
to the precise way in which the specification is (syntacti-
cally) expressed. This is especially the case with imperative-
specification-based approaches. For instance, when check-
ing two or more restrictions on the inputs (e.g., acyclicity
and balance in a tree-like structure), doing so in different or-
ders may lead to substantially different running times for test
generation (e.g., from 8.6 seconds to over 8.5 hours, depend-
ing on the particular ordering, for the generation of red-black
trees with up to 8 nodes – see Section 6) from an imperative
specification.

To help overcome the problems described above, in this
article we present HyTeK, a technique for bounded exhaus-
tive test input generation with the following characteristics:

• HyTeK automatically generates test suites from input
specifications given in the form of hybrid invariants.
These invariants are hybrid in the sense that they may be
provided imperatively, declaratively, or as a combination
of declarative and imperative predicates. Methodologi-
cally, this allows software engineers to design specifica-
tions that better reflect the nature of the problem being
modeled, or that better fit their specification preferences,
and are therefore less error prone.

• Since automated test input generation is highly sensitive
to the way in which the invariant is implemented, HyTeK
automatically explores alternative orderings of the spec-
ification components on the imperative side, and in the
event that part of the invariant is provided both declar-
atively and imperatively, it decides the most convenient
setting (imperative or declarative) in which it is to be
solved, so that the efficiency of test input generation is
improved. This is done by transcoping [27], i.e., by as-
sessing the efficiency of the alternatives on small scopes,
where generation times are negligible, and then extrapo-
lating the results to larger scopes, where costs are much
higher and a single bad decision can render the whole
generation task infeasible.

• While approaches based on fully declarative (resp. im-
perative) specifications have (and, in fact, each particular
tool has) their own associated optimization techniques,
which are in general difficult to translate to other con-
texts, the availability of different styles of specification
in the same invariant enables HyTeK to benefit from op-
timization approaches of one side in the other one. This is
achieved through two mechanisms. First, by using infor-
mation obtained while solving declarative portions of the
invariant we are able to assist in pruning the search for
partially valid structures from the imperative portion of
the specification. Second, we can compute tight bounds
[11] from the declarative invariant, and use these during
test generation both from the declarative and imperative
parts of the specification, to reduce the search space.

The aforementioned technique is proposed for bounded
exhaustive testing, an approach followed by several testing
tools [2, 14, 21, 24, 33], which consists of testing a piece of
software on all valid inputs within a certain scope (e.g., max-
imum number of objects involved in heap allocated inputs,
ranges for numerical inputs, etc.). Since this testing approach
is intrinsically combinatorial, automated input generation is
clearly a necessity in this context. Our technique combines a
mechanism for processing imperative input specifications in-
troduced in [2] through the Korat tool, with SAT solving for
processing the declarative portions of the input specification,
in the style put forward through the tool TestEra [21]. The
combination of these two approaches motivates the name of
our technique: HyTeK stands for Hybrid TestEra-Korat.

Bounded exhaustive testing has proved to be particularly
effective for testing complex data structure implementations.
In order to evaluate the effectiveness of HyTeK, we develop
experiments involving collection classes, including a red-
black-tree-based implementation of sets (TreeSet from the
java.util package), which is among the most involved com-
monly used data structures with respect to invariant com-
plexity.

Our experimental results show that:
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• Bounded exhaustive suites can be computed from hybrid
invariants significantly more efficiently than doing so us-
ing state-of-the-art purely imperative and purely declara-
tive approaches, and

• HyTeK is able to automatically discover efficient hybrid
invariants (in the sense that they lead to an efficient auto-
mated generation of test suites) using transcoping.

2. Hybrid Input Specifications
Many automated program analysis techniques require spec-
ifications of the programs under analysis. Test input genera-
tion tools are no exception – in order to automatically gener-
ate tests, these tools often require a specification of the valid
inputs of the program under consideration [1, 2, 5, 14, 21,
32]. Several different approaches exist for expressing input
specifications, which in many cases can become quite intri-
cate and complex to express. Often, particularly in object-
oriented programs, these input specifications are given (at
least partly) in the form of class invariants, also known as
representation invariants, of the input datatypes. In order to
illustrate such specifications, let us consider an interesting
and complex data structure, red-black trees. Red-black trees
are balanced binary search trees. They are used as the imple-
mentation of class TreeSet in package java.util. The class
invariant for red-black trees comprises the following con-
straints:

rbt1: the structure is a tree,
rbt2: the tree is a binary search tree,
rbt3: each node has a color, which can be red or black,
rbt4: the root node is black,
rbt5: no two consecutive nodes in a path can be red, and
rbt6: every path from the root to a leaf node contains the

same number of black-colored nodes.

This representation invariant of red-black trees can be thought
of as an input specification of routines handling red-black
trees, such as the insertion and deletion routines defined in
class TreeSet. An imperative implementation of the repre-
sentation invariant is typically given as a repOK routine [23],
e.g., as a boolean Java function that returns true if and only
if a red-black tree object’s structure is internally consistent,
that is, it satisfies all six constraints above. For instance, as-
suming that red-black trees are implemented in a way that is
consistent with the classes shown in Figure 1, then the asso-
ciated representation invariant can be imperatively captured
by the repOK routine partially shown in Figure 2.

A different approach to provide input specifications (or,
as in our case, a representation invariant for a given class)
is to do so declaratively. This involves using some appro-
priate logical setting, and expressing the input specification
or representation invariant as a logical formula. Such log-
ical settings are widely available, for instance as languages
for contract specification accompanying object-oriented pro-

c l a s s T r e e S e t {
Node r o o t ;
i n t s i z e ;

}

c l a s s Node {
Node p a r e n t ;
Node l e f t ;
Node r i g h t ;
i n t c o l o r ;
i n t key ;

}

Figure 1. Classes for red-black trees implementation.

gramming languages (e.g., JML [3]), or as specific formal
specification languages. In this article we will use Alloy
[16], a popular relational formal specification language that
is well suited for this kind of specification. This choice is
made without loss of generality – any declarative specifica-
tion language could be used for this task. The red-black tree
invariant can be expressed in Alloy as (partially) shown in
Figure 3.

The imperative and declarative invariants above are, of
course, very closely related. Indeed, both enforce the same
constraints on the input structure – they just express it in
different styles. When modeling the invariant, some engi-
neers may find some constraints easier to express in one
style, while others may find them more naturally expressible
in another. For instance, for many programmers, constraint
rbt1, which requires that the structure reachable from the
root be a tree, would be very directly expressible in an im-
perative language by means of a structure traversal (as in
method structureOK() in Figure 2). On the other hand,
developers familiar with the logical setting used for declara-
tive specifications might favor a declarative version of this
constraint, based on reachability or transitive closure op-
erators. Furthermore, some constraints are inherently eas-
ier to express declaratively. Consider, for instance, require-
ments rbt4, rbt5 and rbt6, which constrain the valid color-
ings of red-black trees. An imperative version of these re-
quirements is shown in Figure 4. The declarative version of
colorsOK(), shown in Figure 5, is much more concise.

To allow for greater flexibility when specifying inputs, we
propose the use of hybrid invariants, which may be specified
as a mix of procedural and declarative constraints. Hybrid
invariants lead to a methodological improvement in specifi-
cation, allowing software engineers to design specifications
that better reflect the nature of the problem being modeled,
or that better fit their specification preferences, making the
process of specification less error prone. Moreover, enabling
the possibility of describing inputs with hybrid invariants
may have a significant impact on analysis (in our case, ef-
ficiency of the test input generation process). As we will
show in later sections, hybrid invariants allow us to leverage
optimization approaches from one context in the other one.
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p u b l i c boolean repOK ( ) {
/ / empty t r e e has s i z e 0
i f ( r o o t == n u l l )

re turn s i z e == 0 ;

/ / r o o t i s b l a c k
i f ( r o o t . c o l o r != BLACK)

re turn f a l s e ;

/ / t r e e s t r u c t u r e i s ok
i f ( ! s t r u c t u r e O K ( ) )

re turn f a l s e ;

/ / s i z e i s ok
i f ( ! sizeOK ( ) )

re turn f a l s e ;

/ / c o l o r i n g i s ok
i f ( ! colorsOK ( ) )

re turn f a l s e ;

/ / s t o r e d v a l u e s are o r d e r e d
re turn keysOK ( ) ;

}

p u b l i c boolean s t r u c t u r e O K ( ) {
i f ( r o o t . p a r e n t != n u l l )

re turn f a l s e ;
S e t v i s i t e d = new HashSet ( ) ;
v i s i t e d . add ( r o o t ) ;
L i n k e d L i s t w o r k L i s t = new L i n k e d L i s t ( ) ;
w o r k L i s t . add ( r o o t ) ;
whi le ( ! w o r k L i s t . i sEmpty ( ) ) {

Node c u r r e n t = w o r k L i s t . r e m o v e F i r s t ( ) ;
Node c l = c u r r e n t . l e f t ;
i f ( c l != n u l l ) {

i f ( ! v i s i t e d . add ( c l ) )
re turn f a l s e ;

i f ( c l . p a r e n t != c u r r e n t )
re turn f a l s e ;

w o r k L i s t . add ( c l ) ;
}
Node c r = c u r r e n t . r i g h t ;
i f ( c r != n u l l ) {

i f ( ! v i s i t e d . add ( c r ) )
re turn f a l s e ;

i f ( c r . p a r e n t != c u r r e n t )
re turn f a l s e ;

w o r k L i s t . add ( c r ) ;
}

}
re turn true ;

}

. . .

Figure 2. (Partial) An imperative implementation, written
in Java, of a representation invariant for red-black trees.

In particular, by using information obtained while solving
declarative portions of the invariant we are able to help prune
the search for partially valid structures from the imperative
portion of the specification; and having a declarative invari-
ant allows for querying characteristics of the valid structures
that lead to reductions in the search space when solving the

// empty tree has size 0

(thiz.root = null => thiz.size = 0) and

// root is black

(thiz.root != null => thiz.root.color = BLACK) and

// tree structure is ok

(this.root != null => thiz.root.parent = null) and

all n:TreeSetNode | {

n in thiz.root.*(left+right) - null =>

(

(n.left != null => n.left.parent = n) and

(n.right != null => n.right.parent = n) and

(n.parent != null => n in n.parent.(left+right)) and

n !in n.+parent

)

} and

// size is ok

... and

// coloring is ok

... and

// stored values are ordered

...

Figure 3. A declarative characterization, written in Alloy,
of the representation invariant for red-black trees.

imperative and declarative parts of the input specification.
This will be explained in further detail in later sections.

3. Generating Test Inputs from Specifications
Our approach for generating test inputs from hybrid spec-
ifications builds on existing approaches for generating test
inputs from either imperative or declarative specifications.
We describe these processes below.

3.1 Test Inputs from Imperative Specifications
When representation invariants are expressed imperatively, a
very efficient mechanism for generating test inputs becomes
available, as put forward in [2], and exploited by other ap-
proaches [14, 32], known as the Korat algorithm. This algo-
rithm, embodied in the associated homonymous tool, is able
to generate test inputs from imperative specifications, and
is especially targeted at the generation of complex, heap-
allocated structures [2]. The Korat tool requires an imper-
ative input specification, i.e., a repOK() routine specify-
ing the expected (valid) inputs to be generated, and a scope
definition, which provides the bounds for the domains in-
volved in the structure. For instance, for red-black trees, the
repOK() routine would be the one shown in Fig. 2, while the
notion of scope (specified as a finitization procedure) would
indicate the ranges for primitive-type fields as well as the
minimum and maximum number of objects of each class in-
volved in the structure. For instance, it may specify that gen-
eration has to be performed using at most 1 TreeSet object,
0 to 3 Node objects, 0. . . 3 as the range for TreeSet.size,
0. . . 2 as the range for Node.key, and 0. . . 1 as the range for
Node.color (colors being represented here by integers).

Korat generates all valid structures (i.e., structures for
which repOK() would return true) within the provided
bounds. For the red-black trees example, assuming the scope
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p r i v a t e boolean colorsOK ( ) {
/ / Red has o n l y b l a c k c h i l d r e n
L i n k e d L i s t w o r k L i s t = new L i n k e d L i s t ( ) ;
w o r k L i s t . add ( r o o t ) ;
whi le ( ! w o r k L i s t . i sEmpty ( ) ) {

Node c u r r e n t = w o r k L i s t . r e m o v e F i r s t ( ) ;
Node c l = c u r r e n t . l e f t ;
Node c r = c u r r e n t . r i g h t ;
i f ( c u r r e n t . c o l o r == RED) {

i f ( c l != n u l l && c l . c o l o r == RED)
re turn f a l s e ;

i f ( c r != n u l l && c r . c o l o r == RED)
re turn f a l s e ;

}
i f ( c l != n u l l )

w o r k L i s t . add ( c l ) ;
i f ( c r != n u l l )

w o r k L i s t . add ( c r ) ;
}
/ / S i mp le p a t h s from r o o t t o
/ / NIL have same number o f b l a c k nodes
i n t numberOfBlack = −1;
w o r k L i s t = new L i n k e d L i s t ( ) ;
w o r k L i s t . add ( new P a i r ( r o o t , 0 ) ) ;
whi le ( ! w o r k L i s t . i sEmpty ( ) ) {

P a i r p = w o r k L i s t . r e m o v e F i r s t ( ) ;
Node e = p . e ;
i n t n = p . n ;
i f ( e != n u l l && e . c o l o r == BLACK)

n ++;
i f ( e == n u l l ) {

i f ( numberOfBlack == −1)
numberOfBlack = n ;

e l s e i f ( numberOfBlack != n )
re turn f a l s e ;

} e l s e {
w o r k L i s t . add ( new P a i r ( e . l e f t , n ) ) ;
w o r k L i s t . add ( new P a i r ( e . r i g h t , n ) ) ;

}
}
re turn true ;

}

Figure 4. An imperative predicate capturing the correct col-
oring in a red-black tree.

thiz.root != null => thiz.color = BLACK and

all n : thiz.root.*(left + right) - null |

n.color = RED and n.parent != null

=> n.parent.color = BLACK and

n.left != null and n.right = null

=> n.left.color = RED and

n.left = null and n.right != null

=> n.right.color = RED

Figure 5. An Alloy declarative constraint capturing correct
coloring in red-black trees.

given above, Korat will generate every valid (i.e., well-
colored) red-black tree structure of a size no greater than
3 (in this example, the value of the size field coincides with
the number of nodes in the structure) and containing keys
ranging from 0 to 2. In order to achieve this, Korat builds a
tuple where each entry corresponds to a value of a field of

the involved objects. In our example, the tuple would have
length 17 – two values for the root and size of the TreeSet
object, and 15 for the five fields of the three nodes that the
tree may contain. For instance, the following tuple

〈 0, 1, NULL,NULL,NULL, 0, 0,
NULL,NULL,NULL, 0, 0,
NULL,NULL,NULL, 0, 0 〉

represents the tree of size 1 with a single node (the first zero
in the tuple references the 0-th, i.e. the first node object),
whose parent, left and right fields are set to null, and whose
key and color are zero and black (also represented by a zero),
respectively. Each entry in this tuple has a domain, which is
defined by the finitization procedure. More precisely, Korat
works on representations of these tuples, called candidate
vectors, that represent the candidate tuples by replacing ac-
tual entries with indices into the respective domains. For in-
stance, the candidate vector

〈1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉

would correspond to the previously shown candidate tuple
(each tuple entry has the first possible value in its domain,
except for the tree’s root and size). In the context of complex
heap-allocated structures (as well as in many other contexts),
most of the candidate vectors would correspond to invalid
structures, i.e., the structures that do not satisfy the repOK()
are usually considerably more abundant than those that do.
In our example, the candidate space contains 905, 969, 664
vectors (4 possibilities for each of the node-typed fields,
combined with 4 possibilities for the size field, 3 for each key
field, and 2 for each color field). Yet there are only 12 distinct
red-black trees (up to isomorphism, as will be explained later
on) within the scope of this example.

To generate test inputs, Korat exhaustively explores the
space of candidate vectors. As shown in Fig. 6, Korat starts
with the initial candidate vector (all indices are zero) and
executes repOK() on this candidate, monitoring the fields
accessed during execution and storing them in a stack. Korat
uses this stack in order to backtrack over candidate vectors.
If the current candidate satisfies repOK(), it is considered a
valid test input. If repOK() fails, then the candidate is dis-
carded. In both cases, to build the next candidate, the last ac-
cessed field is incremented to its next value. If one or more
of the last accessed fields are already in their corresponding
maximum values, then these are reset to 0, and the field ac-
cessed before them is incremented. If all fields are already at
their maximum values, then the state space of candidate vec-
tors has been exhaustively explored, and Korat terminates.

By backtracking only on accessed fields, Korat is able
to prune large parts of the candidate vector space at a time.
In fact, its backtracking process leads Korat-savvy users to
get used to writing repOK() in particular ways that seem
to benefit test input generation. Note that in order to de-
termine that a candidate is invalid, it is often not neces-
sary to access all reachable fields. The fewer fields accessed,

659



Algor i t hm k o r a t ( ) {
V ec to r c u r r = i n i t V e c t o r ;
S t a c k f i e l d s = new S t a c k ( ) ;
boolean ok ;
do {

( ok , f i e l d s ) = c u r r . repOK ( ) ;
i f ( ok ) {

r e p o r t V a l i d ( c u r r ) ;
f i e l d s . push ( c u r r . r e a c h F i e l d s − f i e l d s ) ;

}
f i e l d = f i e l d s . pop ( ) ;
whi le ( ! f i e l d s . i sEmpty ( ) &&

c u r r [ f i e l d ] >=
nonIsoMax ( c u r r , f i e l d s , f i e l d ) ) {

c u r r [ f i e l d ] = 0 ;
f i e l d = f i e l d s . pop ( ) ;

}
i f ( ! f i e l d s . i sEmpty ( ) ) c u r r [ f i e l d ] + + ;

} whi le ( c u r r != l a s t V e c t o r &&
! f i e l d s . i sEmpty ( ) )

}

Figure 6. Pseudo code describing the Korat algorithm for
test generation from imperative specifications.

the better the pruning. Therefore, the sooner repOK() re-
turns false (without modifying field values unnecessarily),
the better. This pruning mechanism is sound because, if the
last accessed field has not been modified, then the output
for repOK() would not change (assuming that the routine
is deterministic), i.e., the parts of the structure visited by
repOK() would remain the same, and therefore repOK()

would fail again.
Korat also incorporates a mechanism that avoids gener-

ating isomorphic candidates [2]. In this context, two candi-
dates are isomorphic if they only differ in the object iden-
tities of their constituents (i.e., if one of the candidates can
be obtained from the other by permuting object identities).
Since most applications never depend on the actual iden-
tities of objects (which represent the memory addresses or
heap references of objects), once a structure is generated, all
its isomorphic structures may be safely disregarded, since
they are redundant (represent already explored cases). Korat
avoids generating isomorphic candidates by forcing a canon-
ical representation of explored candidate vectors. More pre-
cisely, a lexicographic order between candidate vectors is
defined, and then incorporated into the generation process
in a way that allows the latter to only generate the small-
est element (according to the total order) among all isomor-
phic candidates. This mechanism works as follows. When
considering the range (its possible values) of a class-typed
field in the construction of candidates during the search, it
is restricted to no more than one untouched (i.e., not previ-
ously referenced in the structure) object of its correspond-
ing domain. For example, suppose that in the construction
of candidates one needs to consider different values for a
given position i in the candidate vector. Now suppose that
the i-th position corresponds to a class domain D, and that

no fields of said domain have been accessed before i in the
last invocation of repOK(). The only possible value for the
i-th position is 0. More generally, if k objects of domain D
have been accessed before in the last invocation of repOK(),
these must be indexed 0 to k − 1, and thus the i-th position
can range from 0 to k, but may not exceed k. Notice that
the canonical representation of candidate vectors depends on
how repOK() traverses the structure.

In many cases, the above-described backtracking process,
pruning and isomorphism-elimination mechanisms allow the
Korat tool to significantly reduce the search space when gen-
erating test inputs. The efficiency of the tool will greatly
depend on how the repOK() routine is implemented. The
repOK() for red-black trees that was (partially) shown in
the previous section is, in fact, taken from the Korat distri-
bution: the order in which the different invariant components
are checked (structure, then size, then color, then keys) has
been manually fine-tuned by the developers of Korat for use
with the tool. For instance, for the abovementioned scope,
this implementation of repOK() allows Korat to find all 12
valid structures after only exploring a mere 200 out of the
905, 969, 664 possible candidate vectors. For further details,
we refer the reader to [2, 24].

3.2 Test Inputs from Declarative Specifications
When input specifications are provided declaratively, these
can be processed to produce inputs by resorting to some
form of constraint solving. By solving the input description,
we are able to obtain data that satisfy the specification, which
can be used as input for the program under analysis. Let us
describe a mechanism for test data generation that fits our
bounded exhaustive test generation scenario, as previously
described, and uses SAT solving as a constraint solving
approach. This approach was first proposed in [21] with the
TestEra tool; we shall refer to it as the TestEra approach.
Since its introduction, it has been extended and generalized
to deal with any testing criterion [1], although in this project
we use it to build bounded exhaustive test input suites.

As mentioned above, our process for generating test in-
puts from declarative specifications is based on SAT solv-
ing, which is the process of, given a propositional formula ϕ,
finding a satisfying valuation for ϕ if one exists, or returning
unsat if ϕ is unsatisfiable. Despite the fact that propositional
satisfiability is an NP-complete problem, there are many
SAT solvers that work very efficiently on large classes of
satisfiability problems, and are able to effectively deal with
propositional specifications involving millions of variables
and clauses. In order to automatically build test inputs from
a declarative specification, we translate the specification into
a propositional satisfiability problem (which requires impos-
ing a scope for the generation, so that the original specifica-
tion can be “flattened” into a purely propositional specifica-
tion) in such a way that satisfying valuations of the resulting
propositional formula correspond to valid inputs within the
provided scope.
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Algor i t hm I n c T e s t G e n e r a t i o n {
S u i t e = empty ;
r m v a l = t rue ;
whi le ( I−SAT( a lpha , r m v a l ) ) {

v a l = g e t V a l u a t i o n ( ) ;
S u i t e = S u i t e + g e t T e s t I n p u t ( v a l ) ;
r m v a l = r m v a l and g e t B l o c k i n g C l a u s e ( v a l ) ;

}
}

Figure 7. Bounded Exhaustive Generation using incremen-
tal SAT Solving.

Since we want to generate the whole space of valid inputs
within a given scope, the above process needs to be iterated.
For this purpose we rely on incremental SAT solving: when a
satisfying valuation for a formula ϕ is found, a new formula
α can be added to the constraints in order to forbid the part
of the search space that has already been traversed. Thus,
subsequent searches for valuations that satisfy ϕ∧α will not
revisit states that have already been visited.

Let alpha be a formula characterizing the state space S of
valid inputs (in our case, the propositional formula obtained
from the input specification and the scope). When a satisfy-
ing valuation val is found by the incremental SAT-solver fed
with alpha, it determines a test input, captured by the val-
ues v 1, . . . , v k of the primary variables p 1, . . . , p k in the
propositional specification (secondary variables are intro-
duced in order to maintain the size of the formula tractable
when translating to CNF, but other than that, do not add
any new information concerning the specification). Then,
by simply adding an extra clause

∨
1≤i≤k ¬(p i = v i)

to alpha, we can guarantee that any new satisfying val-
uations will differ from the already-produced inputs. Fig-
ure 7 illustrates the above-described process. Within the al-
gorithm, I-SAT(ϕ, α) denotes invocation of the incremen-
tal SAT-solver on a formula ϕ, with the added information
provided by formula α; getBlockingClause(val) corre-
sponds to the previously described clause, whose effect is
to remove the last input produced by val. Note how these
clauses are accumulated in rm val. The algorithm uses in-
cremental SAT-solving, as we mentioned, to avoid starting
from scratch each time a new input is queried from the
solver. As in the imperative case, we prevent the generation
of isomorphic structures by using appropriate, automatically
generated symmetry-breaking axioms, as explained in [11],
which force a canonical breadth-first labeling of the nodes.

The bounded exhaustive coverage obtained by the algo-
rithm in Fig. 7 is optimal, in the sense that only valid inputs
within the scope are produced, and each valid input within
the scope is produced exactly once.

Besides providing an alternative approach for specifying
invariants, declarative specifications allow us to query spec-
ifications in order to compute tight relational bounds [11] in
the context of SAT-based analysis. A tight bound for a field
f of an object o is a restriction on the domain of o.f , i.e.,
on the set of possible values that o.f may be assigned, that

removes from said domain all cases that can be deemed in-
feasible based on the specification. Since the possible values
of o.f are captured as propositional variables in the encod-
ing of the test generation problem as a boolean satisfiability
problem, reducing the domains of object fields implies be-
ing able to eliminate variables from the SAT problem, thus
increasing its scalability. In this way, tight bounds can be
used to preprocess a satisfiability problem, removing infeasi-
ble variables from the problem (or, more precisely, replacing
these by false) in order to simplify it. For instance, consider
our red-black trees example again. Let us now focus on a
particular object and field, N0.left. Notice that, according to
the scope we previously indicated, there are four possibil-
ities for this field: it can be assigned null, N0, N1 or N2.
Now suppose that, as part of the declarative invariant, we
have a declarative version of structureOK() (i.e., captur-
ing the fact that the structure is a tree). We can query the SAT
solver about the feasibility of N0.left = null, N0.left = N0,
N0.left = N1 and N0.left = N2. Notice that each query Q
corresponds to asking the SAT solver whether it is possible
to build a valid tree structure (with symmetry breaking) in
which Q holds. Certainly, N0.left = null is satisfiable (think
of a tree with a single node, N0, at the root); N0.left = N0

is, on the other hand, infeasible, since it violates acyclicity;
N0.left = N1 is again feasible (think of a tree whose root
has a nonempty left subtree), and finally N0.left = N2 is in-
feasible due to symmetry breaking (any tree, when traversed
in breadth-first fashion, will assign N1 to the left node of the
root, which by symmetry breaking can only be N0). More-
over, observe that as the scope is increased, the number of
alternatives forN0.left grows as well, yet its tight bound (for
this example) remains the same, so the reduction becomes
more profitable. Computing tight bounds essentially consists
of performing these queries to simplify the corresponding
satisfiability problem. It can be done effectively using a clus-
ter to parallelize the large number of independent queries to
the SAT solver. More importantly, it can be computed, stored
and reused for many different analyses [11].

4. Generating Test Inputs from Hybrid
Specifications

The two mechanisms described in the previous section allow
us to generate inputs from either fully imperative or fully
declarative input specifications. Let us discuss the problem
of generating inputs from hybrid specifications, that is, from
representation invariants given as a combination of imper-
ative and declarative descriptions. As an example, consider
the specification given in Figure 8. In this hybrid specifi-
cation of red-black trees, the binary tree structure, sorted-
ness and correct size constraints are checked imperatively,
whereas the coloring is checked declaratively (assuming the
availability of a hybridSpecEval() routine that combines
imperative and declarative constraints).
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p u b l i c boolean repOK ( ) {
Formula colorsOK = new Formula ( ”

r o o t != n u l l => c o l o r = BLACK and
a l l n : TreeSetNode | {

n i n r o o t . ∗ ( l e f t + r i g h t ) − n u l l =>
(

( n . l e f t != n u l l => n . l e f t . p a r e n t = n ) and
( n . r i g h t != n u l l => n . r i g h t . p a r e n t = n ) and
( n . p a r e n t != n u l l =>
n i n n . p a r e n t . ( l e f t + r i g h t ) ) and

n ! i n n . + p a r e n t
)

}” ) ;
re turn h y b r i d S p e c E v a l ( pa r t i a lRepOK ( ) , colorsOK ) ;

}

p u b l i c boolean partialRBTRepOK ( ) {
/ / empty t r e e has s i z e 0
i f ( r o o t == n u l l )

re turn s i z e == 0 ;

/ / t r e e s t r u c t u r e i s ok
i f ( ! s t r u c t u r e O K ( ) )

re turn f a l s e ;

/ / s i z e i s ok
i f ( ! sizeOK ( ) )

re turn f a l s e ;

/ / s t o r e d v a l u e s are o r d e r e d
re turn keysOK ( ) ;

}

Figure 8. Hybrid representation invariant for red-black
trees.

At first glance, the generation of inputs from such hybrid
specifications may seem like a simple task, made possible by
a simple combination of the two techniques presented in the
previous section – one would merely need to generate (par-
tial) structures from one of the specifications, using the cor-
responding generation approach, and complete the obtained
structures using the other. However, there are important mis-
matches that make this combination less direct. In particu-
lar, notice that the two partial input specifications refer to the
whole structure, i.e., even though they may constrain disjoint
portions of the structure, each generation approach will pro-
vide data for the portion of the structure that needs to be fixed
(in the sense that it cannot be changed) by the other gener-
ation mechanism. After applying the first generation mech-
anism, one may simply check with the generation mecha-
nism applied in the second place whether what was fixed
by the first one is correct or not, and backtrack (or continue
the search) if not. For instance, one may perform bounded
exhaustive generation from the declarative colorsOK speci-
fication, producing all correctly colored structures, which in-
clude those in which keys are not sorted, the size field does
not match the actual number of nodes in the structure, etc.,
and then apply partialRBTRepOK() to each of these, dis-
carding those that do not satisfy this imperative constraint.
This results in a very ineffective “generate and filter” mech-

anism, since the first generation will enumerate all possibil-
ities for whatever it is not constraining, and the second will
only serve as a filter of what is acceptable and what is not.
Therefore, we will avoid following this approach.

To solve the abovementioned problem with the combina-
tion of the generation mechanisms, we need to effectively
determine which portion of a structure obtained by the first
generation mechanism has been fixed by it, i.e., to precisely
capture the partial structure that the generation mechanism
to be applied in the second place has to consider as rigid. Do-
ing this when the generation from the logical specification is
applied first is not direct, and cannot in principle be solved
by a simple syntactic analysis, for two reasons: parts of the
structure may be indirectly constrained by a logical formula
even if these parts are not mentioned in the constraining for-
mula, and (most importantly) the constraining formula may
mention parts of the structure and not be willing to constrain
them. Constraint colorsOK is an example of the latter: it
refers to the whole tree structure of a red-black tree through
the expression root.*(left + right), yet its purpose is
simply to constrain which color gets assigned to each node.
On the other hand, when the generation from an imperative
specification is applied first, determining which parts have
been fixed is straightforward: when executing the impera-
tive specification, the algorithm keeps track of the stack of
fields accessed in the process. When a (partially) valid struc-
ture is found, the accessed fields tell us exactly which fields
were visited to determine the validity, and so we must fix
these fields (notice that changing any of the fields may re-
sult in the imperative specification changing its verdict on
the structure, i.e., what was found to be valid may become
invalid and vice versa).

Considering the above observation, our approach for the
combination of the processes for solving imperative and
declarative specifications works as follows. We first solve the
imperative partial specification using the Korat mechanism,
and then apply the SAT-based generation to the remaining
part of the structure. Let partialRepOK() and declSpec

be the partial imperative and declarative specifications of the
inputs of interest, respectively (in our example, these would
be partialRBTRepOK() and colorsOK, respectively). We
start using partialRepOK() to produce valid structures as
explained in the previous section. When a valid structure s
is obtained, note that although s is a fully concrete structure,
partialRepOK() only refers to a part of s. To determine the
partial structure that has been “fixed” by partialRepOK()

we look at the stack of fields accessed during the execution
of the routine that led to finding the partially valid structure.
Let us call this partial structure s′. We encode s′ as an
additional constraint for the SAT problem declSpec; this
forces considering partial structure s′ to be “rigid” in the
constraint problem. By solving the resulting formula we
obtain, as satisfiable valuations, fully complete structures
completing what partialRepOK() had provided.

662



c:?
k:1

c:?
k:2

nullnull

size: 3

T0

N0

N2

null null

N1

c:?
k:0

Figure 9. A valid partial structure produced by
partialRBTRepOK(), which admits multiple colorings.

As an example, let us consider our previous hybrid
specification of red-black trees, and assume that, during
the execution of partialRBTRepOK(), the structure in
Figure 9 is produced. Then, based on the fields accessed
when executing partialRBTRepOK() on this structure (cf.
partialRBTRepOK() definition), the additional constraint
for the SAT problem colorsOK would be the following:

this = T0 and T0.root = N0 and T0.size = 3 and

N0.parent = null and N0.left = N1 and

N0.right = N2 and N0.key = 1 and

N1.parent = N0 and N1.left = null and

N1.right = null and N1.key = 0 and

N2.parent = N0 and N2.left = null and

N2.right = null and N2.key = 2

Since only the color attributes of nodes are left free (all other
attributes are in the accessed fields stack, and thus fixed
as shown by the constraint above), the SAT-based exhaus-
tive search for structures will produce all possible colorings
for this structure. In this case, it will return two colorings,
namely, one with all nodes colored black, and another with
the root colored black and the other two nodes colored red.

Let us turn our attention to the case in which the SAT
solver returns unsat. In this case we may simply force the
imperative process to backtrack, and continue. But we can
better profit from the unsatisfiability to determine whether
we can further prune the imperative search. To help prune
the imperative side, we try to find a substructure of s′ that,
in combination with declSpec, still leads to unsatisfiabil-
ity. Let af = [(f1, v1), (f2, v2), . . . , (fk, vk)] be the fields
and corresponding values that together form s′, given in the
order in which they have been visited by partialRepOK()

(i.e., fk is the top of the stack of accessed fields). We may
start checking for the unsatisfiability of declSpec with pre-
fixes of af of increasing size, until the first unsatisfiable case
is found. That is, we could start checking declSpec∧ [] (no
structure fixed), then declSpec ∧ [(f1, v1)] (only the value
of f1 is fixed to v1), then declSpec∧[(f1, v1), (f2, v2)], and
so on, until the first unsatisfiable case if found. Note that we
can be certain that the whole structure will be unsatisfiable,
since we started with an unsatisfiable case to begin with. If

we end up finding that no smaller prefix of af is inconsistent
with declSpec, we simply backtrack the imperative gener-
ation as usual. If, on the other hand, we find that a smaller
prefix af’ = [(f1, v1), (f2, v2), . . . , (fi, vi)] is inconsistent
with declSpec, we can pop the remaining fields from the
stack of accessed fields, i.e. set the stack of accessed fields
to af’, and continue the “imperative” search from there. The
smaller the inconsistent prefix found, the better the pruning
on the imperative search. This pruning is sound: we only dis-
card invalid structures. Indeed, note that if af changes but af’
does not, the corresponding structures will continue to be in-
valid, since af’ is inconsistent with declSpec. Furthermore,
by respecting the order in which af accessed the structure’s
fields, we do not interfere with Korat’s backtracking mech-
anism, ensuring that we do not miss unexplored cases (in
addition to those identified as invalid).

The pruning mechanism described above is sound, but it
may be costly. The reason is that, in the worst case, it could
require as many calls to the SAT solver as there are prefixes
of the accessed fields stack. Hence, instead of going with
this approach, we follow the same principle, but with a sig-
nificantly more efficient process. Many SAT solvers provide
a useful mechanism: when an unsat verdict is obtained, they
can trace back the unsat reason, a (not necessarily minimal)
subset of the set of assumptions that explains the cause of the
unsatisfiability in terms of assumptions. Basically, we can
use the unsat reason to perform the aforementioned process
more efficiently. Instead of performing additional queries to
the SAT solver, we simply pop elements from the stack of
accessed fields until the first element belonging to the unsat
reason is found. Since the unsat reason is conservative (i.e.,
it may identify a superset of the minimal set of assumptions
leading to unsatisfiability, but never a subset), this more effi-
cient pruning approach is also sound.

Finally, notice that we can also use this approach to help
the imperative generation when the Korat process finds an
invalid structure. Normally, Korat would just backtrack, and
continue the search. If we combine this invalid structure with
declSpec, the result may be:

• unsatisfiable, i.e., the invalid partial structure s′ together
with declSpec leads to an unsatisfiability from which
we can benefit, using the corresponding unsat reason to
help pruning the imperative search, or

• satisfiable, in which case we simply let the imperative
search continue, without producing the corresponding
input, since it subsumes an invalid structure s′.

This is the pruning mechanism that we incorporate in our
approach. Let us illustrate it with a concrete example. Con-
sider red-black trees once again, as well as the hybrid input
specification given previously, which comprises the imper-
ative partialRBTRepOK() and the declarative colorsOK.
Suppose that the test input generation is being performed for
the following scope: up to 6 nodes, size within [0. . . 6], keys
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Figure 10. An invalid partial structure produced by
partialRBTRepOK().

within [0. . . 5], and 2 colors. Consider the partial structure
given in Figure 10, produced by partialRBTRepOK() as a
valid partial structure. When attempting to color this struc-
ture, the SAT solver will fail, informing us that the satisfia-
bility problem (corresponding to the coloring) is infeasible,
i.e., colorsOK is inconsistent with the current partially valid
structure. Due to the visit that structureOK() performs,
the stack of accessed fields for the current partial structure is
the following:

[T0.root , N0.left , N0.parent , N0.right ,
N1.left , N1.parent , N1.right ,
N2.left , N2.parent , N2.right ,
N3.left , N3.parent , N3.right , T0.size,
N0.key , N1.key , N2.key , N3.key ]

To continue the input generation, a standard Korat back-
tracking will attempt first to provide alternative key values
until these are exhausted (many of which will be valid key
assignments), then different sizes will be tried until these are
exhausted, and so on, until eventually it will start changing
N3.right; given the scope, the changes to the latter field will
lead to many additional attempts to extend the tree to the
right. Moreover, the number of attempted invalid structures
increases as backtracking progresses, since after exhausting
the extensions of N3.right, all extensions of N3.left will
be combined with extensions of N3.right, and so on.

However, when analyzing the intersection between the
unsat reason and the accessed fields, our approach is able
to pop various fields, and obtain:

[T0.root , N0.left , N0.parent , N0.right ,
N1.left , N1.parent , N1.right ]

Essentially, the unsat reason indicates that as long as we do
not change N1.right (taking into account that N0.left =
null, which is deeper in the stack), the coloring of the struc-

ture remains infeasible. We can then safely pop fields

N2.left , N2.parent , N2.right ,
N3.left , N3.parent , N3.right , T0.size,
N0.key , N1.key , N2.key , N3.key

from the stack of accessed fields before continuing the
search. Next, since N1.right is already at its highest possi-
ble value (due to Korat’s symmetry-breaking approach), the
backtracking will continue checking extensions to N1.left
(which will fail) until a change in N0.left is forced. This
pruning has an important impact on test input generation.

The resulting algorithm, which combines generation
from the imperative part of the invariant partialRepOK()
with generation from the declarative part of the invariant
declSpec, and performs unsat-reason-based pruning, is
shown in Figure 11. Let us ignore, for the time being, the
use of tight bounds (line 2, and the uses of bounds in lines
10, 18, 23 and 35). Note that the algorithm essentially main-
tains Korat’s structure (i.e., the imperative search drives the
process), yet as opposed to Korat, when the imperative in-
variant, which is in this case partial, succeeds in finding a
valid candidate (lines 8-21), the SAT-based generation com-
pletes the found partial structure via exhaustive enumeration
based on the declarative specification (lines 9-20), by fol-
lowing the IncTestGeneration approach; observe how
the partial structure built by partialRepOK() is fixed be-
fore starting the SAT-based generation (line 9 and its use in
lines 10 and 11). Also, as we explained earlier, when the
SAT-based generation is exhausted, or the partial structure
found by partialRepOK() is invalid (partialRepOK()
returned false) or infeasible (unsatisfiable when combined
with declSpec), fields in the stack of accessed fields are
popped until the first field in the unsat reason is found (lines
17-20 and 22-28), prior to advancing to the next candidate
in the Korat fashion (lines 29-36).

Let us now move on to discussing tight bounds. If we
have part of the invariant specified declaratively, it can be
used to compute tight bounds. Since these would be com-
puted from a partial specification, they might not be the
tightest, but they are certainly valid: whatever is determined
to be infeasible from the partial specification will remain
infeasible for the whole specification (i.e., when combined
with the imperative generation side). Therefore, the tight
bounds that we automatically compute from the declarative
part are also valid for the imperative side, and thus can be
used to restrict the domains of fields in order to improve the
search. These tight bounds will provide greater profits when
at least part of the invariant is provided both declaratively
and imperatively, since bounds in such cases will definitely
restrict the domains of fields over which the imperative side
will iterate. This is a point in favor of having this kind of
redundancy in specification, if possible.

In HyTeK, tight bounds are employed in two ways. First,
they are incorporated into SAT queries involving the hybrid
specification in order to improve SAT solving (lines 10, 11,
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1 Algo r i t hm HyTeKGen ( ) {
2 Bounds bounds = computeBounds ( d e c l S p e c ) ;
3 Ve c t o r c u r r = i n i t V e c t o r ;
4 S t a c k f i e l d s = new S t a c k ( ) ;
5 boolean ok ;
6 do {
7 ( ok , f i e l d s ) = c u r r . pa r t i a lRepOK ( ) ;
8 i f ( ok ) {
9 r m v a l = g e t P a r t i a l V a l u a t i o n ( c u r r , f i e l d s ) ;

10 i f (SAT( d e c l S p e c && bounds && r m v a l ) ) {
11 whi le ( I−SAT( d e c l S p e c && bounds , r m v a l ) ) {
12 v a l = g e t V a l u a t i o n ( ) ;
13 r e p o r t V a l i d ( g e t T e s t I n p u t ( v a l ) ) ;
14 r m v a l = r m v a l && g e t B l o c k i n g C l a u s e ( v a l ) ;
15 }
16 }
17 e l s e {
18 u n s a t R e a s o n F i e l d s = g e t F i e l d s ( u n s a t R e a s o n ( d e c l S p e c && bounds && r m v a l ) ) ;
19 whi le ( ! u n s a t R e a s o n F i e l d s . c o n t a i n s ( f i e l d s . t o p ( ) ) ) f i e l d s . pop ( ) ;
20 }
21 }
22 e l s e {
23 r m v a l = g e t P a r t i a l V a l u a t i o n ( c u r r , f i e l d s ) ;
24 i f ( ! SAT( d e c l S p e c && bounds && r m v a l ) ) {
25 u n s a t R e a s o n F i e l d s = g e t F i e l d s ( u n s a t R e a s o n ( d e c l S p e c && bounds && r m v a l ) ) ;
26 whi le ( ! u n s a t R e a s o n F i e l d s . c o n t a i n s ( f i e l d s . t o p ( ) ) ) f i e l d s . pop ( ) ;
27 }
28 }
29 r e p e a t {
30 f i e l d = f i e l d s . pop ( ) ;
31 whi le ( ! f i e l d s . i sEmpty ( ) && c u r r [ f i e l d ] >= nonIsoMax ( c u r r , f i e l d s , f i e l d ) ) {
32 c u r r [ f i e l d ] = 0 ;
33 f i e l d = f i e l d s . pop ( ) ;
34 }
35 i f ( ! f i e l d s . i sEmpty ( ) ) c u r r [ f i e l d ] + + ;
36 } u n t i l ( f i e l d s . i sEmpty ( ) | | i s C o m p a t i b l e ( c u r r , bounds ) )
37 } whi le ( c u r r != l a s t V e c t o r && ! f i e l d s . i sEmpty ( ) )
38 }

Figure 11. Pseudo code describing HyTeK’s approach to generating inputs from hybrid specifications.

18, 24 and 25 of Figure 11), since they lead to removing in-
feasible propositional variables, as we explained before. The
satisfiable and unsatisfiable instances of the specification are
exactly the same with and without tight bounds, so the algo-
rithm’s behavior is not altered by their use – its SAT queries
are just made more efficient.

Second, tight bounds are used to restrict field domains
when calculating the next candidate to try on the imperative
side (see line 36 in Figure 11).

As an example of the latter use of tight bounds, let us once
again consider the structure in Figure 9, with the imperative
partial specification partialRBTRepOK() and the partial
declarative specification colorsOK and treeStructureOK

(notice the redundancy of the tree structure specification,
provided both declaratively and imperatively in this case).
Now, after enumerating all possible colorings for structure
in Figure 9, the next partial candidate has to be computed.

Assuming that the scopes allow up to 1 TreeSet object,
up to 3 Node objects, range [0. . . 3] for TreeSet.size and
range [0. . . 2] for Node.key, then, if the stack of accessed

fields is:

[T0.root , N0.left , N0.parent , N0.right ,
N1.left , N1.parent , N1.right ,
N2.left , N2.parent , N2.right , T0.size,
N0.key , N1.key , N2.key ]

since no other valid key and size assignments are possible for
this tree (according to the scope), we will eventually reach
the following stack (and the same structure):

[T0.root , N0.left , N0.parent , N0.right ,
N1.left , N1.parent , N1.right ,
N2.left , N2.parent , N2.right ]

Now the process should attempt different assignments to
N2.right, namely, N0, N1 and N2 (null is the current as-
signment). In this case, due to tight bounds computed for
tree structures of up to 3 nodes satisfying symmetry break-
ing, the only possible right child forN2 is null, and therefore
the process will be forced to backtrack, without attempting
any other case for N2.right (all cases will be “advanced” in
loop 29-36).
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There is a subtle technical issue related to the use of tight
bounds from the declarative part for pruning the imperative
search; it has to do with the fact that tight bounds, since they
are computed from the declarative invariant, will assume a
breadth-first traversal of the structure, whereas the impera-
tive side will label nodes according to the order in which
these are visited by partialRepOK(). This mismatch can
be solved by maintaining sets of labels corresponding to
the tight bounds, associated with the nodes obtained in the
repOK() traversal, and checking bound feasibility through
label intersection, as explained in [13].

5. Optimizing Test Input Generation
Bounded exhaustive analyses are becoming more popular,
especially in automated verification and test generation con-
texts, as various tools based on bounded exhaustive ap-
proaches (e.g., Korat [2], UDITA [14], Alloy [16], TestEra
[20], Forge [7], Symbolic PathFinder [32], to name a few)
demonstrate. In these contexts, it is typically the case that the
developer wants to perform analyses on increasingly large
scopes. Indeed, as the scope is increased, bounded verifica-
tion is able to find errors that were not detectable at smaller
scopes, and bounded test generation is able to produce more
interesting and complex tests (or test inputs) whose genera-
tion was infeasible with smaller scopes. Thus, incrementing
the scope in bounded exhaustive analyses has desirable ef-
fects on bug finding, test generation and coverage.

Increasing the scope, however, typically has undesirable
effects on efficiency. While a particular analysis may be ef-
ficient for small scopes, as scope is increased, the running
times for bounded exhaustive analyses inherently grow very
quickly, making the analyses infeasible. So one has to deal
with contradictory concerns – increasing scopes is needed to
improve analysis impact, while decreasing scopes is neces-
sary in order to keep analysis times affordable.

In many cases, one cannot be satisfied with small scopes,
since the program under analysis may require larger scopes
to exercise particular portions of the code. For instance, if we
are generating tests for a routine that manipulates balanced
trees, e.g., insertion on red-black trees, then one would need
sufficiently large scopes to force some rebalancing and rota-
tions. If targeting a particular scope is a necessity, and can-
not be directly achieved due to efficiency reasons, one has to
start considering different variables that may make the anal-
ysis more efficient. For instance, in Korat, SPF, UDITA and
other tools, and in the approach presented in this paper, the
analysis is highly sensitive to the way in which repOK() is
implemented, since the backtracking over candidate struc-
tures depends directly on how this routine visits structures.
So, a possible way of making the analysis more efficient is
to “play” with repOK(), looking for variants that may af-
fect (in many cases substantially) the efficiency of the ex-
ploration of candidate structures, and therefore the test gen-
eration process as a whole. A way of considering variants of

this routine is by checking different aspects or parts of the
input specification (i.e., valid structural organization, size,
sortedness, balance, etc.) in different orders. For instance,
there may be a huge difference in the number of explored
candidates (and the efficiency of the generation process) if
one checks structural organization, sortedness and balance
–in that order– compared to first checking structural organi-
zation, then balance and finally sortedness. In our case, since
we allow for hybrid input specifications, an additional vari-
able is which part of the input specification is to be left im-
perative, and which part is to be left declarative, assuming,
of course, that there is some degree of redundancy in this re-
spect (i.e., that at least some part of the input specification
is available both declaratively and imperatively). Anyone fa-
miliar with a bounded exhaustive tool knows that choosing
the appropriate combination is usually far from straightfor-
ward, and although experience may dictate some general
strategy, one typically has to experiment with several alter-
natives before finding the right “form” of the input specifi-
cation with respect to generation efficiency.

Since our approach for test input generation is bounded
exhaustive, it suffers from this problem as well. We deal with
the problem by resorting to transcoping. This technique, put
forward in [27] for the parallel analysis of Alloy models,
originally consisted of examining alternative partitions of a
problem for small scopes, and extrapolating this informa-
tion to select an adequate partition for larger scopes. In our
present context, we will use this approach towards two goals:

• to select the best ordering among the parts of an impera-
tive input specification, and

• if some parts of the input specification are given both
declaratively and imperatively, to determine the most
convenient setting in which each of these are to be solved,
i.e., the most appropriate way of partitioning the specifi-
cation into (disjoint) declarative and imperative portions.

If a specification is given entirely imperatively, then our
approach will attempt to find the optimal ordering of the
components of the imperative repOK(). If the input specifi-
cation is given partly operationally and partly declaratively,
with no intersection, our approach will search for an optimal
ordering of the imperative part. Finally, if the input specifica-
tion is given partly operationally and partly declaratively, but
with some intersection, meaning that at least one aspect of
the input specification is given both imperatively and declar-
atively, our approach will decide: which parts of this inter-
section are better solved imperatively, which parts are better
solved declaratively, and for the imperative part, what the
optimal ordering is. The decision is made by trying all al-
ternatives on small scopes, where test input generation times
are negligible, and extrapolating the results to larger scopes,
while progressively narrowing down the number of candi-
dates in order to keep the total cost reasonable.
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As an example, consider a representation invariant for
red-black trees that consists of the following 6 parts:

1. If root is null, size is zero.
2. If root is not null, its color is black.
3. The structure reachable from the root is a binary tree.
4. The size field correctly captures the number of nodes in

the structure.
5. The coloring is valid (no two consecutive red nodes in

any path, same number of black nodes on all paths).
6. The keys are correctly sorted (the tree is a search tree).

For this case, let us suppose that imperative versions of
constraints 1–5 are available, while constraints 5 and 6
are available declaratively (notice the redundancy that ex-
ists due to the imperative and declarative versions of con-
straint 5). Then we have 5! possibilities corresponding to the
cases in which the first five portions are solved imperatively,
plus 4! possibilities corresponding to the cases in which the
last 2 are solved declaratively (or, equivalently, the first 4 are
solved imperatively), for a total of 144 hybrid invariants.

Of course, one might envision many different approaches
to transcope information. Essentially, the main steps along
the transcoping process are:

• Choosing scopes to be used for the initial assessment,
which will then be extrapolated to larger scopes.

• Choosing the criterion for the extrapolation, e.g., running
time, number of produced candidates, etc.

• Selecting some fraction or subset of the best-performing
configurations to be promoted to the next scope.

Choosing values for these parameters is not necessarily
straightforward; careless choices could affect the appro-
priateness of the extrapolation and the performance of the
whole approach. To continue with the above example, sup-
pose that we use scope 3 to run the initial assessment of
alternatives, that we choose running time as the promotion
criterion and that we select only the best-performing 10%
(that is, the fastest 10%) of the invariants to be promoted to
the next scope. This means that we run the test input gener-
ation process described in the previous section for the 144
invariants for scope 3, sort them by their running times, then
select the fastest 14 candidates for scope 4, and so on.

As an additional example, our empirical evaluation (more
details of which will be explained later on) uses input gener-
ation time as the promotion criterion. It starts at scope 1 and
keeps all candidates until reaching the first scope where the
difference between the fastest and slowest candidates ceases
to be negligible, promotes the top 1

3 of the candidates to the
next scope, and keeps iterating until a single-digit number
of candidates remain. This is more than what one would be
willing to run in a concrete analysis scenario, but we do run
these additional experiments for evaluation purposes (of the

general efficiency of the approach, and that of transcoping in
particular).

6. Evaluation
In previous sections, we proposed the use of hybrid input
specifications; we introduced a technique for bounded ex-
haustive input generation from such specifications, and we
presented an approach for automatically tailoring these spec-
ifications for the sake of efficiency. In this section, we per-
form an empirical evaluation of these proposals. We shall
focus on the following research questions, associated with
hybrid specifications and our proposed techniques:

Q1) Can the generation from hybrid specifications perform
better on typical data structures than state-of-the-art fully
imperative and fully declarative techniques?

Q2) Can the right combination of imperative and declarative
parts of a hybrid specification be determined effectively
by means of transcoping?

Our assessments to answer the above questions involve
two data structures: red-black trees and AVL trees. The red-
black tree implementation is based on the core of the imple-
mentation of class TreeSet in package java.util.Collections,
well-known for being representative of a class of structures
that challenge the efficacy of test generation tools. The AVL
implementation was taken from class TreeList in package
apache.commons.collections4, and its invariant is somewhat
less stringent than that of red-black trees. Both data struc-
tures are present in most benchmarks for bounded exhaustive
test generation.

6.1 Experimental Setup
All experiments were run on an Intel Core i5-750 processor
running at 2.67 GHz with 8 GB of 1,333 MHz DDR3 main
memory, running Debian GNU/Linux. Since our prototype
tool is developed in Java, it runs on a JVM, for which we set
a 4 GB heap usage limit. Java version 1.7.0 (OpenJDK 64-
Bit Server VM) was used to run all experiments. In all cases
where a SAT-solver was needed, we used Minisat 2.2.0 [9].

Scopes in this Section are referred to as a single number.
Scope n means, for both case studies, up to n nodes, keys in
the range 0 . . . (n− 1) and size field in the range 0 . . . n.

6.2 Experimental Design
Let us now describe the design of our experimental evalua-
tion. Both of the data structures that we analyze feature rep-
resentation invariants that are expressed as a series of con-
straints; essentially, the invariant is the conjunction of said
constraints. The 6 constraints of the invariant for red-black
trees are those numbered 1–6 in Section 5, and are taken
from the invariant of this data structure in the Korat distri-
bution. The five constraints that compose the representation
invariant for AVL trees are the following:

1. If root is null, size is 0.
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2. The structure reachable from the root is acyclic.

3. The keys are correctly sorted.

4. The size matches the number of nodes in the structure.

5. The tree structure is balanced.

We assume that all constraints of both invariants are avail-
able both declaratively and imperatively, i.e., that we have
full redundancy in this regard. In other words, for each data
structure, each constraint enforced by the procedural spec-
ification has a corresponding (equivalent) constraint in the
declarative specification, and vice versa. Notice that this im-
plies having to decide on which side (imperative or declara-
tive) each constraint should be solved.

For a given invariant expressed in this way, its constraints
can be represented by their indices, and hybrid invariants as
tuples with a sequence (for the imperative portion) and a set
(for the declarative portion) of said indices. As pointed out
previously, the order in which the constraints are solved is
irrelevant on the declarative side, whereas on the impera-
tive side it is not; hence the use of sequences (resp. sets) to
represent the imperative (resp. declarative) portion of a hy-
brid invariant. More precisely, let Crbt = {1, 2, 3, 4, 5, 6}
and Cavl = {1, 2, 3, 4, 5} be the sets of constraints charac-
terizing the invariants of red-black trees and AVL trees, re-
spectively. For each set Cx, given any permutation P of any
subset of Cx, we can build a hybrid specification H whose
imperative part includes the constraints in P in the order in
which they appear in P , and whose declarative part contains
those constraints from Cx that are not in P . For instance, if
P is sequence 〈2, 1, 5〉, taken from the red-black tree con-
straints, then H must be {3, 4, 6}. Notice that, for a given
structure, the declarative part of a hybrid invariant is implied
by the the imperative portion of the invariant (it is its com-
plement), so that henceforth, when referring to a particular
hybrid invariant, we shall simply refer to the corresponding
imperative portion (i.e., its list of indices, such as 〈2, 1, 5〉).

For our experiments, we assembled all the hybrid in-
variant combinations that can be built in the manner just
described. In particular, notice that due to the full redun-
dancy in the invariants, the assembled hybrid invariants in-
clude fully imperative and fully declarative ones, and for the
case of imperative invariants, all permutations of constraints
are included, too (i.e., all possible hybrid invariants build-
able with the available constraints are considered). There are
1,957 and 326 different hybrid invariants for red-black trees
and for AVLs, respectively. Of course, for each data struc-
ture, all those invariants are equivalent: each of them char-
acterizes exactly the same set of valid structures. But the
running times for test input generation using each of them
can differ significantly, either because some constraints are
solved on different sides (declarative or imperative), or be-
cause the order of constraints on the imperative side is differ-
ent. Although taking into account all possible hybrid pred-
icates, due to the full redundancy in specification, makes

the transcoping phase much harder (since many alternatives
have to be considered), it also enables us to evaluate how
different partitions of the specification into declarative and
imperative portions, and orderings of the latter, may lead to
different performances.

For each analyzed data structure, we carried out bounded
exhaustive input generation for all of its different hybrid in-
variants, for scopes 1 to 6 (in the case of red-black trees), and
for scopes 1 to 9 (in the case of AVL trees), and we recorded
the corresponding running times. We could afford to run all
possible invariants for a few more scopes in the case of AVLs
due to both the number of different hybrid invariants and
the average running times being somewhat smaller than for
red-black trees (probably because the latter invariant is more
complex). Note that, since fully imperative and fully declara-
tive invariants are among the possible hybrid invariants, run-
ning times for these candidates (associated with using solely
Korat-like generation, and solely TestEra-like generation, re-
spectively) are also recorded as part of the experiments.

Due to the number of different hybrid invariant combina-
tions and the increasing computational cost per unit as scope
is increased, we ruled out exhaustively running all combina-
tions for scopes larger than 6 (in the case of red-black trees)
or larger than 9 (in the case of AVL trees). Similarly, scopes
smaller than 3 (in the case of red-black trees) or smaller than
6 (in the case of AVL trees) involve running times that are
too short and volatile to provide useful transcoping informa-
tion (either because total running time is too small a fraction
of a second or the max-min ratio is too close to 1).

We promote to the next scope those hybrid predicates that
constitute the best third of the experiments (i.e., the fastest
33% when sorted by total running time for test input genera-
tion). We also keep the fully imperative and fully declarative
invariants, regardless of whether or not they remain in the
top third, for control purposes. We stop refining the short
list (that is, we start running all remaining candidates in all
larger scopes) once the number of candidates falls below 10.

6.3 Experimental Results
When running all possible hybrid invariants (which, as we
explained, subsume the fully imperative and fully declarative
invariants), given a fixed scope, groups of hybrid specifica-
tions (for which generation can be done efficiently and for
which generation takes significantly longer) can be clearly
distinguished. This can be observed in Figures 12 and 13,
which plot all the experiments by scope in logarithmic scale.
Scopes 3–6 and 6–9 are shown for red-black trees and for
AVL trees, respectively (some of the smaller scopes are
omitted from the charts when they would yield a flat line).
Notice how, in both cases and despite the difference in test
input generation times, the curves have a very similar shape.
At this point, we can start answering our research questions.
Indeed, the best hybrid specifications in scopes 3 to 6, for
red-black trees, and scopes 6 to 9, for AVLs, outperform
all fully imperative and fully declarative specifications, in
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Figure 12. Analysis time, all red-black tree hybrid predi-
cates, scopes 3–6.

running times for bounded exhaustive generation. Moreover,
the top 33% best hybrid specifications do not contain fully
imperative invariants, for either of the case studies, at any
scope. The fully declarative invariant does appear in some
of the top thirds of both case studies, but is not among the
final short list in either of the case studies.

Also note how the noticeable differences in the perfor-
mance of hybrid specifications as well as the visible preser-
vation of the curves’ shape in the graphs seem to provide
initial evidence that transcoping indeed works as expected,
since the worst specifications continue to worsen as scope
increases, while the fastest specifications also keep perform-
ing well as scope is increased.

When taking the best 33% and promoting those candi-
dates to the next scope, from scope 3 (resp. 6) in the case of
red-black trees (resp. AVLs) onwards we consistently retain
hybrid predicates that scale better for test input generation;
notice that up to scope 6 (resp. 9) in the case of red-black
trees (resp. AVLs), we have the running times for all the pos-
sible hybrid predicates, so that scalability is measured with
respect to the whole population of hybrid specifications. Fig-
ure 14 and Figure 15 illustrate the transcoping process for
red-black trees and for AVL trees, respectively.

On the other hand, it is also important to note that the can-
didates that were identified as bad at smaller scopes (for in-
stance, the 5 hybrid predicates 〈1, 4, 2, 6, 3〉, 〈4, 6, 2, 1, 3, 5〉,
〈4, 1, 2, 6, 3, 5〉, 〈4, 6, 3, 1, 2, 5〉 and 〈1, 4, 2, 6, 3, 5〉 for red-
black trees) maintained their condition when transcoping:
test input generation exceeded 5 hours as early as scope 8 for
all these specifications. Considering that the set of 8 predi-
cates selected through transcoping can generate equivalent
tests at that scope in 2 seconds, the predicates identified as
best exhibit a speedup of at least 9,000X with respect to the
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Figure 13. Analysis time, all AVL hybrid predicates, scopes
6–9.
bad candidates. These results show that transcoping indeed
allowed us to make well-informed decisions, answering Q2.

Let us return to research question Q1 – whether hybrid
predicates can lead to better test generation times with re-
spect to non-hybrid (fully imperative and fully declarative)
specifications. Table 1 compares test input generation times
using the final, single-digit set of hybrid predicates selected
by transcoping (which are truly hybrid, with nonempty
declarative and imperative portions) with test input gener-
ation times using Korat and the SAT-based test input gener-
ation approach described in Section 3.2, on red-black trees.
Korat is executed on the fully imperative invariant for red-
black trees that shows the best performance, which corre-
sponds to the sequence of constraints 〈1, 2, 3, 4, 5, 6〉, and
coincides with the way this invariant is structured in the case
study accompanying Korat’s distribution. The SAT-based
test generation approach uses a fully declarative specifica-
tion of red-black trees that has been improved in previous
work to optimally exploit SAT solving for bounded analysis
[11]. Table 1 reports, for each scope between 3 and 15 and
for red-black trees, the following information:

• The average test input generation time required by the 8
best hybrid invariants identified by transcoping (〈1, 3〉,
〈3, 1〉, 〈1, 2, 3〉, 〈1, 3, 4〉, 〈2, 3, 1, 4〉, 〈2, 1, 3〉, 〈2, 3, 1〉,
〈2, 3, 4, 1〉), all of which are truly hybrid.

• The time required by Korat on the purely imperative
invariant 〈1, 2, 3, 4, 5, 6〉.

• The time required by the SAT-based approach (in the
style of TestEra) on the fully declarative invariant.

• The speed-ups obtained with respect to each of the latter.

Although it is not possible to determine the precise speedups
for scopes where timeouts occur, we can certainly guarantee
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H K TE

Scope 3 0.37 0.36 0.75
speed up 1X 2X
Scope 4 0.38 0.39 0.91
speed up 1X 2X
Scope 5 0.42 0.49 1.27
speed up 1X 3X
Scope 6 0.52 0.61 1.73
speed up 1X 3X
Scope 7 0.83 0.91 2.18
speed up 1X 2X
Scope 8 1.86 2.05 4.54
speed up 1X 2X
Scope 9 5.61 7.28 13.15
speed up 1X 2X
Scope 10 14.46 34.72 43.02
speed up 2X 3X
Scope 11 23.73 176.16 147.06
speed up 7X 6X
Scope 12 37.41 959.39 504.84
speed up 25X 13X
Scope 13 104.46 5,616.48 1,915.75
speed up 53X 18X
Scope 14 300.07 TO 7,933.30
speed up >60X 26X
Scope 15 1,194.79 TO TO
speed up >15X >15X

Table 1. Comparison of HyTeK (H) with Korat (K) and
TestEra (TE), for red-black trees. HyTeK considers average
of the 8 best hybrid invariants found via transcoping. Times
are reported in seconds. The timeout (TO) is set at 5 hours.

that the actual speedup exceeds the ratio between the timeout
and the time required by HyTeK.

In summary, our experiments allowed us to answer both
of our research questions affirmatively. For both of our case
studies, bounded exhaustive test generation from hybrid
specifications, using the technique presented in previous
sections, was more efficient than state-of-the-art techniques
limited to fully imperative and to fully declarative specifica-
tions, respectively. Transcoping, at least for our case studies,
proved to be an effective mechanism to identify the right
hybrid specifications, i.e., to decide which parts to express
declaratively and which ones to express imperatively (and,
for the latter, what ordering to use) in order to improve effi-
ciency and maximize scalability of test input generation.

6.4 Implementation Details
Our prototype tool is implemented on top of the standard
Korat distribution. The prototype contributes to the Korat
codebase as a set of additions, while trying to keep modifi-
cations to a minimum. By adjusting command-line options,
the user can choose whether to run the HyTeK prototype
or the original Korat tool (more details can be found in the
README.HyTeK.txt file).

In addition to the Java implementation, the following are
included in the current HyTeK distribution [35]:

H K TE

Scope 7 0.27 1.63 1.37
speed up 6X 5X
Scope 8 0.49 9.68 2.51
speed up 19X 5X
Scope 9 1.20 72.94 4.56
speed up 61X 4X
Scope 10 3.40 544.42 10.41
speed up 160X 3X
Scope 11 10.38 4,060.85 26.64
speed up 391X 3X
Scope 12 42.12 TO 92.67
speed up >427X 2X
Scope 13 133.16 TO 290.38
speed up >135X 2X
Scope 14 435.91 TO 979.33
speed up >41X 2X
Scope 15 1,562.05 TO 3,505.84
speed up >12X 2X

Table 2. Comparison of HyTeK (labeled H), with Korat (K)
and TestEra (TE), for AVL trees. HyTeK considers average
of the 4 best hybrid invariants found via transcoping. Times
are reported in seconds. The timeout (TO) is set at 5 hours.

• Already-generated support files, including all the .java,
.bounds, .pvars, .als and .cnf files needed to reproduce
all experiments.

• Two scripts: one to automate the creation of support files
for all combinations of imperative and declarative parts,
and another one to convert previously computed tight
bounds from the format used by [11] to the format used
by the HyTeK prototype. (These scripts are not needed
to reproduce the experiments, since all support files are
already provided with the distribution. They are only
needed to add new test cases or larger scopes.)

• A command-line version of the Alloy Analyzer [36] with
batch model enumeration capabilities (needed to generate
new test cases, and to reproduce TestEra-like behavior).

• The C++ source code for the solver used by HyTeK via
Java Native Interface (Minisat 2.2.0 plus JNI wrappers)
and a precompiled 64-bit ELF Linux binary thereof.

6.5 Threats to Validity
The first possible threat to the validity of our experiments
is the selection (and the number) of case studies. We deal
with complex data structures because the technique pre-
sented in this paper is meant to improve bounded exhaus-
tive test generation, and this testing approach is known for
being particularly well-suited for code that handles complex
heap-allocated data structures. Our experimental evaluation
is based only on two case studies of this kind. These were
carefully selected for fairness in the comparison with other
generation techniques, and to correctly assess the viability
of transcoping. The red-black tree data structure has been
identified by previous research [2] as one of the most com-
plex and hardest to deal with, from the point of view of in-
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Figure 14. An illustration of the transcoping process for red-black trees.

put test generation. The AVL data structure, despite being
somewhat simpler, has also been extensively studied and is
found in most benchmarks related to test generation. Both
data structures were selected because of the complexity of
their invariants, made out of 6 and 5 different portions (be-
ing more complex, and therefore more difficult, than other
data structures commonly used as benchmarks for this kind
of analysis). These complex invariants lead to a high num-
ber of alternative configurations both for non-hybrid and hy-
brid invariants. This poses a more subtle problem when hav-
ing to select the right order in which to solve them (in the
fully imperative case), and also serves as a stress test for the
transcoping process presented in this paper. In particular, for
simpler invariants (such as, for instance, that of singly linked
lists: merely acyclicity and the size matching the number of
nodes), the different alternative configurations are just a few,
making the problem of correctly selecting the right order for
generation a much easier one.

In our comparison with existing techniques, the structure
of our invariants may be biased towards our analysis tech-
nique. To avoid this problem and make the comparison fair,
we took these specifications from case studies of other tools.
The red-black tree invariant is taken directly from the Korat
distribution, and hence has been manually tailored by expe-

rienced users (the developers of the tool) to exploit the gen-
eration technique at its best. The AVL tree invariant is based
on a specification that is part of the Roops benchmark1.

Another threat to the validity of our results is the selec-
tion of the other tools for comparison. Instead of Korat, other
tools such as SPF or UDITA could have been chosen for
comparison; however, these do not offer alternative mecha-
nisms for generation from imperative invariants. Moreover,
Korat has been recognized as the most efficient amongst a
set of similar tools for bounded exhaustive generation [29].
In the context of SAT-based bounded exhaustive generation,
there are fewer tools to compare with. Essentially, we can
either compare with TestEra, or with the tool introduced in
[11]. The latter is our choice because it is more efficient due
to the use of tight bounds, as shown in [11]. Therefore, from
the point of view of efficiency, the comparison is fairer than
if it had been done against TestEra.

An (internal) threat to the validity of the results is the cor-
rectness of our tool. Although we did not prove our imple-
mentation to be correct, we compared the number of struc-
tures obtained for the case studies in all cases. We consis-
tently obtained exactly the same number of structures, for
all analyzed hybrid invariants and all scopes in our experi-

1 http://code.google.com/p/roops/
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Figure 15. An illustration of the transcoping process for AVL trees.

ments, which also coincide with the corresponding number
of structures both using standard Korat and TestEra. While
this does not constitute proof of correctness, it is concrete
evidence that we are not excessively pruning the search (we
do not discard valid cases), nor solving simpler constraints
(we do not generate, in any of the cases, invalid structures
that other tools and techniques would discard).

As an attempt to ensure the reliability of our results,
we have rerun our prototype tool several times (always on
dedicated machines), consistently obtaining results nearly
identical to those reported in this article.

7. Related Work
Our work is concerned with test input generation. In this
regard, it is related to many approaches aimed at tackling
the same problem, including random generation approaches,
and more closely, generation based on constraint solving.
Since in this article we target bounded exhaustive test gen-
eration (although the techniques presented in it can be gen-
eralized to other automated test generation approaches), our
approach is particularly related to other tools dealing with
this kind of testing. Korat [2], FAJITA [1], TestEra [21],
and UDITA [14] are tools targeting this domain. No other
tool for automated test generation (bounded exhaustive or

any other kind) supports hybrid input specifications. More-
over, most tools only support one generation approach, with
no automated aid for tailoring specifications for improving
generation. UDITA offers more flexibility, by allowing dif-
ferent kinds of generation approaches (e.g., based on input
factories, or on structure generation and filtering), and even
allows one to combine these approaches. However, like the
other tools mentioned, it does not tailor specifications auto-
matically. This task is largely manual, and is based on the
experience of users with different tools. To the best of our
knowledge, this is the first test generation approach that au-
tomatically manipulates input specifications to improve gen-
eration.

The SPIN [15] model checker introduced the idea of
combining an imperative language with a model checker’s
input language. SPIN allows writing models in its input
language Promela and supports insertion of C code into the
models. In contrast with Alloy, which provides a declarative
logic backed by SAT technology, SPIN provides traditional
stateful model checking with a focus on checking temporal
logic properties. Moreover, SPIN does not support the use
of different solvers to solve separate kinds of constraints
(which is our focus in this article).
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Chang and Jackson [4] add support for temporal logic
to Alloy by translating the ensuing formulas into a BDD-
based representation, thereby enhancing Alloy with some
operators from temporal logic, albeit not with imperative
constructs.

In the context of Alloy’s integration with imperative code,
the Alloy tool-set has served as an execution engine for
(partial) Java programs using their Alloy specifications [25,
28, 34]. These projects focus on the problem of executing
specifications using Alloy’s SAT-based backend to update
states of imperative programs, and not the problem of how
to efficiently solve logical constraints written in a mixed
notation using a combination of solvers, as done in our work.

Similar in spirit to these projects is more recent work by
Koksal et al. which presented Kaplan [22], an extension to
the Scala programming language to support constraint pro-
gramming. The purpose of our approach is different from
Kaplan since we focus on writing and solving logical con-
straints using a hybrid approach, whereas Kaplan provides a
general purpose integration of constraint programming into
a stateful language. Moreover, we show how to integrate a
constraint solver for first-order logic with a solver for Java
predicates. In contrast, Kaplan uses the SMT solver Z3 [6] as
the underlying enabling technology for constraint program-
ming.

Uzuncaova’s doctoral work [30, 31] introduced incre-
mental solving for Alloy models, where a solution to one
formula is fed as a partial solution to efficiently solve an-
other formula, and applied incremental solving in the con-
text of test input generation for software product lines.

More recently, Ganov et al. [12] introduced annotations
for Alloy models to guide solving of Alloy constraints using
different dedicated solvers, including an integer constraint
solver and a string constraint solver. However, the focus of
that work is on constraints written purely in the declarative
language Alloy. In contrast, our work is on hybrid invariants,
which are written partly in Alloy and partly in Java; more-
over, we perform incremental solving using solvers designed
for constraints in different programming paradigms.

Khalek’s doctoral work [18, 19] designed the JABAL
framework for writing and solving constraints in a mixed
declarative and imperative paradigm, which applies a solver
for declarative constraints and a solver for imperative con-
straints together, and lays out the initial groundwork. This
paper introduces a new technique for formulation and solv-
ing of hybrid invariants, which provides a tight integration
of declarative constraint solving and imperative constraint
solving and applies them in synergy, where information that
assists in imperative solving is first computed during declar-
ative solving and then utilized to make imperative solving
much more efficient. Moreover, we optimize our technique
using a novel approach, namely transcoping [27], which was
not previously developed for hybrid invariants.

8. Conclusions and Future Work
We introduced HyTeK, a novel technique for test input gen-
eration that builds test suites from hybrid input specifica-
tions. In order to deal with these hybrid invariants, our tech-
nique combines Korat, an efficient mechanism for produc-
ing test inputs from imperative invariants, with SAT solving
to process declarative invariants. Hybrid invariants are more
flexible and general than fully imperative or fully declarative
invariants, allowing software engineers to design specifica-
tions that better fit their specification preferences or better
reflect the nature of the problem being modeled, thus ren-
dering the process of specification less error prone. More-
over, the availability of parts of the specification in different
paradigms enabled us to benefit from optimizations of one
context in the other one, leading to more efficient genera-
tion of test inputs than doing so from fully imperative or
fully declarative invariants. The resulting hybrid technique
is a sophisticated combination of known techniques for test
generation (from imperative and declarative specifications),
whose associated profit is better overall than the sum of the
parts that it incorporates.

We also presented a technique for automatically tailoring
hybrid input specifications to improve test input generation.
This technique automatically explores alternative orderings
of the specification components on the imperative side, and
when part of the invariant is provided both declaratively and
imperatively, it decides the most convenient setting (impera-
tive or declarative) in which each part is to be solved.

We assessed the approach presented in this article on two
relevant and interesting data structures, whose invariants are
regarded as among the most difficult for automated analysis.
Our evaluation showed that, for these case studies, our tech-
nique performs substantially better than previous state-of-
the-art approaches in declarative constraint solving as well
as imperative constraint solving. The transcoping mecha-
nism proved to be an effective means to discover the most
convenient hybrid input specification, provided there is room
to consider alternatives.

There are various lines for future work. First, notice that
in our current approach, the interaction between the declar-
ative and imperative constraint solving approaches is given
essentially in one direction: information from the declara-
tive side is exploited by the imperative side of the genera-
tion. We are exploring ways of profiting from information
gathered while solving the imperative side, to be exploited
by the declarative constraint solving. Also, our experimental
evaluation has mainly focused on whether generating tests
from hybrid specifications can be more efficient than doing
so from fully imperative or fully declarative specifications,
and whether transcoping is able to effectively identify the
best hybrid specifications, from the point of view of effi-
ciency in generation. We have not considered other aspects
of our techniques in our evaluation, such as the most appro-
priate way of performing transcoping (e.g., scopes to start
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the analysis, percentage of candidates to promote to larger
scopes, etc.), or the profit that tight bounds contribute to the
analyses. Further experiments with other data structures, as
well as with appropriate metrics to identify the contribution
of tight bounds, are necessary, and are part of our current
and future work. We also plan to evaluate the effectiveness
of our techniques in other contexts besides that of complex
heap-allocated data structures.
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Efficient SAT-Based Bounded Verification Using Symmetry
Breaking and Tight Bounds. IEEE TSE 39(9): 1283-1307
(2013).

[12] S. Ganov, S. Khurshid, D. E. Perry. Annotations for Alloy:
Automated Incremental Analysis Using Domain Specific
Solvers. In ICFEM 2012.

[13] J. Geldenhuys, N. Aguirre, M. F. Frias and W. Visser, Bounded
Lazy Initialization, in NFM 2013, LNCS, Springer, 2013.

[14] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak
and D. Marinov, Test generation through programming in
UDITA, in ICSE 2010, Cape Town, South Africa.

[15] G. J. Holzmann. The model checker SPIN. IEEE TSE 1997.

[16] D. Jackson, Software Abstractions: Logic, Language and
Analysis, The MIT Press, 2006.

[17] C. Kaner, J. Bach and B. Pettichord, Lessons Learned in
Software Testing, Wiley, 2001.

[18] S. A. Khalek. Systematic Testing Using Test Summaries:
Effective and Efficient Testing of Relational Applications.
Ph.D. Thesis. University of Texas at Austin, 2011.

[19] S. A. Khalek, V. P. Narayanan, and S. Khurshid. Mixed
constraints for test input generation – An initial exploration.
In ASE 2011 (Short paper).

[20] S. A. Khalek, G. Yang, L. Zhang, D. Marinov and S. Khurshid,
TestEra: A Tool for Testing Java Programs using Alloy
Specifications, in ASE 2011, IEEE, 2011.

[21] S. Khurshid and D. Marinov, TestEra: Specification-Based
Testing of Java Programs Using SAT, Automated Software
Engineering 11(4), Springer, 2004.

[22] A. S. Koksal, V. Kuncak, and P. Suter. Constraints as Control.
In POPL 2012.

[23] B. Liskov and J. Guttag, Program Development in Java:
Abstraction, Specification, and Object-Oriented Design,
Addison-Wesley, 2000.

[24] A. Milicevic, S. Misailovic, D. Marinov and S. Khurshid,
Korat: A Tool for Generating Structurally Complex Test
Inputs, in ICSE 2007, IEEE Press, 2007.

[25] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson.
Unifying execution of imperative and declarative code. In
ICSE 2011.

[26] C. Pacheco, S. K. Lahiri, M. D. Ernst and T. Ball, Feedback-
Directed Random Test Generation, in ICSE 2007, IEEE,
2007.
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