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Abstract. We study a logic adapted for the purpose of specifying com-
ponent based systems with support for run time reconfiguration. In par-
ticular, we analyse some institutional properties of this logic, related to
compositional reasoning in specifications.
The logic is an adaptation of the Manna-Pnueli logic, a first-order tem-
poral logic originally proposed to describe reactive systems. We present
our variant in detail, and motivate the required extensions by showing
how reconfigurable systems can be specified and how reasoning can be
carried out in the presence of these properties. Some issues regarding the
use of STeP for proof support are discussed.

1 Introduction

When the complexity of software systems started to increase some decades ago, in
part due to more complex or bigger application domains, the need for techniques
that would allow developers to modularise or divide systems and the problems
they solve into manageable parts became crucial. Various heuristic techniques
regarding modularisation were conceived. Some of these then evolved to become
constructs of what were at that time modern programming languages, and even-
tually were integrated into programming methodologies [22][23]. The advantages
that structuring software systems into modules has in all phases of software de-
velopment, from analysis to maintenance, were instantly recognised and have
strengthened over the intervening decades.

In the past decade, a new branch of software engineering emerged with the
name software architectures [4][11]. This branch (re)emphasises the notion of
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module, or component, at a perhaps higher level of abstraction than that used
in other modern modelling (and programming) methodologies, such as object
orientation [20]. Software architectures suggest the modelling of systems struc-
ture in terms of components related by means of connectors, thus introducing
a second modularisation concept to accompany that of components. The mo-
tivating principles are the very same ones originally motivating modularisation
techniques. The increasing attention in higher level structural descriptions of
systems led to the development of a special type of specification languages,
called architecture description languages (ADLs) [19]. The purpose of ADLs is
to describe and analyse properties of software architectures.

Modern applications typically require a feature that some ADLs are able to
deal with, namely dynamic reconfiguration, i.e., the run time modification of the
system’s structure [18]. Although this is not an inherent feature of software archi-
tectures, it appears frequently and naturally, perhaps due to the success of object
oriented methodologies and programming languages, where it is intrinsic. While
ADLs provide constructs for modelling the architecture of a system, they often
do not support within the language reasoning about possible system evolution.
More precisely, some ADLs support the definition of components, interconnec-
tions and transformation rules or operations for making architectures change
dynamically, but any kind of reasoning about behaviours is often performed in
some “meta-language”, often informally. Moreover, the description of architec-
tural elements in ADLs, particularly those related to dynamic reconfiguration,
is usually done in an operational way, as opposed to declaratively [12][14][24].

Being able to specify and reason about the consequences of using certain re-
configuration operations in a declarative manner would add abstraction to what,
to our understanding, can be operationally specified by ADLs. We therefore pro-
posed a temporal logic based formalism for the specification of reconfigurable
systems [2][3]. Temporal logic provides a declarative and well known language
to express behavioural properties, and is currently used in several branches of
software engineering. Moreover, the use of temporal logic as a formal basis for
software architectures leads to direct support for reasoning. In fact, there exists
currently tool support for the temporal logic we based our work on, the Manna-
Pnueli logic [16]. Although this tool, the Stanford Temporal Prover (STeP) [6],
does not fully meet our needs, it can still be used to assist in the reasoning
regarding reconfigurable systems.

We adapted the Manna-Pnueli logic [16], originally proposed for specifying
reactive systems, for the purpose of describing reconfigurable component based
systems [3]. We present our variant of this logic in detail and show some re-
sults that demonstrate its suitability for the specification of dynamically recon-
figurable systems. In particular, we prove that the logic, with a special type
of language translation, constitutes an institution [13]. This result enables us,
if specifications are organised appropriately, to import properties from compo-
nents when building (dynamic) amalgamations, as we will show. We discuss
some shortcomings of STeP in supporting the required forms of reasoning and
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whether they can be overcome via encodings or whether they require an exten-
sion to STeP.

2 Some Requirements to Express Dynamic
Reconfiguration

We motivate here the changes we propose to the original logic, necessary to deal
with dynamic reconfiguration. We present a simple example where the reasons
that motivate the changes to the logic become apparent. The style of specifi-
cation, or modelling, we want to use is inspired by the one in [9] and related
work.

2.1 Representing Action Occurrence

Consider a system where printers and print servers exist, with the corresponding
interactions between them. A varying number of printers and servers is neces-
sary, in order to provide flexibility and robustness. Printers have very simple
behaviour. They can load a job, which is a string of characters, and they can
print a previously loaded job. Standard printers do not have a buffer, though.

A possible way of modelling printers as components is the following: the
attributes of a printer are its current job and one that indicates whether it is
ready or not to receive a new job. The operations that a printer can perform are:
(i) load, which allows a printer to load a new job, (ii) print, which prints the
current job, (iii) print-el, which serves the purpose of implementing by successive
calls the print operation, by printing the current character of the job to be
printed, and (iv) p-init, which initialises a printer by setting the current job to
the empty string and making the printer ready. So, a template modelling the
structure of printers (only the structure, i.e., a kind of signature of printers)
would look like the one in Figure 1.

Class Printer
Attributes: ready : boolean, job : string
Actions: p-init(), print(), load(j : string), print-el (c : char)
EndofClass

Fig. 1. Class Printer .

Of course, we need to indicate somehow the intention of actions, i.e., their
effect on attributes. We opt to do so by using temporal logic, so components can
be specified in a declarative way, and with direct support for reasoning about
their properties. More specifically, we would like to use the Manna-Pnueli tempo-
ral logic, which has been successfully used to specify reactive systems. Clearly,
we want an attribute’s values to be state dependent. So, we can model them
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using what are called local variables in the nomenclature of the Manna-Pnueli
logic, i.e., 0-ary flexible function symbols. We can model (instantaneous) actions
of the printer component as predicate symbols, in such a way that the truth of
a(x) represents the occurrence of action a with parameter x. Then, we would like
some predicate symbols to have a state dependent interpretation. The flexibility
of a intuitively indicates that a(x), for some x, can happen in some instants of
time, and not happen in some other instants (as a static characterisation of a
would force a(x) to happen either in all or none of the states of the system).

In the Manna-Pnueli logic though, all predicate symbols have a state inde-
pendent interpretation. So, we cannot model actions straightforwardly, in the
style described above. We need then to consider a variant of the Manna-Pnueli
logic, one in which (at least) some predicate symbols are allowed to have a
state dependent interpretation. The reader might argue that a similar effect can
be achieved by specifying functions from the parameters of a to booleans as a
datatype P , and declaring a to be a local variable of type P . However, we choose
to consider a variant of the Manna-Pnueli logic instead, so the study of the logic
and the combination of different languages and theories, which will be necessary
in order to put together the specifications of different components, is easier to
achieve. See section 5 for more details in this regard.

In the presence of “flexible” predicate symbols for describing the actions
of components, we can provide temporal formulae to specify the above compo-
nent’s behaviour. For instance, the following formula could be part of a temporal
specification for printers:

�[∀j ∈ string : load(j) → ©(job = j)]

which, by means of the next and box operators, intuitively describes the post-
condition of action load(j : string).

2.2 Building Aggregations of Components

Suppose that in addition to printers, we also specify other necessary kinds of
components, such as print servers and buffers. After that, we need to put them
together to build (dynamically evolving) aggregations of components. Contrary
to the way (static) aggregations are constructed in algebraic specifications and
some formal component based formalisms, using categorical diagrams to repre-
sent composite systems, we do it by implementing in a logical way a concept
similar to the “dot notation” of object orientation. In order to do so, we add
special arguments to actions and attributes to denote the instances to which
these belong. So, for instance, attributes job and ready from the specification of
printers, which originally are of type string and boolean respectively, will become
of type N → string and N → boolean, for a sort N representing the names of
instances of printers.

Then, we are in a situation in which we need state dependent function sym-
bols of arity greater than zero, in theories describing dynamic aggregations of
components. As we previously observed, in the Manna-Pnueli logic only local



Some Institutional Requirements for Temporal Reasoning 411

variables (special function symbols of arity zero) are state dependent. So, we
need to introduce another modification to the Manna-Pnueli logic. Again, the
reader might argue that a similar effect can be achieved by defining suitable
datatypes for these attributes, but, as for the case of flexible predicate symbols,
this complicates the study of the logic and the way descriptions of different com-
ponents can be combined. Again, we refer the reader to section 5 for a more
detailed explanation.

3 A Logic for the Description of Reconfigurable Systems

We now start describing the logic we use as a core for the specification of re-
configurable systems. Earlier versions of it have been presented in [2][3], and as
indicated above, this is a variant of a logic widely used for the specification of
reactive systems, namely the Manna-Pnueli logic [16][17]. Some of the definitions
in this section are adapted from others in [16] and [21]. The use of the logic for
expressing properties of systems is standard. We will generalise the notion of lo-
cal variables (“constants” whose values are state dependent) to flexible function
symbols (whose interpretation is state dependent). Predicate symbols are also
split between rigid and flexible. Thus, we go back to earlier work, such as [1],
which led to the present status of the Manna-Pnueli logic, where flexible symbols
were more general than simply 0-ary functions.

In contrast with previous work on the Manna-Pnueli logic, we focus on the
use of (our variant of) the logic in the context of different alphabets and their
transformations, i.e., we use it in an institutional way [13].

3.1 Syntax

An alphabet (sometimes called signature or vocabulary) for this logic consists of:

– a finite set S of sorts,
– a finite set of (S∗ × S)-indexed flexible function symbols,
– a finite set of (S∗ × S)-indexed rigid function symbols,
– a finite set of (S∗)-indexed flexible predicate symbols,
– a finite set of (S∗)-indexed rigid predicate symbols,
– a countable set of S-indexed (logical) variables.

Typed terms are constructed from the symbols of the vocabulary in the standard
way, without making any distinction between flexible and rigid function symbols.
Formulae are constructed also in the usual way (without any distinction between
flexible and rigid predicates), using the traditional propositional connectives,
the unary temporal operators © and �, the binary temporal operator U , and
quantification over variables.

Terms are precisely defined in the following way:

Definition 1. Given an alphabet A, the set of typed terms for it is constructed
as follows:
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– if V is a variable of sort S in A, then V is a term of sort S,
– if f : S1, . . . , Sk×S is a (flexible or rigid) function symbol in A, and t1, . . . , tk

are terms of sorts S1, . . . , Sk respectively, then f(t1, . . . , tk) is a term of sort
S,

– if t is a term of sort S, so is ©t,
– no other string of symbols is a term for A.

Terms are used to denote individuals, i.e. elements of the universe of discourse,
and operations on them. For the specification language (and the application
domain) we are interested in, we will need, for instance, terms to denote integers,
strings, booleans, etc, and the usual operations on them. From now on, we will
use “→” instead of “×” for indicating the type of function symbols, since it has
a more intuitive reading in our context.

Formulae, used to build assertions about individuals, are constructed as fol-
lows:

Definition 2. Given an alphabet A, the set of formulae for it is constructed as
follows:

– if t1 and t2 are terms of sort S for A, then t1 = t2 is a formula,
– if t1, . . . , tk are terms of sorts S1, . . . , Sk respectively, and p : S1, . . . , Sk is

a (flexible or rigid) predicate symbol, then p(t1, . . . , tk) is a formula, called
atomic,

– if α and β are formulae, so are ¬α, α→ β,©α,�α, αUβ,
– if V is a variable of sort S and α is a formula, then ∀V ∈ S : α is a formula,
– no other string of symbols is a formula for A.

We denote by LA the set of formulae over an alphabet A.

The intended meaning of propositional connectives is standard. Having in
mind that validity of formulae in a model will be subject to a (current) state,
and that states are linearly organised, the intended meanings of ©α and αUβ
are “α is true in the next state” and “α is true (at least) until β becomes true”,
respectively. This is formalised in the section about the semantics of this logic.
The box operator, that we used in the previous section, is defined in terms of
the diamond operator and negation, as:

�α ≡ ¬�¬α.

It has its own intuitive reading: �α intuitively means “always in the future, α
holds”, with a reflexive semantics for “always in the future”, i.e., the “future”
includes the “present”.

3.2 Semantics

First, let us introduce some definitions, necessary in order to give the semantics
of this logic.
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Definition 3. Given an alphabet A, a (semantic) structure M for it is a map-
ping that assigns:

– for each sort S in A, a nonempty set SM ,
– for each rigid function symbol f : S1, . . . , Sk → S in A, a function

fM : SM
1 , . . . , SM

k → SM ,

– for each rigid predicate symbol p : S1, . . . , Sk in A, a relation

pM ⊆ SM
1 × . . .× SM

k .

Given an alphabet A and an A-structure M , a state is a function s that
maps:

– every flexible function symbol f : S1, . . . , Sk → S in A to a function

fM : SM
1 , . . . , SM

k → SM ,

– every flexible predicate symbol p : S1, . . . , Sk in A to a relation

pM ⊆ SM
1 × . . .× SM

k .

A trajectory σ in an A-structure M is an infinite list of states. Given a
trajectory σ = s0, s1, . . ., we denote by σ(k) the suffix sk, sk+1, . . ..

An assignment for an A-structure is a mapping that, for every variable V : S,
assigns a value a ∈ SM .

Given an assignment A, a variable x : S and a value d ∈ SM , we denote by
Ax/d the assignment that coincides with A for all variables y �= x, and that maps
x to d.

Definition 4. Let A be an alphabet. An interpretation is a triple I = (M,A, σ),
where M is an A-structure, A is an assignment for M , and σ is a trajectory in
M .

Given an interpretation I = (M,A, σ), we denote by Ix/d the interpretation
(M,Ax/d, σ).

Given an interpretation I = (M,A, σ) for A, we define I(t), for an A-term t,
as follows:

– for a variable v, I(v) = A(v),
– for a rigid 0-ary function symbol f :→ S, I(f) = fM ,
– for a flexible 0-ary function symbol f :→ S, I(f) = σ0(f), where σ0 is the

first state in the trajectory σ,
– for a term f(t1, . . . , tk), where f is a rigid function symbol,

I(f(t1, . . . , tk)) = fM (I(t1), . . . , I(tk)),
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– for a term f(t1, . . . , tk), where f is a flexible function symbol,

I(f(t1, . . . , tk)) = σ0(f)(I(t1), . . . , I(tk)),

– for a term ©t, I(©t) = I(1)(t), where I(1) = (M,A, σ(1))

We are ready to define satisfaction of a formula under a given interpretation.

Definition 5. Let A be an alphabet, and I = (M,A, σ) an interpretation. We

define satisfaction of a formula α (over alphabet A) in I, in symbols
I

|= α, as
follows:

–
I

|= t1 = t2 if and only if I(t1) = I(t2),

–
I

|= p(t1, . . . , tk), where p is a rigid predicate symbol, if and only if

(I(t1), . . . , I(tk)) ∈ pM ,

–
I

|= p(t1, . . . , tk), where p is a flexible predicate symbol, if and only if

(I(t1), . . . , I(tk)) ∈ σ0(p),

–
I

|= ¬β if and only if is not the case that
I

|= β,

–
I

|= β1 → β2 if and only if either
I

|= ¬β1 or
I

|= β2,

–
I

|= ©β if and only if
I(1)

|= β,

–
I

|= �β if and only if there exists a k ≥ 0 such that
I(k)

|= β,

–
I

|= β1Uβ2 if and only if for some k ≥ 0,
I(k)

|= β2 and for all 0 ≤ i < k,
I(i)

|= β1,

–
I

|= ∀x ∈ S : β if and only if for all d ∈ SM it is the case that
Ix/d

|= β.

Given a set of formulae Φ over an alphabet A, an A-interpretation I is called

a model of Φ if and only if
I

|= φ, for all φ in Φ.

Semantic Consequence We overload the symbol |=, using it now for defining
a relation between sets of formulae over an alphabet A.

Definition 6. Let A be an alphabet, Φ and Ψ sets of formulae over A. Then,
we say that Ψ is a semantic consequence of Φ, in symbols Φ |= Ψ , if and only if
for every interpretation I (for A), if I is a model of Φ then it is also a model of
Ψ .

Proposition 1. The binary relation |= of semantic consequence between sets of
formulae over an alphabet A has the following properties:
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– it is reflexive, i.e., for every set of formulae Φ, it is the case that Φ |= Φ,
– it satisfies cut:

For all sets Φ, Φ1 and Ψ of formulae, if Φ ∪ Φ1 |= Ψ and Φ |= φ, for
all φ in Φ1, then Φ |= Ψ ,

– it is monotonic, i.e., if Φ and Ψ are sets of formulae such that Φ |= Ψ , then
Φ ∪ Φ1 |= Ψ , for every set Φ1 of formulae.

Structurality of Semantic Consequence It will be necessary for us to com-
bine different languages and formulae in order to be able to build specifications.
For this purpose, we need to prove that the logic satisfies certain structural
properties.

Definition 7. We define an alphabet morphism τ between alphabets

A = (SA,F
fl
A ,F

rg
A ,P

fl
A ,P

rg
A ,VA)

and
B = (SB,F

fl
B ,F

rg
B ,P

fl
B ,P

rg
B ,VB)

as a family of functions:

– τsorts, mapping each sort in SA to a sort in SB,
– τfl-fnt, mapping each flexible function symbol

f : S1, . . . , Sk → S

in Ffl
A to a flexible function symbol

τfl-fnt(f) : τsorts(S1), . . . , τsorts(Sk), S′
k+1, . . . , S

′
n → τsorts(S)

in Ffl
B , where S′

k+1, . . . , S
′
n do not belong to the image of τsorts,

– τrg-fnt, mapping each rigid function symbol

f : S1, . . . , Sk → S

in Frg
A to a rigid function symbol

τrg-fnt(f) : τsorts(S1), . . . , τsorts(Sk), S′
k+1, . . . , S

′
n → τsorts(S)

in Frg
B , where S′

k+1, . . . , S
′
n do not belong to the image of τsorts,

– τfl-prd, mapping each flexible predicate symbol

p : S1, . . . , Sk

in Pfl
A to a flexible predicate symbol

τfl-prd(p) : τsorts(S1), . . . , τsorts(Sk), S′
k+1, . . . , S

′
n

in Pfl
B , where S′

k+1, . . . , S
′
n do not belong to the image of τsorts,
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– τrg-prd, mapping each rigid predicate symbol

p : S1, . . . , Sk

in Prg
A to a rigid predicate symbol

τrg-prd(p) : τsorts(S1), . . . , τsorts(Sk), S′
k+1, . . . , S

′
n

in Prg
B , where S′

k+1, . . . , S
′
n do not belong to the image of τsorts,

– τvars, mapping each variable x : S in VA to a variable τvars(x) : τsorts(S)
in VB.

Note that function and predicate symbols could be mapped to symbols with
a greater arity. This is crucial for the way we deal with reconfiguration. Having
defined mappings of symbols from an alphabet to another, we define how to
translate formulae from one alphabet to another, in a way that is useful for the
purpose of specifying reconfigurable systems.

In the following definition, we denote the image set of a function f by Img(f).

Definition 8. Let τ : A → B be an alphabet morphism. We define the function

Grτ : LA → LB

as follows: Given a formula α, the formula Grτ (α) results from the following
procedure:

1. We first (inductively) apply the translation of the symbols in α using τ . Let
us call this pseudo-formula ατ .

2. For every sort in B − Img(τsorts), we choose a variable. If the translation
of α into ατ involved translating function or predicate symbols to others of
a greater arity (recall that the definition of alphabet morphism allows for
this), then the remaining arguments are filled with these chosen variables, of
the corresponding sort. (Note that all the remaining arguments of function
symbols or predicates of a specific sort will be filled with the same variable.)

3. We universally quantify (over the corresponding sorts) all the free new vari-
ables added as a result of the previous step.

Example 1. Consider the following formula α:

�[(∃x ∈ S : p(x)) → q].

Let τ be an alphabet morphism mapping S to S′, p : S to p′ : S′, S′′, q to q′ : S′′,
and x : S to x : S′. Then, the formula Gr τ (α) resulting from the translation of
α is:

∀y ∈ S′′ : [�[(∃x ∈ S′ : p′(x, y)) → q′(y)]].
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Definition 9. Let τ : A → B be an alphabet morphism and I = (M,A, σ) a
B-interpretation. Let SB1 , . . . , SBj be the sorts in B− Img(τsorts), and d1, . . . , dj

elements in SM
B1
, . . . , SM

Bj
, respectively.

We denote by I|d1,...,dj
A

the A-interpretation
(
M|d1,...,dj

A
, A|d1,...,dj

A
, σ|d1,...,dj

A

)
,

where:

– M
|
d1,...,dj
A

is defined as:

• Each sort S in A is interpreted as (τsorts(S))M ,
• each rigid function symbol f in A, which is translated via τ to a symbol

of the same arity, is interpreted as (τrg-fnt(f))M ,
• each rigid function symbol f : S1, . . . , Sk → S in A, which is translated

via τ to a symbol of a greater arity

τrg-fnt(f) : τsorts(S1), . . . , τsorts(Sk), SBπ(1) , . . . , SBπ(n) → τsorts(S),

is interpreted as the function:

(τrg-fnt(f))M

|d1,...,dj
A

: (τsorts(S1))M , . . . , (τsorts(Sk))M → (τsorts(S))M ,

defined as:

(τrg-fnt(f))M

|
d1,...,dj
A

(x1, . . . , xk) =

(τrg-fnt(f))M (x1, . . . , xk, dπ(1), . . . , dπ(n)),

• each rigid predicate symbol p in A, which is translated via τ to a symbol
of the same arity, is interpreted as (τrg-prd(p))M ,

• each rigid predicate symbol p : S1, . . . , Sk in A, which is translated via τ
to a symbol of a greater arity

τrg-prd(p) : τsorts(S1), . . . , τsorts(Sk), SBπ(1) , . . . , SBπ(n)

is interpreted as the relation:

(τrg-prd(p))M

|
d1,...,dj
A

⊆ (τsorts(S1))M × . . .× (τsorts(Sk))M ,

defined as:

{(x1, . . . , xk)|(x1, . . . , xk, dπ(1), . . . , dπ(n)) ∈ (τrg-prd(p))M}

where π is a permutation of 1, . . . , j, (and SBπ(1) , . . . , SBπ(n) represents a
subsequence of a permutation of SB1 , . . . , SBj )

– A|d1,...,dj
A

maps each variable x is A to A(τvars(x)),
– each state si of the trajectory σ

|
d1,...,dj
A

is defined as:
• each flexible function symbol f in A, which is translated via τ to a symbol

of the same arity, is interpreted as sI
i (τfl-fnt(f)),
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• each flexible function symbol f : S1, . . . , Sk → S in A, which is translated
via τ to a symbol of a greater arity

τfl-fnt(f) : τsorts(S1), . . . , τsorts(Sk), SBπ(1) , . . . , SBπ(n) → τsorts(S),

is interpreted as the function:

si(f) : (τsorts(S1))M , . . . , (τsorts(Sk))M → (τsorts(S))M ,

defined as:

(si(f))(x1, . . . , xk) = (sI
i (τfl-fnt(f)))(x1, . . . , xk, dπ(1), . . . , dπ(n)),

• each flexible predicate symbol p in A, which is translated via τ to a symbol
of the same arity, is interpreted as sI

i (τfl-prd(p)),
• each flexible predicate symbol p : S1, . . . , Sk in A, which is translated via
τ to a symbol of a greater arity

τfl-prd(p) : τsorts(S1), . . . , τsorts(Sk), ScalBπ(1) , . . . , SBπ(n)

is interpreted as the relation:

si(p) ⊆ (τsorts(S1))M × . . .× (τsorts(Sk))M ,

defined as:

{(x1, . . . , xk)|(x1, . . . , xk, dπ(1), . . . , dπ(n)) ∈ sI
i (τfl-prd(p))},

where sI
i is the i-th state in the trajectory σ, and π is a permutation of

1, . . . , j.

Lemma 1. Let τ : A → B be an alphabet morphism, φ an A-formula and
I = (M,A, σ) a B-interpretation. Let SB1 , . . . , SBj be the sorts in B−Img(τsorts),
and d1, . . . , dj arbitrary elements in (SB1)M , . . . , (SBj )M , respectively. Then,

Ix1,...,xk/dπi(1),...,dπi(k)

is a model of φτ (x1, x2, . . . , xk) if and only if

I
|
dπi(1)

,...,dπi(k)
A

is a model of φ.

Proof. The proof proceeds by induction over the structure of formula φ. It is
relatively straightforward, and is left as an exercise for the interested reader.
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Lemma 2. Let τ : A → B be an alphabet morphism, Φ a set of A-formulae
and I a B-interpretation. Let SB1 , . . . , SBj be the sorts in B − Img(τsorts), and
d1, . . . , dj arbitrary elements in M(SB1), . . . ,M(SBj ), respectively. Then, if I is
a model of Grτ (Φ), I

|
d1,...,dj
A

is an A-model of Φ.

Proof. Let τ : A → B be an alphabet morphism, Φ a set of A-formulae and I a
B-interpretation, which is a model of Grτ (Φ).

First, note that for each formula φi in Φ, its translation Gr τ (φi) in Gr τ (Φ)
is of the form:

∀x1 ∈ S′
1 : ∀x2 ∈ S′

2...∀xk ∈ S′
k : φiτ (x1, x2, . . . , xk),

where φiτ is the pseudo-formula obtained from φi after the first step of the
transformation, and φiτ (x1, x2, . . . , xk) is the one obtained after the second step
of the transformation, i.e., with the “empty places” appropriately filled with
x1, x2, . . . , xk. Due to the definition of the transformation Grτ , it is clear that
S′

1, . . . , S
′
k are not in Img(τsorts). Let us assume that

B − Img(τsorts ) = {SB1 , . . . SBj}.

Then, we can rewrite each Grτ (φi) as:

∀x1 ∈ SBπi(1)
: ∀x2 ∈ SBπi(2)

...∀xk ∈ SBπi(k) : φiτ (x1, x2, . . . , xk)

where πi denotes a permutation.
Variables x1, x2, . . . , xk always occur free in φiτ (x1, x2, . . . , xk). This is due

to the fact that they are typed with sorts not used by the first step of the
translation Grτ . Also, they are different from each other, due to the fact that
they are typed with different sorts.

Since I is a model of Grτ (Φ), it is a model of each of the φ′iτ
. Then, for

any possible assignment, mapping x1, x2, . . . , xk to elements v1, v2, . . . , vk in
I(SBπi(1)

), . . . , I(SBπi(k)), respectively, we know that

Ix1 ,...,xk/v1,...,vk

|= φiτ (x1, x2, . . . , xk).

Let d1, . . . , dj be arbitrary elements in I(SBπi(1)
), . . . , I(SBπi(k)). Let us de-

note by A1 the assignment mapping all variables of sort SiB to the value di.
Again, under this assignment, clearly the following holds:

Ix1,...,xk/dπi(1)
,...,dπi(k)

|= φiτ (x1, x2, . . . , xk).

Therefore, due to our previous Lemma, I
|
dπi(1)

,...,dπi(k)
A

is a model of each φi, i.e.,

it is a model of Φ, as we wanted to prove.

Theorem 1. Let τ : A → B be an alphabet morphism, and Φ and Ψ be sets of
A-formulae such that Φ |= Ψ . Then, Grτ (Φ) |= Grτ (Ψ).



420 Nazareno Aguirre and Tom Maibaum

Proof. Let τ : A → B be an alphabet morphism, and Φ and Ψ be sets of A-
formulae such that Φ |= Ψ . Let I be a model of Grτ (Φ). Let SB1 , . . . , SBj be
the sorts in B − Img(τsorts ). According to the previous Lemma, for every set
d1, . . . , dj of elements in I(SB1), . . . , I(SBj ), we have that I

|
d1,...,dj
A

is a model of

Φ. Then, due to our hypothesis, I
|d1,...,dj
A

is also a model of Ψ . Therefore, due to

the first of our Lemmas, Ix1,...,xk/d1,...,dk
is a model of each of the ψτi in Grτ (Ψ).

Then, due to the definition of satisfaction for quantification, I is a model of each
Grτ (Ψ), as we wanted to prove.

A Semantic π-Institution We present here a result that is crucial for our
application of the presented formalism. The result is introduced by using a par-
ticular kind of institution, the π-institution. Institutions [13] are a formalisation
of the notion of logical system, which have been proposed as a way of dealing
with logical systems at a greater level of abstraction. Institutions embed notions
of model and satisfaction, together with signatures and sentences. π-institutions
[10], on the other hand, concentrate on the notion of consequence, without con-
sidering model-theoretic issues. Although we have defined a notion of model in
our logic, we just need to deal with (semantic) consequence at this stage. So,
π-institutions suffice for our needs. We reproduce below the formal definition of
π-institutions. We refer the reader to [13] for more details regarding institutions
(and their applications), in general, and to [10] for π-institutions, in particular.

Definition 10. A π-institution is a triple (Sig,Gram,�), where:

– Sig is a category [5] (of signatures or alphabets),
– Gram : Sig → Set is a (grammar) functor,
– � is a Sig-indexed family of consequence relations, each of which is a rela-

tion in ℘(Gram(Σ))×Gram(Σ) for the corresponding alphabet Σ, such that
for every φ ∈ Gram(Σ), Φ, Ψ ∈ ℘(Gram(Σ)), the following properties are
satisfied:
• reflexivity: Φ � φ, if φ ∈ Φ,
• cut: if Φ ∪ Ψ � φ and Φ � ψ, for all ψ ∈ Ψ , then Φ � φ,
• monotonicity: if Φ � φ then Φ ∪ Ψ � φ,
• structurality: for every τ : Σ → Σ′, if Φ � φ then Gram(τ)(Φ) �

Gram(τ)(φ).

The following result indicates that the alphabet translations of our logic
preserve semantic consequence.

Theorem 2. The structure (Sig,Gr, |=), where

– Sig is the set-theoretic category, where alphabets are the objects and alphabet
morphisms are the arrows,

– Gr is a functor from Sig to the category Set, that maps each alphabet A to the
set of A-formulae, and each alphabet morphism τ : A → B to the function
Grτ : LA → LB,

– |= is the semantic consequence relation of the logic,

is a π-institution.
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Proof. The proof is straightforward. It follows directly from the definition of
π-institutions [10], and the previously proved Theorem 1 and Proposition 1.

4 Building Specifications of Systems

We now explain how the above results can be exploited to effectively specify dy-
namically reconfigurable component based systems. Specifications will be mod-
ularly organised in layers, from datatype specifications to the specification of
architectural subsystems.

4.1 Basic Datatypes

At the core of the language is the definition of basic abstract datatypes. Basic
components will build their state by means of variables, as in imperative pro-
gramming languages, of types defined in the abstract datatypes specification. It
is not difficult to see that the logic has sufficient expressive power to deal with
datatype specifications in the style of algebraic specifications [7], since the logic
is first-order.

A datatype specification is simply a static theory presentation, i.e., a theory
presentation where the sets of flexible predicates and flexible functions are empty.

Let us assume that we have such a theory presentation, which contains the
definition of all standard datatypes, such as integers, sequences, natural numbers,
etc. Let us denote this theory presentation by:

ADT = 〈(SADT , ∅,Funr
ADT , ∅,Predr

ADT ,VarADT ),AxADT 〉.

4.2 Basic Components

Components are one of the basic building blocks of software architectures. As we
previously described, we intend to use temporal logic theories to describe such
components, as in [9]. Since a varying number of “instances” of the same type
of component can be held in the systems we are interested in, we want a way of
describing templates of these components, instead of the components themselves.
We call these descriptions class definitions. Class definitions are modularly built
on top of an underlying datatype specification, ADT in our case.

A class definition consists of: (i) a name, (ii) finite sets of attributes and read
variables whose type is a sort defined in ADT , (iii) a finite set of actions, which
can have arguments typed with sorts in ADT . Furthermore, a class specification
is equipped with a set of formulae, its axioms, over the alphabet:

(SADT ,Rv ∪ Att,Funr
ADT ,Act ∪ {C},Predr

ADT ,VarADT ),

where C is the name of the class, and Att , Rv and Act denote the sets of
attributes, read variables and actions respectively. That is, we use read variables
and attributes as flexible function symbols, and actions as flexible predicates,
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extending the vocabulary defined in the datatype specification1. The name of
the class is also used, as a 0-ary flexible predicate symbol.

The purpose of the axioms of a class specification is to describe the intended
behaviour of the instances of the class, in a property oriented fashion. The flexible
predicate symbols naming actions are used to represent action occurrence, as
we explained before. The flexible function symbols naming attributes or read
variables are used to represent the evolving values of these variables. The flexible
predicate C, named after the name of the class, is used to represent the activeness
of the corresponding object or instance. That is, the truth of C in a particular
state in a model represents the fact that the corresponding instance is active
in that state. Note that C represents a certain kind of structural information
of the system. However, this is all the knowledge that a component can have,
regarding the structure of the system. It is useful to have this kind of information,
since usually one requires an instance to have a property only while it is active.
Figure 2 is an axiomatisation for the printer class given in Figure 1.

1. �[Printer ∧ p-init() → ©(job = [])]
2. �[Printer ∧ p-init() → ©(¬p-init()U¬Printer)]
3. �[∀j ∈ string : Printer ∧ load(j) → ready = T]
4. �[∀j ∈ string : Printer ∧ load(j) → ©(Printer ∧ (job = j))]
5. �[Printer ∧ print() → (job �= [])]
6. �[Printer ∧ print() → ©job = tl(job)]
7. �[Printer ∧ print() → ©(Printer)]
8. �[Printer ∧ print() → print-el (hd(job))]
9. �[(ready = T) ↔ (job = [])]

Fig. 2. An Axiomatisation for Class Printer .

Axiom 2 illustrates the usefulness of predicate Printer . It indicates that once
operation p-init() is called, while the instance is live, it cannot be called again
during the “current lifetime” of the instance (note that a component might die
and be created again later on).

A specification for a print server is slightly more complex, since a print server
needs to send jobs to printers. However, we forbid the direct reference to other
components, according to the above definition of class definitions. Communi-
cation can be achieved by action synchronisation and variable sharing, or even
more complex interactions. The key point is that communication is completely
externalised from class definitions. This forces the specifier to think about print
servers as closed components. Logically, it allows us to reason about print servers

1 Note that we maintain the “static” part of the abstract datatypes specification ADT .
In particular, we do not include new rigid function or predicate symbols. There is
no technical reason for that, it is simply for the sake of simplicity. The specifier
might want to define extra predicates, operations or even new datatypes for his or
her component specification.
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within a theory independent of other component definitions. In order to inter-
act, a component accesses some information about the “environment” via special
attributes called read variables (recall the definition of classes), which are not
under the control of the component. Print servers use read variables.

For the case of print servers, we then have: (i) a queue of jobs as an attribute,
(ii) a boolean read variable to indicate whether “the environment” is ready to
receive a job, (iii) operations to enqueue a new job and to send a job to the
“environment”. Figure 3 contains a class definition for print servers.

Class Server
Read Variables: p-ready : boolean
Attributes: p-queue : list(string)
Actions: s-init(), send(), enqueue(j : string), dispatch(j : string)
EndofClass

Fig. 3. Class Server .

An axiomatisation for print servers is shown in Figure 4.

1. �[Server ∧ s-init() → ©(p-queue = [])]
2. �[Server ∧ s-init() → ©(¬s-init()U¬Server )]
3. �[∀j ∈ string : Server ∧ enqueue(j) → ©p-queue = p-queue ++[j]]
4. �[Server ∧ send() → (p-queue �= [])]
5. �[Server ∧ send() → dispatch(hd(p-queue))]
6. �[Server ∧ send() → ©p-queue = tl(p-queue)]
7. �[(∃j ∈ string : dispatch(j)) → send()]
8. �[∃j1, j2 ∈ string : dispatch(j1) ∧ dispatch(j2) → (j1 = j2)]

Fig. 4. An Axiomatisation for Class Server .

4.3 Building Dynamic Aggregations of Components

We have just described the way component types can be defined, and as we
argued, we chose to define these class definitions as closed independent units.
This allows us to reason about component properties independently of the rest of
the system2. Now we want to start defining dynamic aggregations of components.
2 Note that in traditional object oriented definitions, where there exists a notion of

components represented by objects, this is not the case: classes are typically “de-
fined” with explicit reference to other classes or other classes instances, by means of
class-typed attributes. Methodologically, the “externalisation” of component inter-
actions has several benefits, exploited by techniques such as those based on certain
design patterns and the middleware technology.
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But of course we need ways of making components interact. With that in mind,
we declare a number of association definitions, whose meaning we will define later
on. For the time being, associations have simply a name and a set of participants,
typed with class names.

For our case study of printers and print servers, we might need an associa-
tion Prints-for between print servers and printers. Figure 5 describes such an
association.

Association Prints-for
Participants: s : Server , p : Printer
EndofAssociation

Fig. 5. Prints-for : An association definition relating print servers and printers.

Let us assume that the defined classes are C1, . . . , Ck and the defined associ-
ations are R1, . . . , Rm. In order to build aggregations of components typed with
the above classes and related by the above associations, we need to introduce an
extra basic datatype. This extra datatype will represent names of instances and
will help us characterise a concept similar to the “dot notation” of object orien-
tation. Let ADT NAME be a static theory presentation, conservatively extending
ADT with an extra sort NAME, and a sufficiently large set of constants of this
sort.

A subsystem definition is the definition of a complex component, whose inter-
nal structure is built out of the dynamic aggregation of interacting basic compo-
nents. A subsystem is composed of: (i) a name, (ii) finite sets of basic attributes
and basic read variables, typed by a sort in the alphabet of ADT NAME, (iii) a
finite set of operations, whose arguments are typed by sorts in the alphabet of
ADT NAME.

Attributes are part of the internal state of a subsystem. Read variables will
serve the purpose of allowing a subsystem to communicate with others. The
operations allow a subsystem to evolve. Contrary to the use of operations in basic
components, operations in subsystems can modify the architectural structure of
the subsystem, by creating or deleting instances of components, and creating or
deleting connections between them. Therefore, we can consider the operations
of a subsystem reconfiguration operations, that will change the structural aspect
of the subsystem at run time.

In order to logically characterise this, a subsystem Sub is equipped with a
finite set of axioms, which are formulae over the alphabet ASub , composed of:

– the sorts defined in ADT NAME,
– the rigid function and predicate symbols defined in ADT NAME,
– the flexible function and predicate symbols resulting from class definitions,

adding to all of them an extra parameter of sort NAME3,
3 We require the set of symbols of class definitions to be disjoint, in order to univocally

determine the class a symbol belongs to. This is just to make the presentation
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– a flexible predicate symbol R : NAME, . . . ,NAME︸ ︷︷ ︸
k times

for each association defi-

nition R with k participants
– a flexible predicate symbol a : S1, . . . , Sk for each subsystem action of type
a(x1 : S1, . . . , xk : Sk).

To better illustrate the intuition behind the constituents of a subsystem
specification, let us consider an example.

Subsystem Multiple Printers
Attributes: s : NAME
Operations: init(), change(x : NAME), add-p(x : NAME), del-p(x : NAME)
EndofSubsystem

Fig. 6. A subsystem specification.

Example 2. With printers and print servers defined, we now want a dynamic
subsystem consisting, at any point in time, of:

– a varying number of printers,
– one single print server, which can be dynamically replaced,
– an active printer, to which the print server is connected,
– operations for creating and deleting printers, for replacing print servers, and

for changing the active printer of the subsystem.

Initially, this subsystem has only one live printer. We have a number of other
restrictions. For instance, we do not want the subsystem to overload, so we allow
for a maximum of 10 jobs in the queue of the contained print server.

Figure 6 defines a signature for such a subsystem. For the sake of simplicity,
we consider a subsystem without read variables.

We can provide axioms to specify the operations, and the behaviour of the
subsystem. We can start by describing the initial state:

Server(s) ∧ s-init(s) ∧ Printer(p) ∧ p-init(p),
Prints-for(s, p),
∀x : Printer (x) → (x = p).

The first of these axioms indicates that s is a live server in the initial state,
and that its initialisation operation is “called”. The name p is the one chosen for
the initial printer, which is also initialised. The second formula says that server
s is initially connected to p via Prints-for . Finally, the last of these axioms
indicates that p is the only live printer in the initial state. Note that we omit

simpler. A mechanism to individualise symbols of different classes can be easily
implemented.
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the sort when quantifying variables of sort NAME, to make expressions more
concise.

As can be seen, the flexible predicates named after the class names, which
are incorporated from the language of the corresponding class definitions (with
a relativisation represented by the extra argument), are useful for representing
architectural information in the subsystem’s axioms. In a similar fashion, the
newly introduced flexible predicates named after association definitions are used
to characterise the existence of connectors relating instances of classes.

Let us continue describing the subsystem. We have structural conditions: s
always references a live server, and is the reference to the only live print server:

�[Server (s)],
�[∀x : Server (x) → (x = s)].

Moreover, the queue of s should never hold more than ten jobs (recall this is a
restriction of the application)4:

�[length(p-queue(s)) ≤ 10].

We can also describe the purpose of the operations. The following axioms
describe the behaviour of the change operation:

�[∀x : change(x) → ¬Server(x)],
�[∀x, y : change(x) ∧ (s = y) → ©(s-init(x)) ∧©(¬Server (y)) ∧ (©s = x)].

The above example gives an idea of the way temporal formulae are used to
characterise subsystem operations. The introduction of the signatures of basic
components using the relativisation of their constituents is crucial. Basically, if
at is an attribute defined in a class definition C, then symbol at(n) represents
attribute at for the instance named n. Similarly, if action a(t1, . . . , ti) is declared
in a class definition C, then a(t1, . . . , ti, n) represents the occurrence of action a
with parameters t1, . . . , ti in the instance referred to as n. We prefer to use the
“dot notation” for writing the extra parameter of attributes, read variables and
actions introduced by the relativisation, to have more readable expressions. For
instance, the expression

�[length(s.p-queue) ≤ 10]

is a more readable way of writing one of the above axioms.

4.4 Describing Interactions

We previously introduced some flexible predicate symbols to talk about inter-
actions among components. For the particular case of our example, we used a
predicate Prints-for , to relate print servers and printers. We need to provide
associations with meaning. We do so by means of corresponding formulae. Each
4 We assume that ≤ is part of the datatype specification.
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association definition is equipped with a finite set of formulae, over the signature
of an including subsystem. There are some syntactic restrictions on the formulae
allowed for association definitions:

– the only terms of sort NAME allowed are the identifiers used as participants
in the association definition (which will be implicitly universally quantified
variables),

– if a participant p : C is involved in an atomic formula or term, then that
atomic formula or term has to be built exclusively out of symbols defined in
C, besides p.

These formulae are a logical characterisation of the interactions between com-
ponents, associated to the association definitions.

Example 3. Let us consider the association definition given in Figure 5. Our
intention is to make print servers and printers interact by:

– relating the p-ready read variable of a server to the ready attribute of its
connected printer,

– relating action dispatch(j) of a server to the action load(j) of its connected
printer.

So, the formulae we want to include in the association definition Prints-for are
the following5:

s.p-ready = p.ready ,
∀j ∈ string : (s.dispatch(j) ↔ p.load(j)).

This example shows a very basic interaction definition. It is clear though that
due to the generality of the associations definition, the specifier might be able
to define very complex interactions, by relating the actions and attributes of a
component to the ones in another component, via arbitrarily complex formulae.
Moreover, the definition of associations allows not only for binary associations,
but for associations of any arity, including unary ones.

Just to illustrate how more complex interactions can be defined, suppose we
decide to eliminate the redundant ready attribute of printers (recall that ready
is true if and only if job is the empty string). Print servers still need to know
somehow when the “environment” is ready for them to dispatch. We can then
replace the first of the above formulae characterising the interactions associated
to Prints-for by:

(s.p-ready = T) ↔ (p.job = []).

5 Note that, contrary to the way we described interactions in [3] by means of con-
nections, we choose now to directly use formulae to characterise interactions. This
allows for more generality for describing component communication.
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4.5 Building Theories for Class Definitions

The description of classes is done based on the language defined by an underlying
abstract datatype specification ADT . Together with its signature description, a
class specification has a number of explicit axioms, i.e., properties characterising
the behaviour of the instances of the class.

In order to reason about class properties, we not only use the axioms of the
class. The definition of the datatypes, i.e., the axioms of ADT , play a role in
class properties. So, it is natural to consider the ADT axioms as part of the
description of a class. Note that the inclusion of the axioms of ADT as implicit
axioms of a class specification is perfectly valid, since the alphabet associated to
a class definition is a proper extension of the alphabet of ADT .

The monotonicity of the logic guarantees that we can reason locally about
datatype properties in ADT , and then “import” the properties in any reasoning
within any class specification.

Besides the abstract datatype axioms, there can be other implicit axioms,
characterising general assumptions or properties of the specific application do-
mains (e.g., the locality axiom [9] of components can be regarded as a general
assumption about components).

4.6 Building Theories for Subsystems

As for basic components, in a subsystem definition we have a number of explicit
axioms, which represent properties of the subsystem. However, one should not
expect to be able to reason about the subsystem’s properties only in terms of
its explicit axioms, since if that was the case, the specifications of datatypes and
basic components would be irrelevant. So, as one might expect, we need to put
together the explicit axioms of a subsystem definition with the descriptions of
basic components, and datatypes. For datatypes, it is easy: we simply incorpo-
rate in the description of our subsystem the axioms for the abstract datatype
specification ADT NAME, which itself includes the ADT specification. So, again,
we can locally reason about datatypes, either in ADT or ADT NAME, and then
import the properties of datatypes into a subsystem Sub, and use them to prove
other properties within Sub.

The slightly more difficult part is the combination of the subsystem descrip-
tion with the basic component descriptions. We have modified the class signa-
tures in order to incorporate the language of components to the language of
subsystems, by adding to some of their syntactic elements an extra parameter
of sort NAME. This extra parameter allows us to relativise the class definitions,
so we can use them to represent a (varying) number of “instances” of classes
in (dynamic) subsystems. Fortunately, our definition of alphabet morphisms ad-
mits this kind of “relativisation”. Therefore, there exists an alphabet morphism
between the alphabet of any class definition and the alphabet of an including
subsystem. We now need to incorporate the class descriptions in the descrip-
tion of an including subsystem. The definition of the grammar translation in
Definition 8 suggests a way of doing so. It consists in quantifying universally
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over a variable filling the “empty” places introduced for the extra parameters of
predicate and function symbols. So, for instance, consider the axiom:

�[∀j ∈ string : Printer ∧ load(j) → ready = T]

which we have in the printers specification. The formula resulting from the gram-
mar translation of the above formula, to be introduced in the including subsys-
tem Multiple Printers , is the following:

∀x ∈ NAME : �[∀j ∈ string : Printer(x) ∧ x.load(j) → x.ready = T].

Note that this translation is what we are looking for. It intuitively fits our
needs. Basically, it transforms a property α given in a component definition C
into the property “all live instances of C have property α”, for inclusion in a
subsystem aggregating C.

Now we exploit the fact that the logic constitutes a π-institution. Considering
the (explicit and implicit) axioms of a class definition C, after relativisation, as
part of the set of implicit axioms associated to a subsystem definition Sub,
allows us to reason locally about properties of C, and then import the resulting
properties into Sub, via relativisation. The structurality property guarantees
that consequence is preserved. So, if α is a consequence of the axioms of class C,
then the relativisation of α (which roughly looks like ∀x : α) is a consequence of
the relativisation of the axioms of C, which are implicitly included as part of a
subsystem definition Sub aggregating C.

Figure 7 shows the relationships among the different theories describing our
sample subsystem. Arrows denote the existence of an alphabet morphism be-
tween the corresponding alphabets, and preservation of consequence in the source
theory by the target. Arrows labelled with id indicate that no change is per-
formed in the language of the source for inclusion in the target. Arrows labelled
with rel indicate that a relativisation is necessary.

ADT NAMEPrinter Server

Multiple Printers

ADT

id

���������������������

id

���������������������

id

��

id

��

rel

���������������������

rel

���������������������

Fig. 7. Relationships among theories of a system description.
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It is important to note that class and subsystem definitions are conceptually
very similar. In particular, both contain a signature, which defines an alpha-
bet, and (implicit and explicit) formulae, which generate a theory (i.e., their
semantics are defined in the same way). We could think then of using subsys-
tem definitions as components of higher level subsystem definitions, leading to
a hierarchical organisation of a system in terms of subsystems and basic com-
ponents. A higher level subsystem would relativise the languages of other (more
basic) subsystem definitions, in order to logically represent a notion of subsys-
tem instances6. Associations relating instances of subsystems could be used to
achieve subsystems interaction.

Being able to hierarchically organise systems in terms of subsystems and
basic components would allow us to use subsystem definition as a new coarser
grained unit of modularisation. This, in the context of logical specifications of
systems, is a major benefit, since it allows us to exploit (hierarchical) subsystems
as a way of further localising reasoning to the relevant parts of a system. We
plan to explore the definition and use of hierarchical subsystems in depth.

Formulae Related to Association Definitions. Association definitions have some
associated formulae, with the participants of the associations as free variables. In
order to incorporate the formulae associated to an association R in an including
subsystem Sub, we simply quantify the free variables of the formulae universally,
and force them to be related via the flexible predicate R. Thus, if α(x, y) is a
formula characterising interactions of association R, where x and y are the free
variables of α(x, y) representing the participants, then the formula:

�[∀x, y : R(x, y) → α(x, y)]

is included in Sub, clearly characterising the fact that components referenced by
x and y must collaborate according to the connections of R if they are “con-
nected” by R.

So, for our sample Prints-for , the formulae that will be implicitly included
in Multiple Printers are the following:

�[∀x, y : Prints-for(x, y) → (x.p-ready = y.ready)],
�[∀x, y : Prints-for(x, y) → (∀j ∈ string : (x.dispatch(j) ↔ y.load(j)))].

As for the theories associated to class definitions, there might be a number of
other implicit axioms to include in a subsystem, related to general assumptions or
properties of the application domain. For instance, the locality of the subsystem
[3] is generally assumed to be a property of subsystems, and therefore might be
implicitly included in the theory describing any subsystem. Axioms typing the

6 The careful reader might have noticed that we only used one extra argument in rel-
ativising basic component alphabets as we included them in subsystems. However,
when this process is iterated, including a subsystem instance in a higher level sub-
system, we will have need of further arguments for relativisation, allowing several
“dots” in the dot notation.



Some Institutional Requirements for Temporal Reasoning 431

associations can be also considered as general assumptions (e.g., if x and y are
related via Prints-for , then x must be the name of a live server and y the name
of a live printer).

5 Reasoning about Specifications

In the previous section, we described how the logic can be employed to specify
different aspects of a dynamically reconfigurable component based system. More-
over, we showed how specifications can be hierarchically modularised, in terms
of datatypes, components and subsystems. We now describe how reasoning can
be carried out, showing in particular how the tool support for the Manna-Pnueli
logic (which the presented logic is a variant of) can be used to partially reason
about this kind of specification.

The difference between our logic and the Manna-Pnueli logic is that we allow
for more general flexible symbols. While local variables (a special kind of 0-ary
function symbol) are the only symbols interpreted in a state dependent way in
the original logic, our variant allows for general function and predicate symbols
to be flexible. However, our modifications can be somehow “implemented” in the
original logic. As we briefly described in a previous section, the more complex
flexible symbols which we have introduced can be represented by defining special
datatypes.

Our first layer of specification is the datatypes layer. Since datatypes do not
use flexible symbols, they can be specified directly in the original logic. So, let us
assume that we count on a characterisation of ADT in the Manna-Pnueli logic7.

The next layer is the one for class definitions, in which we describe the be-
haviour of basic components. In this layer, we make use of the first kind of
more general flexible symbols, namely flexible predicates. Flexible predicates
are used to characterise actions of components. They can be “implemented” in
the Manna-Pnueli logic, as follows:

– Make sure that the basic datatypes specification includes a specification of
booleans (this is obviously the case in the STeP tool).

– For each action symbol a(S1, . . . , Sk), introduce a new datatype TypeOfa ,
which characterises functions from S1 × . . .× Sk to booleans.

– Action a is then defined to be a local variable of type TypeOfa .

The characterisation of functions is simple. Functions can be specified in a
similar way to that used to specify arrays, i.e., with function/array “update” and
“read” operations. The STeP specification in Figure 8 is an example of how this
kind of datatype can be defined. It is the definition of ITB, a datatype which can
be used to characterise actions with one integer parameter. Note that technically
this specification does not fit in our formalism, since it uses simplification rules
as well as logical axioms.
7 Note that the STeP tool incorporates sophisticated mechanisms for reasoning about

basic datatypes. Since these are safely combined with the Manna-Pnueli logic, they
could also be used to specify the datatypes in ADT .
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SPEC

type ITB == empty | write :: pos: int, val: bool, fun: ITB

value read : int * ITB --> bool

variable x,y : int

variable z : bool

variable g : ITB

AXIOM : [] Forall i : int . read(i,empty) = false

AXIOM : [] Forall i,j : int . Forall f : ITB .

Forall b1,b2 : bool .

write(i,b1,write(j,b2,f))=

if i = j then write(i,b1,f)

else write(j,b2,write(i,b1,f))

REWRITE r1 : read(x,empty) ---> false

SIMPLIFY : read(x,write(y,z,g)) ---> read(x,g) if !(x = y)

SIMPLIFY : read(x,write(y,z,g)) ---> z if (x = y)

REWRITE r4 : write(x,false,empty) ---> empty

Fig. 8. An example of a datatype definition for action characterisation.

The modularisation mechanisms of STeP can be exploited to organise com-
ponent specifications. So, for instance, one might specify datatypes in a theory,
and then import that theory in others containing specifications of components.

The last layer of specification we described is the one for subsystems. In this
layer we use both flexible predicates and flexible functions. There is an extra
datatype, NAME, that is available for subsystems. It is not a complication to
define this extra datatype. Flexible predicate symbols are also used to denote
actions (both the actions originating in component definitions and the recon-
figuration actions inherent to the subsystem). They can be characterised in the
same way as actions of basic components.

Complex flexible function symbols are used to characterise the attributes and
read variables of the basic components, embedded in an including subsystem
(recall that they need to be relativised to names of instances). The procedure
for implementing a flexible function symbol f : S1×. . .×Sk → S is similar to the
one applied for characterising flexible predicates: a type TypeOf f is specified as
a basic type (characterising functions from S1× . . .×Sk to S), and f is declared
as a local variable of type TypeOf f .

The theorem prover of the STeP tool can be very helpful for proving proper-
ties of systems specified using this formalism. However, there is a major short-
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coming that cannot be overcome with the present status of the tool. As we
explained in previous sections, the formalism was devised with special empha-
sis on localising reasoning to the relevant parts of a specification. Thus, certain
reasoning regarding a component’s properties might be carried out within that
component’s theory, and then the properties can be promoted to an including
subsystem, via a relativisation translation8. The STeP tool cannot deal with rel-
ativisation translations, and therefore it would be necessary to redo the proofs
of component properties within subsystems.

This problem suggests studying a proof-theoretic counterpart of our struc-
turality theorem. Having this result, and given a proof of a property α from the
axioms of a component, we would count on a way of systematically constructing
a proof for the relativisation of α from the relativisation of the axioms of that
component. Consider the fragment of a sketch of a proof, in a natural deduction
style, of a property in the Multiple Printers subsystem, shown in Figure 9. This
shows, in step 24, how we can reason in our logic, by importing properties of
component definitions via relativisation (although our justification for this is, at
the moment, semantic). Note that step 27 imports a property of Prints-for , but
without the need for relativisation. A proof-theoretic structurality would allow
us to prove properties in this manner, but a property importation mechanism
(if proof is carried out in a top-down fashion, it would be a proof decomposition
mechanism) representing structurality would have to be incorporated into the
STeP tool.

We are confident that proof-theoretic structurality holds, for the present
proof calculus of the Manna-Pnueli logic, but this remains to be proved. Even
in the case the property does not hold, we could modify the proof calculus
of the logic with such a rule, whose soundness is guaranteed by our semantic
structurality theorem.

6 Conclusion

We have presented in detail an adaptation of a first-order temporal logic, and
justified its suitability for the specification of component based systems with
support for run time reconfiguration. This justification was done by showing
that the logic constitutes a π-institution, in which language translations admit
relativisations. We showed how different aspects of a component based system
can be characterised by formulae in this logic, and how specifications can be
modularised in terms of datatypes, components and subsystems. Moreover, we
discussed how the structurality property of the logic can be exploited to localise
reasoning to the relevant parts of a system’s specification. We also discussed
8 Note that it is not necessarily the case that, while reasoning from a subsystem’s

theory, we can always restrict reasoning regarding a property relevant only to a
certain component to that component’s theory. It is known that components can have
emergent properties [8] (properties that they do not have if considered in isolation)
when forming part of a system, and that such properties can only be derived from
the (sub)system specification.
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20- . . .
21- Server (s) Subsystem Prop.
22- Prints-for(s, p) Hyp.
23- s.send() Hyp.
24- ∀x : �[Server (x) ∧ x.send() → x.dispatch(hd(x.p-queue))] Server Prop.
25- Server (s) ∧ s.send() → s.dispatch(hd(s.p-queue)) � Elim. & Inst. 24
26- s.dispatch(hd(s.p-queue)) MP 21,23;25
27- ∀x, y : �[Prints-for (x, y) →

(∀j ∈ string : x.dispatch(j) ↔ y.load(j))] Prints-for Prop.
28- Prints-for(s, p) → (∀j ∈ string : s.dispatch(j) ↔ p.load(j)) Inst. & � Elim. 27
29- (∀j ∈ string : s.dispatch(j) ↔ p.load(j)) Inst. & MP 22,28
30- s.dispatch(hd(s.p-queue)) ↔ p.load(hd(s.p-queue)) Inst. 29
31- p.load(hd(s.p-queue)) MP 26,30
22- . . .

Fig. 9. Fragment of a proof illustrating the importing of a component’s proper-
ties.

some required extensions to the current tool support for the Manna-Pnueli logic
(which the presented logic is a variant of) to achieve localisation of reasoning.

Two main topics are among the priorities to continue our research. One is
related to the development of a proof system for the presented logic, in which,
as we argued, a proof-theoretic structurality property has to be available. The
other is of a more methodological nature. It has to do with exploring suitable
ways of hierarchically defining subsystems in terms of more basic subsystems
and components. This is especially important, since in the context of logical
specifications (and with the availability of a suitable proof system), it would
allow us to exploit subsystems as a way of further localising proofs to the relevant
parts of a specification.

The generality of our characterisation of interaction suggests another line
of research, exploiting this generality to represent more complex notions of as-
sociations, with applications in, for instance, software architectures and aspect
oriented approaches.
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