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ABSTRACT

Postconditions are predicates that specify the intended behavior of
a program by capturing properties about the program state when
the program finishes its execution. Although postconditions can
help to improve many software reliability analyses, they are seldom
found accompanying source code. Thus, tools that assist develop-
ers in specifying postconditions are useful. This tool demo paper
presents EvoSpex, a tool based on evolutionary computation that
automatically infers postconditions of Java methods. Given a target
Java method and a test suite for it, our tool executes the test suite
to obtain valid pre/post state pairs for the method under analysis.
Then, these pairs are mutated to obtain (allegedly) invalid ones,
and finally a postcondition assertion characterizing the current
method behavior is produced, by using an evolutionary algorithm
that searches for an assertion that is satisfied by the valid pre/post
state pairs and leaves out the invalid ones. EvoSpex implements a
classic genetic algorithm that explores the space of candidate post-
conditions over a JML-like specification language. The algorithm
is guided by a fitness function that aims at precisely capturing the
valid state pairs, rejecting the invalid ones, and that also favors
more succinct assertions.
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1 INTRODUCTION

The use of assertions as program specifications dates back to the
works of Hoare [5] and Floyd [3], in the context of program veri-
fication and associated with the concept of program correctness.
Technically, an assertion is a statement predicating on program
states, that can be used to capture assumed properties, as in the case
of preconditions, or intended properties, as in the case of postcondi-
tions. A program 𝑃 with a precondition pre and postcondition post
is said to be (partially) correct with respect to this specification,
if every execution of 𝑃 starting in a state that satisfies pre, if it
terminates, it does so in a state that satisfies post [5].

Providing specifications that capture the expected software be-
havior is important for many reasons. They can facilitate modular
software development, allowing components to be developed in-
dependently and swapped in and out as long as their respective
specifications are maintained [9]. Also, when specifications are pro-
vided with the source code and expressed in a formal language, as
in the case of postcondition assertions, they can enable or improve
a number of program analysis tasks, including runtime assertion
checking, bug finding [11], and verification [2]. Since formal specifi-
cations are seldom found in practice, and writing them can suppose
a considerable effort from developers, the specification inference
problem (a special case of the oracle problem [1]) is receiving in-
creasing attention by the software engineering community.

To alleviate the oracle problem, we propose EvoSpex, a search-
based tool that, given a Java method and a test suite for it, automat-
ically infers a specification of the current behavior of the method,
in the form of a postcondition assertion. EvoSpex is based on a
classic genetic algorithm that explores a search space of candidate
assertions. The search is guided by two sets of pre/post state pairs:
a set 𝑆𝑣 of valid pairs and a set 𝑆𝑖 of invalid pairs. The valid pairs
are obtained from executions of the target method by the provided
test suite, thus capturing the current method behavior. The invalid
pairs, on the other hand, are generated by mutating valid ones,
and thus representing (allegedly) incorrect method behaviors. From
these pairs, EvoSpex focuses then on searching for a postcondition
assertion 𝜙 that: (i) characterizes the valid pairs while leaving out
the invalid ones, and (ii) is as succinct as possible.

This paper extends our previous paper [10], which introduced
the technique, by providing instructions on how to use EvoSpex,
details of its implementation, and some improvements with respect
to the original prototype. The improvements include the possibility
of using any test suite as input (making the tool independent from
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Figure 1: Usage of EvoSpex.

how this suite is obtained), and better support for maintainable/ex-
tensible assertion language definitions. The source code, evaluation
subjects, and demo video, are available at:

https://github.com/facumolina/evospex

2 USAGE

The envisioned users of EvoSpex are researchers or Java practition-
ers who may be in need of obtaining postconditions for a given Java
method, either with the aim of analyzing the method’s behavior, or
to improve some program analysis task that can be benefited from
the postconditions. EvoSpex receives two inputs: a target method
𝑚 of class 𝐶 and a test suite T𝑐 containing executions of𝑚. As test
suites may not be available, a typical usage of our tool may involve
the execution of some automated test generation tool, such as Ran-
doop1, to generate the test suite T𝑐 necessary to run EvoSpex, as
is shown in Figure 1. From these tests, EvoSpex goes through a
state generation phase, that creates the sets 𝑆𝑣 and 𝑆𝑖 of valid and
invalid state pairs. These are in turn used to guide the postcondition
inference phase, which essentially executes an evolutionary search
process in order to infer a postcondition assertion capturing the
method behavior.

To illustrate the use of EvoSpex, let us considermethod add(int,
E) of class TreeList, from Apache Commons Collections2. Fig-
ure 2 shows a fragment of the method. The class is providing an
AVL-tree based implementation of lists, allowing one to perform op-
erations such as insertion/deletion in𝑂 (log𝑛). Particularly, method
add(int, E) is an insertion routine, inserting a given object in
a specific location. Notice how the precondition of the method is
captured in the source code by the method checkInterval(int,
int, int), while the method’s postcondition is not present.

To perform the state generation phase we need three inputs:
the target classpath, the target test class, and the target method
signature. We can generate the states for our example by running:
./evospex.sh --genStates <cp> <test_suite> <method>

where <cp> is the classpath for the target subject, <test_suite>
is the test class (TreeListTest in our case), and <method> is the
method signature (TreeList.add(int,E) in our case). The valid
and invalid state pairs will be generated and placed within the
states folder, setting the conditions to start the next phase.

EvoSpex’s inference phase can be launched by running:
1https://randoop.github.io/randoop
2https://github.com/apache/commons-collections

public class TreeList<E> extends AbstractList<E> {
private AVLNode<E> root; private int size;

// Adds a new element to the list.
public void add(int index, E obj) {
modCount++;
checkInterval(index, 0, size()); // Checks whether the index is valid.
if (root == null) {
root = new AVLNode<>(index, obj, null, null);
} else {
root = root.insert(index, obj);
}
size++;
}

private static class AVLNode<E> {
private E value;
private int height, relativePosition;
private boolean leftIsPrevious, rightIsNext;
private AVLNode<E> left, right;

// Inserts a node at the position index.
public AVLNode<E> insert(int index, E obj) {
int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe <= 0) {
return insertOnLeft(indexRelativeToMe, obj);
}
return insertOnRight(indexRelativeToMe, obj);
}
...
}
}

Figure 2: Target method TreeList.add(int, E).

1- this.size = \old(this.size) + 1 && // size increased by 1
2- #(\old(this).root.*(left+right))=this.size-1 && // tree size is correct
3- index in this.root.*left.height && // index is a valid position
4- obj in this.root.*(left+right).value // obj inserted

Figure 3: Assertions inferred for TreeList.add(int, E).

./evospex.sh --infer <cp> <class> <method_states>

where <cp> is the target classpath, <class> is the target class (e.g.,
TreeList), and <method_states> is the folder containing the pre-
viously computed states. The execution will report information of
each generation of the evolutionary process (mutations performed,
crossovers performed, best fitness value, etc). At the end, the found
postcondition is reported as an assertion: assert(𝛼1 && 𝛼2 &&
. . . && 𝛼𝑛);. The postcondition assertions inferred for our exam-
ple are shown in Figure 3: 1 and 2 state that size was incremented
and that is correct; 3 states that index is among the height values
collected by traversing the tree through field left; and 4 states
that the input obj has been indeed inserted in the tree.

3 EVOSPEX

Let us now discuss the implementation details of EvoSpex. Figure 4
shows an overview of our tool, implemented in Java. Given a tar-
get method𝑚 of class 𝐶 and a test suite T𝑐 , EvoSpex will infer a
postcondition 𝜙𝑚 , through the two main phases described below.

3.1 State Generation Phase

The state generation phase is in charge of generating the valid and
invalid state pairs 𝑆𝑣 and 𝑆𝑖 . First, it instruments the given test suite
T𝑐 with instructions to serialize the pre/post states of executions of

https://github.com/facumolina/evospex
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Figure 4: An overview of EvoSpex.

𝑚. Then, it executes the instrumented test suite, and collects the
serialized states pairs, obtaining the set 𝑆𝑣 . Finally, it performs a
state mutation process to generate the set 𝑆𝑖 of invalid states pairs.

3.1.1 Instrumentation. This instrumentation sets the conditions to
obtain the set of valid state pairs 𝑆𝑣 , composed of state pairs of the
form ⟨𝑠𝑝𝑟𝑒 , 𝑠𝑝𝑜𝑠𝑡 ⟩, capturing the current behavior of a target method
𝑚. That is, if we execute𝑚 from the state 𝑠𝑝𝑟𝑒 , and the execution
leads to the state 𝑠𝑝𝑜𝑠𝑡 , then we record the valid pair ⟨𝑠𝑝𝑟𝑒 , 𝑠𝑝𝑜𝑠𝑡 ⟩.
Our instrumentation is performed using the Soot library3 as follows.
Let 𝐶,𝐶1, . . . ,𝐶𝑛 be classes, and𝑚 a method in 𝐶 with parameters
of types 𝐶1, . . . ,𝐶𝑛 . Each initial state 𝑠𝑝𝑟𝑒 for executing𝑚 will be
a tuple ⟨𝑜𝐶 , 𝑜𝐶1 , . . . , 𝑜𝐶𝑛

⟩ of objects of types 𝐶,𝐶1, . . . ,𝐶𝑛 , respec-
tively. To form these tuples, for every invocation of𝑚 within T𝑐 , we
insert one instruction that serializes the object and arguments from
which𝑚 is invoked, obtaining 𝑠𝑝𝑟𝑒 . Similarly, to generate 𝑠𝑝𝑜𝑠𝑡 , we
insert one instruction that serializes the state resulting from𝑚’s
execution. These serializations are performed using XStream4.

3.1.2 Execution. The instrumented T𝑐 is executed in order to actu-
ally perform the serialization of the pre/post states, obtaining the
set 𝑆𝑣 . This step uses the JUnitCore runner, from JUnit5.

3.1.3 Mutation. This step is performed to produce the set of invalid
pre/post state pairs 𝑆𝑖 . For each valid pair ⟨𝑠𝑝𝑟𝑒 , 𝑠𝑝𝑜𝑠𝑡 ⟩, we create a
new pair ⟨𝑠𝑝𝑟𝑒 , 𝑠′𝑝𝑜𝑠𝑡 ⟩, where 𝑠′𝑝𝑜𝑠𝑡 is a mutation of 𝑠𝑝𝑜𝑠𝑡 in which
the value of a randomly selected field in the receiving object or
return value (the constituents of 𝑠𝑝𝑜𝑠𝑡 ), is replaced by a randomly
generated value of the corresponding type. Before including it into
𝑆𝑖 , we check that the resulting pair ⟨𝑠𝑝𝑟𝑒 , 𝑠′𝑝𝑜𝑠𝑡 ⟩, is not in 𝑆𝑣 .

3.2 Postcondition Inference Phase

The inference phase is the execution of EvoSpex’s genetic algo-
rithm, which searches for a postcondition for 𝑚. The goal is to
produce a postcondition assertion 𝜙 such that every valid state pair
in 𝑆𝑣 satisfies 𝜙 , and every invalid state pair in 𝑆𝑖 violates 𝜙 .

3.2.1 Assertions Search Space. Each candidate postcondition 𝜙 in
the search space is of the form 𝜙 = 𝛼1∧𝛼2∧· · ·∧𝛼𝑛 . Each assertion
𝛼𝑖 belongs to an assertion language that is, from an expressiveness

3https://soot-oss.github.io/soot/
4https://x-stream.github.io/
5https://junit.org/junit4/

point of view, a JML-like [2] language. The language, designed
following the Alloy notation [6], supports quantifiers, navigation
and reachability expressions. Most operators have an intuitive read-
ing (equality/inequality, boolean connectives, quantifiers); the dot
operator (.) is relational composition and captures navigation; rela-
tional union and intersection are denoted by + and &, respectively,
and can be used to combine fields in navigations; set/relational
cardinality is denoted by #; finally, * and ˆ are reflexive-transitive
and transitive closures, respectively (used to express reachability).
Also, assertions might use the \old(e) notation, to refer to the
value of expression e at the precondition. In our tool, the language
definition is implemented using the ANTLR parser generator6.

3.2.2 Genetic Algorithm. EvoSpex’s classic genetic algorithm is
implemented using JGAP7. The algorithm first creates a population
P of initial candidate postconditions, which is then evolved using
genetic operators until a postcondition is found or a termination
criterion is met (e.g., a timeout). At each generation, candidates in P
are selected according to a fitness function that measures how good
they are at distinguishing between the valid/invalid state pairs.
Initial population. We initialize P with two types of expressions:
single value expressions and set expressions. Single value expres-
sions are built from the AST of the target method class. For ex-
ample, considering class TreeList in Figure 2, we can build ex-
pressions such as this.root, this.root.left, this.size, and
so on. To build assertions, each expression expr is evaluated on
a randomly selected subset of valid (resp. invalid) state pairs, as
follows: if the result of evaluating expr in a valid (resp. invalid)
state pair returns a value v, then we create the assertion expr = v
(resp. expr != v). Also, assertions comparing random expressions
of the same type (e.g., this.root = this.root.right) are in-
cluded. Set expressions are built from recursive fields (e.g., left
or right) in the AST or from fields whose type implements the
java.util.Collection interface. From the TreeList class, ex-
pressions such as this.root.*left (set of nodes reachable from
this.root via left traversals), and this.root.*(left+right),
can be created. Each set expression expr is used to build quantified
assertions (all n: expr : n = n.right) and comparisons be-
tween integer expressions and set cardinalities (this.root.height
= #(expr)). Finally, we create initial postconditions comparing
6https://www.antlr.org/
7Java Genetic Algorithms Package - http://jgap.sourceforge.net/
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(using random operators) result/argument expressions against ran-
dom expressions of the same type (e.g., index < this.size).
Genetic Operators. The genetic operators allow us to explore the
search space by producing candidate postconditions with new char-
acteristics as well as combinations of existing ones. Our algorithm
implements three well known operators. Themutation operator, ap-
plied to individual assertions of a candidate, can perform a variety
of modifications: assertion deletion, assertion negation, numeric
addition/subtraction (applied to numeric comparisons), expression
replacement (replaces some part of an assertion with a randomly se-
lected expression of the same type), expression extension (extends
an expression with a new field, for example replacing this.root
by this.root.left), and operator replacement. The crossover op-
erator takes two candidates and creates a new one out of them.
Given two candidate postconditions 𝜙1 and 𝜙2, our implementation
simply produces the new candidate 𝜙1 ∧ 𝜙2. Finally, the selection
operator selects postconditions to be included in the next genera-
tion. In our case, it selects a fraction of candidates with the highest
fitness values, a fraction of the best unary (with only one assertion)
non-valid postconditions (failing on some valid state), and a fraction
of the unary valid ones (only failing on invalid states).
Fitness Function. Our fitness function 𝑓 assesses how good a
candidate postcondition 𝜙 is at distinguishing between the sets 𝑆𝑣
and 𝑆𝑖 of state pairs. To do so, we first compute the sets 𝑃𝜙 and 𝑁𝜙

of positive and negative counterexamples:

𝑃𝜙 = {𝑣 ∈ 𝑆𝑣 |¬𝜙 (𝑣)} 𝑁𝜙 = {𝑖 ∈ 𝑆𝑖 |𝜙 (𝑣)}
Basically, the sets 𝑃𝜙 and 𝑁𝜙 contain those states for which 𝜙 does
not behave correctly. Then, 𝑓 (𝜙) is computed as follows:

#𝑃𝜙 > 0 → 𝑓 (𝜙) = (MAX − #𝑃𝜙 − #𝑆𝑖 ) +
(

1
𝑙𝜙+𝑐𝑜𝑚𝑝𝜙

)
+ 𝑚𝑐𝑎𝜙

𝑙𝜙

#𝑃𝜙 = 0 → 𝑓 (𝜙) = (MAX − #𝑁𝜙 ) +
(

1
𝑙𝜙+𝑐𝑜𝑚𝑝𝜙

)
+ 𝑚𝑐𝑎𝜙

𝑙𝜙

This definition has three terms. The first term reflects the most
important goal: to minimize the number of counterexamples. To
prioritize the (more reliable) positive counterexamples information,
when 𝜙 is falsified by a valid state, the whole set 𝑆𝑖 of invalid state
pairs are considered counterexamples too. The second term acts as
a penalty regarding two aspects: the candidate length 𝑙𝜙 (number
of conjuncts) and its “complexity” 𝑐𝑜𝑚𝑝𝜙 (sum of each conjunct
complexity, where, intuitively, the complexity of an equality be-
tween two integer fields is lower than the complexity of an equality
between an integer field with a set cardinality, and both of these
are lower than the complexity of a quantified formula, and so on).
The last term acts as a reward favoring candidates with a greater
number of “method component assertions”𝑚𝑐𝑎𝜙 , i.e., with a higher
number of conjuncts stating properties regarding the parameters,
the result, or a relation between initial and final object states.

4 EVALUATION

In our previous evaluation of EvoSpex [10], we focused on two
aspects. First, we assessed whether the inferred postconditions
presented oracle deficiencies, using the OASIs [7] tool. This analysis
evaluated the quality of postconditions, in terms of its associated
number of false positives/negatives, for 200 methods from 16 open
source Java projects of the SF1108 benchmark. Our results showed
8https://www.evosuite.org/experimental-data/sf110/

that EvoSpex is able to produce more accurate postconditions, with
a 6.70% of false positives, compared to the 17.49% of false positives
of related techniques. Second, we studied the ability of EvoSpex to
infer manually written contracts, by analyzing methods equipped
with manually written rich postconditions used for verification [4],
and methods automatically synthesized from specifications [8]. In
this last experiment, EvoSpex was able to reproduce 50% of the
manually written contracts, and for 74% of the analyzed methods,
EvoSpex reproduced at least one complex postcondition property.
A comparison with related techniques and discussions regarding
related work can be found in our previous paper [10].

5 CONCLUSION

EvoSpex is a search-based tool for inferring postcondition asser-
tions of Java methods. To infer a postcondition, it takes as inputs
the target method, and a test suite containing executions of the
method. Postconditions inferred by EvoSpex are regression oracles,
involving assertions capturing rich constraints that concernmethod
parameters, return values, internal object states, and the relation-
ship between pre and post method execution states. Automatically
inferring these specifications from source code is a relevant topic,
as it enables a number of applications, including software evolution
and maintenance, bug finding, and specification improvement.
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