
Bounded Lazy Initialization

Jaco Geldenhuys1, Nazareno Aguirre2,4, Marcelo F. Frias3,4 and Willem Visser1

1 Computer Science Division, Department of Mathematical Sciences, Stellenbosch
University, Private Bag X1, 7602 Matieland, South Africa.

E-mails: {jaco, wvisser}@cs.sun.ac.za.
2 Department of Computer Science, FCEFQyN, Universidad Nacional de Ŕıo Cuarto

(UNRC), Argentina. E-mail: naguirre@dc.exa.unrc.edu.ar.
3 Department of Computer Engineering, Instituto Tecnológico de Buenos Aires

(ITBA). E-mail: mfrias@itba.edu.ar.
4 National Scientific and Technical Research Council (CONICET), Argentina.

Abstract. Tight field bounds have been successfully used in the con-
text of bounded-exhaustive bug finding. They allow one to check the
correctness of, or find bugs in, code manipulating data structures whose
size made this kind of analyses previously infeasible. In this article we
address the question of whether tight field bounds can also contribute
to a significant speed-up for symbolic execution when using a system
such as Symbolic Pathfinder. Specifically, we propose to change Symbolic
Pathfinder’s lazy initialization mechanism to take advantage of tight field
bounds. While a straightforward approach that takes into account tight
field bounds works well for small scopes, the lack of symmetry-breaking
significantly affects its performance. We then introduce a new technique
that generates only non-isomorphic structures and consequently is able
to consider fewer structures and to execute faster than lazy initialization.

1 Introduction

Many techniques have been devised in order to determine to what extent a
software artifact is correct. Testing [1], for instance, is one of these techniques.
Two main reasons justify the place testing occupies in most software development
projects: it is lightweight, and it is scalable. The downside, as is well-known, is
that testing only allows one to detect errors that occur when code is executed on
the tested inputs. In order to achieve greater guarantees of software correctness,
more conclusive program analysis techniques have to be considered. For instance,
bounded verification [7] and model checking [2] guarantee that no errors can be
exhibited on significantly larger input sets (i.e., on that part of the input state
space that was successfully explored by the corresponding technique), compared
to testing. This is achieved, of course, at the expense of scalability. Therefore,
improving the scalability of the latter analysis techniques is a must.

Bounded exhaustive verification automatically checks code correctness, but
subject to a scope, consisting of a maximum number of iterations and object in-
stances for the classes involved [7, 4, 5]. Therefore, if the technique is successful in
verifying code, it does not guarantee absolute correctness, but correctness within

the established scope (i.e., no errors exist that require at most the established
maximum number of iterations, and involve at most the established number of
object instances). As shown in [5], by appropriately bounding the values that
class fields can take, bounded exhaustive verification based on SAT-solving can
be significantly improved. In particular, field bounds allowed bounded exhaus-
tive verification to significantly increase data domains scopes for analysis, and
to detect bugs that other tools based on bounded verification, model checking,
or SMT-solving failed to detect [5]. Here, we explore whether by using field
bounds one can also improve the scalability of symbolic execution of structures,
as performed by Symbolic PathFinder (SPF) [10], an extension of Java PathFinder
(JPF).

The field bounds considered in this work are the tight bounds computed by
the approach in [5], which uses the structural invariants of the classes under
analysis (the so-called repOK). Intuitively, by changing SPF’s lazy initialization
approach [8], where all possible aliasing possibilities are explored, to only take
into account those included in pre-computed field bounds, considerably fewer
structures should be considered. Interestingly, as the results for binary search
trees in Section 5 show, this intuition holds for structures up to 6 nodes, but
then lazy initialization starts to perform better. As it will be discussed later
on, it turns out that the benefit of considering fewer options for each reference
to be lazily initialized is outweighed by the fact that the bounded approach
considers isomorphic structures whereas lazy initialization does not. That is,
although lazy initialization constructs many structurally invalid structures, they
are quickly pruned by repOK, whereas in the bounded case duplicate (isomorphic)
valid structures are considered throughout the analysis and are never pruned.

The above problem is overcome by a new algorithm, introduced in this paper,
that not only bounds lazy initialization, but also produces only non-isomorphic
structures. This algorithm can be shown to strictly consider fewer structures than
lazy initialization, since it behaves similarly except that some aliasing options are
not considered. This algorithm constitutes the main contribution of the paper.

Contributions. In this paper we make the following contributions:

1. We study of the usefulness of field bounds in the context of symbolic execu-
tion of structures.

2. We show that symmetry-breaking, as a mechanism to prevent considering
isomorphic structures, is important for efficiency.

3. We propose an algorithm that incorporates field bounds with symmetry
breaking into symbolic execution, and implement it within SPF.

4. We assess the above on three classic data structures: linked lists, binary trees
and red-black trees.

Structure of the article. In Sections 2 and 3, we introduce and discuss field
bounds and lazy initialization, respectively. In Section 4 we present the notion
of Bounded Lazy Initialization, and introduce both a straightforward algorithm
for it, and a more efficient one that performs symmetry-breaking. In Section 5, we

present experimental results showing that, on a relevant data structures bench-
mark, bounded lazy initialization with symmetry breaking scales better than
standard lazy initialization. In Section 6 we discuss related work, and in Sec-
tion 7 we present our conclusions and proposals for future work.

2 Tight Field Bounds and Program Analysis

Bounded program verification was introduced in [7] as a technique for bug detec-
tion. In [4, 5] it is implemented by translating Java code annotated with contracts
to a propositional formula, which is solved using a SAT-solver. This approach
requires the engineer to provide a scope, consisting of a maximum number of
iterations and object instances for the classes involved [7, 4, 5]. The existence of
a satisfying valuation for the formula can then be traced back to an execution
exhibiting an erroneous behavior (unhandled exception or contract violation)
within the provided scope. If no valuation is found, we know that the method is
correct within the prescribed scope.

The encoding of bounded program correctness as a satisfiability problem
involves interpreting programs in terms of relations. Given a class C, a class field
f of type C’ defined in C can be semantically interpreted, in a given program
state, as a total function f mapping object references from C (the semantic
domain associated with class C), to C ′ (the domain associated with class C’).
That is, in a given program state, f can be seen as a binary relation contained
in C × C ′. Notice that properties of the state may make some tuples of C × C ′

infeasible as part of the interpretation of a field f. In particular, if the state is
assumed to satisfy certain representation invariant (e.g., the states prior to the
execution of the code under analysis are assumed to satisfy a precondition, which
would include the wellformedness of the inputs), all tuples corresponding to ill-
formed structures will necessarily be out of the semantic interpretation of f in
that state. For instance, in linked lists, if the representation invariant indicates
that lists must be acyclic, then tuples of the form 〈N,N〉, with N ∈ Node
(the semantic domain associated with the Node class) cannot belong to next (the
semantic interpretation of next), if the corresponding state is assumed to satisfy
the invariant.

The above observation about infeasible tuples in fields’ semantic domains
can be enhanced if one is able to prevent isomorphic structures via symmetry-
breaking. Symmetry breaking enforces a canonical ordering on the way references
are stored in the model of the memory heap used during analysis. In [5], a mech-
anism for automatically defining symmetry-breaking predicates, for any Java
class, is introduced. These predicates force assigning node references to struc-
tures following a breadth-first ordering. Figure 1 shows examples of the ordering
for singly linked lists and binary trees. The ordering imposed by symmetry-
breaking predicates prevents some references from being connected. For instance,
in a list, a node reference Ni can only point (through field next) to Ni+1 or the
value null, if symmetry-breaking is imposed. Similarly, reference N0 can only
point through field left to N1 or the value null (any other candidate would

L0 N0 N1 N2 null
header next next next

N1 N2

N3 N4 N5

left

left

right

right right

null

T0
root

N0

left

right

left

left

right

Fig. 1. Node ordering for list-like and tree-like data structures.

violate the breadth-first ordering). If we instead consider field right, N0 can
point to N1 (only in case N0.left = null), N2, or null.

Also in [5], the notion of tight field bound is introduced. Tight field bounds
allow us to remove from fields’ semantic domains the tuples that are infeasible
due to representation invariants and symmetry-breaking, and lead to exponential
speed-ups in analysis. Let us describe this notion. Let us consider a class C and
a field f in C, of type C’ (i.e., declared as C’ f). A scope determines sets C
and C ′ of object instances of classes C and C’, respectively (e.g., if the scope
for class Node is 3, then Node = {N0, N1, N2}). Notice that the scope does not
determine the set of objects live at a specific runtime configuration, but rather
the runtime objects in any configuration. A sample scope would be, for instance,
7 Node (e.g., for performing a bounded verification on all linked lists, or binary
search trees, composed of up to 7 nodes). Consider the lattice of binary relations
〈P (C × (C ′ ∪ {null)}) ,⊆〉 (disregard null if C’ is a basic type). A tight bound
for field f is a member Uf of P (C × (C ′ ∪ {null)}) in which all pairs must belong
to some semantic interpretation for field f. Since the semantic interpretations
might be constrained by certain state properties (e.g., representation invariants
or symmetry breaking predicates), some tuples might necessarily be out of tight
field bounds.

As an example, consider scope 4 Node for acyclic linked lists with symmetry-
breaking. Then, relation

{(N0, N1), (N0, null), (N1, N2), (N1, null), (N2, N3), (N2, null), (N3, null)}

is a tight bound for field next. Similarly, relation

{(N0, N1), (N0, null), (N1, N2), (N1, N3), (N1, null), (N2, N3), (N2, null), (N3, null)}

is a tight bound for field left of binary search trees, under scope 4 Node. We
invite the reader to refer to Figure 1 to verify that pair (N0, N2), for instance,

cannot belong to the tight bounds for fields next (resp., left) of linked lists
(resp., binary search trees) under symmetry breaking.

To take advantage of tight field bounds, these must be computed prior to
actual program analysis. In [5], an effective distributed algorithm for comput-
ing tight field bounds is presented. The implementation, that is designed using
a master/slave architecture, allows for the removal, from the field’s semantic
domain, of those pairs that cannot belong to any valid instance that satisfies
the symmetry breaking-induced ordering and other constraints such as a rep-
resentation invariant. Precomputing field bounds contributes to the scalability
of analysis, since bounds only depend on the class, its invariant and the scope,
but are independent from the code of the method under analysis. Also, once the
bounds are computed, they are stored in a bounds database, and often reused.
For instance, the same bound can be used for the analysis of all the methods
in a class, and for different kinds of analysis (verification, test input generation,
etc.). Therefore, the cost of computing bounds is amortized by their frequent
use.

3 Lazy Initialization

Lazy initialization [8] is a technique for symbolic execution especially tailored
for handling complex, possibly unbounded data structures. Symbolic execution
begins with uninitialized field values and, along symbolic execution of a method
m, class fields are initialized only when they are accessed. Whenever a (previously
uninitialized) field f for an existing object o is accessed, the lazy initialization
for o.f takes place. When o.f is a reference to an instance of object type, the
following possibilities are, non-deterministically, considered:

– o.f may take the value null,
– o.f may refer to an already existing object,
– o.f refers to a new object.

This is formalized in the algorithm presented in Figure 2, extracted from [8]. In
order to make the contribution of this paper more clear we separate the above
choices into a function called options() which will be adapted in the following
sections.

3.1 A Running Example

Let us consider the algorithm in Figure 3. This algorithm searches for an inte-
ger value stored in a TreeSet. It returns the node that stores the valuer, if the
value is stored in the TreeSet, or it returns null otherwise. Figure 4 portrays 13
out of the 57 structures generated by the Lazy Initialization mechanism along
the symbolic execution of method Contains (we present those structures where
only fields root or left are being initialized). In Section 4, where we intro-
duce Bounded Lazy Initialization, we will come back to this example in order to
compare the number of generated structures.

if (f is uninitialized) {
if (f is a reference field of type T) {

nondeterministically initialize f to each element of options()
if (method precondition is violated) {

backtrack()
}

}
if (f is primitive (or string) field) {

initialize f to a new symbolic value of appropriate type
}

}

function options()
return the set consisting of

1. null
2. a new object of class T (with uninitialized field values)
3. every object created during a prior initialization of a field of type T

Fig. 2. Lazy Initialization Algorithm.

4 Bounded Lazy Initialization

Bounded Lazy Initialization profits from the existence of pre-computed tight
field bounds in order to prune the state space exploration performed by lazy
initialization even further. Let us consider an object o and a field f such that o.f
is next to be lazily initialized. For the sake of intuition, consider the partially
initialized TreeSet from Figure 5, with o = N1 and f = left. According to
Figure 2, the following possibilities arise during lazy initialization:

– o.f = null,
– o.f = N2, with N2 a new uninitialized node, or
– o.f may refer to N0 or N1.

The tight bound for TreeSet field left with up to 3 nodes is

{(N0, null), (N0, N1), (N1, null), (N2, null)} .

Out of the 4 alternatives that would be explored using lazy initialization, only one
is feasible according to the bound, namely, initializing o.f = null. The remaining
options introduce tuples to field left that were already deemed infeasible by the
bound pre-computation. Certainly, initializing o.f = N0 or o.f = N1 leads to a
cyclic structure, and therefore these initializations are correctly prevented by the
bounds. Even more interesting, o.f = N2 is also prevented since the resulting
structure would become unbalanced, with no nodes remaining to regain the
balance. It is worth noticing that tight field bounds capture these subtleties that
elude lazy initialization.

public TreeSetNode Contains (int key) {
TreeSetNode p = root ;
while (p != null) {

i f (key == p . key) {
return p ;

}
else i f (key < p . key) {

p = p . l e f t ;
}
else {

p = p . r i g h t ;
}

}
return null ;

}

Fig. 3. Method Contains from class TreeSet.

Unlike lazy initialization, bounded lazy initialization bounds the size of the
generated structures. Lazy initialization produces partially initialized structures
that eventually have to be made concrete. The concretization process may require
generating a structure that, because of its size, exceeds the capabilities of the
concretization technique. Therefore, whenever possible, keeping the size of the
structures under control is beneficial for analysis.

Bounded Lazy Initialization modifies the lazy initialization algorithm by fil-
tering those initializations that are incompatible with the tight field bounds. In
Section 4.1 we present a first approach to Bounded Lazy Initialization that is
particularly useful for explaining the concept, as well as for exposing a limitation
that is later on addressed, in Section 4.2.

4.1 First Approach: Initializing from Bounds

The first algorithm for Bounded Lazy Initialization is given in Figure 6. When a
field f has to be initialized, the algorithm allows one to consider all the options
provided by the tight bound for field f. In Figure 7, we show all the struc-
tures produced by Bounded Lazy Initialization during the symbolic execution of
method Contains (cf. Figure 3). There are clear differences with the outcome of
lazy initialization (cf. Figure 4). The reduction on the number of generated struc-
tures (57 for lazy initialization versus 13 for its bounded version) is obviously
significant. Besides, as argued above, this “pruning” is sound, since the struc-
tures that are no longer produced by the bounded lazy initialization procedure
stand no chance of satisfying the class invariant.

An important property of lazy initialization is that no isomorphic partially
initialized structures are ever generated. Therefore, no obviously redundant struc-
tures are being produced. When we move to bounded lazy initialization, this

this
root

null
root

N0this
root

N0this

null

left

root
N0this

left

N1

root
N0this

left

root
N0this

left

N1

null

left

root
N0this

left

N1

left

N2

root
N0this

left

N1

left

left

root
N0this

N1

left

root
N0this

left

N1

left

N2

null

left

root
N0this

left

N1

left

N2

left

root
N0this

left

N1

left

N2

left

root
N0this

left

N1

left

N2

left

Fig. 4. Some of the structures generated by lazy initialization along the symbolic exe-
cution of method Contains.

property is lost. Notice in particular that in Figure 7, the 6th and the 7th par-
tially initialized structures (also shown on the left side of Figure 8) are indeed
isomorphic (also the 10th and 12th as well as 11th and 13th). Unfortunately,
the number of isomorphic structures grows to a point where the advantage of
using the bounds is seriously reduced. In Section 4.2 we present an alterna-
tive approach that follows the same intuition, yet avoids producing isomorphic
partially initialized structures.

4.2 Second Approach: Regaining Full Symmetry Breaking

Let us analyze the 6th and 7th structures from Figure 7 (see left part of
Figure 8). The reason for having these two isomorphic initialization alternatives
for N0.right is that by making use of the information provided by the tight
bound for field right, the options for this field, for node N0, are null, N1, or N2.
However, it is not necessary to consider two different “non-null” initializations.
In order to avoid these isomorphic structures, we will use sets of references as
labels for nodes in the partially initialized structure. Figure 8 illustrates how the
structures get merged into a common structure under this new approach. The
intuition is the following: each node is labeled with a set of references that can be
reached by traversing the fields, and are compatible with the tight field bounds.
The new algorithm for bounded lazy initialization is presented in Figure 9. Let

root
N0this

right

N1

?

f = left

?

left

o

Fig. 5. A partially initialized TreeSet instance.

Input: Receiver object this, and field f

Input: Tight bound Uf for field f

function options()
return {t : T such that (this, t) ∈ Uf}

Fig. 6. The Bounded Lazy Initialization algorithm (version 1).

us consider a node n in the partially initialized structure whose label set is N .
Let f be the field that has to be initialized, and let Uf be its tight bound. Since
Uf is a binary relation, we can compute N ′ = N ;Uf (N ′ is then the set of
all images of elements in N , with respect to relation Uf). As it was the case for
lazy initialization, the new algorithm also considers three cases, whose discussion
follows:

– If null ∈ N ′, there must be a reference r ∈ N such that 〈r, null〉 ∈ Uf.
Therefore, there may be a concrete structure instance in which n.f = null.
Thus, null is a candidate definition that has to considered. Equally impor-
tant, if null /∈ N ′ there cannot be any node pointing to null. Therefore,
null does not need to be considered. Notice that the lazy initialization al-
gorithm always evaluates the possibility of using null.

– If N ′ contains some reference, then we consider adding a new node to the
structure. Notice that if N ′ = {null}, we do not add a new node. This
decision, consistent with the tight bound information, prunes options that
are unnecessarily considered by the lazy initialization algorithm.

– In lazy initialization, the third case initializes f as pointing to previously
introduced nodes. But, if N ′ does not intersect the label set for a previously
introduced node m, it is not possible (due to the bound induced constraints),
that this.f = m. This prunes initialization options that are currently con-
sidered by lazy initialization.

Notice that no isomorphic partially initialized structures can ever be generated.
This immediately follows from the fact that we are generating structures in
the same order lazy initialization does, yet we are skipping (probably many)
initializations. If we use the algorithm from Figure 9, out of the 13 partially
initialized structures considered in Figure 7 only 10 remain.

this
root

null
root

N0this
root

N0this

null

left

root
N0this

left

N1

root
N0this

null

right

root
N0this

right

N1

root
N0this

right

N2

root
N0this

left

N1

null

left

root
N0this

left

N1

null

right

root
N0this

right

N1

null

left

root
N0this

right

N1

null

right

root
N0this

right

N2

null

left

root
N0this

right

N2

null

right

Fig. 7. The 13 structures generated by Bounded Lazy Initialization along the symbolic
execution of method Contains.

5 Evaluation

The bounded lazy initialization algorithms described in the previous section
were implemented in Symbolic PathFinder [10], and compared to the already-
implemented lazy initialization algorithm. Three data structures are used to
illustrate the performance of the new approach:

– LList: An implementation of sequences based on singly linked lists;
– BSTree: A binary search tree implementation from [14]; and
– TreeSet: An implementation based on red-black trees as found in java.util.

They cover linear and tree-like structures. Since the number of partially initial-
ized structures generated during bounded lazy initialization strongly depends
on the cardinality of the tight bounds, it is relevant to analyze the impact of
the technique on heavily constrained structures (such as TreeSet, where tight
bounds are smaller) and on less constrained structures (such as BSTree).

5.1 Experimental Setting

Tight field bounds were not computed as part of our experiments. Instead, pre-
computed databases for the data structures were reused. Computing tight field
bounds, as put forward in [5], requires checking, via SAT solving, the feasibility
of each tuple in the corresponding field’s semantic domain. Thus, a high num-
ber of SAT queries, which depends on the scope, must be performed. However,
these checks are all independent from one another, and therefore are subject to

root
{N0}this

right

{N1,N2}

root
N0this

right

N1

root
N0this

right

N2

First approach Second approach

Fig. 8. From isomorphic partially initialized structures to a single partially initialized
structure.

Input: Receiver object this, with node set N as label
Input: Tight bound Uf for field f

function options()
Let N ′ be the node set N ;Uf. return the set

1. null, if null belongs to N ′

2. a new object of class T (with uninitialized field values), if N ′ \ {null} 6= ∅
3. every object created during a prior initialization of a field of

object type T whose label node set intersects with N ′

Fig. 9. The Bounded Lazy Initialization algorithm (version 2).

parallelization. Indeed, in [5] the approach to compute tight field bounds uses a
cluster. As a sample, the time required to compute tight bounds for lists, binary
search trees and red black trees using the approach in [5] is 68:53, 00:38 and
02:51 (in minutes and seconds, mm:ss), for scopes 100, 12 and 12, respectively,
and using a cluster of 16 quad-core PCs. These scopes exceed those used in this
paper, and therefore the corresponding tight bound computation times serve as
upper bounds of the actual times for the experiments in the paper. Each PC in
the cluster had two Intel Dual Core Xeon 2.67 GHz processors, a 2 MB L2 cache,
and 2 GB of RAM. The cluster used Debian GNU/Linux (kernel 2.6.18-6) and
the Argonne National Laboratory’s MPICH2 for message-passing.

The results reported in the rest of this section were computed on an Apple
MacBook Pro with a 2.3 GHz Intel i5 processor with 4 Gb of memory, running
the Mac OS X 10.8.2 operating system and the Darwin 12.2.0 kernel.

5.2 Experimental Results

Each experiment explores the execution of repOK(t) on a symbolic data structure
t with n nodes. The value of n is a parameter for the experiments. The repOK

routine checks that t satisfies the constraints on the wellformedness of the corre-
sponding data structure; for example, in the implementation of TreeSet, repOK
makes sure that t is a valid binary search tree, that node parent pointers are

LI BLI1 BLI2
n unique explored time explored duplicates time explored time

1 1 2 <00:01 1 0 <00:01 1 <00:01
10 10 74 <00:01 19 0 <00:01 19 <00:01
100 100 5 249 00:02 199 0 <00:01 199 <00:01

Table 1. Experimental results for LList

LI BLI1 BLI2
n unique explored time explored duplicates time explored time

1 1 4 <00:01 2 0 <00:01 2 <00:01
2 3 21 <00:01 10 0 <00:01 11 <00:01
3 8 82 <00:01 36 1 <00:01 44 <00:01
4 22 306 <00:01 145 9 <00:01 164 <00:01
5 64 1 140 00:01 668 61 00:01 639 00:01
6 196 4 275 00:02 3 554 393 00:02 2 464 00:01
7 625 16 144 00:04 21 165 2 523 00:05 9 604 00:03
8 2 055 61 332 00:09 140 996 16 927 00:17 35 695 00:06
9 6 917 234 154 00:29 1 030 989 119 747 01:43 136 260 00:16
10 23 713 897 596 01:44 8 259 479 908 563 13:47 516 376 00:53
11 82 499 3 452 526 06:34 – – – 1 972 260 03:12

Table 2. Experimental results for BSTree

correct, and that the red-black color constraints are satisfied, resulting in a bal-
anced tree. As repOK traverses the data structure, the fields are initialized using
the lazy, bounded lazy, and the symmetry-breaking bounded lazy techniques.

Tables 1, 2, and 3 (for LList, BSTree, and TreeSet, respectively) show the
number of structures explored, and the execution times (in minutes and seconds,
mm:ss). The last two tables show only those experiments that completed in
less than 30 minutes. The results for LList in Table 1 do not convey much
information. The first two columns show the value of n (the number of nodes)
and the number of unique data structures of this size. As expected, these values
are identical in the case of LList. The next three major columns show the
results for the LI (lazy initialization), BLI1 (the first bounded lazy initialization),
and BLI2 (the second bounded lazy initialization) techniques. The times, shown
in columns 4, 7, and 9, are negligible. The values in columns 3, 5, and 8 are
the number of choices made during the exploration according to the algorithms
in Figures 2, 6, and 9, respectively. Because the last two values are bounded,
not many such choices are explored; LI is entirely unconstrained and make all
possible choices. Nevertheless, the times remain small.

The results for BinTree show a different case, since the number of choices is
much larger, and the repOK implementation is more involved. Up to n = 6, LI
makes more choices because it is not constrained by bounds. However, at n = 7
it is overtaken by BLI1 in this regard, because of the number of duplicates the
latter explores. The number of duplicates explored (over and above the unique

LI BLI1 BLI2
n unique explored time explored duplicates time explored time

1 2 4 00:01 2 0 <00:01 2 <00:01
2 4 27 <00:01 20 2 <00:01 15 <00:01
3 7 110 00:01 22 1 <00:01 21 <00:01
4 15 409 00:01 90 1 00:01 101 00:01
5 29 1 509 00:04 239 14 00:02 158 00:01
6 49 5 610 00:08 1 231 58 00:05 883 00:04
7 84 21 043 00:27 7 636 178 00:23 4 715 00:13
8 148 79 530 02:14 51 291 576 03:13 16 146 00:53
9 270 302 402 11:51 267 750 1 775 27:11 39 583 02:59
10 518 – – – – – 149 133 17:11

Table 3. Experimental results for TreeSet

structures) is given in the middle column of the table. This extra work is also
reflected in the execution times. The BLI2 technique explores fewer choices than
either LI and BLI1, meaning that it can analyze significantly more structures in
the same amount of time. This same trend is also clear in the case of TreeSet.

6 Related Work

Constraint based bounded verification has its origins in [7], where a translation
from annotated code to SAT is proposed, and off-the-shelf SAT-solvers are used
in order to determine the existence of bugs in the code under analysis. Several
articles suggest improvements over [7]. For instance, [12] uses properties of func-
tional relations to improve Java code analysis, and provides improvements for
integer and array analyses. Bounded verification can be performed modularly, as
shown in [4]. In [5], the use of tight field bounds allowed us to improve bounded
verification significantly.

Symbolic execution [9] is a technique for program analysis that executes
a path in the program control flow graph using symbolic values. During the
symbolic execution, conditions from branching statements are conjoined into
a path condition. The satisfaction of the path condition allows one to create
inputs that exercise the symbolically executed path. Lazy initialization [8] is an
optimization of symbolic execution where dynamically allocated data structures
are partially initialized on demand, deferring the initialization process as much
as possible. Dynamic symbolic execution [6] (also called concolic execution), uses
concrete executions to guide the symbolic execution phase.

Symbolic execution and bounded verification were combined in [11]. Symbolic
execution was used to build path conditions that were later on solved using
bounded verification. Bounds have also been used in the context of symbolic
execution; tools like Kiasan [3] and Symbolic Pathfinder [10] bound the length
of reference chains. In [13] symbolic execution was used to generate tests for
containers similar to those used here. Various different approaches were used for

test generation, including symbolic execution of repOK(), but no bounds were
considered. All the techniques that resort to symbolic execution may profit from
using a mechanism such as, bounded lazy initialization, as defined in this paper.

7 Conclusions and Future Work

Tight field bounds have been successfully used in the context of bounded-exhaustive
bug finding, in order to increase this analysis’ scalability. In this paper, we stud-
ied whether field bounds can also contribute to improve the efficiency of symbolic
execution. We showed not only that field bounds can be employed to improve the
symbolic execution of structures, but also that symmetry breaking, as a mecha-
nism to prevent considering isomorphic structures, is important for efficiency. We
proposed two algorithms that incoporate field bounds into Symbolic Pathfinder’s
lazy initialization, resulting in what we call bounded lazy initialization. The first
is a straightforward extension of lazy initialization to take into account field
bounds, whereas the second prevents the generation of isomorphic structures.
We carried out experiments with classic data structure implementations, that
show the usefulness of our approach, and the importance of avoiding generating
isomorphic structures.

The presented approach requires pre-computing tight bounds for the fields of
the program under analysis. Computing tight field bounds, as put forward in [5],
requires a high number of satisfiability queries, which are independent and there-
fore are subject to parallelization. So, a cluster is used to compute these bounds.
We are working on alternative, more efficient, ways of computing tight bounds.
In particular, we are currently developing tight bound computation mechanisms
that can be run on a single workstation, with an efficiency comparable to the
approach in [5], but which may lead to less precise bounds.

We used symbolic execution on the repOK() method, to analyze the effective-
ness of using field bounds. This can be used, e.g., to generate all valid structures
(within a provided scope), to be employed later on for testing. Moreover, since
the repOK() method typically uses all fields of a structure, it does not have any
bias towards particular visits of the analyzed structures. A different approach,
that we plan to explore, would be to symbolically execute the code under anal-
ysis, and then to check which valid structures are required. This would produce
structures without necessarily having to instantiate all their parts. The contri-
bution of tight field bounds in such contexts might be different from what we
obtained in this work, so we plan to evaluate our approach in such scenarios.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful com-
ments. This work was partially supported by the Argentinian Ministry of Science
and Technology and the South-African Department of Science and Technology,
through grant MINCyT-DST SA1108; by the Argentinian Agency for Scientific
and Technological Promotion (ANPCyT), through grants PICT PAE 2007 No.
2772 and PICT 2010 No. 1690; and by the MEALS project (EU FP7 programme,
grant agreement No. 295261).

References

1. Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge
University Press, 2008.

2. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, Cambridge, MA, USA, 1999.

3. Xianghua Deng, Jooyong Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic
execution for checking strong heap properties of open systems. In Proceedings of the
21st IEEE/ACM International Conference on Automated Software Engineering,
ASE ’06, pages 157–166, Washington, DC, USA, 2006. IEEE Computer Society.

4. Greg Dennis, Kuat Yessenov, and Daniel Jackson. Bounded verification of voting
software. In Proceedings of the 2nd International Conference on Verified Software:
Theories, Tools, Experiments, VSTTE ’08, pages 130–145, Berlin, Heidelberg, 2008.
Springer-Verlag.

5. Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F. Frias. Anal-
ysis of invariants for efficient bounded verification. In Proceedings of the 19th In-
ternational Symposium on Software Testing and Analysis, pages 25–36, July 2010.

6. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’05, pages 213–223, New
York, NY, USA, 2005. ACM.

7. Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In
Proceedings of the 2000 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’00, pages 14–25, New York, NY, USA, 2000. ACM.

8. Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized symbolic
execution for model checking and testing. In Proceedings of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
LNCS 2619, pages 553–568. Springer, April 2003.

9. James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

10. Corina S. Păsăreanu and Neha Rungta. Symbolic PathFinder: symbolic execution
of Java bytecode. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ASE ’10, pages 179–180, New York, NY, USA,
2010. ACM.

11. Danhua Shao, Sarfraz Khurshid, and Dewayne E. Perry. Whispec: white-box test-
ing of libraries using declarative specifications. In Proceedings of the 2007 Sympo-
sium on Library-Centric Software Design, LCSD ’07, pages 11–20, New York, NY,
USA, 2007. ACM.

12. Mandana Vaziri and Daniel Jackson. Checking properties of heap-manipulating
procedures with a constraint solver. In Proceedings of the 9th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’03, pages 505–520, Berlin, Heidelberg, 2003. Springer-Verlag.

13. Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input generation
with Java PathFinder. In George S. Avrunin and Gregg Rothermel, editors, ISSTA,
pages 97–107. ACM, 2004.

14. Willem Visser, Corina S. Păsăreanu, and Radek Pelánek. Test input generation
for Java containers using state matching. In Lori L. Pollock and Mauro Pezzè,
editors, Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, pages 37–48. ACM, July 2006.

