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Abstract. We study the use of some verification techniques for reason-
ing about temporal properties of CommUnity designs. We concentrate on
the verification of temporal properties in the context of branching-time
temporal logic using the SMV tool.

We also discuss ways of modularising the temporal reasoning, by ex-
ploiting the various kinds of morphisms between designs available in
CommUnity. Moreover, we combine SMV verification with some abstract
interpretation mechanisms to overcome a limitation, with respect to the
use of structure for simplification of verification, of CommUnity’s refine-
ment morphisms, the lack of support for data refinement.

1 Introduction

The constant increase in the complexity of software systems demands a continu-
ous search for more and better modularisation mechanisms in software develop-
ment processes, covering not only implementation, but also earlier stages, such
as analysis and design. Indeed, many new modularisation mechanisms influence
not only programming language constructs, but also their associated development
methodologies. Modularisation mechanisms are also of a crucial importance for
formal methods, and in particular for formal specification. Appropriate modular-
isation mechanisms allow us to structure our specifications, dividing the usually
large specifications (due to the degree of detail that formal models demand) into
manageable parts. Also, many modern software systems have an inherent struc-
tural nature, and for these, structured specifications are better suited. Finally,
and more importantly for this paper, modularisation mechanisms allow us to ap-
ply some modularity principles to analyses of properties, taking advantage of the
structure of the design itself, and making some automated and semi-automated
verification techniques scale up and be applicable to larger systems specifications.

There exist many formal specification languages which put an emphasis on the
way systems are built out of components (e.g., those reported in [15,6,20,14]),
thus aiding the modularisation of specifications and designs. CommUnity is one
of these languages; it is a formal program design language which puts special em-
phasis on ways of composing specifications of components to form specifications
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of systems [4]. CommUnity is based on Unity [1] and IP [5], and its foundations
lie in the categorical approach to systems design [7]. Its mechanisms for com-
posing specifications have a formal interpretation in terms of category theory
constructs [4]. Moreover, CommUnity’s composition mechanisms combine nicely
with a sophisticated notion of refinement, which involves separate concepts of
action blocking and action progress. CommUnity also has some tool support, the
CommUnity Workbench [23]. The CommUnity Workbench supports the editing,
compilation, colimit generation (as explained below, colimits represent the joint
behaviour of interacting components in CommUnity) and execution of CommU-
nity programs. However, it currently does not support the verification of logical
properties of designs. For this purpose, we propose the use of well known model
checking tools, in order to verify temporal properties of designs. More precisely,
and due to some particular characteristics of CommUnity, we propose the use
of CTL based model checking to analyse temporal properties of CommUnity
designs. We start by defining a translation from CommUnity designs into SMV
specifications in a semantics preserving way; since our goal is to verify temporal
properties of designs, we have to consider a semantics for CommUnity designs
that is more restrictive than (but compatible with) the semantics of open Com-
mUnity designs described in [12]. We then attempt to modularise the verification
activities via the superposition and refinement morphisms available in CommU-
nity, as indicated in [13]. This is very important, since it allows us to exploit the
structure of CommUnity designs for verification, a task that is crucial for the
successful use of model checking and other automated analysis techniques. The
idea is to check properties required of a component from the specification of that
component, thus exponentially reducing the search space associated with these
checks, as compared to the search space associated with the much larger speci-
fication of the system. Although not all properties are necessarily preserved by
including a component in a system, by means of some structuring relationship,
important categories of properties are. Thus economies of scale might be achieved
by using this structuring information to structure verifications. We concentrate
on the information supplied by superposition relationships, used in structuring
designs, but also discuss refinements. Finally, we combine model checking with
predicate abstraction [8] in order to overcome a limitation (with respect to the
modularisation of verification) of CommUnity refinements, namely the lack of
support for data refinement [13].

The paper proceeds as follows. In section 2 we describe CommUnity and the
concepts of designs and programs, including the structuring principles used to
build systems from components. We also summarise the transition systems se-
mantics of designs. Then in section 3, we discuss the verification of CommUnity
designs using SMV, how the required translation is defined, and how the verifi-
cation can be modularised, in some cases, by using the structure defined by the
superposition morphisms used in structuring the design. We also discuss the re-
lationship between refinement morphisms and temporal properties, and describe
how we complement the CTL model checking with predicate abstraction, which
is necessary due to the fact that refinement morphisms do not allow for data
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refinement. We conclude with a discussion of results and future research. In or-
der to illustrate the main ideas of the paper, we develop a case study based on a
modular specification of a processor with a simple process scheduling mechanism.

2 CommUnity Designs

In this section, we introduce the reader to the CommUnity design language and
its main features, by means of an example. The computational units of a system
are specified in CommUnity through designs. Designs are abstract programs, in
the sense that they describe a class of programs (more precisely, the class of all
the programs one might obtain from the design by refinement), rather than a
single program. In fact, when a design does not admit any further refinement, it
is called a program [22].

Before describing in some detail the refinement and composition mechanisms
of CommUnity, let us describe the main constituents of a CommUnity design.
Assume that we have a fixed set ADT of datatypes, specified as usual via a
first-order specification. A CommUnity design is composed of:

– A set V of channels, typed with sorts in ADT . V is partitioned into three
subsets Vin, Vprv and Vout, corresponding to input, private and output chan-
nels, respectively. Input channels are the ones controlled, from the point of
view of the component, by the environment. Private and output channels are
the local channels of the component. The difference between these is that
output channels can be read by the environment, whereas private channels
cannot.

– A first-order sentence Init(V ), describing the initial states of the design1.
– A set Γ of actions, partitioned into private actions Γprv and public actions

Γpub. Each action g ∈ Γ is of the form:

g[D(g)] : L(g), U(g) → R(g)

where D(g) ⊆ Vprv ∪ Vout is the (write) frame of g (the local channels that
g modifies), L(g) and U(g) are two first-order sentences such that U(g) ⇒
L(g), called the lower and upper bound guards, respectively, and R(g) is a
first-order sentence α(V ∪ D(g)′), indicating how the action g modifies the
values of the variables in its frame (D(g) is a set of channels and D(g)′ is the
corresponding set of “primed” versions of the channels in D(g), representing
the new values of the channels after the execution of the action g.)

The two guards L(g) and U(g) associated with an action g are related to re-
finement, in the sense that the actual guard of an action gr implementing the
abstract action g, must lie between L(g) and U(g). As explained in [13], the
negation of L(g) establishes a blocking condition (L(g) can be seen as a lower

1 Some versions of CommUnity, such as the one presented in [13], do not include an
initialisation constraint.
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bound on the actual guard of an action implementing g), whereas U(g) estab-
lishes a progress condition (i.e., an upper bound on the actual guard of an action
implementing g).

Of course, R(g) might not uniquely determine values for the variables D(g)′.
As explained in [13], R(g) is typically composed of a conjunction of implications
pre ⇒ post , where pre is a precondition and post defines a multiple assignment.

To clarify the definition of CommUnity designs, let us suppose that we would
like to model a processor. We will abstract away from the actual code of the
processes, and represent them simply by an ordered pair of non negative integers
(denoted by nat), where the first integer represents a label for identifying the
process and the second one the number of seconds of execution remaining. Then,
a processor is a simple CommUnity design composed of:

– A local channel curr proc:〈nat, nat〉, representing the current process ac-
cessing the processor. We use a dummy value (0, 0) for indicating that the
processor is idle.

– an input channel in proc:〈nat, nat〉, for obtaining a new process (from
the environment, in an abstract sense) to be run by the processor.

– An action load, which loads a new process into the processor (reading the
corresponding values from the input variable in proc).

– An action run, that executes the current process for a second.
– An action kill, that removes the current process, replacing it by the dummy

(0, 0).
– An action switch, which, if the current process is not the dummy (0, 0),

replaces it by the incoming process in proc.

The CommUnity design corresponding to this component is shown in Figure 1.

� �

Design Processor
in

in proc: <nat, nat>
out

curr proc: <nat, nat>
init

curr proc = (0,0)
do

load[ curr proc ] : in proc. snd > 0 ∧ in proc. fst �= 0 ∧ curr proc=(0,0)
−→ curr proc’=in proc

[] prv run[ curr proc ] : curr proc. snd > 0, curr proc. snd > 0
−→ curr proc’=(curr proc.fst , curr proc. snd−1)

[] kill [ curr proc ] : curr proc. fst �= 0, false −→ curr proc’=(0,0)
[] switch[ curr proc ] : in proc. snd > 0 ∧ in proc. fst �= 0 ∧
curr proc. snd >0, false

−→ curr proc’=in proc
� �

Fig. 1. An abstract CommUnity design for a simple processor
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In Fig. 1, one can see the different kinds of guards that an action might have.
For instance, action kill has safety and progress guards (curr proc.fst 	= 0
and false, respectively). Since the progress guard for this action is false, the
component is not obliged to execute the action when the environment requires
it to do so.

Another important point to notice in the processor design is the apparent
behaviour of action switch. After a switch, the previous value of curr proc
seems to be missing, since the component does not store it anywhere else, nor
“sends” it to another component. It will become clearer later on that it will
be the responsibility of other components in the architecture to “extract” the
current process and store it when a switch takes place. This is basically due
to the fact that communication between components is achieved by means of
coordination, rather than by explicit invocation.

To complete the picture, let us introduce some further designs. One is a
bounded queue of processes, with the traditional enqueue (enq) and dequeue
(deq) operations, implemented over an array. The other is a process generator, a
design that generates new processes to feed the system. These designs are shown
in Figures 2 and 3, respectively.

� �

Design Process Queue
in

in proc: <nat, nat>
out

out proc: <nat, nat>
local

queue: array(10,<nat, nat>)
low, up, count: nat

init
out proc = (0,0) ∧ ∀ x ∈ [1..10] :

queue[x] = (0,0) ∧ low = 1 ∧ up = 1 ∧ count = 0
do

enq[ queue,out proc,count,up ] : count<10 ∧ in proc. fst �= 0
−→ queue’[up] = in proc ∧ up’ = (up mod 10)+1 ∧

out proc’ = if(count=0,in proc,queue[low]) ∧ count’=count+1
[] deq[ queue,out proc,count,low ] : count>0 , count>5

−→ queue’[low] = (0,0) ∧ low’ = (low mod 10)+1 ∧
out proc’ = queue[(low mod 10)+1] ∧count’=count−1

� �

Fig. 2. An abstract CommUnity design for a process queue

the definition of action enq makes use of an if-then-else expression, in the syntax
of the CommUnity Workbench. Notice that the progress guard for action load of
the processor coincides with its blocking guard, which is too weak to guarantee
a scheduling policy. Stronger progress guards for actions related to load will
arise as a result of composing the processor with other components, to achieve
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� �

Design Process Generator
out

out proc: <nat, nat>
local

curr id : nat
init

curr id = 1 ∧ out proc = (0,0)
do

prv gen[ out proc ] : out proc.fst �= curr id
−→ out proc’. fst = curr id ∧ out proc’. snd > 0

[] send[ out proc,curr id ] : out proc.fst = curr id
−→ out proc’=(0,0) ∧ curr id ’ = curr id+1

� �

Fig. 3. An abstract CommUnity design for a process generator

a proper scheduling policy. In our case, for example, we require the dequeing of
processes to be ready whenever the number of processes in the queue exceeds
half the queue capacity (see the progress guard of action deq).

2.1 Component Composition

In order to build a system out of the above components, we need a mechanism
for composition. The mechanism for composing designs in Community is based
on action synchronisation and the “connection” of output channels to input
channels (shared memory). Since our intention is to connect both the process
generator and the processor to the queue (since processes to be enqueued might
be generated by the generator, or come from a processor’s currently executing
process being “switched out”), and the queue has a single “incoming interface”,
we have a kind of architectural mismatch. In order to overcome it, we can use a
duplexer, as specified in Figure 4. The duplexer enables us to design a system in
which independent use of the operations of the queue can be made by components
that are clients of the queue. Using this duplexer, we can form the architecture
shown in Figure 5. In Fig. 5, the architecture is shown using the CommUnity
Workbench graphical notation. In this notation, boxes represent designs, with
its channels and actions, and lines represent the interactions (“cables” in the
sense of [13]), indicating how input channels are connected to output channels,
and which actions are synchronised.

2.2 Semantics of Architectures

CommUnity designs have a semantics based on (labelled) transition systems.
Architectural configurations, of the kind shown in Fig. 5, also have a precise
semantics; they are interpreted as categorical diagrams, representing the archi-
tecture [13]. The category has designs as objects and the morphisms are super-
position relationships. A superposition morphism between two designs A and B
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� �

Design Duplexer
in

in 1 : <nat, nat>
in 2 : <nat, nat>

out
out proc: <nat, nat>

do
read1[ out proc ] : in 1 �= (0,0) ∧ out proc= (0,0) −→ out proc’=in 1

[] read2[ out proc ] : in 2 �= (0,0) ∧ out proc= (0,0) −→ out proc’=in 2
[] send: out proc �= (0,0) −→ out proc’=(0,0)

� �

Fig. 4. An abstract CommUnity design for a simple duplexer

Fig. 5. A graphical view of the architecture of the system

indicates, in a formal way, that B contains A, and uses it while respecting the
encapsulation of A (regulative superposition). The interesting fact is that the
joint behaviour of the system can be obtained by taking the colimit of the cate-
gorical diagram corresponding to the architecture [4]. Therefore, one can obtain
a single design (the colimit object), capturing the behaviour of the whole system.

2.3 Semantics for Abstract CommUnity Designs

In [13], the authors state that designs have an operational semantics when they
are closed (i.e., they do not have input channels), the safety and progress guards
for each action coincide, and the assignment for each action fully determines the
value for each v′, where v is in the frame of the action. For abstract CommUnity
designs (i.e., not programs), it is not difficult to define a transition system se-
mantics, by assuming that input channels can change arbitrarily and that, when
no action occurs, the values of the local variables are preserved. This is exactly
the idea followed in the definition of a denotational semantics for abstract Com-
mUnity designs given in [12]. The semantics defined therein is, however, not
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completely adequate for our purposes, since many labelled transition systems
might correspond to an open design. Since we want to verify temporal prop-
erties of designs, we are forced to interpret these, when they are opened, in a
particular way; we have been careful to do so in a way that is compatible with
the semantics of open CommUnity designs given in [12] (i.e., we interpret designs
as particular transition systems within the possible interpretations as described
in [12]). Moreover, when a design is a program, the interpretation coincides with
the operational semantics of these, as described in [13]. The semantics described
below, which is a specialisation of that defined in [12], will allow us to establish
a direct connection between arbitrary CommUnity designs (including programs)
and temporal logic, with the aim of verifying temporal properties of designs.

Let 〈LADT , Φ〉 be a first-order specification of datatypes, UADT a model of
〈LADT , Φ〉 and P = 〈Vf , G〉 a CommUnity design. Then, P defines a transition
system TP = 〈Vf , θ, T 〉 over LADT and UADT , where:

– the set of flexible variables is the set Vf of channels of P ,
– the initialisation condition θ is the initialisation Init of P ,
– for each action g ∈ G, we include a transition tg in T , whose transition

relation is the following:

ρtg : L(g) ∧ R(g) ∧ ST (D(g))

where ST (D(g)) is the formula
∧

v∈(Loc(Vf−D(g))(v = v′) (stuttering of the
local variables not in the frame of g),

– T includes a stuttering transition tI ,
– T also includes a local stuttering transition id , whose transition relation is

the following:
ρid :

∧

v∈Loc(Vf )

v = v′

The first two points in the above construction of the transition system TP are
easy to understand. The third point indicates that the actions of P correspond to
transitions of TP , as one might have expected. Notice that both the safety guard
and the precondition for an action g (the first captured by the conjunct L(g)
and the second is embedded in R(g)) are considered in the transition; moreover,
the corresponding assignment has to take place and the values of those local
variables not in the frame of g are required to be preserved. The fourth and
fifth points characterise the steps in which the design P is not actively involved
(computation steps of the environment); note that input channels are allowed to
change in a stuttering step of the design P .

The reader might notice that several constructs of CommUnity designs are
ignored in the above described construction of transition systems. The most no-
table case is that of progress guards. Progress guards are not taken into account
in the construction of transition systems for designs, because they represent
“readiness” constraints which are not part of the transition system definition,
but restrictions on the allowed models. For the particular models that we have
chosen as the interpretations for CommUnity designs, these trivially hold, as
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long as the progress guards of actions are stronger than the corresponding safety
ones. More precisely, when the progress guard U(g) of an action g holds, g must
be “available” to be executed (more formally, any state s in a computation of a
design P in which U(g) holds must have a tg-successor state s′); since the en-
abling condition for actions, according to our interpretation, is the safety guard,
whenever L(g) is true the action is available, thus guaranteeing that U(g) implies
the availability of g. Clearly, the logical characterisation of progress constraints
requires the use of path quantifiers. The reason for adopting a branching time
temporal logic is to be able to express such constraints. These are useful, since
the user might want to manually strengthen the enabling guards of actions,
which is a sound activity (with respect to [12]) as long as they are not strength-
ened “beyond” the corresponding progress guards. Finally, according to [12],
one must restrict runs of a transition system TP for a design P to strongly fair
runs with respect to private actions, taking as their enabling conditions their
corresponding safety guards.

Notice also that the difference between private and shared actions does not
have an impact in the construction of transition systems for designs. This is due
to the fact that, as explained in [13], the difference between private and shared
actions only has to do with the allowed forms of interaction between designs.

3 Verifying Temporal Properties of Designs

3.1 The SMV System

SMV (Symbolic Model Verifier) is one of the most widely used model checking
tools. Originally developed at Carnegie Mellon [18], SMV was the first model
checking tool that used a symbolic representation of transition systems based on
binary decision diagrams, which allowed for the application of model checking
techniques to larger finite state systems. SMV comprises a modular notation for
describing transition systems, as well as a notation for describing properties of
these, in the CTL temporal logic. We will not give a full description of SMV,
but just a brief overview of the notation, so that the reader not familiar with it
can straightforwardly follow our descriptions.

The SMV description of a system is organised in modules. Each module de-
scribes a portion of a finite state system, and its specification is given in terms
of typed variables, initialisation constraints and a transition relation. More pre-
cisely, a module description starts with declarations, which are essentially given
as a list of typed variables. These types for variables must be bounded. The
variables in declarations can be accompanied by a declaration of new types or
aliases of types, for variable typing. The state space associated with a module
will then be given by all the combinations of values of the corresponding types
for the declared variables. The transition system associated with the system
corresponding to a module is defined in terms of:

– a definition of the initial state, declared as initial values for each of the
declared variables, and



10 N. Aguirre, G. Regis, and T. Maibaum

– a definition of the transition relation, typically given as a “case” expression
for the next value to be assumed for each of the declared variables.

Let us provide, as a simple example, the following module definition, which
corrresponds to a manual translation of the simplest CommUnity design of our
example, the process generator: In our SMV models, MAXINT is a user provided

MODULE Process Generator() {

out proc: array 0..1 of 0.. MAXINT;
curr id : array 0..1 of 0.. MAXINT;

init(out proc):= [0,0];
init(curr id ):= 1;

next(curr id):= case {
out proc[0] = curr id: curr id +1; −− action send

out proc[0] ˜= curr id: curr id ; −− action gen

};

next(out proc):= case {
out proc[0] = curr id: [0,0]; −− action send

out proc[0] ˜= curr id: [ curr id ,1.. MAXINT]; −− action gen

};
}

positive constant, representing the maximum positive integer we consider. Notice
also that it is possible to represent nondeterministic assignment: in the above
example, the second component of the out proc variable is nondeterministically
assigned a positive value, in the definition of its next value associated with action
gen.

3.2 Translating CommUnity Designs into SMV

We now describe our general characterisation of CommUnity designs in the lan-
guage of the SMV tool. We will illustrate the translation from CommUnity into
SMV by means of a detailed example. It is worth mentioning that we have chosen
Cadence SMV [19] because of its richer language, which allows us to describe
transitions involving structured-typed variables, such as arrays, in a more concise
way.

The translation we describe only involves designs and not architectural con-
figurations. As explained before, any valid configuration is a representation of a
single design (the colimit of the categorical diagram corresponding to the archi-
tecture), so we do not lose generality.

The simplest part is the characterisation of channels. These are simply trans-
lated as variables in SMV, and for obvious reasons we limit ourselves to the types
supported by Cadence SMV. For our simple Processor design described before,
the channels are represented as follows:
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in proc : array 0..1 of 0.. MAXINT; −− Input variable

curr proc : array 0..1 of 0.. MAXINT;

The initialisation of channels is translated into “init” specifications for the
corresponding variables in SMV, as one might expect:

−− Initialisation of variables

init(in proc) := [0.. MAXINT,0..MAXINT]; −−Input variable

init(curr proc):= [0,0];

The slightly more complicated part is the characterisation of actions. These
need to be encoded into the “next” relationships for the variables. Since we need
to simulate a scheduler for actions, which chooses nondeterministically one of
the available actions, we introduce a “random variable”. This variable randomly
takes a numeric value corresponding to an action (including skip) to be executed
in the next step as long as its safety guard is satisfied; if the safety guard of the
chosen action is not true, then the action executed will be skip. For the Processor
design, the scheduling of the actions is represented in the following way:

−− Definition of Scheduler

−− Generation of random values used to schedule actions

init(rnd) := 0;
next(rnd) := 0..4;

init(curr action ) := skip;
next(curr action) := case{

rnd = 0 : skip;
rnd = 1 & (next(in proc[1]) > 0 & next(in proc[0]) ˜= 0 &

next(curr proc) = [0,0] ) : load;
rnd = 2 & (next(curr proc[1]) > 0): run;
rnd = 3 & true : kill ;
rnd = 4 & (next(in proc[1]) > 0 & next(in proc[0]) ˜= 0 &

next(curr proc[1]) > 0) : switch;
1: skip;

};

A point worth noticing is that the execution of the system in the SMV rep-
resentation of a design P starts with a skip. This simplifies the specification of
the initialisation statement in the translation, since otherwise we would need
to take into account the initialisation constraints in P for the scheduling of the
first action to be executed. Our alternative does not restrict the executions of
the system, which from the second instant onwards will evolve by randomly cho-
sen (available) actions. Notice that safety guards are part of the scheduling. The
assignments of the actions, on the other hand, appear on the “next” definitions
for the channels, which are formed by a “case” expression which depends on the
action executed:
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−− Definition of next value of variables

next(in proc) := [0.. MAXINT,0..MAXINT]; −−Input variable

next(curr):= case{
curr action = skip : curr proc;
curr action = load : in proc;
curr action = run : [ curr proc[0], curr proc[1] − 1];
curr action = kill & curr proc[0] = 0 : curr proc;
curr action = kill & curr proc[0] ˜= 0 : [0,0];
curr action = switch : in proc;

};

Notice that, since in proc is an input variable, it can change arbitrarily in each
step.

Finally, we need to represent the constraints corresponding to progress guards
and strong fairness for private actions. These are easily characterised in CTL,
using an ASSUME clause for progress guards constraints and a FAIRNESS clause
for strong fairness on private actions:

−− Fairness for private actions

FAIRNESS
curr action = {run};

−− Specification of progress guards as CTL formulae

ASSUME progress switch;
progress switch : SPEC AG ((curr proc[1] > 4 & in proc ˜= [0,0])

→ EX( curr action = switch ));

Notice that progress guards are interpreted as (redundant) ASSUME clauses. If
the user decides to strengthen some guards of actions in order to obtain more re-
strictive interpretations of a design, these must not go beyond the corresponding
progress guards, in order not to make the SMV specification inconsistent.

Now we only need to provide the CTL formulae to be verified. For instance,
we might want to check that if the id of the current process is 0 then it is the
dummy process (i.e., the number of seconds remaining is also 0):

−− Properties to be verified

NoInvalidProccess :SPEC AG (curr proc[1] >0 →curr proc[0]>0);

3.3 Modularising the Verification Through Morphisms

As put forward in [4] and later work, different notions of component relationships
can be captured by morphisms, in the sense of category theory. We now exploit
these morphisms in order to modularise the SMV-based verification, in the way
indicated in [13].
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Superposition Morphisms. We start by describing how superposition mor-
phisms, which are used in the composition of CommUnity designs, are exploited.
Let us first recall the formal notion of superposition morphism. A superposition
morphism σ : A → B is a pair of mappings 〈σch, σact〉 such that: (i) σch is a
total mapping from channels in A to channels in B, respecting the type and
kind2 of channels (except that input channels can be mapped to input or out-
put channels), (ii) σact is a partial mapping from actions of B to actions of A,
which preserves the kind (shared or private) of actions, does not reduce the write
frame of actions of A, and the lower bound, upper bound and assignment for
each action of A is strengthened in the corresponding actions of B; moreover,
the encapsulation of A must be preserved, meaning that every action of B that
modifies a channel v of ran(σch) must “invoke” an action of A that includes
σ−1

ch (v) in its write frame.
Basically, σch indicates how the channels of A are embedded as channels of

B. The mapping σact, on the other hand, indicates, for each action a of A, all
the actions that use it in B (through σ−1

act(a)).
The main result that enables us to modularise the verification via superposi-

tion morphisms is reported in [12]. Therein, the authors indicate that superpo-
sition morphisms preserve invariants, the effect of actions on channels and the
restrictions to the occurrence of actions. More generally, we can affirm that su-
perposition morphisms preserve safety properties, which is a direct consequence
of the following theorem:

Theorem 1. Let A and B be CommUnity designs, and 〈σch, σact〉 : A → B a
superposition morphism. Let s be a computation of B, according to the above
defined semantics of designs, and defined over an interpretation U for datatypes.
The computation sA, defined as the restriction of states in s to channels in
σch(VA), is a computation of A.

Applied to our example, this means that we can reason locally about safety
properties of the components of a system. We have some examples below in
which we show the improvement that local verification of safety properties for
our case study constitutes. Of course, as is well known, this does not hold for
liveness properties, which are not necessarily preserved by superposition (it is
well known that, when a component is put to interact with others, some of its
liveness properties might be lost).

Notice also that, among all possible interpretations of an open CommUnity
design, we choose the less restrictive one, i.e., that in which the actions are
enabled under the weakest possible conditions. This has as a consequence that
the safety properties of the design that are verified using our SMV translation
are indeed properties of all the valid transition system interpretations (according
to [12]) of the design.

2 By the type of the channel we mean the sort with which it is associated; by the kind
of a channel we mean its “input”, “output” or “private” constraint.
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Refinement Morphisms. An important relationship between designs is re-
finement. Refinement, besides relating abstract designs with more concrete “im-
plementations”, is also useful for characterising parametrisation and parameter
instantiation. In [13], the authors present a characterisation of refinement in
terms of category theory constructions. Essentially, they demonstrate that Com-
mUnity designs and morphisms capturing the notion of refinement constitute a
category. As defined in [13], a refinement σ between designs A and B is a pair
of mappings 〈σch, σact〉, such that (i) σch is a total mapping from channels in
A to channels in B, respecting the type and kind of channels, and injectively
mapping different output and input channels of A to different output and input
channels of B; (ii) σact is a partial mapping from actions of B to actions of A,
which preserves the kind of actions, does not reduce the frame of actions of A,
the lower bound and assignment for each action of A is strengthened in the cor-
responding actions of B; moreover, the upper bound of each action a of A must
be weakened by the disjunction of the upper bounds of all actions in B refining
a, meaning that every action of B that modifies a channel v of ran(σch) must
“invoke” an action of A that includes σ−1

ch (v) in its frame. Also, shared actions
of A must have at least one corresponding action in B, and all new actions of B
do not modify the local channels of A.

Notice that, with respect to the assignment and lower bounds of actions, the
refinement morphisms make them stronger when refining a design. Therefore,
we again can affirm, as for superposition morphisms, that, if σ is a refinement
morphism between designs A and B, then every execution trace of B, restricted
to the channels originating in A, is an execution of A, and therefore safety prop-
erties are preserved along refinement morphisms. Moreover, as shown in [13],
refinement morphisms also preserve properties expressing the readiness of ac-
tions (called co-properties in [13]). This does not mean, however, that refinement
morphisms are theorem preserving morphisms, with respect to the logic CTL.
Many liveness properties expressible in CTL, for example, are not necessarily
preserved along refinement morphisms. Consider, as a trivial example, a design
containing, among other things, a private action a:
� �

Design P
...
out

x : int
...

init
x = 0 ∧ ...

do
prv a[ x ] : true, false −→ x’ = x + 1
...

� �

where the variable x can only be modified by action a. Consider a refinement of
this design, in which all actions and channels are maintained without modifica-
tions, except for a, which is refined as follows:
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� �

Design P’
...
out

x : int
...

init
x = 0 ∧ ...

do
prv a[ x ] : false , false −→ x’ = x + 1
...

� �

It is easy to see that, due to the strong fairness constraints imposed on private
actions, the CTL liveness property AF (x = 1) holds for the original design, but
it does not hold for its described refinement.

One might be interested in exploiting refinement morphisms for simplifying
the verification of properties of designs, since some safety and readiness proper-
ties might be easier to verify in more abstract designs, i.e., designs with fewer
and simpler actions. However, the simplification one might obtain by moving
from a design to more abstract (i.e., less refined) ones is limited, since refine-
ment morphisms do not allow for data refinement (the types of channels must be
preserved by refinement). This means, basically, that the state space of designs
does not change through refinement morphisms. Thus, refinement morphisms
are quite restricted for the simplification of verification, especially in the context
of automated verification, where data abstraction is known to have a big impact
on the verification times. For this reason, we complement below CommUnity’s
morphisms with abstraction mechanisms.

Abstraction. As we mentioned, abstraction is known to have a big impact
in automated verification, especially for model checking [2]. Since refinement
morphisms do not support data refinement, we considered the use of predicate
abstraction [8], as a way of improving the SMV-based verification of CommUnity
designs. Essentially, predicate abstraction consists of, given a (possibly infinite
state) transition system, constructing an abstract version of it, whose abstract
state space is determined by a number of predicates on the original state space.
Basically, the state space of the abstract transition system is composed of equiva-
lence classes of the original states, according to the provided (abstraction) pred-
icates [8]. The more complex part is the construction of abstract transitions
corresponding to the concrete ones, which requires checking to which of the
equivalence class(es) the source and target states of each transition correspond.
This can be computed automatically in many cases, and its complexity (not from
a computational point of view) greatly depends on the provided predicates.

We used predicate abstraction in order to improve the verification for our
example. For instance, we can concentrate on the processor design, and consider
the following predicates to do the abstraction:

– the number of seconds remaining for curr proc is 0,
– the process id for curr proc is 0.



16 N. Aguirre, G. Regis, and T. Maibaum

This leads us to the following four possibilities for curr proc:

– dummy, if the number of seconds remaining is 0 and the process id is 0,
– finished, if the number of seconds remaining is 0 and the process id is not 0,
– unfinished, if the number of seconds remaining is not 0 and the process id is

not 0,
– invalid, otherwise.

We can reproduce this abstraction for the in proc variable, which leads us to a
version of the SMV specification for the processor in which we do not distinguish
the actual values of curr proc and in proc, but only whether their ids and
remaining seconds are nil or not, which obviously makes the transition system
for the design much smaller.

The corresponding abstract version of the SMV Processor module is the fol-
lowing:

typedef PROCCESS {dummy,finished,unfinished,invalid};
MODULE main (){

rnd : 0..4; −− used to schedule actions randomly

curr action : {skip, load, run, kill , switch1 };
−− Definition of the variables

in proc : PROCCESS; −−Input variable

curr proc : PROCCESS;
−− Definition of Scheduler

init(rnd) := 0;
next(rnd) := 0..4;
init(curr action ) := skip;
next(curr action) := case{

rnd = 0 : skip;
rnd = 1 & (next(in proc) = unfinished & next(curr proc) = dummy ) : load;
rnd = 2 & (next(curr proc) = unfinished) : run;
rnd = 3 & true : kill ;
rnd = 4 & (next(in proc) = unfinished & next(curr proc) = unfinished ) :

switch1;
1: skip; };

−− Initialisation of variables

init(in proc) := { dummy,finished,unfinished,invalid};
init(curr proc):= dummy;

−− Definition of next value of variables

next(in proc) := { dummy,finished,unfinished,invalid}; −−Input variable

next(curr proc):= case{
curr action = skip : curr proc;
curr action = load : in proc;
curr action = run : {unfinished , finished } ;
curr action = kill & (curr proc = dummy | curr proc = invalid) : curr proc;
curr action = kill & (curr proc = unfinished | curr proc = finished ) : dummy;
curr action = switch1 : in proc; };

−− Fairness for private actions

FAIRNESS curr action = {run};
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−− Specification of progress guards as CTL formulae

ASSUME progress switch1;
progress switch1 : SPEC AG ((curr p = unfinished & in p ˜= dummy)

→ EX( curr action = switch1 ));
}

We can verify the property that if the id of the current process is 0 then it is
the dummy process, whose concrete and abstract versions are the following:

NoInvalidProccess :SPEC AG (curr proc[1] >0 →curr proc[0]>0);

NoInvalidProccess :SPEC AG (curr proc ˜= invalid);

The validity of the abstract version of this property implies the validity of
its concrete version [2]. Since this is a safety property, it is guaranteed that it
will also hold for the complete system (since superposition morphisms preserve
safety properties).

A point regarding abstraction and readiness is worth noticing. As indicated
in [2], all CTL formulae not involving existential path quantifiers are preserved
through abstraction. Readiness assertions require existential path quantifiers to
be expressed in CTL, and therefore these (expressing required non determinism
of components) might not be preserved through abstractions.

3.4 Some Sample Properties

To end this section, we provide some sample properties we have been able to
verify using our translation into SMV:

“Variables up and low are always valid positions of queue”

Bounds:SPEC AG(low 2 >= 1 & low 2 <= SIZE & up 2 >= 1 & up 2 <= SIZE);

“Variable count ranges from 0 (empty queue) to SIZE-1 (full queue)”

Count:SPEC AG(count 2 >= 0 & count 2 <= SIZE−1);

“Variable out proc of the duplexer always holds a dummy process or a valid
process (a positive process id and a positive number of seconds)”

NoInvalidDuplexerOut:SPEC AG(out p 0 = [0,0] | (out p 0[0] >0 & out p 0[1] >0))

“All processes held in queue have a positive number of seconds remaining to
be run”
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for (i =1;i<=SIZE;i=i+1){NoFinished[i]:SPEC AG(q 2[i][0] >0 →q 2[i][1]>0);}

“All live processes (in the processor) eventually finish”

for (i =1;i<=MAXINT;i=i+1){Proccessed[i]:
SPEC AG(curr p 3[0]=i & curr p 3[1] >0 →AF (curr p 3[0]=i & curr p 3[1]=0));}

Some of these properties can be verified locally within one component’s design
(for instance, the first two properties above are properties of the queue). This
is so thanks to the fact that safety properties of designs are preserved through
superposition morphisms. Other properties, such as the third one above, are
emergent properties, in the sense of [3], i.e., they are properties of a design that
emerge due to the interaction of it with other designs of the system.

4 Conclusions

We have presented a characterisation of CommUnity designs in SMV, defined
with the aim of verifying temporal properties of these designs. We have experi-
mented with the modularisation of the verification activities in SMV by exploit-
ing Community’s superposition morphisms, in the way indicated in [13]. We
also observed that refinement morphisms, related to abstraction, are not pow-
erful enough with respect to the improvement of automated verification, since
they do not allow for data refinement. In order to overcome this limitation, we
used an abstract interpretation mechanism known as predicate abstraction [8].
We also observed that, although predicate abstraction preserves a wide range
of properties of designs, it does not necessarily preserve readiness properties of
actions, related to the required non determinism of components. We developed a
case study based on a modular specification of a processor with a simple process
scheduling mechanism, and verified several temporal properties, including safety
and liveness properties. Some of these were verified modularly, using abstraction
and superposition morphisms.

We believe that CommUnity is an interesting language that deserves more at-
tention. As we mentioned, it is a language that puts special emphasis on ways of
composing specifications of components via their coordination, and clearly dis-
tinguishes action availability from action readiness. Moreover, there have been
recently some extensions of it in order to capture complex notions such as mo-
bility and dynamic reconfiguration. Of course, having appropriate tool support
would improve the use of the language, and the work we report here is an initial
attempt in this direction.

We are implementing a tool for verifying temporal properties of CommU-
nity designs. This tool is, at the moment, just a compiler that implements the
translation of CommUnity designs into SMV. We are using the colimit genera-
tion procedure available in the CommUnity Workbench, and using a SAT solver
to check the proof obligations associated to the construction of the abstract
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transition systems related to predicate abstraction. This is done manually, at
the moment, but we plan to incorporate the generation and verification of these
proof obligations to the tool. We also plan to exploit the hierarchical structure of
SMV specifications in our translation (at the moment, our translations generate
unstructured SMV specifications).

As work in progress, we are trying to characterise the abstraction associated
with predicate abstraction in a categorical way (via an appropriate morphism
capturing data refinement). We are also studying the verification of temporal
properties of CommUnity’s dynamic software architectures [22], i.e., architectural
configuration that might change at run time (e.g., via the deletion or creation of
components, and the deletion and creation of connectors between components).
Reasoning about temporal properties of dynamic architectures is notably more
complex, since it is necessary to characterise the architectural configuration of the
system as part of the state of the system. We are also looking at how aspects, in the
sense of [10], can be applied to CommUnity designs. Aspects, as already observed
in [9] and later work, can be implemented via combinations of superimpositions.
In [11], the authors show how several aspects can be successfully characterised and
combined in an organised way in CommUnity, via the use of higher-order archi-
tectural connectors (aspect weaving would correspond to colimit construction).
In fact, we believe that most aspects can be characterised as architectural trans-
formation patterns, replacing some part of a system design, defined by a pattern
of components and connectors, by another pattern of components and connec-
tors. However, for this approach to be powerful enough, we believe it is neces-
sary to use an additional kind of superposition, so called invasive superpositions,
that can break encapsulation and weakens lower and upper guards, and generalise
CommUnity’s designs to allow the design of hierarchical, reconfigurable systems.
Aspect “weaving” would still be realised by the colimit construction.
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