
Characterizing Fault-Tolerant Systems

by Means of Simulation Relations

Ramiro Demasi1, Pablo F. Castro2,3,
Thomas S.E. Maibaum1, and Nazareno Aguirre2,3

1 Department of Computing and Software,
McMaster University, Hamilton, Ontario, Canada

demasira@mcmaster.ca, tom@maibaum.org
2 Departamento de Computación, FCEFQyN,

Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Córdoba, Argentina
{pcastro,naguirre}@dc.exa.unrc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. In this paper, we study a formal characterization of fault-
tolerant behaviors of systems via simulation relations. This formaliza-
tion makes use of particular notions of simulation and bisimulation in
order to compare the executions of a system that exhibit faults with
executions where no faults occur. By employing variations of standard
(bi)simulation algorithms, our characterization enables us to algorithmi-
cally check fault-tolerance, i.e., to verify that a system behaves in an
acceptable way even under the occurrence of faults.

Our approach has the benefit of being simple and supporting an ef-
ficient automated treatment. We demonstrate the practical application
of our formalization through some well-known case studies, which illus-
trate that the main ideas behind most fault-tolerance mechanisms are
naturally captured in our setting.

1 Introduction

The increasing demand for highly dependable and constantly available systems
has brought attention to providing strong guarantees for software correctness,
especially for safety critical systems. Some examples of such critical systems
include software for medical devices and software controllers in the avionics and
automotive industries. In this context, a problem that deserves attention is that
of capturing faults, understood as unexpected events that affect a system and
may corrupt or degrade its performance, as well as expressing and reasoning
about the properties of systems in the presence of faults.

The field of fault-tolerant systems is concerned with providing techniques
that can be used to increase the fault-tolerance characteristics of software, or
computer systems in general. This includes specific mechanisms for achieving
fault-tolerance, as well as for appropriately modeling fault-tolerant systems,
and expressing and reasoning about fault-tolerant behaviors. Some examples
of traditional techniques employed to deal with fault-tolerance are: component

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 426–440, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 427

replication, N-version programming, exception mechanisms, transactions, etc.
Some emerging approaches try to deal with fault-tolerance in formal settings,
with the aim of mathematically proving that a given system effectively tolerates
faults. For example, in [9], an approach to design and verify programs that toler-
ate faults, where faults are formalized as operations performed at random time
intervals, is proposed. Another example of formal approach to fault-tolerance
is that presented in [3–5], where Unity programs are complemented with fault
steps, and the logic underlying Unity is used to prove properties of programs.
More recently, formal approaches involving model checking, applied to fault-
tolerance, have been proposed. In these approaches, temporal logics are em-
ployed to capture fault-tolerance properties of reactive systems, and then model
checking algorithms are used to automatically verify that these properties hold
for a given system. Since model checking provides fully automated analysis,
and counterexamples are generated when a property does not hold (which is
extremely helpful in finding the source of the problem in the system), model
checking based approaches to fault-tolerance provide significant benefits over
other semi-automated or manual formal approaches. However, the languages
employed for the description of systems and system properties in model check-
ing do not provide a built-in way of distinguishing between normal and ab-
normal behaviors. Thus, when capturing fault-tolerant systems, and expressing
fault-tolerance properties, the specifier needs to encode in some suitable way the
faults and their consequences. This makes formulas longer and more difficult to
understand, which has a negative impact on analysis, since the performance of
model checking algorithms depends on the length of the formula being analyzed.

In this paper, we propose an alternative formal approach for dealing with
the analysis of fault-tolerance, which allows for a fully automated analysis, and
appropriately distinguishes faulty behaviors from normal ones. This approach
provides a formalism for modeling fault-tolerant systems that features a built-in
notion of abnormal transition, to capture faults. The notion of fault-tolerance
is characterized by defining simulation/bisimulation relations, between the de-
sired “fault-free” program, and that which tolerates faults. Since, as it is well
known, a system may tolerate faults exhibiting different degrees of so called
fault-tolerance, different simulation/bisimulation relations are provided for dif-
ferent kinds of fault-tolerance. More precisely, the kinds of fault-tolerance that
we capture in our setting are masking, nonmasking and failsafe. Masking fault-
tolerance corresponds to the case in which the system may completely tolerate
the faults, not allowing these to have any observable consequences for the users;
nonmasking fault-tolerance corresponds to the case in which, after a fault oc-
curs, the system may undergo some process to eventually take the system back
to a “good” behavior; finally, failsafe fault-tolerance corresponds to the case
in which the system may react to a fault by switching to a behavior that is
safe but in which the system is restricted in its capacity. Since in this approach
fault-tolerance is captured via bisimulation, one is able to check that a system
tolerates faults to some degree (masking, nonmasking, failsafe), without the need
for user intervention, by employing (bi)simulation algorithms.

428 R. Demasi et al.

2 Preliminaries

In this section we introduce some concepts that will be necessary throughout
the paper. For the sake of brevity, we assume some basic knowledge on model
checking; the interested reader may consult [7]. We model fault-tolerant sys-
tems by means of colored Kripke structures, as introduced in [8]. Given a set of
propositional letters AP = {p, q, s, . . .}, a colored Kripke structure is a 5-tuple
〈S, I, R, L,N〉, where S is a set of states, I ⊆ S is a set of initial states, R ⊆ S×S
is a transition relation, L : S → ℘(AP) is a labeling function indicating which
propositions are true in each state, and N ⊆ S is a set of normal, or “green”
states. The complement of N is the set of “red”, abnormal or faulty states. Arcs
leading to abnormal states (i.e., states not in N) can be thought of as faulty
transitions, or simply faults. Then, normal executions are those transiting only
through green states. The set of normal executions is denoted by NT . We as-
sume that in every colored Kripke structure, and for every normal state, there
exists at least one successor state that is also normal, and that at least one ini-
tial state is green. This guarantees that every system has at least one normal
execution, i.e., that NT �= ∅.

As is usual in the definition of temporal operators, we employ the notion of
trace. Given a colored Kripke structureM = 〈S, I, R, L,N〉, a trace is a maximal
sequence of states, whose consecutive pairs are adjacent wrt. R. When a trace of
M starts in an initial state, it is called an execution ofM , with partial executions
corresponding to non-maximal sequences of adjacent states starting in an initial
state. Given a trace σ = s0, s1, s2, s3, . . ., the ith state of σ is denoted by σ[i],
and the final segment of σ starting in position i is denoted by σ[i..]. Moreover,
we distinguish among the different kinds of outgoing transitions from a state.
We denote by ��� the restriction of R to faulty transitions, and → the restriction
of R to non-faulty transitions. We define PostN (s) = {s ∈ S| s → s′} as the
set of successors of s reachable via non-faulty (or good) transitions; similarly,
PostF (s) = {s ∈ S| s ��� s′} represents the set of successors of s reachable via
faulty arcs. Analogously, we define PreN (s′) and PreF (s

′) as the set of prede-
cessor of s′ via normal and faulty transitions, respectively. Moreover, Post∗(s)
denotes the states which are reachable from s. Without loss of generality, we
assume that every state has a successor [7]. We denote by ⇒∗ the transitive
closure of ��� ∪ →.

In order to state properties of systems, we use a fragment of dCTL [8], a
branching time temporal logic with deontic operators designed for fault-tolerant
system verification. Formulas in this fragment, that we call dCTL-, refer to prop-
erties of behaviors of colored Kripke structures, in which a distinction between
normal and abnormal states (and therefore also a distinction between normal
and abnormal traces) is made. The logic dCTL is defined over the Computation
Tree Logic CTL, with its novel part being the deontic operators O(ψ) (obliga-
tion) and P(ψ) (permission), which are applied to a certain kind of path formula
ψ. The intention of these operators is to capture the notion of obligation and
permission over traces. Intuitively, these operators have the following meaning:

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 429

– O(ψ): property ψ is obliged in every future state, reachable via non-faulty
transitions.

– P(ψ): there exists a normal execution, i.e., not involving faults, starting from
the current state and along which ψ holds.

Obligation and permission will enable us to express intended properties which
should hold in all normal behaviors and some normal behaviors, respectively.
These deontic operators have an implicit temporal character, since ψ is a path
formula. Let us present the syntax of dCTL-. Let AP = {p0, p1, . . .} be a set
of atomic propositions. The sets Φ and Ψ of state formulas and path formulas,
respectively, are mutually recursively defined as follows:

Φ ::= pi | ¬Φ | Φ→ Φ | A(Ψ) | E(Ψ) | O(Ψ) | P(Ψ)
Ψ ::= XΦ | Φ U Φ | ΦW Φ

Other boolean connectives (here, state operators), such as ∧, ∨, etc., are defined
as usual. Also, traditional temporal operators G and F can be expressed, as
G(φ) ≡ φ W ⊥, and F(φ) ≡ � U φ. The standard boolean operators and
the CTL quantifiers A and E have the usual semantics. Now, we formally state
the semantics of the logic. We start by defining the relation �, formalizing the
satisfaction of dCTL- state formulas in colored Kripke structures. For the deontic
operators, the definition of � is as follows:

– M, s � O(ψ) ⇔ for every σ ∈ NT such that σ[0] = s we have that for every
i ≥ 0 M,σ[i..] � ψ.

– M, s � P(ψ) ⇔ for some σ ∈ NT such that σ[0] = s we have that for every
i ≥ 0 M,σ[i..] � ψ.

For the standard CTL operators the definition of � is as usual (see [7]).
We denote by M � ϕ the fact that M, s � ϕ holds for every state s of M , and

by � ϕ the fact that M � ϕ for every colored Kripke structure M .
In order to illustrate the semantics of the deontic operators, let us consider

the colored Kripke structure in Figure 1, where the set of propositional variables
is {p, q, r, t}, and each state is labeled by the set of propositional variables that
hold in it. The states that are the target of dashed arcs are abnormal states
(those in which something has gone wrong); faulty states are also drawn with
dashed lines, while the others represent normal configurations. Notice that the
unique faulty state in this model is that named t. In this simple model, for every
non-faulty execution, p ∧ q is always true. In dCTL- this is expressed by the
formula O(p∧q). Note that there also exist normal executions for which p∧q∧r
holds. This fact is expressed as P(p ∧ q ∧ r). Other deontic operators such as
prohibition can be expressed by using those introduced above (see [8]).

One of the interesting characteristics of dCTL- is the possibility of distinguish-
ing between formulas that state properties of good executions and the standard
formulas, which state properties over all possible executions. For every formula
ϕ, a formula ϕN can be built, which captures the same property as ϕ but re-
stricted to good executions. This leads to the notion of normative formula of a
given formula, and is defined as follows.

430 R. Demasi et al.

Fig. 1. A Simple Colored Kripke Structure

Definition 1. Given a dCTL- formula ϕ over an alphabet AP, its normative
formula ϕN , is defined by the following rules:

– (pi)
N def

= pi, (¬ϕ)N def
= ¬ϕN , (ϕ ∧ ϕ′)N def

= ϕN ∧ ϕ′N ,

– (A(ϕ U ϕ′))N def
= O(ϕN U ϕ′N), (A(ϕW ϕ′))N def

= O(ϕN W ϕ′N),

– (E(ϕ U ϕ′))N def
= P(ϕN U ϕ′N), (E(ϕW ϕ′))N def

= P(ϕN W ϕ′N),

– (O(ϕ U ϕ′))N def
= O(ϕN U ϕ′N), (O(ϕW ϕ′))N def

= O(ϕN W ϕ′N),

– (P(ϕ U ϕ′))N def
= P(ϕN U ϕ′N), (P(ϕW ϕ′))N def

= P(ϕN W ϕ′N).

3 (Bi)Simulations and Fault-Tolerance

In this section we present a number of simulation relations that allow us to
capture various kinds of fault-tolerance, namely masking, nonmasking, and fail-
safe. In order to define these relations, we follow the basic definitions regarding
simulation and bisimulation relations given in [7]. Due to space restrictions,
the technical proofs of the theorems presented in this section are omitted; the
interested reader can find them in [10].

We will assume that the properties of interest of a system will be safety and
liveness properties (recall that any temporal specification can be written as a
conjunction of safety and liveness properties [1]). Basically, in order to check
fault-tolerance, we consider two colored Kripke structures of a system, the first
one acting as a specification of the intended behavior and the second as the
fault-tolerant implementation. A system will be fault-tolerant if it is able to
preserve, to some degree, the safety and liveness properties corresponding to its
specification, even in the presence of faults. Our purpose will be to capture, via
appropriate (bi)simulation relations between the system specification and the
fault-tolerant implementation, different kinds of fault-tolerance, with different
levels of property preservation.

In the following definitions, given a colored Kripke structure with a labeling
L, we consider the notion of a sublabeling: we say that L0 is a sublabeling
of L (denoted by L0 ⊆ L), if L0(s) = L(s) ∩ AP ′, for all states s and some
AP ′ ⊆ AP . We also say that L0 is obtained by restricting AP to AP ′. The
concept of sublabeling allows us to focus on certain properties of models.

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 431

Let us start by introducing the notion of masking tolerance relations.

Definition 2. (Masking fault-tolerance) Given two colored Kripke structures
M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relationship
≺Mask⊆ S × S′ is masking fault-tolerant for sublabelings L0 ⊆ L and L′

0 ⊆ L′

iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Masks2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 ≺Masks2).
(B) for all s1 ≺Masks2 the following holds:

(1) L0(s1) = L′
0(s2).

(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ PostN (s2) with s
′
1 ≺Masks

′
2.

(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s
′
1 ≺Masks

′
2.

(4) if s′2 ∈ PostF (s2), then either there exists s′1 ∈ PostN (s1) with
s′1 ≺Masks

′
2 or s1 ≺Masks

′
2.

We say that state s2 is masking fault-tolerant for s1 when s1 ≺Masks2. Intu-
itively, the intention in the definition is that, starting in s2, faults can be masked
in such a way that the behavior exhibited is the same as that observed when
starting from s1 and executing transitions without faults. Let us explain the
above definition. Conditions A, B.1, B.2 and B.3 imply that we have a bisim-
ulation between the normative parts of M and M ′. Condition B.4 states that
every outgoing faulty transition from s2 either must be matched to an outgoing
normal transition from s1, or s

′
2 is masking fault-tolerant for s1.

Notice that, if there exists a self-loop at state s′2, then we can stay forever
satisfying s1 ≺Masks

′
2. Therefore, a fairness condition needs to be imposed on

B.4 to ensure that masking implementations preserve liveness properties. For
example, we can assume that, if a set of non-faulty transitions are enabled in-
finitely often, then these transitions will be executed infinitely often. We denote
by M �f ϕ the restriction of � to fair executions. It is worth remarking that the
condition symmetric to (B.4) is not required, since we are only interested in the
masking properties of M ′.

We say that M ′ masks faults for M iff for every initial state s0 of M there
exists an initial state s′0 of M ′ such that s0 ≺Masks

′
0, for some masking fault-

tolerant relation ≺Mask; we denote this situation by M ≺MaskM
′. Let us not

present a simple example to illustrate the above definition.

Example 1. Let us consider a memory cell that stores a bit of information and
supports reading and writing operations. A state in this system maintains the
current value of the memory cell (m = i, for i = 0, 1), writing allows one to
change this value, and reading returns the stored value.

A potential fault in this problem would be that the cell unexpectedly loses
its charge, and its stored value turns into another one (e.g., it changes from 1 to
0 due to charge loss). A typical technique to deal with this situation is redun-
dancy: use three memory bits instead of one. Writing operations are performed
simultaneously on the three bits. Reading, on the other hand, returns the value
that is repeated at least twice in the memory bits, known as voting, and the
ready value is written back in all the bits.

432 R. Demasi et al.

Fig. 2. Two masking fault-tolerance colored Kripke structures

In a model of this system, each state is described by variables m and w, which
record the value stored in the system (taking voting into account) and the last
writing operation performed, respectively. The state also maintains the values
of the three bits that constitute the system, captured by boolean variables c0,
c1 and c2. For instance, in Figure 2, state s0 contains the information 11/111,
representing the state: w = 1, m = 1, c0 = 1, c1 = 1, and c2 = 1.

Consider the colored Kripke structures M (left) and M ′ (right) depicted in
Figure 2. M contains only normal transitions describing the expected ideal be-
havior (without taking into account faults). M ′ includes a model of a fault: a bit
may suffer a discharge and then it changes its value from 1 to 0. It is straight-
forward to show that in this simple case there exists a masking fault-tolerance
relation (specifically, the relation R1 = {(s0, t0), (s1, t1), (s0, t2)}) between M
and M ′ with the sublabelings L0 and L′

0 obtained by restricting L and L′ to
propositions m and w, respectively.

An important property of masking fault-tolerance is that both safety and
liveness properties of normative (i.e., non-faulty) executions are preserved by
masking tolerant implementations under fairness restrictions.

Theorem 1. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored
Kripke structures, s1 ∈ S and s2 ∈ S′. If s1 ≺Masks2 for sublabelings L0 and
L′
0 obtained by restricting L and L′ to AP ′, respectively, then M, s1 �f ϕ

N ⇒
M ′, s2 �f ϕ, where all the propositional variables of ϕ are in AP ′.

Let us now focus on nonmasking fault-tolerance. This kind of tolerance is less
strict than masking tolerance, since it allows for the existence of some states
which do not mask faults. Intuitively, this type of fault-tolerance allows the
system to violate its specification while it is recovering from a fault and returning
to a normal behavior. More technically, the normative liveness properties of the
system are always preserved, whereas the normative safety properties may not
be fully preserved, but must be eventually restated. The characterization of this
kind of fault-tolerance is the following.

Definition 3. (Nonmasking fault-tolerance) Given two colored Kripke struc-
tures M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relation
≺Nonmask⊆ S × S′ is nonmasking for sublabelings L0 ⊆ L and L′

0 ⊆ L′, iff:

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 433

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Nonmasks2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1
≺Nonmasks2).

(B) for all s1 ≺Nonmasks2 the following holds:
(1) L0(s1) = L′

0(s2).
(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ PostN (s2) with s

′
1 ≺Nonmasks

′
2.

(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s
′
1 ≺Nonmasks

′
2.

(4) if s′2 ∈ PostF (s2), then there exists s′1 ∈ PostN (s1) with s
′
1 ≺Nonmasks

′
2,

or
(5) if s′2 ∈ PostF (s2) with s′1 ⊀Nonmasks

′
2 for all s′1 ∈ PostN (s1), then

there exists a finite path fragment s2 ��� s′2 ⇒∗ s′′2 such that either
s′1 ≺Nonmasks

′′
2 for some s′1 ∈ PostN (s1), or s1 ≺Nonmasks

′
2.

Let us explain this definition. Conditions A, B.1, B.2, B.3, B.4 are similar to
the conditions of Def. 2. Condition B.5 asserts that if s1 ≺Nonmasks2 and every
“faulty” successor state s′2 of s2 is not in a nonmasking relation with any normal
successor of s1, then there exists a path fragment that leads from s2 to s′′2 such
that s′1 ≺Nonmasks

′′
2 for some normal successor state s′1 of s1, or s

′
2 is nonmasking

fault-tolerant for s1.
We say that M ′ is nonmasking fault-tolerant wrt. M iff for every initial state

s0 of M there exists an initial state s′0 of M ′ such that s0 ≺Nonmasks
′
0, for some

nonmasking fault-tolerance ≺Nonmask(indicated by M ≺NonmaskM
′).

At first sight, nonmasking fault-tolerance seems similar to the notion of weak
bisimulation used in process algebra [2], where silent steps are taken into ac-
count. Notice however that, as opposed to weak bisimulation where silent steps
produce only nonobservable (i.e., internal) changes, faults may produce observ-
able changes in a nonmasking fault-tolerance relation. Let us present an example
of nonmasking tolerance.

Example 2. For the memory cell introduced in Example 1, consider now the
colored Kripke structures M (left) and M ′ (right) depicted in Figure 3. Now we
consider that two faults may occur: up to two bits may lose its charge before
any normal transition is taken. The relation R2 = {(s0, t0), (s1, t1), (s0, t2)} is
nonmasking tolerant for (M,M ′) and the sublabelings L0 and L′

0, obtained by
restricting L and L′ to propositions m and w, respectively.

An important property is that if s2 is nonmasking fault-tolerant for s1 and
for every state of normal paths starting in s1, ϕ holds, then in fair executions
starting in s2, ϕ eventually holds even in the presence of faults.

Theorem 2. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored
Kripke structures, s1 ∈ S and s2 ∈ S′. If s1 ≺Nonmasks2 for sublabelings L0 and
L′
0 obtained by restricting L and L′ to AP ′, respectively, then M, s1 �f ϕ

N ⇒
M ′, s2 �f AFAG(ϕ), where all the propositional variables of ϕ are in AP ′.

We now present a characterization of failsafe fault-tolerance. Essentially, failsafe
fault-tolerance must ensure that the system will stay in a safe state, although it
may be limited in its capacity. More technically, this means that the normative
safety properties must be preserved, while normative liveness properties may not
be respected.

434 R. Demasi et al.

Fig. 3. Two nonmasking fault-tolerance colored Kripke structures

Definition 4. (Failsafe fault-tolerance) Given two colored Kripke structures
M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relation
≺Failsafe⊆ S × S′ is failsafe for sublabelings L0 ⊆ L and L′

0 ⊆ L′ iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Failsafes2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1
≺Failsafes2).

(B) for all s1 ≺Failsafes2 the following holds:
(1) L0(s1) = L′

0(s2).
(2) if s′1 ∈ PostN(s1), then there exists s′2 ∈ PostN (s2) with s

′
1 ≺Failsafes

′
2.

(3) if s′2 ∈ PostN(s2), then there exists s′1 ∈ PostN (s1) with s
′
1 ≺Failsafes

′
2.

(4) if s′2 ∈ PostF (s2), then either there exists s′1 ∈ PostN (s1) with L0(s
′
1) =

L′
0(s

′
2) or L0(s1) = L′

0(s
′
2).

Whenever two states s1 and s2 are related by a failsafe fault-tolerant relation
≺Failsafe, i.e., s1 ≺Failsafes2, we say that s2 is failsafe fault-tolerant for s1. We
say that M ′ is failsafe fault-tolerant for M iff for every initial state s0 of M
there exists an initial state s′0 of M ′ such that s0 ≺Failsafes

′
0, for some failsafe

fault-tolerant relation ≺Failsafe; we denote this situation by M ≺FailsafeM
′.

Let us explain the above definition. Conditions A, B.1, B.2, and B.3 are
similar to those of Def. 2, regarding masking fault-tolerance. ConditionB.4 states
that if s1 ≺Failsafes2, then every outgoing faulty transition from s2 either must
be matched to an outgoing normal transition from s1, requiring states s′1 and
s′2 to be labeled with the same propositions, or s′2 must be failsafe fault-tolerant
for s1. We now present a simple example to illustrate this notion.

Example 3. Consider the colored Kripke structures M (left) and M ′ (right) de-
picted in Figure 4. M is the specification of the expected ideal, fault-free, be-
havior.M ′, on the other hand, involves the occurrence of one fault. The relation
R3 = {(s0, t0), (s1, t1)} is a failsafe fault-tolerance relation for (M,M ′) and the
sublabelings that are obtained by restricting L and L′ to propositions m and w.

Our definition of failsafe fault-tolerance preserves safety properties.

Theorem 3. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored
Kripke structures, s1 ∈ S and s2 ∈ S′. If s1 ≺Failsafes2 for sublabelings L0

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 435

Fig. 4. Two failsafe fault-tolerance colored Kripke structures

and L′
0 obtained by restricting L and L′ to AP ′, respectively, and ϕ is a safety

property, then M, s1 � ϕN ⇒ M ′, s2 � ϕ, where all the propositional variables of
ϕ are in AP ′.

This property says that if we have a failsafe relation between s1 and s2 and for
every state in normal paths starting in s1, ϕ holds in the absence of faults, then
ϕ is always true even in the presence of faults in paths starting in s2.

The following lemma provides important information regarding all the fault-
tolerance relations defined above.

Lemma 1. Given relations ≺Mask, ≺Nonmask and ≺Failsafe, we have the
following properties:

– ≺Mask, ≺Nonmask, ≺Failsafe are transitive,
– If M does not have faults, then: M �M ′ ⇒M ′ �M ,

where �∈ {≺Mask,≺Nonmask,≺Failsafe}
– ≺Mask, ≺Nonmask and ≺Failsafe are not necessarily reflexive.

We also have properties of these relations corresponding to inclusions :

Theorem 4. Let Mask, NMask and FSafe be the sets of masking, nonmasking
and failsafe relations between two colored Kripke structures M and M ′. Then we
have:

Mask ⊆ FSafe and Mask ⊆ NMask

3.1 Checking Fault-Tolerance Properties

Simulation and bisimulation relations are amenable to efficient computational
treatment. For instance, in [7, 11] algorithms for calculating several simulation
and bisimulation relations are described and proved to be polynomial with re-
spect to the number of states and transitions of the corresponding models. We
have adapted these algorithms to our setting, thus obtaining efficient procedures
to prove masking, nonmasking and failsafe fault-tolerance. Such algorithms can
be used to verify whetherM �M ′, with �∈ {≺Mask,≺Nonmask,≺Failsafe}. We
discuss the algorithm for computing masking fault-tolerance. The algorithms

436 R. Demasi et al.

Algorithm 1. Computation of masking fault-tolerant

Input: colored Kripke structure M
Output: masking fault-tolerant ≺Mask

1: for all s2 ∈ F do
2: Mask(s2) := {s1 ∈ N | L0(s1) = L0(s2)}
3: Remove(s2) := N\PreN(Mask(s2))
4: end for
5: while ∃ s′2 ∈ F with Remove(s′2) �= ∅ do
6: select s′2 such that Remove(s′2) �= ∅
7: for all s1 ∈ Remove(s′2) do
8: for all s2 ∈ PreN(s′2) do
9: if s1 ∈ Mask(s2) then
10: Mask(s2) := Mask(s2)\{s1}
11: for all s ∈ PreN(s1) with PostN (s) ∩ Mask(s2) = ∅ do
12: Remove(s2) := Remove(s2) ∪ {s}
13: end for
14: end if
15: end for
16: end for
17: Remove(s′2) := ∅
18: end while
19: for all s2 ∈ F do
20: if Post∗(s2) �= Post∗(Mask(s2)) then
21: Mask(s2) := ∅
22: end if
23: end for
24: return {(s1, s2) | s1 ∈ Mask(s2)}

for the other relations can be obtained in a similar way; the interested reader
is referred to [10]. The basic scheme for checking masking fault-tolerance is
sketched in Algorithm 1. This algorithm takes as input a colored Kripke struc-
ture M = 〈S, I, R, L,N〉 and a sublabeling L0 ⊆ L, and produces a masking
fault-tolerance relation ≺Mask. In order to check fault-tolerance properties, we
take two colored Kripke structuresM andM ′ over AP (the system specification
and the fault-tolerant implementation), and combine them in a single structure
M ⊕M ′ via disjoint union, to feed as input to the algorithm. Notice that Al-
gorithm 1 only deals with the case of faulty states/transitions (condition B.4
of Def. 2), since a standard bisimulation algorithm can be used for checking
that the normative behavior described in the specification is bisimilar with that
exhibited by the fault-tolerant implementation (conditions B.2 and B.3). This
algorithm is an adaptation of the similarity-checking algorithm for finite graphs
defined in [11]. We have made slight changes (between lines 1 and 18) in order to
explore all the faulty transitions s2 ��� s′2 and look for those normal transitions
s1 → s′1 which mask faulty ones.

Let us briefly explain Algorithm 1. Consider F = S\N to be the set of faulty
states in M . For each s2 ∈ F , the set Mask(s2) contains the normal states that

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 437

are candidates for masking s2. Initially, Mask(s2) consists of all normal states
with the same labels as s2 and Remove(s2) contains all the normal states which
do not have a (normal) successor state masking s2. Moreover, these states cannot
mask any of the predecessors of s2. The termination condition of the outermost
loop of lines 5–18 is Remove(s′2) = ∅ for all s′2 ∈ F , in which case there are no
normal states that need to be removed from the sets of simulators Mask(s2)
for s2 ∈ PreN (s′2). Within the while-loop body, the main idea is to pick one
pair (s1, s

′
2) with s1 ∈ Remove(s′2) per iteration; for each one we scan through

the predecessor list of s′2 and test for each normal state s2 ∈ PreN (s′2) to see
whether s1 ∈ Mask(s2). In the positive case, s1 is removed from Mask(s2).
Subsequently, we add to the set Remove(s2) all normal predecessors s of s1
such that PostN (s) ∩ Mask(s2) = ∅. The last for-loop checks whether from
any faulty state s2 which is masked by a normal state, we can reach a normal
state to recover to the normal behavior. Therefore, for each faulty state s2,
we inspect the existence of the reachable normal states from s2 (line 20). In
the case that the set of successors of s2 is not equal to the set of the normal
successors of the normal state which mask s2, then we remove all states from
Mask(s2). Finally, the masking fault-tolerance≺Mask is obtained from a colored
Kripke structure M by performing the union between the set obtained from a
bisimulation algorithm used to check that the system strongly bisimulates the
specification for the normative part, and the set returned by Algorithm 1.

Regarding the complexity of the algorithm for checking masking fault-
tolerance, it is polynomial. More precisely, the time complexity of the bisim-
ulation quotient algorithm [7] is O(|N | · |AP ′| + E · log |N |), where E is the
number of edges inM . On the other hand, Algorithm 1 can be computed in time
O(E ·|F|+|F|·AP ′+|F|). Hence, the masking fault-tolerance of a colored Kripke
structureM = 〈S, I, R, L,N〉 for sublabeling L0 ⊆ L obtained by restricting AP
to AP ′, can be computed in a running time of O(E · log |N |+ E · |F |).

4 An Example: The Muller C-element

The Muller C-element [14] is a simple delay-insensitive circuit which contains
two boolean inputs and one boolean output. Its logical behavior is described as
follows: if both inputs are true (resp. false) then the output of the C-element
becomes true (resp. false). If the inputs do not change, the output remains the
same. In [3], the following (informal) specification of the C-element with inputs
x and y and output z is given:

(i) Input x (resp. y) changes only if x ≡ z (resp., y ≡ z), (ii) Output z
becomes true only if x∧y holds, and becomes false only if ¬x∧¬y holds;
(iii) Starting from a state where x∧y, eventually a state is reached where
z is set to the same value that both x and y have. Ideally, both x and y
change simultaneously. Faults may delay changing either x or y.

We consider an implementation of the C-element with a majority circuit in-
volving three inputs, where an extra input u in the circuit is added. Then, the

438 R. Demasi et al.

Fig. 5. A nonmasking fault-tolerance for the Muller C-element with a majority circuit

predicatemaj(x, y, u) returns the value of the majority circuit, which is assumed
to work correctly, and is defined as maj(x, y, u) = (x ∧ y) ∨ (x ∧ u) ∨ (y ∧ u).
In addition to the traditional logical behavior of the C-element, u and z have
to change at the same time, where the output z is fed back to the input u.
Figure 5 shows two models of this circuit. M exhibits the ideal behavior of the
C-element containing only normal transitions. M ′ takes into account the possi-
bility of faults occurring, and provides a reaction to these. Every state in these
models is composed of boolean variables x, y, u, and z, where x, y, and u repre-
sent the inputs, and z represents the output. For instance, the state s0 contains
the information 000 \ 0 interpreted (reading from left to right) as x = 0, y = 0,
u = 0, and z = 0. Transitions are labeled by subsets of the set {cx, cy, cu, cz} of
actions; action cx (resp., cy and cu) is the action that changes input x (resp.,
y and u); cz is the action of changing output z. When the actions cx and cy
are executed in the same transition, we just write cxy. We consider two types of
faults: (i) a delay may occur in the arrival of some of the inputs x or y (i.e., they
do not change simultaneously), and (ii) a delay in the signal from z to u occurs.
We can observe these classes of faults in the faulty states (indicated by dashed
circles) when either x and y or u and z do not match one another. The relation
Rc−element = {(s0, t0), (s1, t1), (s2, t2), (s3, t3)} is a nonmasking fault-tolerance
for (M,M ′) and the sublabelings obtained by restricting the original labelings
to letters u, x, y, z. Therefore, when the majority circuit behaves correctly, this
implementation masks delays of inputs.

We have developed other case studies illustrating the practical application
of our framework, based on well known fault-tolerance models, including, e.g.,
Byzantine agreement. These can be found in [10].

Characterizing Fault-Tolerant Systems by Means of Simulation Relations 439

5 Related Work

Our work is most closely related to formal approaches to fault-tolerance. One of
these is that presented in [4], where the problem of multitolerance is addressed.
In order to do so, the authors define the concepts of masking, nonmasking and
failsafe tolerances using liveness and safety specifications in a linear-time frame-
work. In our approach, we focus on branching time properties of programs. In
our opinion, branching time is important for fault-tolerance specification. This
view is also shared by Attie, Arora, and Emerson in [6], where an algorithm for
synthesizing fault-tolerant programs from CTL specifications is presented. They
consider CTL as the temporal logic specification for the input of their synthe-
sis method. Instead of using CTL, we use a branching time temporal logic that
has a convenient mechanism for stating fault-tolerance properties, via the use
of deontic operators. We believe that our formalism is better suited for cap-
turing fault-tolerance properties. Finally, we can mention the works presented
in [12, 13], where various notions of bisimulation are investigated with the aim
of capturing fault-tolerant properties, in the context of process algebras. An
obvious difference wrt. our work is that we use a state based approach and a
temporal logic to reason about state based models, in contrast to the aforemen-
tioned works where process algebras are employed for modeling systems, and the
associated logic is a variation of Hennesy-Milner logic, which is known to be less
expressive than temporal logics. Also, the notions of masking, nonmasking and
failsafe fault-tolerance are not investigated in the referenced works.

6 Conclusions and Future Work

We have presented a characterization of different levels of fault-tolerance by
means of simulation relations. This formalization is simple and uses standard
notions of simulation relations, by relating an operational system specification
and a corresponding fault-tolerant implementation. Moreover, our approach to
capturing fault-tolerance enables us to automatically verify, for example, that a
given implementation of a system masks certain faults, or recovers from these
faults, by employing variants of traditional bisimulation algorithms to our con-
text. Indeed, we have adapted well known (bi)simulation algorithms to our set-
ting, so that one can automatically check if a system implementation exhibits
some degree of fault-tolerance. We have also studied the complexity of the result-
ing algorithms, and proved that they preserve the time complexity of traditional
bisimulation algorithms. We have also studied properties of our formalizations of
fault-tolerance, showing that different kinds of temporal properties are preserved,
depending on the degree of fault-tolerance that a system exhibits. Moreover, we
have also presented results relating the different kinds of fault-tolerance.

As future work, we are exploring the extension of our setting with synthesis, so
that fault-tolerant programs may be automatically constructed from the system
specification, a description of the faults and their consequences, and a desired
degree of fault-tolerance. Synthesis of programs has been extensively investigated

440 R. Demasi et al.

in the context of linear time logic [15], while in our case it is necessary to deal
with a branching time formalism. This is important since, as argued in [6], some
important properties related to fault-tolerance require branching time operators.
It is also in [6] where a framework for synthesis of programs from branching time
specifications is introduced. We believe that some of the work presented in this
paper can be used to extend that introduced in [6], to automatically synthesize
programs that mask faults, recover from error situations or stay in safe states.
Finally, we also plan to extend our framework to accommodate multitolerance
[4], in which multiple classes of faults may occur simultaneously.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments. This work was partially supported by a Fellowship
from IBM Canada, in support of the Automotive Partnership Canada funded
project NECSIS; by the Argentinian Agency for Scientific and Technological Pro-
motion (ANPCyT), through grants PICT PAE 2007 No. 2772, PICT 2010 No.
1690 and PICT 2010 No. 2611; and by the MEALS project (EU FP7 programme,
grant agreement No. 295261).

References

1. Alpern, B., Schneider, F.: Defining Liveness. Inf. Process. Lett. 21(4) (1985)
2. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.

Prentice-Hall (1989)
3. Arora, A., Gouda, M.: Closure and Convergence: A Foundation of Fault-Tolerant

Computing. IEEE Trans. Soft. Eng. 19(11) (1993)
4. Arora, A., Kulkarni, S.: Component Based Design of Multitolerant Systems. IEEE

Trans. Software Eng. 24(1) (1998)
5. Arora, A., Kulkarni, S.: Detectors and Correctors: A Theory of Fault-Tolerance

Components. In: Proc. of ICDCS (1998)
6. Attie, P., Arora, A., Emerson, A.: Synthesis of fault-tolerant concurrent programs.

ACM Trans. Program. Lang. Syst. 26(1) (2004)
7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
8. Castro, P.F., Kilmurray, C., Acosta, A., Aguirre, N.: dCTL: A Branching Time

Temporal Logic for Fault-Tolerant System Verification. In: Barthe, G., Pardo,
A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 106–121. Springer,
Heidelberg (2011)

9. Cristian, F.: A rigorous approach to fault-tolerant programming. IEEE Trans.
Software Eng. (1985)

10. Demasi, R., Castro, P., Maibaum, T., Aguirrer, N.: Characterizing Fault-Tolerant
Systems by Means of Simulation Relations, Tech. Report,
http://www.cas.mcmaster.ca/~demasira/reportSimFTS.pdf

11. Henzinger, M., Henzinger, T., Kopke, P.: Computing Simulations on Finite and
Infinite Graphs. In: Proc. of FOCS (1995)

12. Janowski, T.: Bisimulation and Fault-Tolerance. PhD thesis (1995)
13. Janowski, T.: On Bisimulation, Fault-Monotonicity and Provable Fault-Tolerance.

In: Proc. of AMAST (1997)
14. Mead, C., Conway, L.: Introduction to VLSI systems. Addison-Wesley (1980)
15. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proc. of POPL

(1989)

http://www.cas.mcmaster.ca/~demasira/reportSimFTS.pdf

	Characterizing Fault-Tolerant Systems by Means of Simulation Relations
	Introduction
	Preliminaries
	(Bi)Simulations and Fault-Tolerance
	Checking Fault-Tolerance Properties

	An Example: The Muller C-element
	Related Work
	Conclusions and Future Work

