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Abstract. Dynamic reconfiguration, understood as the ability to man-
age at run time the live components and how these interact in a system,
is a feature that is crucial in various languages and computing paradigms,
in particular in object orientation. In this paper, we study a categorical
approach for characterising dynamic reconfiguration in a logical speci-
fication language. The approach is based on the notion of institution,
which enables us to work in an abstract, logic independent, setting. Fur-
thermore, our formalisation makes use of representation maps in order to
relate the generic specification of components (e.g., as specified through
classes) to the behaviour of actual instances in a dynamic environment.

We present the essential characteristics for dealing with dynamic recon-
figuration in a logical specification language, indicating their technical
and practical motivations. As a motivational example, we use a temporal
logic, component based formalism, but the analysis is general enough to
be applied to other logics. Moreover, the use of representation maps in
the formalisation allows for the combination of different logics for differ-
ent purposes in the specification. We illustrate the ideas with a simple
specification of a Producer-Consumer component based system.

1 Introduction

Modularisation is a key mechanism for dealing with the complexity and size of
software systems. It is generally understood as the process of dividing a sys-
tem specification or implementation into modules or components, which leads
to a structural view of systems, and systems’ structure, or architecture [10].
Besides its crucial relevance for managing the complexity of systems, the sys-
tems’ architectural structure also plays an important role in the functional and
non functional characteristics of systems. The system architecture has tradition-
ally been static, in the sense that it does not change at run time. However,
many component based specifications or implementations require dealing with



dynamic creation and deletion of components. This is the case, for instance, in
object oriented programming, where the ability of creating and deleting objects
dynamically, i.e., at run time, is an intrinsic characteristic. Also in other more
abstract contexts, such as software architecture, it is often required to be able to
dynamically reconfigure systems, involving in many cases the dynamic creation
or deletion of components and connectors [17]. Also in some fields related to fault
tolerance, such as self healing and self adaptive systems, it is often necessary to
perform dynamic reconfigurations in order to take a system from an inconsistent
state back to an acceptable configuration.

Category theory has been regarded as an adequate foundation for formally
characterising different notions of components, and component compositions. For
instance, in the context of algebraic specification, category theory has enabled
the formal characterisation of different kinds of specification extensions [6] . Also,
in the context of parallel program design, category theory has been employed
for formalising the notion of superposition, and the synchronisation of compo-
nents [7]. In this paper, we present a categorical characterisation of the elements
of component composition necessary when dealing with dynamic creation and
deletion of components. The characterisation is developed around the notion of
an institution, which enables us to work in an abstract, logic independent, set-
ting. Furthermore, our formalisation makes use of representation maps [22] in
order to relate the generic specification of components (e.g., as specified through
classes) to the behaviour of actual instances in a dynamic environment. The use
of representation maps provides an additional advantage, namely that it allows
for the combination of different logics for different purposes in the specification.
For instance, one might use a logic for characterising datatypes (e.g., equational
logic), another for specifying components (e.g., propositional LTL), and another
(e.g., first order LTL) for the description of dynamically reconfigurable systems,
involving these components and datatypes.

We present the essential characteristics for dealing with dynamic reconfigu-
ration in a logical specification language, indicating their technical and practical
motivations. The approach presented is motivated by the view of system compo-
sition as a colimit of a categorical diagram representing the system’s structure
[3]. Moreover, our approach, as presented in this paper (and in particular due
to the logic employed for illustrating the ideas), can be seen as an adaptation of
the ideas presented in Fiadeiro and Maibaum’s approach to concurrent system
specification [7], where the system’s structure is inherently rigid, to support dy-
namic creation/deletion of components, and changes in their interactions. As a
motivating example, we use a temporal logic, component based formalism, but
the analysis is general enough to be applied to other logics. We will use a single
logic for the different parts of a specification, although, as we mentioned, the ap-
proach enables one to use different logics for different purposes in specification,
as it will be made clearer later on. One might benefit from this fact, in particular
for analysis purposes, as it will be argued in the paper. We also discuss some
related work. The main ideas presented in the paper are illustrated with a simple
specification of a (dynamic) Producer-Consumer component based system.



Component: Producer
Read Variables: ready-in: Bool
Attributes: p-current : Bit, p-waiting : Bool
Actions: produce-0 , produce-1 , send-0 , send-1 , p-init
Axioms:
1. �(p-init →©(p-current = 0 ∧ ¬p-waiting))
2. �(produce-0 ∨ produce-1 → ¬p-waiting ∧©p-waiting)
3. �(produce-0 →©(p-current = 0))
4. �(produce-1 →©(p-current = 1))
5. �((send-0 → p-current = 0 ) ∧ (send-1 → p-current = 1 ))
6. �(send-0 ∨ send-1 → p-waiting ∧©¬p-waiting)
7. �(send-0 ∨ send-1 → p-current =©p-current)
8. �(send-0 ∨ send-1 ∨ produce-0 ∨ produce-1 ∨ p-init∨
(p-current =©p-current ∧ p-waiting =©p-waiting))

Fig. 1. A linear temporal logic specification of a simple producer.

2 A Motivating Example

In this section, we introduce an example that will be used as a motivation for
the work presented in the paper. This example is a simple specification of a
Producer-Consumer component based system. The specification is written in
linear temporal logic. We assume the reader is familiar with first order logic and
linear temporal logic, as well as some basic concepts from category theory [20].

Let us consider a simple Producer-Consumer system, in which two compo-
nents interact. One of these is a producer, which produces messages (items) that
are sent to the other component, the consumer. For simplicity, we assume that
the messages communicated are simply bits. The producer’s state might then
be defined by a bit-typed field p-current to hold a produced element, a boolean
variable p-waiting to indicate whether an item is already produced and ready
to be sent (so that null values for items are not necessary), and a boolean read
variable ready-in, so that a producer is informed if the environment is ready to
receive a product. We can specify a producer axiomatically, as shown in Fig-
ure 1. This specification consists of a set of sorts (Bit and Bool, in this case), a
set of fields, some of which are supposed to be controlled by the environment,
and a set of action symbols. The axioms of the specification are linear temporal
logic formulae characterising the behaviour of the component, in a rather obvi-
ous way. Notice Axiom 8, which differentiates local fields from read variables.
This is a locality axiom, as in [7], a frame condition indicating that local fields
can only be altered by local actions. The axioms of the specification can be
thought of as originating in an action language, such as the SMV language, for
instance. Notice that the logic used in this specification is propositional, which
would enable one to algorithmically check properties of producers, by means of
model checking tools. A consumer component can be specified in a similar way,
as shown in Figure 2.

A mechanism for putting these specifications together is by coordinating
them, for instance, by indicating how read variables are “connected” or identi-



Component: Consumer
Read Variables: ready-ext : Bool
Attributes: c-current : Bit, c-waiting : Bool
Actions: consume, extract-0 , extract-1 , c-init
Axioms:
1. �(c-init →©(c-current = 0 ∧ c-waiting))
2. �(extract-0 ∨ extract-1 → ¬c-waiting ∧ c-waiting ∧ ready-ext)
3. �(extract-0 →©(c-current = 0))
4. �(extract-1 →©(c-current = 1))
5. �(consume → ¬c-waiting ∧©c-waiting)
6. �(consume → c-current =©c-current)
7. �(consume ∨ extract-0 ∨ extract-1 ∨ c-init∨
(c-current =©c-current ∧ c-waiting =©c-waiting))

Fig. 2. A linear temporal logic specification of a simple consumer.

fied with fields of other components, and by synchronising actions. Basic action
synchronisation can be employed for defining more sophisticated forms of inter-
action, e.g., procedure calls. In [7, 8], the described form of coordination between
components is achieved by the use of “channels”; a channel is a specification with
no axioms, but only symbol declarations, together with two mappings, identify-
ing the symbols in the channel specification with the actions to be synchronised
and the fields/variables to be identified, in the corresponding components. For
our example, we would want to make the components interact by synchronising
the send-i and extract-i actions, of the producer and consumer, respectively,
and by identifying ready-in and p-waiting, in the producer, with c-waiting
and ready-ext in the consumer, respectively.

It is known that specifications and symbol mappings in this logic form a
category which admits finite colimits [12]. This is important due to the fact that
the above described coordination between producers and consumers, materialised
as a “channel”, forms the following diagram (in the categorical sense):

Producer Consumer

[vars : x,y : Bool; acts : a,b]

x 7→ ready-in
y 7→ p-waiting
a 7→ send-0
b 7→ send-1

PPPPPP

ggPPPPPPP x→ c-waiting
y → ready-ext
a→ extract-0
b→ extract-1nnnnnnn

77nnnnnnn

The colimit object for this diagram is a specification that corresponds to the
combined behaviour of the producer and consumer, interacting as the diagram
indicates.

The architecture of the system, represented by the diagram, clearly does not
directly admit reconfiguration. More precisely, how components are put together
is prescribed in an external way with respect to component definition (by the
construction of a diagram), and although the represented specification can be
constructed as a colimit, the possibility of having a component managing the



population of instances of other components (as an example of dynamic reconfig-
uration, motivated by what is common in object orientation) is not compatible
with the way configurations are handled in this categorical approach.

Our aim in this paper is to provide a categorical characterisation of a gen-
eralisation of the above situation, when both the population of live components
and their connections are manipulated, within a system, dynamically. The ac-
tual way in which these elements (components and connections) are dynamically
manipulated depends on the particular problem or system being specified. For
instance, we might have a system where the number of components is main-
tained over time, but the way in which these components interact is changed
dynamically. Alternatively, we might have a system in which a certain kind of
component, e.g., clients, are created dynamically, but there is a fixed number of
servers.

3 Dynamic Reconfiguration in an Institutional Setting

In this section, we present our proposal for formally characterising dynamic re-
configuration in a logical specification language. In order to make the approach
generic (i.e., to make it applicable to a wide range of logics and related for-
malisms), we develop the formalisation using the notion of institution. This en-
ables us to present the formalisation in a high level, logic independent, setting.
The theory of institutions was presented by Goguen and Burstall in [11]. Insti-
tutions provide a formal and generic definition of what a logical system is, and
of how specifications in a logical system can be structured [21]. Institutions have
evolved in a number of directions, from an abstract theory of software specifi-
cation and development [25] to a very general version of abstract model theory
[5], and offered a suitable formal framework for addressing heterogeneity [19, 24],
including applications related to widely used (informal) languages, such as the
UML [4]. The following definitions were taken from [18].

Definition 1. [Institution]
An institution is a structure of the form 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 sat-
isfying the following conditions:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor (let Σ ∈ |Sign|1, then Sen(Σ) returns the

set of Σ-sentences),
– Mod : Signop → Cat is a functor (let Σ ∈ |Sign|, then Mod(Σ) returns

the category of Σ-models),
– {|=Σ}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)| ×Sen(Σ), is a family of binary rela-

tions,

and for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ) and
Σ′-model M′ ∈ |Mod(Σ)| the following |=-invariance condition holds:

M′ |=Σ′
Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

1 |Sign| denotes the class of objects of category Sign.



Institutions are an abstract formulation of the notion of logical system where
the concepts of languages, models and truth are characterised using category
theory. Roughly speaking, an institution is made up of a category Sign which
defines the syntax of the logic in terms of the possible vocabularies and transla-
tions between them, a functor Sen : Sign→ Set that captures the way in which
formulae are built from vocabularies (this functor maps translations between
vocabularies to translations between sets of formulae in the obvious way). More-
over, the semantical part of a given logic is captured using a covariant functor
Mod : Signop → Cat which maps each vocabulary to the category of its possi-
ble models. This functor is covariant since any translation of symbols uniquely
determines a model reduct. Finally, an indexed relation �Σ : Mod(Σ)×Sen(Σ)
is used to capture the notion of truth. A restriction is imposed on this rela-
tionship to ensure that truth is not affected by change of notation. Examples of
institutions are: propositional logic, equational logic, first-order logic, first-order
logic with equality, dynamic logics and temporal logics (a detailed list is given
in [12]). Note that any of these logics has the four components of institutions.
Furthermore, in these logics the notion of truth does not depend on the particu-
lar choice of the symbols in a formula, i.e., the truth of a formula depends only
on its structure and not on the contingent names of its parts.

The logic we used for specifying components, linear temporal logic, consti-
tutes an institution. Its category of signatures is composed of alphabets (sets of
propositional variables, since bit-typed fields are straightforwardly encoded as
boolean variables, and action occurrence can directly be represented as boolean
variables) as objects, and mappings between alphabets as morphisms. The gram-
mar functor Sen : Sign → Set for this logic is simply the recursive definition
of formulae for a given vocabulary. The functor Mod : Signop → Cat maps
signatures (alphabets) to their corresponding classes of models, and alphabet
contractions (i.e., reversed alphabet translations) to “reducts”. The relationship
|=Σ is the usual satisfaction relation in LTL. By means of a simple inductive
argument, it is rather straightforward to prove that this relationship satisfies
the invariance condition, and thus LTL is an institution.

The logic we used so far is propositional. A first-order version of this logic is
presented in [16], where variables, function symbols and predicate symbols are
incorporated, as usual. This first order linear temporal logic admits a single type
of “flexible” (i.e., whose interpretation is state dependent) symbol, namely flex-
ible variables. All other symbols (function and predicate symbols, in particular)
are rigid, in the sense that their interpretations are state independent. We will
consider a generalisation of this logic, in which function and relation symbols
are “split” into flexible and rigid (notice that flexible variables become a special
case of flexible function symbols). This will simplify our specifications, and the
presentation of the ideas in this paper. The propositional specifications given
before can be thought of as first-order specifications, where the “first-order” el-
ements of the language are not used. By employing the ideas presented in [21],
we can prove in a straightforward way that this first-order linear temporal logic
is also an institution.



Component: ProducerManager
Read Variables: ready-in : NAME→ Bool
Attributes: p-current : NAME→ Bit,
p-waiting : NAME→ Bool
Actions: produce-0 (n: NAME), produce-1 (n: NAME), send-0 (n: NAME),
send-1 (n: NAME), p-init(n: NAME)
Axioms:
1. �(∀n ∈ NAME : p-init(n)→©(p-current(n) = 0 ∧ ¬p-waiting(n)))
2. �((∀n ∈ NAME : produce-0 (n) ∨ produce-1 (n)→ ¬p-waiting(n) ∧©p-waiting(n))
3. �(∀n ∈ NAME : produce-0 (n)→©(p-current(n) = 0))
4. �(∀n ∈ NAME : produce-1 (n)→©(p-current(n) = 1))
5. �(∀n ∈ NAME : (send-0 (n)→ p-current(n) = 0 ) ∧ (send-1 (n)→
p-current(n) = 1 ))
6. �(∀n ∈ NAME : send-0 (n) ∨ send-1 (n)→ p-waiting(n) ∧©¬p-waiting(n))
7. �(∀n ∈ NAME : send-0 (n) ∨ send-1 (n)→ p-current(n) =©p-current(n))
8. �(∀n ∈ NAME : send-0 (n) ∨ send-1 (n) ∨ produce-0 (n) ∨ produce-1 (n) ∨ p-init(n)∨
(p-current(n) =©p-current(n) ∧ p-waiting(n) =©p-waiting(n)))

Fig. 3. A first-order linear temporal logic specification of a producer manager.

A specification is essentially a theory presentation, as usually defined [12,
18]. Any category of alphabets and translations can be lifted to categories Th
and Pres, of theories and theory presentations, where morphisms are theorem
and axiom preserving translations, respectively [9]. The relationships between
these categories and Sign are materialised as forgetful functors (which reflect
colimits).

A traditional way of dealing with dynamic reconfiguration is by specifying
managers of components. A manager of a component C is a specification which
intuitively provides the behaviour of various instances of C, and usually enables
the manipulation of instances of C. For example, for our Producer specification,
a manager might look as in Figure 3. Notice that we are using the “first-order”
expressive power of the language in this specification.

Notice the clear relationship between our producer specification and the spec-
ification of a manager of producers. With respect to the syntax (i.e., the sym-
bols used in the specification), the manager is a relativisation of the producer,
in which all variables and actions incorporate a new parameter, namely, the
“instance” to which the variable belongs, or the action to which it is applied,
correspondingly. A first intuition would be to try to characterise the relationship
between the signature of a component and the signature of its manager as a sig-
nature morphism. However, such a relationship is not possible, since signature
morphisms must preserve the arities of symbols, and arities are not preserved in
managers. A similar situation is observed with formulae in the theory presen-
tation. It is clear that all axioms of Producer are somehow “preserved” in the
producer manager, since what we want to capture is the fact that all (live) pro-
ducer instances behave as the producer specification indicates. A way to solve
this problem, the mismatch between the notion of signature morphism and what



is needed for capturing the component-manager relationship, would be to rede-
fine the notion of signature morphism, so that new parameters are allowed when
a symbol is translated. We have attempted this approach, which led to a compli-
cated, badly structured, characterisation [2]. In particular, redefining the notion
of signature morphism forced us to redo many parts of the traditional definition
of institutions. In this paper, we present a different characterisation, which is
much simpler and better structured. In this approach, we do not characterise the
relationship between components as managers within an institution, but outside
institutions, employing the notion of representation map [22].

As we explained before, the static description of components is given in Pres,
the category of theory presentations (in first-order linear temporal logic), where
the objects of the category define the syntax (signature) and axioms character-
ising component behaviour. Diagrams in this category correspond to component
based designs, indicating the way components interact in a system, and colimits
of these diagrams correspond to the behaviour of the structured design, “linked”
as a monolithic component (the colimit object). These diagrams, and their col-
imits, characterise static composition, in a suitable way. In order to provide a
dynamic behaviour associated with components, we start by constructing man-
agers of components, as we illustrated for producers. First, let us consider an
endofunctor (−)M : Sign → Sign, which maps each signature Σ to the signa-
ture ΣM , obtained simply by incorporating a new sort •Σ , and a new parameter
of this sort in each of the (flexible) symbols of Σ. Notice that the logic needs
to support arguments in symbols (i.e., it needs to provide a notion of parame-
terisation), since otherwise adding a new parameter to a symbol would not be
possible. For the case of first-order linear temporal logic, the functor (−)M maps
a signature Σ = 〈S, V, Fr, Ff , Rr, Rf 〉 (where S is the set of sorts, V the set of
variables, and F and R the sets of function and predicate symbols, separated
into flexible (“f” subscript) and rigid (“r” subscript) symbols) to the signature
ΣM = 〈SM , V, Fr, FMf , Rr, R

M
f 〉, where: (i) SM = S ∪ {•Σ}, where •Σ is a sort

name such that •Σ /∈ S, (ii) FMf = {f : •Σ , w → s | f : w → s ∈ Ff}, and (iii)
RMf = {r : •Σ , w | r : w ∈ Rf}.

Notice that we incorporate the extra parameter only into the symbols that
constitute the state of the component. For statically interpreted symbols, the ex-
tra parameter is unnecessary. The way in which (−)M chooses the new sort name
•Σ for each Σ is not important for our current purposes. In our example, we chose
a new sort NAME, for the identifiers of instances of components. With respect
to morphisms, (−)M maps each signature morphism σ : Σ → Σ′ to morphism
σM : ΣM → Σ′M , defined exactly as σ but mapping •Σ 7→ •Σ′ . Functor (−)M

captures the relationship between components and their managers, via a con-
struction which is external to the category of signatures (i.e., via a functor, not
a morphism). In order to capture the relationship that exists between the speci-
fication of a component and the specification of the manager of this component,
we now define a natural transformation ηM : Sen �→ Sen ◦ (−)M . This natural
transformation corresponds to a mapping ηMΣ : Sen(Σ) → Sen(ΣM ), which
maps any formula ϕ of Sign(Σ) to a formula ϕM of Sign(ΣM ). The definition



of ϕM is simple: for each element of the signature which represents part of the
“state” appearing in ϕ (in our case, a flexible symbol), add an extra parameter of
type •Σ , and universally quantify it. Notice that this requires the logic to be first-
order, so that universal quantification is possible. In the case of our specifications,
given any formula ϕ we choose a •Σ-labelled variable x•Σ . Each occurrence of
any flexible function symbol f : w → s of the form f(t1, . . . , tn) (where t1, . . . , tn
are terms) is replaced by the term f(x•Σ , t1, . . . , tn) (note that f : •Σ , w → s is
a flexible function symbol of ΣM ), and similarly for flexible relations. After this
step, we obtain a formula ϕ′. Finally, we define ϕM = (∀x•Σ ∈ •Σ : ϕ′). Again,
we have captured the relationship between a component specification and the
specification of its corresponding manager externally, via a natural transforma-
tion, instead of internally, within the category of specifications.

Finally, let us deal with models. We define a natural transformation γ :
Mod ◦ ((−)M )op �→ Mod. That is, we have a natural family of functors γΣ :
Mod(ΣM ) →Mod(Σ), which maps each model M ′ of Mod(ΣM ) to a model
M of Mod(Σ), the model obtained by taking away the parameters of type •Σ in
every function and relation in M ′. In a similar way, any morphism m : M ′ →M
of Mod(ΣM ) can be translated to a morphism in Mod(Σ) γΣ : γΣ(M ′) →
γΣ(M), corresponding to the restriction of m to the set of sorts different from
•Σ . For the sake of brevity, we skip the detailed definition of these natural
transformations.

For our first-order linear temporal logic, we have the following property:
Property 1. For every signature Σ, ϕ ∈ Sen(Σ) and M ′ ∈ Mod(ΣM ) the fol-
lowing holds: M ′ �ΣM ηΣ(ϕ)⇔ γΣ(M ′) �Σ ϕ.
Intuitively, this property states that γ and η preserve the satisfaction relation.
This kind of relation between institutions is called a representation map [22].
Since the logic for components and for managers is the same, we have an endo-
representation map, which relates components with their managers. Let us recall
the definition of representation map, as given in [22].
Definition 2. (Representation map between institutions)
Let 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉

be the institutions I and I ′ respectively, then 〈γSign, γSen, γMod〉 : I → I ′ is a
representation map of institutions if and only if:
– γSign : Sign→ Sign′ is a functor,
– γSen : Sen �→ Sen′ ◦γSign, is a natural transformation (i.e. a natural family

of functions γSenΣ : Sen(Σ)→ Sen′(γSign(Σ))), such that for each Σ1, Σ2 ∈
|Sign| and σ : Σ1 → Σ2 morphism is Sign,

Sen(Σ2)

6

Sen(σ)

Sen(Σ1)

-
γSenΣ2

Sen′(γSign(Σ2))

6

Sen′(γSign(σ))

Sen′(γSign(Σ1))-
γSenΣ1

Σ2

6

σ

Σ1



– γMod : Mod′◦(γSign)op �→Mod, is a natural transformation (i.e. the family
of functors γMod

Σ : Mod′((γSign)op(Σ)) → Mod(Σ) is natural), such that
for each Σ1, Σ2 ∈ |Sign| and σ : Σ1 → Σ2 morphism in Sign,

Mod′((γSign)op(Σ2))

?

Mod′((γSign)op(σop))

Mod′((γSign)op(Σ1))

-
γMod
Σ2

Mod(Σ2)

?

Mod(σop)

Mod(Σ1)-
γMod
Σ1

Σ2

6

σ

Σ1

such that for any Σ ∈ |Sign|, the function γSenΣ : Sen(Σ) → Sen′(γSign(Σ))
and the functor γMod

Σ : Mod′(γSign(Σ)) → Mod(Σ) preserves the following
satisfaction condition: for any α ∈ Sen(Σ) and M′ ∈ |Mod(γSign(Σ))|,

M′ |=γSign(Σ) γ
Sen
Σ (α) iff γMod

Σ (M′) |=Σ α .

Representation maps have been studied in detail in [22, 13]. The intuition
that leads us to think that “all instances of a certain component type behave
as the component (type) specification indicates” is justified by the following
property of representation maps (see [22]):

Property 2. Semantic deduction is preserved by representation maps: for any
institution representation ρ : I → I′, signature Σ ∈ |Sign|, set Φ ⊆ Sen(Σ) of
Σ-sentences, and Σ-sentence ϕ ∈ Sen(Σ), if Φ �Σ ϕ, then ρSenΣ (Φ) �′ρSign(Σ)

ρSenΣ (ϕ).

Intuitively, this property says that managers of components preserve the prop-
erties that the specification of the corresponding components imply. Notice that
this is the usual intuition: when one is reasoning about a class in object oriented
design, one does so thinking of a generic template of instances of the class, so
that the programmed behaviour will be that of all instances of the class2. This
construction is also associated with some specification related mechanisms; for
instance, the notion of schema promotion in Z [27] is captured by this very same
notion of representation map. The promoted schemas are obtained via natural
transformations from the original set of schemas.

4 Managing Dynamic Population and Interaction

In our initial example, a basic structure of a system is given in terms of compo-
nent specifications, as well as specifications of the interactions between compo-
nents. We also mentioned that these interactions are materialised as channels,

2 Obviously, classes also define additional behaviour, associated with the manipulation
of instances (constructors, destructors, etc.).



which enable one to define (categorical) diagrams, corresponding to static archi-
tectural designs of systems. We have already dealt with part of the generalisation
of this situation to allow for dynamic creation/deletion of components, via com-
ponent managers. We still need to describe the way in which the component
population is actually managed, and how instances of components interact. For
example, we would need ways of dynamically managing the population of com-
ponents, and dynamically allocating live producers to live consumers, in the
context of our example. In order to achieve the first of these goals, one needs
to provide extensions of the manager components, introducing some specific be-
haviours into the managers (for example, some actions and properties related to
the creation or deletion of components at run time). This, of course, needs to
be manually specified, whereas the relativisation of component behaviour to in-
stance behaviour is directly handled by the above presented representation map.
For the case of our producer manager, such an extension could be the one pre-
sented in Figure 4. Notice how a set of live instances is introduced (via a flexible
predicate), and how actions for population management can be specified. In this
example, we have new , which allows us to create new producers. Axiom 10, for
instance, indicates that in order to make an instance live, it must be originally
“dead”, and that p-init is executed at creation, on the newly created instance.

Now, let us deal with the connections. In order to dynamically allocate pro-
ducers to consumers, we define a kind of connection template (we then exploit the
previously introduced representation map to build a connection manager). We
start by identifying the parts of the components that possibly need to be coordi-
nated. In our case, we identify the fields of producers and consumers that need
to be “exported” to other components, and the actions that need to be synchro-
nised. These communicating elements are combined via a coproduct, yielding
a vocabulary with parts from producers and parts from consumers, that will
be used in order to describe the possible interactions between these types of
components. This situation can be generically illustrated as follows:
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This diagram involves two components, C1 and C2. The first component has a
communicating language Con1 and the second component has a communication
language Con2. As stated above, we want to connect these types of components
using these communication languages. In contrast to our initial (static) example,
we do not identify common parts in the components, but use the coproduct of
the communicating languages to obtain a language in which to describe the
interactions. This also provides more flexibility in the communication definition.
In addition, the diagram involves the initial object of category Sign, together



Component: ExtendedProducerManager
Read Variables: ready-in : NAME→ Bool
Attributes: producers : NAME→ Bool, p-current : NAME→ Bit,
p-waiting : NAME→ Bool
Actions: produce-0 (n: NAME), produce-1 (n: NAME), send-0 (n: NAME),
send-1 (n: NAME), p-init(n: NAME), new(n: NAME)
Axioms:
... /* axioms of ProducerManager */
9. ∀n ∈ NAME : ¬producers(n)
10. �(∀n ∈ NAME : new(n)→ ¬producers(n) ∧©(producers(n) ∧ p-init(n)))
11. �(∀n ∈ NAME : produce-0 (n)→ producers(n))
...

Fig. 4. An extension of the producer manager, which handles instance creation.

with the (unique) morphisms ! from this object to the other components. This
is necessary since, after applying (−)M , we obtain a component 0M which has
only one sort, and the arrows !M (obtained applying the functor (−)M to the
arrows !) identify all the new sorts added in the other components by (−)M . The
explicit inclusion of the initial object has as a consequence that only one new
sort (of component names) is included in the final design.

A suitable connection template for our example could be the one in Fig-
ure 5. A manager of this specification is built in the same way that managers of
components are constructed. In the same way that we extended the managers
of components, we will need to extend the manager of connections, to indicate
how connections work. A sample extension of the manager of connections is also
shown in Fig. 5. The generic situation depicted in the previous diagram can be
expanded, by means of the introduced representation map, to the following:
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The specifications CM1 , (Con1
1 + Con1

2)M and C2
M are obtained via the func-

tor (−)M . The components MC1, MI and MC2 are the (ad-hoc) extensions
of the manager components. As for the case of static configurations, the colimit
of this diagram gives us the final design. It is interesting to note that, since
we have used abstract concepts such as institutions and representation maps,
the concepts introduced in this section can be instantiated with other logics.



Component: ConnectionTemplate
Attributes: ready-in : Bool, ready-ext : Bool, p-waiting : Bool, c-waiting : Bool
Actions: send-0 , send-1 , extract-0 , extract-1

Component: ExtendedConnectionManager
Attributes: ready-in : NAME→ Bool, ready-ext : NAME→ Bool,
p-waiting : NAME→ Bool, c-waiting : NAME→ Bool,
connected : NAME, NAME→ Bool
Actions: send-0 (n: NAME), send-1 (n: NAME),
extract-0 (n: NAME), extract-1 (n: NAME), connect(n, m: NAME)
Axioms:
1. �(∀n, m ∈ NAME : connect(n, m)→ ¬connected(n, m) ∧©(connected(n, m))
2. �(∀n, m ∈ NAME : connected(n, m)→ (send-0 (n)↔ extract-0 (m)))
...

Fig. 5. A connection template, indicating the vocabulary relevant for communication,
and an extension of its manager.

In particular, there is no need to use the same logic for component specifica-
tion and manager specification. Notice that to the extent that these logics can
be connected by a representation map, all of the presented characterisation is
applicable. For example, we can use a propositional temporal logic to describe
the components, taking advantage of decision procedures for such a logic, and
use a first-order temporal logic to describe the managers. The representation
map between these two logics still enables us to “promote” the properties veri-
fied for components (algorithmically, if the logic for component specification is
decidable) to properties of all instances of components. Furthermore, we could
take this idea even further, and use yet another logic for datatype specification
(e.g., a suitable equational logic), and promote the properties of datatypes to
components and managers, again by exploiting representation maps.

5 Conclusions

Many specification languages need to deal with dynamic reconfiguration and
dynamic population management. In Z, for instance, this is done via schema
promotion [27], which is understood simply as a syntactical transformation. In
the context of B [1], there is a similar need, in particular when using B as a target
language for analysis of object oriented models (e.g., the UML-B approach). Ob-
ject oriented extensions of model oriented languages, such as VDM++, Object Z
or Z++, have built in mechanisms for dealing with dynamic reconfiguration, as is
inherent in object orientation. Other logical languages, for instance some logical
languages used for software architectures (e.g., ACME), also require dynamism
in specifications. Generally, the mechanisms for dynamism in the mentioned lan-
guages are syntactical.

Besides the work mentioned above, there exist some other related approaches,
closer to what is presented in this paper. A useful mechanism for formally char-
acterising dynamic reconfiguration is that based on graph transformation, as



in [14], which has been successfully applied in the context of dynamic software
architectures [26]. As opposed to our work, in this approach the notion of man-
ager is not present, and thus it is less applicable to contexts where this notion
is intrinsic (e.g., object orientation, schema promotion, etc.). Another related
approach is that of Knapp et al. [15], who present an approach for specifying
service-oriented systems, with categorical elements. Knapp et al. employ map-
pings (from local theories to a global one) for specifying component synchroni-
sation, but composition is not characterised via universal constructions, as in
our approach. Another feature of our approach, not present in Knapp et al.’s,
is the preservation of the original design’s modularisation, via representation
maps (notice that each component is mapped to a similar component in a more
expressive setting, where its dynamic behaviour is expressed).

We presented the requirements for dealing with dynamic reconfiguration in a
logical specification language, in a categorical way. Our categorical characterisa-
tion is general enough so that it applies to a wide variety of formalisms, which we
have illustrated using a temporal logic. An essential characteristic of the logical
system is that quantification is required, so that collections of instances of com-
ponents can be handled. Our work might help in understanding the relationship
between basic “building block” specifications and the combined, whole system,
in the presence of dynamic reconfiguration.

We also believe that this work has interesting practical applications. The cat-
egorical setting we are working with admits working with different (but related)
logics for component specification, and the description of dynamic systems. This
might enable one, for instance, to use a less expressive (perhaps decidable) logic
for the specification of components, whose specifications could be mapped to
more expressive (generally undecidable) logics, where the dynamism of systems
is characterised. Understanding the relationships between the different parts of
the specification can be exploited for practical reasons, for example for promot-
ing properties verified in components (using for example a decision procedure) to
the specification of the system. Also, some recently emerged fields, such as ser-
vice oriented architectures, require dealing with highly dynamic environments,
where formalisations as the one proposed in this paper might be useful. As ex-
pressed in [23], there is a clear need for work in the direction of our proposal, so
we plan to investigate the applicability of our approach in some of the contexts
mentioned in [23].
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