
Fuzzing Class Specifications

Facundo Molina
University of Rio Cuarto and

CONICET

Argentina

fmolina@dc.exa.unrc.edu.ar

Marcelo d’Amorim
Federal University of Pernambuco

Brazil

damorim@cin.ufpe.br

Nazareno Aguirre
University of Rio Cuarto and

CONICET

Argentina

naguirre@dc.exa.unrc.edu.ar

ABSTRACT

Expressing class specifications via executable constraints is impor-

tant for various software engineering tasks such as test generation,

bug finding and automated debugging, but developers rarely write

them. Techniques that infer specifications from code exist to fill this

gap, but they are designed to support specific kinds of assertions

and are difficult to adapt to support different assertion languages,

e.g., to add support for quantification, or additional comparison

operators, such as membership or containment.

To address the above issue, we present SpecFuzzer, a novel

technique that combines grammar-based fuzzing, dynamic invari-

ant detection, and mutation analysis, to automatically produce

class specifications. SpecFuzzer uses: (i) a fuzzer as a generator

of candidate assertions derived from a grammar that is automat-

ically obtained from the class definition; (ii) a dynamic invariant

detector –Daikon– to filter out assertions invalidated by a test

suite; and (iii) a mutation-based mechanism to cluster and rank

assertions, so that similar constraints are grouped and then the

stronger prioritized. Grammar-based fuzzing enables SpecFuzzer

to be straightforwardly adapted to support different specification

languages, by manipulating the fuzzing grammar, e.g., to include

additional operators.

We evaluate our technique on a benchmark of 43 Java meth-

ods employed in the evaluation of the state-of-the-art techniques

GAssert and EvoSpex. Our results show that SpecFuzzer can eas-

ily support a more expressive assertion language, over which is

more effective than GAssert and EvoSpex in inferring specifications,

according to standard performance metrics.

CCS CONCEPTS

• Theory of Computation → Program specifications; • Soft-

ware and its engineering→Dynamic analysis; Software test-

ing and debugging.

KEYWORDS

Oracle problem, specification inference, grammar-based fuzzing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510120

ACM Reference Format:

Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. 2022. Fuzzing

Class Specifications. In 44th International Conference on Software Engineering

(ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3510003.3510120

1 INTRODUCTION

Software specifications are abstract descriptions of the software’s

intended behavior. They serve twomain purposes: to explicitly state

the user needs and to check implementation conformance [23]. In

Object-Oriented (OO) design, where software is organized as a set

of classes, a class specification describes the intended behavior of

the class methods and the constraints on the state of the class’

objects. While the specification of a class is typically described

informally, through natural language documentation of its API, the

specification becomes significantly more useful when expressed

formally, through constraints known as contracts1 [36, 46]. Con-

tracts enable techniques of various kinds, including test generation

[6, 13, 33, 48], automated debugging [16, 34, 43, 44], bug finding

[30, 41], and verification [17, 21, 22, 30]. Despite the benefits of

formal contracts, developers rarely write them.

To aid developers in equipping implementations with contracts,

techniques for inferring class specifications have been proposed [9,

18, 38, 47]. However, the specification expressiveness of these ap-

proaches is limited. Daikon [18], the baseline that other techniques

use, supports a restricted set of templates, from which assertions

are generated. It is then limited to simple assertions (e.g., no direct

support for quantification), or requires the developer to manu-

ally extend the assertion language. GAssert [47] and EvoSpex [38],

two recently proposed techniques for contract inference, try to

address this limitation of Daikon by supporting more expressive

assertion languages, but their extensions focus on specific kinds of

constraints: GAssert focuses on logical/arithmetic constraints (no

quantified expressions) and EvoSpex focuses on object navigation

constraints (only very simple logical and arithmetic operators are

supported). Moreover, as both techniques are based on evolution-

ary search, they are difficult to extend or adapt to support further

expressions, as the evolutionary algorithms are targeted for the

specific languages supported by the corresponding tools.

To overcome the limitations of existing approaches, we pro-

pose SpecFuzzer, a technique for generating likely specifications

by fuzzing potential specifications associated with a given class.

SpecFuzzer uses grammar-based fuzzing to automatically gener-

ate constraints that can be used as candidate specifications by an

invariant detection tool (in our case, we use Daikon). Fuzzing [50],

1In the context of this paper, we will interchangeably use the terms contract and speci-
fication. A contract is typically composed of different assertions for various program
points, such as method preconditions and postconditions.

1008

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510003.3510120&domain=pdf&date_stamp=2022-07-05

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA F. Molina, M. d’Amorim and N. Aguirre

traditionally used to efficiently produce structured random data for

testing, has two key advantages in this context: (1) it eliminates

the need of developers to manually define candidate assertions and

(2) it enables developers to straightforwardly adapt the language of

assertions by manipulating the fuzzing grammar.

Fuzzing can quickly produce very large sets of assertions to

be fed to a dynamic detection tool. However, as the assertions

are generated randomly, and dynamic invariant detection only

filters out assertions that can be invalidated by a given test suite, a

substantial number of candidate specification expressions may be

reported by the dynamic detector, when fed with fuzzed assertions.

To address this problem and better assist developers in driving their

attention to the likely most relevant specifications, SpecFuzzer

uses an assertion reduction mechanism based on clustering and

mutation testing [7, 42]. After generating thousands of candidate

specifications with fuzzing, SpecFuzzer uses the output of a custom

mutation analysis to cluster candidate specifications.More precisely,

it partitions the set of specifications according to the mutants they

kill, and within each partition, the assertion that is falsified the

most number of times when running the test suite on the mutants,

is picked as the representative. Notice that, even though all the

assertions in the same partition kill the same mutants, some may

be falsified more than others, as a same mutant may be killed

by multiple tests. The rationale for the mutation based partition

is that assertions that kill different mutants are non-equivalent

(or, alternatively, that assertions that kill the same mutants are

“similar”); the rationale for ranking assertions according to the

number of failures is that assertions that are falsified a greater

number of times are “stronger”.

We compared SpecFuzzer with GAssert [47] and EvoSpex [38],

two state-of-the-art techniques in specification inference. To eval-

uate SpecFuzzer, we used the same benchmarks from the evalu-

ation of GAssert and EvoSpex, carefully studied the subjects, and

manually produced corresponding “ground truth” assertions cap-

turing the intended behavior of the subjects. We then used this

ground truth to accurately assess precision and recall of Spec-

Fuzzer, GAssert, and EvoSpex. It is worth noting that (1) prior

work used indirect metrics to compute precision and recall (as op-

posed to the direct usage of ground truth) and (2) prior work used

subsets of the subjects we consider (our benchmark is the combina-

tion of the GAssert and EvoSpex benchmarks). Our results show

that SpecFuzzer increases the expressiveness over GAssert and

EvoSpex, being able to express ∼45% more assertions in the ground

truth than these tools. SpecFuzzer was also able to detect 75% of

all assertions in the ground truth, showing a better overall perfor-

mance compared to previous techniques. The results we obtained

provide initial, yet strong evidence that SpecFuzzer is effective.

In summary, this paper makes the following contributions:

• SpecFuzzer, a novel technique for assertion inference that

combines grammar-based fuzzing and dynamic invariant

detection.

• An efficient mechanism for grouping similar assertions and

for ranking assertions based on their strength.

• A thorough evaluation of our technique against GAssert and

EvoSpex, in which performance metrics are computed in

relation to manually written assertions (ground truth).

The evaluation artifacts of SpecFuzzer are publicly available [5].

2 BACKGROUND

This section presents background material that is important for the

rest of the paper.

2.1 Specification Inference

Specification inference is the problem of generating a formal de-

scription of the software behavior from existing software artifacts,

e.g., documentation, source code, etc. Specification inference is

closely related to the oracle problem [8], which is the problem of

deciding whether or not a program execution is consistent with the

desired behavior of the program. Specification inference provides

a means to create oracles [8]. For regression testing purposes, it

sometimes suffices to produce specifications of expected properties

as assertions for the context of a given test case [20]. However,

more general assertions that capture properties at given locations

within the program (not the test) for any input have other applica-

tions, including testing. This is the problem we study in this paper,

defined as follows.

Definition 2.1. Given a target program P, and a program point

of interest 𝜌 in P, infer a specification 𝜙 that captures the states at

𝜌 , i.e., for every state 𝑠 of P, 𝜙 holds in 𝑠 if and only if there exists
an execution 𝑡 of P such that 𝑠 is the state of 𝑡 at program point 𝜌 .

2.2 Grammar-based Fuzzing

Fuzzing is a very active topic both in research [1] and practice [2–

4]. Fuzzing is a technique to automatically produce large sets of

(often structured) data, for testing a target program. The generation

process typically involves randomness and the rationale is that

testing on (large sets of) quasi-valid data can reveal subtle bugs,

such as wrongly handled inputs and corner cases. A well-known

use case of fuzzing is detection of security vulnerabilities, such as

buffer overflows [35, 37].

Different fuzzing strategies exist [35]. Grammar-based fuzzing

uses an input grammar to produce syntactically-valid inputs by

traversing the production rules of the grammar. In its simplest form,

the input generation process can be implemented as an incremental

expansion of a string starting from the initial grammar symbol, and

replacing non-terminal symbols by the application of a randomly-

chosen production rule of the corresponding non-terminals, until

the string consists of terminals only; a bound on the number of non-

terminals enables this process to handle recursion, which would

otherwise lead to infinite loops. As an example, consider a scenario

where the program to test takes as input a propositional logic (PL)

formula, characterized by the grammar from Figure 1. To generate

testing data, the PL grammar can be fed to a grammar-based fuzzer

(e.g., Grammarinator [25]) to efficiently obtain a very large set of

well-formed test data (PL formulas, in this case). To generate inputs,

the fuzzer explores paths induced by the grammar production rules.

For instance, the input neg(p and q) can be obtained through

the following derivation: start � formula � neg formula � neg

(formula and formula) � neg (p and formula) � neg (p and

q). It is worth noticing that a great advantage of fuzzing in this

case is that the input language can be easily adapted by modifying

the grammar. For instance, our fuzzer would be able to generate

1009

Fuzzing Class Specifications ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

〈start〉 ::= 〈formula〉

〈formula〉 ::= 〈atomic〉 | neg 〈formula〉 | (〈formula〉 and 〈formula〉)

〈atomic〉 ::= true | false | p | q | r | ...

Figure 1: Propositional Logic grammar.

formulas with disjunctions if we add a corresponding production

rule to the non-terminal formula.

The above example is relevant because the technique we propose

in this paper uses grammar-based fuzzing as a lightweight approach

to produce assertions (such as the PL formulas above) as candidate

specifications for program points. The simplicity with which the

grammar can be adapted or extended will be one of the advantages

of the approach, compared with related techniques.

2.3 Assertion Language

An assertion is a logical expression associated with a program

point expressing an expected property at that location. The use

of assertions has wide-spread applications in software design [36],

software testing [7], and verification [12, 24].

Our assertion language is similar in expressive power to JML, and

features first-order quantification (\forall, \exists), arithmetic

and logical operators, and reachability expressions (the reach op-

erator \reach(x, f1, ..., fk) denotes the smallest set of objects

reachable from x, through fields f1, . . . , fk). Additionally, postcon-

dition assertions might use the \old(expr) notation, to refer to the

value of expression expr at the precondition. For simplicity, we

drop the backslashes, shorten the quantifier names, and replace

the semicolon notation in JML quantification by the implication (in

the case of universal quantification) or conjunction (in the case of

existential quantification). As an example, the following expression

all SortedList l:
reach(this, next).has(l) ==> l.elem == old(l.elem)

states that the integer field elem of the list nodes reachable from

this (has is the JML operator for membership) remains unchanged.
This expression corresponds to the following JML expression:

\forall SortedList l;
\reach(this, next).has(l); l.elem == \old(l.elem)

Our assertion language is motivated by the expressive power of

the languages in related work, and in contract languages [11, 18,

19, 36, 38, 47]. This is a general language, that includes the usual

relational, arithmetic and logical operators, but no domain specific

functions (e.g., trigonometric functions, that would be relevant

only for some analysis subjects, are not considered). The assertion

language enables one to refer to class/object fields, but not to the

results of method calls. That would require us to declare methods as

“pure” to use them in assertions, which is beyond what our current

implementation supports.

3 ILLUSTRATIVE EXAMPLES

This section illustrates SpecFuzzer on two simple examples with

the purpose of (1) highlighting limitations of state-of-the-art speci-

fication inference techniques and (2) illustrate SpecFuzzer.

Examples. Figure 2 shows min, a Java method to compute the mini-

mum of two integers, whereas Figure 3 shows SortedList, a Java

/* Returns the minimum of two integers */
public static int min(int x, int y) {
if (x <= y) return x;
else return y;

}

Figure 2: Method to get the minimum of two values.

public class SortedList {
private int elem;
private SortedList next;
private static final int SENTINEL = Integer.MAX_VALUE;

/* Constructors */
public SortedList() { this(SENTINEL, null); }
private SortedList(int elem, SortedList next) {
this.elem = elem;
this.next = next;

}

/* Method to insert an element in the list */
void insert(int data) {
if (data > elem) {
next.insert(data);

} else {
next = new SortedList(elem, next);
elem = data;

}
}

}

Figure 3: Class SortedList implements an ordered list of in-

tegers.

class implementing an ordered list of integers. The min method is

straightforward. Class SortedList is slightly more elaborate. It has

two instance fields, elem and next, that represent the value of a

linked list node and the reference to the next node, respectively.

It also has a class field (SENTINEL) that stores a special value –the

maximum Java integer value– as a mark for the end of the list. The

sentinel should be placed at the end of the list and should not be

repeated. The default constructor creates a node marking the end

of the list. The insert method takes the integer data as parameter

and inserts it in its correct sorted position in the linked list. As it is

not possible for any integer value to be greater than the sentinel,

the search is guaranteed to insert the element before the sentinel.

Relevant Properties. The intended behavior of method min is that

it computes the minimum between x and y. A specification of the

postcondition of min in our assertion language is as follows:

(result == x || result == y) &&
(result <= x) && (result <= y)

The postcondition of method SortedList.insert involves vari-

ous properties: the list is acyclic and sorted increasingly, the sen-

tinel is in the list (at the end), and the data element is inserted. This

postcondition can be specified as follows:

all SortedList l:
reach(this, next).has(l) ==> !reach(l.next, next).has(l)
all SortedList l:
reach(this, next).has(l) ==> l.elem <= l.next.elem

1010

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA F. Molina, M. d’Amorim and N. Aguirre

Table 1: GAssert and EvoSpex on the running examples.

GAssert EvoSpex

min(int x,int y) - postcondition

1 (x > result && y == result) || (result <= y && result == x) result <= x
2 result <= y

SortedList.insert(int data) - postcondition

1 elem-(data-elem) <= old(elem) exists SortedList l: reach(this, next).has(l) && l.elem == data
2 old(elem) <= next.elem

exists SortedList l:
reach(this, next).has(l) && l.elem == SENTINEL
exists SortedList l:
reach(this, next).has(l) && l.elem == data

We may consider these assertions to be the ground truth post-

condition specifications of the corresponding methods, and what

we would ideally expect specification inference tools to produce.

3.1 Techniques for Specification Inference

Daikon. Daikon [18] is dynamic technique that infers specifications

by monitoring test executions. Considering Definition 2.1, besides

the program P, Daikon requires a test suite T for P to infer speci-

fications. Daikon uses T to exercise P; it monitors program states

at various program points of P; it considers a set of assertions

obtained by instantiating assertion patterns, and those that are not

invalidated by any test at a given program point are reported to

the user as likely invariants at the program point.

GAssert and EvoSpex. GAssert [47] and EvoSpex [38] are recently

proposed specification inference techniques. As Daikon, these tools

execute a test suite of the program under analysis and observe

executions to infer specifications that are consistent with the ob-

servations. While Daikon requires the test suite to be provided,

GAssert and EvoSpex use their own test generation mechanisms

(third-party test generation tools in the case of GAssert, a custom

test generation approach in the case of EvoSpex). Although both

techniques are based on evolutionary search, they have key dif-

ferences. GAssert implements a co-evolutionary algorithm that

explores the space of possible assertions (the co-evolution deals

with false-positives and false-negatives via two cooperating evolu-

tionary processes) and uses the OASIs [26] oracle assessment tool

to iteratively improve the assertions. EvoSpex implements a classi-

cal genetic algorithm to explore the search space, and uses a state

mutation technique to generate postcondition states in which the

assertions being sought for should fail. GAssert’s evolutionary oper-

ations focus on logical and arithmetic assertions whereas EvoSpex’s

focuses on object navigational properties. For these tools, chang-

ing the assertion languages implies redefining the corresponding

evolutionary operators and other parameters of the evolutionary

algorithms, which is non-trivial.

Tables 1 and 2 show how Daikon, GAssert, and EvoSpex perform

on the examples (for brevity, we have removed this from non-

quantified expressions in the insert example). GAssert performs

perfectly on the min example, but poorly on SortedList (it does

not capture most of the ground truth); EvoSpex infers one complex

assertion for SortedList.insert (that the element is inserted) and

misses the remaining three in the corresponding ground truth; it

also infers part of the ground truth for min. Daikon infers the same

as EvoSpex in the case of min, and in the case of SortedList.insert,

it only infers specific sortedness instances between the first few

elements of the list, but it fails to generalize this relationship for

the whole structure. It fully misses the remaining assertions in the

ground truth.

3.2 SpecFuzzer

SpecFuzzer uses a combination of static analysis, grammar-based

fuzzing, and mutation analysis to infer specifications. SpecFuzzer

proceeds as follows. First, it uses a lightweight static analysis to

produce a grammar for the specification language, which is tuned

to the software under analysis. Then, it uses a grammar-based

fuzzer to generate candidate specifications from that grammar. A

dynamic detector then determines which of those specifications

are consistent with the behavior exhibited by a provided test suite.

Finally, SpecFuzzer eliminates irrelevant and equivalent specifica-

tions using a mechanism based on mutation analysis and clustering.

A salient feature of SpecFuzzer is that developers can adjust the

set of specifications produced by tuning the grammar as opposed

to making changes in the tool.

Table 2 shows the assertions that SpecFuzzer infers as post-

conditions for methods min and SortedList.insert. Recall that

SpecFuzzer uses fuzzing and reports a higher number of asser-

tions compared to the other techniques. We configured the fuzzer

to produce 2000 candidate assertions per subject, and found that,

out of those generated, 51 and 437 were confirmed as likely invari-

ants by the dynamic detector for min and insert, respectively. The

mutation-based partition strategy enabled SpecFuzzer to consider-

ably reduce the reported assertions to 9 and 16, respectively.

In the case of min, the 9 inferred assertions are valid and their

conjunction is equivalent to the corresponding ground truth. For

SortedList.insert, the first 3 assertions already cover 3 out of 4

assertions in the ground truth (the only missing one is list acyclic-

ity). The other inferred assertions are either valid but less relevant

(4-13), or invalid (14-16). The invalid ones are specifications that

were true in the provided test suite, but there exist some unseen

scenarios in which they are falsified. Notice that this also affects

the other techniques, even though GAssert and EvoSpex include

costly mechanisms to reduce invalid assertions (the assertion in-

ferred by GAssert for SortedList.insert, in particular, is an invalid

property).

4 APPROACH

This section presents SpecFuzzer, a technique for specification

inference that uses a combination of static analysis, grammar-based

fuzzing, and mutation analysis.

1011

Fuzzing Class Specifications ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Daikon and SpecFuzzer on the running examples.

Daikon SpecFuzzer

min(int x,int y) - postcondition

1 result <= x x >= result
2 result <= y x < result ==> result <= 1
3 x >= y ==> y == result
4 x >= y || y != result
5 x <= y || y <= result
6 x <= y || y >= result
7 x >= y <==> y == result
8 x == y ==> y <= result
9 x <= y <==> x == result

SortedList.insert(int data) - postcondition

1 elem <= next.elem exists SortedList l: reach(this, next).has(l) && l.elem == SENTINEL
2 elem <= next.next.elem all SortedList l: reach(this, next).has(l) ==> l.elem <= l.next.elem
3 next.elem <= next.next.elem exists SortedList l: reach(this, next).has(l) && l.elem == data
4 next != null next != null
5 elem <= old(elem) elem != old(elem) + 1
6 elem <= old(next.elem) next.elem >= old(elem)
7 elem <= old(next.next.elem) data >= next.elem || next.elem = old(elem)
8 elem <= data elem == data xor data > old(elem)
9 next.elem >= old(elem) elem > data ==> data = next.elem
10 next.elem <= old(next.elem) exists SortedList l: reach(this.next, next).has(l) && l.elem != 1
11 next.elem <= old(next.next.elem) exists SortedList l: reach(this, next).has(l) && l.elem > this.elem
12 next.next.elem >= old(elem) exists SortedList l: reach(this, next).has(l) && l.elem <= l.next.elem
13 next.next.elem >= old(next.elem) all SortedList l: reach(this.next, next).has(l) ==> l.elem >= this.next.elem
14 next.next.elem <= old(next.next.elem) elem <= old(elem) ==> old(elem) < old(next.next.elem)
15 elem != next.next.elem + old(next.next.elem)
16 data >= next.next.elem || next.next.elem == old(next.elem)

Figure 4 shows the workflow of the technique. SpecFuzzer takes

as input a Java2 class𝐶 , and produces assertions that seek to charac-
terize properties of different execution points in 𝐶 , such as method
preconditions and postconditions. Following the Daikon terminol-

ogy, we will generally refer to assertions that hold on specific pro-

gram points as invariants. The technique is organized as a pipeline

of five components: (1) a Tests and Mutants Generation compo-

nent that produces tests and mutants for other components of the

pipeline, (2) a Grammar Extractor that analyzes 𝐶 to generate a

specification grammar for that class, (3) a Grammar Fuzzer, which

produces candidate assertions by exploring the production rules

from the extracted grammar, (4) a Dynamic Invariant Detector, re-

sponsible for inferring likely invariants from the fuzzed assertions

via observations made with the executions of an input test suite,

and (5) an Invariant Selector component, which partitions the likely

invariants produced by the previous component to discard useless

(weak) assertions, groups together similar assertions, and reports

a reduced set of assertions, prioritizing the stronger ones. The fol-

lowing sections discuss these components in greater detail.

4.1 Tests and Mutants Generation

The first step of our process to infer specifications for a class 𝐶
consists of (i) generating a test suite 𝑇 exercising the methods of

the target class 𝐶 , and (ii) producing a set 𝑀1, . . . , 𝑀𝑛 of mutants

of 𝐶 , representing synthetic faults in the class. As Figure 4 shows,
these artifacts are used at different stages of the technique. We used

2Although our approach is general and language independent, some parts of our
current prototype, such as the grammar extraction and the evaluation of candidate
(fuzzed) specifications, are currently implemented for Java. Supporting other languages
that Daikon can handle, like C, would require the implementation of such parts.

Randoop [41] for test generation and Major [27] for mutant gener-

ation. Although we used these tools in our current implementation,

the user may replace them with other tools or even provide her

own test suite and mutated versions of the target class 𝐶 .

4.2 Grammar Extractor

The Grammar Extractor takes as input a class𝐶 and creates a gram-

mar𝐺𝐶 expressing the language of candidate assertions for𝐶 . Those
assertions denote method preconditions, postconditions, and class

invariants. The extractor instantiates our base grammar, referred

to as 𝐵, with information that is specific to 𝐶 , e.g., attribute types,
legally typed navigational expressions involving the attributes, etc.

Figure 5 shows a fragment of the base grammar 𝐵, capturing the
fixed parts of the specification language, i.e., the parts that are com-

mon to any input class of interest. For this paper, the grammar𝐵 sup-
ports numerical comparisons, logical expressions, membership ex-

pressions, and quantified expressions. Numerical comparisons and

SpecFuzzer

(4) Dynamic
Invariant Detector

Specs
Grammar

Fuzzed
Specs

Likely
Invariants

Target class Test suite

(3) Grammar
Fuzzer

(2) Grammar
Extractor

Target class mutants

(5) Invariant
Collector

Inferred
Invariants

(1) Test Generation (Randoop)
+

Mutation Tool (Major)
+

Figure 4: The SpecFuzzer workflow.

1012

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA F. Molina, M. d’Amorim and N. Aguirre

〈FuzzedSpec〉 ::= 〈QuantifiedExpr〉 | 〈BooleanExpr〉

〈QuantifiedExpr〉 ::= 〈Quantifier〉 〈Typed_Var〉 ‘:’ 〈BooleanExpr〉

〈Quantifier〉 ::= ‘all’ | ‘exists’

〈BooleanExpr〉 ::= 〈NumCmpExpr〉 | 〈LogicCmpExpr〉 |

〈MembershipExpr〉 | ‘!’ 〈BooleanExpr〉

〈NumCmpExpr〉 ::= 〈NumExpr〉 〈NumCmpOp〉 〈NumExpr〉

| 〈NumExpr〉 〈NumCmpOp〉 〈NumExpr〉 〈NumBinOp〉

〈NumExpr〉

〈NumExpr〉 ::= 〈NumVar〉 | 〈NumConst〉

〈LogicCmpExpr〉 ::= 〈BooleanExpr〉 〈LogicOp〉 〈NumCmpExpr〉

| ‘(’ 〈BoolVar〉 〈LogicOp〉 〈BoolVar〉 ‘)’ 〈LogicOp〉

〈NumCmpExpr〉

| ‘(’ 〈NumCmpExpr〉 ‘)’ 〈LogicOp〉 ‘(’ 〈NumCmpExpr〉 ‘)’

〈MembershipExpr〉 ::= 〈type_SetExpr〉.has(〈type_Var〉)

〈NumCmpOp〉 ::= ‘==’ | ‘!=’ | ‘>’ | ‘<’ | ‘<=’ | ‘>=’

〈NumBinOp〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘%’

〈LogicOp〉 ::= ‘||’ | ‘xor’ | ‘==>’ | ‘<==>’

Figure 5: Fragment of the base grammar 𝐵.

logical expressions are the simplest constructs of the language. They

relate numerical expressions and boolean expressions by using tradi-

tional numerical operators and logical connectives—〈NumCmpOp〉

and 〈LogicOp〉, respectively. Membership expressions allow one to

express whether or not a typed element belongs to a set (collection)

of the corresponding type. The grammar fragment uses the has
notation from JML, and shows a production rule for typed variables.

Although it is not explicitly shown in the grammar fragment, the

reach operator is a way of building a typed set expression. A con-

crete example of a membership expression from a formula shown

in Section 3 is the following:

reach(this, next).has(l)

expressing that list l belongs to the set of objects reachable from

this by navigations (zero or more) through next. Finally, the gram-

mar allows for existential and universal quantification. Again, an

example of a quantified expression from Section 3 is the following:

exists SortedList l:
reach(this, next).has(l) && l.elem == SENTINEL

whose intuitive reading is that there exists a list object reachable

from this with the field elem holding the SENTINEL.

To obtain the grammar 𝐺𝐶 , the grammar extractor takes 𝐵 and

adds or deletes symbols and production rules, based on the struc-

ture of 𝐶 . The process basically depends on 𝐶’s direct and indirect
fields (fields declared in 𝐶 itself or in a class reachable from 𝐶).
Intuitively, from every field/navigation, a terminal symbol of the

corresponding type is defined (e.g., this.next will be a terminal of

type SortedList).

Set expressions deserve a more detailed description. Firstly, if

a field f is of a Collection type, then f will be a terminal of

(typed) SetExpr. For instance, if SortedList were an implemen-

tation of Collection, then this and this.next would be terminals

of type SortedList_SetExpr. Secondly, the reach operator is also

involved in building set expressions. For expression e and recur-

sive field f (a field is recursive if it is defined in a class C and has

〈FuzzedSpec〉

〈QuantifiedExpr〉

〈Quantifier〉 〈Typed Var〉 〈BooleanExpr〉

〈NumExpr〉

‘SortedList l’

‘:’

‘exists’ 〈LogicCmpExpr〉

〈BooleanExpr〉 〈LogicOp〉 〈NumCmpExpr〉
〈MembershipExpr〉 ‘==>’

‘reach(this, next).has(l)’

〈NumExpr〉〈NumCmpOp〉
‘l.elem’ ‘==’ ‘SENTINEL’

Figure 6: A derivation tree produced by our Grammar

Fuzzer for the expression exists SortedList l: reach(this,

next).has(l) && l.elem == SENTINEL.

type C) of class C, a production rule allows expression reach(e, f)

to have type C_SetExpr. Thus, expression reach(this, next) has

type SortedList_SetExpr.

4.3 Grammar Fuzzer

The goal of the Grammar Fuzzer component is to produce can-

didate assertions. It uses a standard generative grammar-based

fuzzer to achieve this goal [25, 50]. This component produces deriva-

tions of 𝐺𝑐—i.e., strings in L(𝐺𝑐)—to obtain assertions for 𝐶 . It be-
gins with the start symbol 〈FuzzedSpec〉 and keeps expanding non-

terminal symbols until no more non-terminals are present. Each

non-terminal symbol is expanded based on a non-deterministic

choice and, to avoid expansions leading to infinite derivation paths,

a limit of 5 on the number of non-terminals is defined. Furthermore,

to avoid getting stuck in a situation where the number of symbols

cannot be reduced any further, the total number of expansion steps

is also limited to 100. The rationale for this choice is that com-

plex class assertions can be created by combining small assertions,

rather than longer ones. Figure 6 shows the derivation tree of the

property used in our illustrative example: exists SortedList l:

reach(this, next).has(l) && l.elem == SENTINEL.

By using this derivation mechanism, our Grammar Fuzzer pro-

duces candidate predicates very efficiently. In all of our experiments

we generated up to 2,000 different candidates every time we ex-

ecuted SpecFuzzer. Furthermore, as the grammar 𝐺𝐶 has been

specifically extracted for a class 𝐶 , all the specifications generated
by the fuzzer are guaranteed to express properties over𝐶 . We imple-

mented our fuzzer in Java, reproducing a general grammar-based

fuzzer written in Python [50].

4.4 Dynamic Invariant Detector

The goal of the Dynamic Invariant Detector is to evaluate the plausi-

bility of the candidate assertions produced by the fuzzer. As Figure 4

shows, the dynamic invariant detector takes as input a test suite,

produced by the test generator, and a set of assertions, produced

by the fuzzer. This component instruments the program with the

assertions generated by the fuzzer and runs the tests to verify which

assertions hold across all executions. The resulting assertions are

reported as likely invariants.

1013

Fuzzing Class Specifications ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

The dynamic invariant detector is built on top of Daikon,3 a state-

of-the-art tool for likely invariant detection [18]. We used Daikon

as follows. We configured Daikon to include the assertions we

provided—i.e., the expressions produced by the fuzzer—in the initial

pool of candidate assertions it uses. For that, we used a mechanism

provided by Daikon to incorporate new constraints.4 Furthermore,

we included, along with the new constraints, a component that

allows the tool to interpret and evaluate the assertions at run-time.

4.5 Invariant Selector

The goal of the Invariant Selector is to partition the assertions that

were deemed valid by the dynamic invariant detector, grouping

together similar assertions, and taking a single representative from

each partition. At the same time, this component discards asser-

tions that, although were confirmed by the invariant detector, are

considered weak and thus less relevant. This component takes as

input the set of likely invariants obtained from the previous step,

and the set of mutants of the input class C (obtained from amutation

tool). This component reports a subset of the likely assertions it re-

ceives as input, ranking the invariants by the number of failures in

corresponding code assertions. The Invariant Selector reduces the

number of reported assertions. To sum up, this component discards

an assertion because of one of two reasons:

(1) the assertion is considered weak, and not to capture relevant

properties of the target class;

(2) the assertion is (semantically) similar to another produced

assertion.

In the following, we describe how we approximate the detection

of weak and equivalent specifications via mutation analysis.

4.5.1 Detecting weak specifications with Mutation Analysis. Recall

that the fuzzer reports thousands of constraints and the dynamic

invariant detector (in our case, Daikon) can only discard specifica-

tions invalidated by the tests. Several constraints can still “survive”

the filtering process described on Section 4.4. Even with better

test suites some assertions would still "survive" that process. For

example a tautology, such as x >= y || x <= y, would not be in-

validated by Daikon as it is a valid proposition, but it is unlikely to

be useful. Being syntactically driven, the fuzzer can produce valid

assertions that do not provide any interesting information. The

assumption is that it also generates interesting ones. SpecFuzzer

usesmutation analysis to discard uninteresting assertions. The idea is

the following: if a likely invariant –an assertion that is not falsified

by the test suite of C– cannot be falsified by any mutant of C, then

it is a property that not only holds on C, but also on all synthetic
buggy versions of C. We will then consider it a weak assertion,

and discard it as being irrelevant. This approach of using mutation

analysis to induce more effective (stronger) oracles has been used

in prior work, notably by Fraser and Zeller [20], as well as in recent

work on oracle improvement [47] and specification inference [38].

4.5.2 Clustering similar specifications with Mutation Analysis. It

is possible that SpecFuzzer produces syntactically different asser-

tions that are semantically equivalent (or similar with respect to

3http://plse.cs.washington.edu/daikon/
4http://plse.cs.washington.edu/daikon/download/doc/developer.html#New-
invariants

24%

72.4%

3.6%

Irrelevant
Equivalent
Reported

Figure 7: Breakdown of reasons for discarding specifications

on SortedList.insert. Only 3.6% of the specifications that

“survive” the invariant detection stage are reported.

a distance metric). SpecFuzzer tries to identify and remove such

assertions. As an example, consider the following assertions that

are produced by SpecFuzzer on our SortedList example:

all SortedList l: reach(this, next).has(l) ==>
l.elem <= l.next.elem

all SortedList l: !(reach(this, next).has(l) &&
l.elem > l.next.elem)

Both these assertions express the sortedness property on lists. The

equivalence of these assertions follows from De Morgan’s laws [40],

algebraic properties of integers, and the equivalence of boolean

connectives. To identify equivalent assertions and assertions that

are similar with respect to their ability to capture synthetic faults,

SpecFuzzer again uses mutation analysis. Two assertions will be

considered similar if they kill the same set of mutants, i.e., if the

are falsified on the same set of program faults. For example, the

two assertions above kill the same set of 2 mutants, together with

74 other assertions. SpecFuzzer uses this mutation-based notion

of assertion equivalence to partition the set of likely assertions

according to the mutants they kill. Moreover, from each partition,

SpecFuzzer selects a representative assertion. To do so, it proceeds

with the following heuristic: the assertions in each partition are

ranked by the number of times they fail when running the test

suite on the mutants (while they all kill the same mutants, some

assertions may fail a greater number of times, i.e., for more tests

in the test suite). The rationale is that assertions that fail the most

represent stronger properties, and thus they may subsume other

assertions in the partition. Considering the SortedList.insert ex-

ample, this mechanism enabled SpecFuzzer to reduce the number of

reported specifications from 437 specifications to 16. Figure 7 shows

the breakdown of assertions classified as irrelevant (Section 4.5.1),

equivalent (Section 4.5.2), and reported, for the example.

Artifact. SpecFuzzer is publicly available for download [5].

5 EVALUATION

To evaluate SpecFuzzer, we performed a series of experiments

focused on the following research questions:

RQ1 Is grammar-based fuzzing effective at generating relevant as-

sertions?

1014

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA F. Molina, M. d’Amorim and N. Aguirre

RQ2 Is the mutation-based selector successful for removing redun-

dant/irrelevant assertions?

RQ3 How does SpecFuzzer compare with alternative techniques?

RQ1 analyzes the effectiveness of using grammar-based fuzzing

as a technique to generate candidate assertions, with respect to a

ground truth. RQ2 evaluates the suitability of the mutation-based

assertion selection component of SpecFuzzer, at discarding weak

assertions, and prioritizing themost relevant. Finally, RQ3 compares

the effectiveness of SpecFuzzerwith the state-of-the-art techniques

GAssert [47] and EvoSpex [38].

5.1 Evaluation Subjects

The performance evaluation in previous work used indirect metrics

to compute precision and recall [38, 47]. In this paper, we compute

these measures directly, which requires having a ground truth for

comparison, for each evaluation subject. We took all the 34 Java

methods that were part of the evaluation of GAssert [47], and all 23

methods in the contract reproducibility evaluation of EvoSpex [38],

obtaining a data set composed of 57 subject methods. We studied

each method, and manually produced corresponding “ground truth”

assertions capturing the intended behavior of the corresponding

method. We made our best effort to be fair in the construction of

this ground truth, both in capturing as much of the ground truth

as possible, and in how the ground truth is modularized as a set of

properties (each ground truth specification is expressed as a con-

junction of assertions). They were all cross-checked by authors, and

when possible, their validity was verified using SMT (via Microsoft

IntelliTest). With this process, we obtained a total of 80 ground

truth assertions, for the 57 methods. Each obtained ground truth

specification has between 1 and 3 conjuncts. The details about these

assertions can be found in our replication package.

Notice that, since previous work focuses only on inferring post-

conditions, our evaluation also focuses on these program points, al-

though SpecFuzzer can infer assertions for various program points.

After obtaining the ground truth composed of 80 assertions, we

carefully examined each ground truth assertion, to determine if it

can be expressed in the assertion language of at least one of the

evaluated tools. Since 15 of the 80 assertions were not supported by

any of these tools, we discarded them5. After that, we also removed

methods that ended up without ground truth postconditions. This

results in 65 postcondition assertions, for 43 Java methods.

Each assertion within the 65 in the ground truth could be ex-

pressed in the assertion language of at least one tool. GAssert’s

language can express 28 of the 65; EvoSpex’s language can express

29 of the 65; and SpecFuzzer can express 41 of the 65. Although our

grammar supports all 65 assertions, when implementing support for

the grammar into Daikon’s assertion template instantiation, some

expressions are ignored by Daikon’s infrastructure (e.g., expres-

sions that require instantiating templates with objects of different

classes). There is no fundamental reason why these issues cannot

be resolved, but they demand substantial modifications in Daikon.

5Discarded assertions include complex trigonometric properties, vector cross product
constraints, assertions involving characters and strings, and conversions between
characters and hexadecimal encodings.

Table 3: Inferring assertions with grammar-based fuzzing.

Ground-truth #Reported #Detected %Detected

65 20,277 40 61.5

41 15,555 40 97.5

5.2 Experimental Setup

SpecFuzzer requires a test suite for the class under analysis, and

a set of mutants for this class. The test suite was generated using

Randoop [41], and the tool was instructed to generate a maximum

of 500 test sequences. Mutants were generated using Major [27],

with all supported mutation operators enabled. The fuzzer was run

until 2,000 different candidate assertions were generated (syntactic

duplicates were removed), for each subject class.

Regarding GAssert and EvoSpex, we followed the same method-

ology described in the corresponding papers [38, 47], using exactly

the same configuration parameters for the evolutionary processes

of each technique. Moreover, to account for the randomness of each

approach, for each of the 43 Java methods, we ran each of the tools

to infer postconditions a total of 10 times. All the results reported

in this section correspond to the averages of the executions.

We set a timeout of 90 minutes, for each execution of each tool.

All tools were run on an Intel Core i7 3.2Ghz, with 16Gb of RAM,

running GNU/Linux (Ubuntu 18.04). The detailed description of

how to reproduce the experiments in this paper is available in the

replication package site.

5.3 Effectiveness of Grammar-based Fuzzing

The effectiveness of grammar-based fuzzing in producing relevant

assertions is measured against assertions in the ground truth. The

experiment for RQ1 consisted in running SpecFuzzer on each sub-

ject, and analyzing the percentage of those assertions that the tool

was able to infer. Recall that the invariant selector uses a (mutation-

based) heuristic to discard assertions. As such, it may wrongly

discard relevant assertions. For that reason, to answer RQ1, we ran

SpecFuzzer with the invariant selector disabled.

We manually inspected the output of SpecFuzzer. More pre-

cisely, we manually analyzed the assertions that SpecFuzzer re-

ports to verify if they were present in the ground truth (and if the

ground truth assertions were present in the output as well). In some

cases, it was difficult to determine if a given assertion was equiva-

lent to a certain assertion in the ground truth. When the obtained

expressions allowed for it, we used an SMT solver via Microsoft

IntelliTest to check expression equivalence. More precisely, we pro-

duced C# programs whose branch conditions captured implication

and equivalence between output candidate assertions and ground

truth assertions, and used the dynamic symbolic execution tool

IntelliTest to check whether such expressions could be falsified.

Table 3 summarizes the results of the experiments for RQ1, with

respect to the overall ground truth (65 assertions) and the subset

of the ground truth that is actually supported by SpecFuzzer (as

we explained before, 41 out of the 65 are currently supported by

our implementation). We report the number of reported assertions,

the number of ground truth assertions detected by the tool, and

the percentage of ground truth assertions that were detected. If we

consider the language supported by our implementation, our tool

1015

Fuzzing Class Specifications ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: Performance of the Invariant Selector reducing as-

sertions.

Subject #G
#Reported Detected(%)

Red. (%)
Before After Before After

oasis.SimpleMethods 4 115 31 75 75 73
daikon.StackAr 8 2067 70 87.5 62.5 96.6
daikon.QueueAr 8 4699 152 50 50 96.7
math.ArithmeticUtils 1 4 2 100 100 50
math.FastMath 2 60 31 100 100 48.3
math.MathUtils 1 19 4 0 0 78.9
lang.BooleanUtils 5 49 12 100 100 75.5
guava.IntMath 1 314 46 0 0 85.3
tsuite.Angle 2 3 0 50 0 100
tsuite.MathUtil 3 22 13 33.3 33. 3 40.9
tsuite.Envelope 1 1094 27 0 0 97.5
eiffel.Composite 4 8696 42 75 0 99.5
eiffel.DLLN 3 137 29 100 100 78.8
eiffel.Map 6 140 22 16.6 16.6 84.2
eiffel.RingBuffer 5 1947 269 20 20 86.1
cozy.Polyupdate 3 382 119 66.6 66.6 68.8
cozy.Structure 2 153 21 100 100 86.2
cozy.ListComp02 2 62 5 0 0 91.9
cozy.MinFinder 1 17 2 100 100 88.2
cozy.MaxBag 3 297 78 100 100 73.7

TOTAL 65 20277 975 61.5 52.3 95.1
41 15555 618 97.5 82.9 96

correctly detects 97.5% of the assertions in the ground truth; if we

consider the language supported by at least one of the specification

inference tools, SpecFuzzer correctly detects 61.5% of the ground

truth assertions. These results confirm that grammar-based fuzzing

is effective in generating relevant assertions (as shown later on,

even when considering the 65 assertions in the ground truth, the

performance of fuzzing is comparable with state-of-the-art tools).

5.4 Performance of Invariant Selection

The invariant selector component of SpecFuzzer implements a

mutation-based heuristics to reduce the number of reported as-

sertions, discarding “weak” assertions (assertions that survive all

mutants), and selecting representatives among “similar” assertions

(assertions that kill the same mutants). RQ2 evaluates the perfor-

mance of this stage. The experiment in this case compares the

assertions obtained after invariant detection, with the assertions

that are preserved after running the invariant selection. The com-

parison measures assertion reduction, and the percentage of the

ground truth that is covered prior and after assertion selection.

Table 4 shows these results for all subjects, grouped by class

name. In each case we report assertions in the ground truth, re-

ported assertions before and after invariant selection, and percent-

age of the ground truth that is covered, again, before and after

invariant selection. Finally, we indicate the reduction rate obtained

by invariant selection (number of assertions after selection, with

respect to the number of assertions before selection).

The invariant selection results show that the mutation-based

heuristics in SpecFuzzer effectively reduces the number of reported

assertions, with a relatively small loss in property detection (with

respect to the ground truth). More precisely, the reported assertions

are reduced by ∼95%, and 6 out of the 40 correctly fuzzed assertions

are discarded (covering ∼52% of the ground truth of 65 assertions,

∼83% of the 41 ground truth assertions that the tool supports).

Table 5: Valid assertions discarded by the Invariant Selector.

Subject Assertion

StackAr.pop theArray[old(top)] == null
StackAr.topAndPop theArray[old(top)] == null
Angle.getTurn abs(res) <= 1
Composite.addChild c.value == old(c.value))

children == old(children)
ancestors == old(ancestors)

To understand the reasonswhywemiss 6 ground truth assertions

during invariant selection, we analyzed how these assertions are

classified by the detector. In all cases, the assertions are deemed as

irrelevant, i.e., they are not killed by any mutant. While the problem

may be a weak test suite, it becomes clear, when observing the

assertions, that there is no mutation operator able to kill these

assertions (the assertions are shown in Table 5). The problem is

not specific to Major (the mutation tool that we used); other tools

such as PIT do not have mutants able to kill these assertions either.

Let us provide two concrete examples. Assertion abs(res) <= 1 for

Angle.getTurn corresponds to a method whose result is either 0,

-1 or 1; no mutant makes this method return a value other than these.

In the Composite.addChild subject, assertion c.value == old(c.value)

would be violated if a mutant changed the value of c, a parameter of

the method; a mutation operator achieving this effect would have

to add a new sentence.

These observations suggest that we may improve the effective-

ness of our heuristics by extending Major with support for addi-

tional mutation operators, specific to our purposes.

5.5 Comparison of GAssert, EvoSpex and
SpecFuzzer

RQ3 compares SpecFuzzer with the state-of-the-art tools GAssert

and EvoSpex. The comparison is based on standard performance

metrics: precision, recall and f1-score. These metrics are computed

with respect to the ground truth that we produced for the evaluation

subjects, as follows. Given a set 𝐺 of ground truth formulas, the

precision of a set 𝐴 of assertions produced by a tool is computed

by determining the number of assertions in 𝐴 that are implied

by 𝐺 . Many assertions were trivially incorrect (not implied by the
ground truth), and were manually identified. In more complex cases,

(in)correctness was determined using IntelliTest. Once the set 𝐼 of
incorrect assertions in 𝐴 was determined, precision is computed

with the formula (#𝐴 − #𝐼)/#𝐴. To compute recall, we check the
number of formulas in 𝐺 that are implied by (𝐴 − 𝐼). Again, while
some cases were trivial to check manually, for instance, when a

ground truth formula was directly present in 𝐴 − 𝐼 , more complex
ones were confirmed using IntelliTest. Recall is then computed by

the formula #𝑁 /#𝐺 , where 𝑁 is the set of ground truth properties

implied by 𝐴 − 𝐼 .
Tools were run to infer assertions as described earlier in this sec-

tion, and the results are shown in Table 6, grouped by subject class.

Columns #M and #G show the number of methods in the subject and

the number of assertions in the ground truth, respectively. For each

technique we show the number of inferred assertions, the precision

and recall with respect to the ground truth, and the f1-score. We

1016

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA F. Molina, M. d’Amorim and N. Aguirre

Table 6: Precision, Recall and F1-Score of GAssert, EvoSpex and SpecFuzzer on the data set.

Subject #M #G
#Inferred Precision(%) Recall(%) F1-Score

GAssert EvoSpex SpecFuzzer GAssert EvoSpex SpecFuzzer GAssert EvoSpex SpecFuzzer GAssert EvoSpex SpecFuzzer

oasis.SimpleMethods 4 4 7 4 31 100 75 100 50 25 75 0.66 0.37 0.85

daikon.StackAr 5 8 5 6 70 100 83.3 87.1 37.5 37.5 62.5 0.54 0.51 0.72

daikon.QueueAr 5 8 8 12 152 100 91.6 61.1 37.5 25 50 0.54 0.39 0.54

math.ArithmeticUtils 1 1 1 0 2 100 100 50 100 0 100 1 0 0.66

math.FastMath 1 2 3 1 31 100 0 61.2 100 0 100 1 0 0.75

math.MathUtils 1 1 1 1 4 100 0 100 0 0 0 0 0 0

lang.BooleanUtils 2 5 2 2 12 50 100 83.3 0 0 100 0 0 0.9

guava.IntMath 1 1 3 3 46 100 66.6 97.8 100 0 0 1 0 0

tsuite.Angle 1 2 3 1 0 100 100 100 0 0 0 0 0 0

tsuite.MathUtil 1 3 3 1 13 100 100 84.6 33.3 0 33.3 0.49 0 0.47

tsuite.Envelope 1 1 3 4 27 100 100 18.5 0 0 0 0 0 0

eiffel.Composite 1 4 0 7 42 100 100 50 0 50 0 0 0.66 0

eiffel.DLLN 2 3 0 4 29 100 100 89.6 0 66.6 100 0 0.79 0.94

eiffel.Map 3 6 4 10 22 50 100 81.8 16.6 66.6 16.6 0.24 0.79 0.27

eiffel.RingBuffer 5 5 9 31 269 88.8 87 64.6 20 40 20 0.32 0.54 0.3

cozy.Polyupdate 2 3 3 3 119 66.6 100 1.6 33.3 66.6 66.6 0.44 0.79 0.03

cozy.Structure 2 2 2 2 21 100 100 95.2 100 100 100 1 1 0.97

cozy.ListComp02 2 2 0 4 5 100 100 83.3 0 100 0 0 1 0

cozy.MinFinder 1 1 0 2 2 100 100 100 0 100 100 0 1 1

cozy.MaxBag 3 3 8 33 78 100 84.8 94.8 0 66.6 100 0 0.74 0.97

Total-65 43 65 65 131 975 92.3 88.5 65.8 27.6 38.4 52.3 0.42 0.53 0.57

Total-SpecFuzzer 30 41 43 76 618 95.3 88 62.4 41.4 43.9 82.9 0.57 0.58 0.71

Total-GAssert 23 28 39 54 615 94.8 85.1 63.4 64.2 46.4 71.4 0.76 0.60 0.67

Total-EvoSpex 24 29 34 82 624 91.1 92.8 59.9 44.8 86.2 72.4 0.60 0.89 0.65

summarize the performance metrics for the overall ground truth

of 65 assertions, as well as in the context of assertions that are

supported by each particular tool (recall that GAssert supports in

its language 28 of the 65, EvoSpex 29 of the 65, and SpecFuzzer 41

of the 65). That is, rows Total-SpecFuzzer, Total-GAssert and Total-

EvoSpex show the performance of the techniques on the portion of

the ground truth that SpecFuzzer, GAssert and EvoSpex support,

respectively.

Inferred Assertions. If we focus on the number of inferred assertions,

GAssert and EvoSpex report fewer assertions than SpecFuzzer.

This is an advantage of the previous techniques, since the produced

output is easier to interpret. The main reason here is that both

techniques feature evolutionary processes, that aim at minimizing

the size of the assertions (this is an objective of both evolution

processes). SpecFuzzer is in this respect a simpler technique. Still,

the invariant selector component allows our tool to report a rea-

sonable number of assertions (22 per method, on average). This

number is still large, and calls for future work to further reduce

the number of assertions that SpecFuzzer reports. A possible ap-

proach is to exploit the mutation killing information to identify sub-

sumption/implication relations across assertions, so that only the

stronger assertions are reported. More precisely, a mutation-based

notion of implication would consider that an assertion 𝛼1 implies
another 𝛼2 if the set of mutants killed by 𝛼1 includes those killed
by 𝛼2. It is important to notice that as our assertion equivalence
definition and mutation-based identification of weak assertions are

approximate, so our current assertion reduction mechanism already

affects recall (Table 4 shows some concrete examples). More aggres-

sive reduction mechanisms, such as the above described based on

subsumption/implication, may affect recall even further. A way of

reducing reported assertions without compromising recall would

require precise equivalence/implication checking across assertions

(e.g., using SAT or SMT). Although this is a viable option, it may

considerably affect both efficiency and scalability, and thus the

generality of the technique.

Precision. Precision is the aspect in which GAssert and EvoSpex

outperform SpecFuzzer. Again, this has to dowith the fact that both

GAssert and EvoSpex incorporate mechanisms to actively reduce

the number of false positives (understood as invalid properties).

In particular, GAssert iteratively improves assertions using OA-

SIs [26], launching EvoSuite instances to search and detect defects

in the candidate assertions. EvoSpex uses a bounded-exhaustive

test generation technique with the aim of building a more thorough

test suite, able to discard more false positives. Both techniques

have disadvantages associated with these processes. GAssert pays

a price in efficiency (it is the most costly of the three); EvoSpex’s

bounded exhaustive test generation has scalability issues (due to

its bounded exhaustive test generation, it has difficulties scaling to

larger subjects).

SpecFuzzer borrows from Daikon the mechanism to deal with

precision. This issue can be dealt with by improving test suite

quality. We used Randoop in our experiments, which may be com-

plemented by additional automated test generation techniques.

Recall. Recall is the aspect where SpecFuzzer outperforms GAssert

and EvoSpex. This is the case for the overall ground truth, and for

1017

Fuzzing Class Specifications ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

most tool-specific ground truth subsets. EvoSpex has better recall

than SpecFuzzer for its specific language; it infers 5 assertions that

SpecFuzzer cannot. Out of these 5, 2 assertions are discarded by the

invariant selector (we described the reasons above). The remaining

three are supported by the grammar, but Daikon is currently unable

to instantiate these assertions (we also described this issue earlier

in the paper); that is, these three assertions are not part of the 41

that our prototype currently supports.

The recall improvement of SpecFuzzer over the other techniques

makes our tool more effective overall, as summarized by the f1-

scores. Notice that SpecFuzzer has a better f1-score compared with

previous techniques, for the overall ground truth, i.e., even taking

into account its precision limitations, and the current issues with

support for assertions.

5.6 Threats to Validity

Our experimental evaluation was performed on a data set built with

subjects from previous works. We needed to manually study these

subjects in order to define the ground truth assertions. To mitigate

the risk of errors, we checked these assertions using Microsoft

IntelliTest (previously named Pex [48]).

Threats to internal validity may arise from the randomness of the

each technique. To account for this issue, we evaluated SpecFuzzer,

GAssert and EvoSpex over multiple runs on each subject method,

and reported the averages. As further work, we plan to extend the

experimental evaluation to larger-scale Java projects, which will

likely imply abandoning the computation of performance metrics

over ground truths, due to the effort that would involve studying

larger projects and manually writing correct assertions.

6 RELATEDWORK

The use of assertions in programs has a long tradition. Originally,

assertions were used as part of approaches for software verification

[24], and soon were incorporated into programming languages, for

run-time checking [12]. Assertions are currently used for multiple

software development activities: program verification [11, 17, 19, 21,

22, 30], software design [36], bug finding [30, 31, 41, 48], program

comprehension and maintenance [45], program repair [16, 34, 43,

44], among others.

Specification inference is an active area of research. Besides the

techniques that infer contract assertions, with which we have com-

pared our technique in this paper [38, 47], other related approaches

exist, in particular for inferring test oracles [20, 49] (that is, asser-

tions that are valid only for specific unit tests), and other kinds of

specifications, such as behavioral descriptions [14, 28, 29]. These

techniques seek related but different objectives, and thus can com-

plement each other. In relation to test assertion inference, tools

and techniques for inferring test assertions produce specifications

that are difficult to generalize as contracts; contract specifications,

on the other hand, can be instantiated as test assertions, but may

capture weaker properties, compared to their test assertion coun-

terparts. Other related techniques attempt to produce assertions

from other sources, such as comments [9], or weaker forms of spec-

ifications, notably metamorphic relations [10]. Other related forms

of specification inference focus on different properties, e.g., behav-

ioral properties in linear-time temporal logic [32], or properties

that describe the temporal relationships between different methods

in an API [15]. As described in [32], these techniques that infer

behavioral properties can be complemented by Daikon [18] (the

dynamic invariant detection technique that our work is based on),

and therefore they can also profit from more expressive assertions.

Previous approaches have worked on improving Daikon’s effec-

tiveness. In particular, the work reported in [39] combines Daikon

with static verification, in a way that can be understood as an im-

provement to precision (static verification is employed to confirm

assertion validity). Our approach, on the other hand, is largely mo-

tivated by automatically equipping Daikon with more expressive

assertions, an issue not tackled in [39]. We are not aware of other

approaches that automatically address the expressiveness limita-

tions of Daikon. Fuzzing [50] is also a very active topic, with known

applications in security vulnerability discovery, and bug finding in

general. To the best of our knowledge, our approach is the first to

employ fuzzing to produce candidate formal specifications.

7 CONCLUSION AND FUTUREWORK

Formal class specifications have applications in various areas of

software development, including software design, bug finding, and

program comprehension. Techniques to automatically infer class

specifications have been proposed, but are limited, e.g., they support

a limited number of assertion types and are inflexible to change.

To fill this gap, we presented SpecFuzzer, a technique to infer

likely class specifications that combines static analysis, grammar-

based fuzzing, and mutation analysis. Our evaluation shows that

SpecFuzzer has superior performance in comparison with the state-

of-the-art tools GAssert and EvoSpex, especially considering recall.

Furthermore, the use of grammar-based fuzzing enables SpecFuzzer

to be easily adapted to different assertion languages.

This paper also opens various lines for improvement, as we have

identified some concrete limitations of our approach. The mutation-

basedmechanisms to cluster equivalent assertions and discard weak

assertions are affected by the absence of mutation operators, that

would allow our tool to detect some specific constraints. Other

more sophisticated mechanisms to deal with assertions not killed

by any mutant may also be incorporated (e.g., constraint-based

techniques). In general, the modular structure of our technique

enables us to improve specific components, e.g., test generation

(to improve precision), fuzzing (to consider more effective/efficient

fuzzing techniques), etc. Finally, implementation limitations in the

dynamic detection phase constitute a bottleneck for SpecFuzzer’s

assertion inference capabilities, that we plan to address in future

extensions of our tool.

ACKNOWLEDGEMENTS

This work is partially supported by INES (www.ines.org.br); CNPq

grant 465614/2014-0; CAPES grant 88887.136410/2017-00; FACEPE

grants APQ-0399-1.03/17 and PRONEX APQ/0388-1.03/14; and AN-

PCyT grants PICT 2017-2622 and PICT 2019-2050. FacundoMolina’s

work is also supported by Microsoft Research, through a Latin

America PhD Award.

Any opinions, findings, and conclusions or recommendations

expressed in this publication are those of the authors, and do not

necessarily reflect the views of the sponsoring entities.

1018

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA F. Molina, M. d’Amorim and N. Aguirre

REFERENCES
[1] 2021. Fuzzing Research Tools and their Relatedness. https://fuzzing-survey.org/
[2] 2021. Google’s AFL. https://github.com/google/AFL
[3] 2021. Google’s ClusterFuzz. https://github.com/google/clusterfuzz
[4] 2021. Google’s OSS-Fuzz. https://github.com/google/oss-fuzz
[5] 2022. SpecFuzzer implementation and replication package. https://sites.google.

com/view/specfuzzer
[6] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Alfredo Ciolek,

Marcelo F. Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato, Nicolás
Rosner, and Ignacio Vissani. 2013. Improving Test Generation under Rich Con-
tracts by Tight Bounds and Incremental SAT Solving. In Sixth IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST 2013,
Luxembourg, Luxembourg, March 18-22, 2013. IEEE Computer Society, 21–30.
https://doi.org/10.1109/ICST.2013.46

[7] Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing. Cambridge
University Press. https://doi.org/10.1017/CBO9780511809163

[8] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Trans. Software
Eng. 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[9] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,
The Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.). ACM, 242–253.
https://doi.org/10.1145/3213846.3213872

[10] Arianna Blasi, Alessandra Gorla, Michael D. Ernst, Mauro Pezzè, and Antonio
Carzaniga. 2021. MeMo: Automatically identifying metamorphic relations in
Javadoc comments for test automation. J. Syst. Softw. 181 (2021), 111041. https:
//doi.org/10.1016/j.jss.2021.111041

[11] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. 2005. Beyond
Assertions: Advanced Specification and Verification with JML and ESC/Java2. In
Formal Methods for Components and Objects, 4th International Symposium, FMCO
2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised Lectures. 342–363.
https://doi.org/10.1007/11804192_16

[12] Lori A. Clarke and David S. Rosenblum. 2006. A historical perspective on runtime
assertion checking in software development. ACM SIGSOFT Softw. Eng. Notes 31,
3 (2006), 25–37. https://doi.org/10.1145/1127878.1127900

[13] Marcelo d’Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and Michael D.
Ernst. 2006. An Empirical Comparison of Automated Generation and Classifica-
tion Techniques for Object-Oriented Unit Testing. In 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2006), 18-22 September 2006,
Tokyo, Japan. IEEE Computer Society, 59–68. https://doi.org/10.1109/ASE.2006.13

[14] Guido de Caso, Víctor A. Braberman, Diego Garbervetsky, and Sebastián Uchitel.
2013. Enabledness-based program abstractions for behavior validation. ACM
Trans. Softw. Eng. Methodol. 22, 3 (2013), 25:1–25:46. https://doi.org/10.1145/
2491509.2491519

[15] Guido de Caso, Víctor A. Braberman, Diego Garbervetsky, and Sebastián Uchitel.
2013. Enabledness-based program abstractions for behavior validation. ACM
Trans. Softw. Eng. Methodol. 22, 3 (2013), 25:1–25:46. https://doi.org/10.1145/
2491509.2491519

[16] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant, Jeff H.
Perkins, and Martin Rinard. 2006. Inference and Enforcement of Data Struc-
ture Consistency Specifications. In Proceedings of the 2006 International Sym-
posium on Software Testing and Analysis (Portland, Maine, USA) (ISSTA ’06).
Association for Computing Machinery, New York, NY, USA, 233–244. https:
//doi.org/10.1145/1146238.1146266

[17] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular
verification of code with SAT. In Proceedings of the ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2006, Portland, Maine,
USA, July 17-20, 2006, Lori L. Pollock and Mauro Pezzè (Eds.). ACM, 109–120.
https://doi.org/10.1145/1146238.1146251

[18] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Sci. Comput. Program. 69, 1-3 (2007), 35–45.
https://doi.org/10.1016/j.scico.2007.01.015

[19] Manuel Fähndrich. 2010. Static Verification for Code Contracts. In Static Analysis
- 17th International Symposium, SAS 2010, Perpignan, France, September 14-16,
2010. Proceedings. 2–5. https://doi.org/10.1007/978-3-642-15769-1_2

[20] Gordon Fraser and Andreas Zeller. 2010. Mutation-driven generation of unit
tests and oracles. In ISSTA. ACM, 147–158.

[21] Carlo A. Furia, Martin Nordio, Nadia Polikarpova, and Julian Tschannen. 2017.
AutoProof: auto-active functional verification of object-oriented programs. Int. J.
Softw. Tools Technol. Transf. 19, 6 (2017), 697–716. https://doi.org/10.1007/s10009-
016-0419-0

[22] Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F. Frias. 2010.
Analysis of invariants for efficient bounded verification. In Proceedings of the
Nineteenth International Symposium on Software Testing and Analysis, ISSTA 2010,

Trento, Italy, July 12-16, 2010, Paolo Tonella and Alessandro Orso (Eds.). ACM,
25–36. https://doi.org/10.1145/1831708.1831712

[23] Carlo Ghezzi, Mehdi Jazayeri, and DinoMandrioli. 2002. Fundamentals of Software
Engineering (2nd ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.

[24] C. A. R. Hoare. 2003. Assertions: A Personal Perspective. IEEE Ann. Hist. Comput.
25, 2 (2003), 14–25. https://doi.org/10.1109/MAHC.2003.1203056

[25] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: A
Grammar-Based Open Source Fuzzer. In Proceedings of the 9th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection, and Evaluation
(Lake Buena Vista, FL, USA) (A-TEST 2018). Association for ComputingMachinery,
New York, NY, USA, 45–48. https://doi.org/10.1145/3278186.3278193

[26] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. 2016. Test
oracle assessment and improvement. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany,
July 18-20, 2016, Andreas Zeller and Abhik Roychoudhury (Eds.). ACM, 247–258.
https://doi.org/10.1145/2931037.2931062

[27] René Just, Franz Schweiggert, and Gregory M. Kapfhammer. 2011. MAJOR: An
efficient and extensible tool for mutation analysis in a Java compiler. In 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011),
Lawrence, KS, USA, November 6-10, 2011, Perry Alexander, Corina S. Pasareanu,
and John G. Hosking (Eds.). IEEE Computer Society, 612–615. https://doi.org/10.
1109/ASE.2011.6100138

[28] Hong Jin Kang and David Lo. 2021. Adversarial Specification Mining. ACM Trans.
Softw. Eng. Methodol. 30, 2 (2021), 16:1–16:40. https://doi.org/10.1145/3424307

[29] Tien-Duy B. Le and David Lo. 2018. Deep specification mining. In Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, Frank Tip and Eric
Bodden (Eds.). ACM, 106–117. https://doi.org/10.1145/3213846.3213876

[30] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.
2005. How the design of JML accommodates both runtime assertion checking
and formal verification. Sci. Comput. Program. 55, 1-3 (2005), 185–208. https:
//doi.org/10.1016/j.scico.2004.05.015

[31] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and Arno Fiva.
2007. Contract driven development = test driven development - writing test
cases. In Proceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007, Ivica Crnkovic
and Antonia Bertolino (Eds.). ACM, 425–434. https://doi.org/10.1145/1287624.
1287685

[32] Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. 2015. General LTL
SpecificationMining (T). In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, Myra B.
Cohen, Lars Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 81–92.
https://doi.org/10.1109/ASE.2015.71

[33] Lisa (Ling) Liu, Bertrand Meyer, and Bernd Schoeller. 2007. Using Contracts and
Boolean Queries to Improve the Quality of Automatic Test Generation. In Tests
and Proofs - 1st International Conference, TAP 2007, Zurich, Switzerland, February
12-13, 2007. Revised Papers (Lecture Notes in Computer Science, Vol. 4454), Yuri
Gurevich and Bertrand Meyer (Eds.). Springer, 114–130. https://doi.org/10.1007/
978-3-540-73770-4_7

[34] Francesco Logozzo and Thomas Ball. 2012. Modular and verified automatic
program repair. In Proceedings of the 27th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, Gary T. Leavens
and Matthew B. Dwyer (Eds.). ACM, 133–146. https://doi.org/10.1145/2384616.
2384626

[35] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Trans. Software Eng. 47, 11 (2021), 2312–
2331. https://doi.org/10.1109/TSE.2019.2946563

[36] Bertrand Meyer. 1997. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall.

[37] Barton P. Miller. 2021. Fuzz Testing of Application Reliability. http://pages.cs.
wisc.edu/~bart/fuzz/

[38] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo F. Frias. 2021.
EvoSpex: An Evolutionary Algorithm for Learning Postconditions. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 1223–1235. https://doi.org/10.1109/ICSE43902.2021.
00112

[39] JeremyW. Nimmer and Michael D. Ernst. 2002. Automatic generation of program
specifications. In Proceedings of the International Symposium on Software Testing
and Analysis, ISSTA 2002, Roma, Italy, July 22-24, 2002, Phyllis G. Frankl (Ed.).
ACM, 229–239. https://doi.org/10.1145/566172.566213

[40] P. S. Novikov. 1964. Elements of Mathematical Logic. Reading, Mass., Addison-
Wesley Pub. Co.

[41] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In 29th International Conference on

1019

Fuzzing Class Specifications ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007. IEEE
Computer Society, 75–84. https://doi.org/10.1109/ICSE.2007.37

[42] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Chapter Six - Mutation Testing Advances: An Analysis and Survey.
Adv. Comput. 112 (2019), 275–378. https://doi.org/10.1016/bs.adcom.2018.03.015

[43] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas
Zeller. 2014. Automated Fixing of Programs with Contracts. IEEE Trans. Software
Eng. 40, 5 (2014), 427–449. https://doi.org/10.1109/TSE.2014.2312918

[44] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin C.
Rinard. 2009. Automatically patching errors in deployed software. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009, Jeanna Neefe Matthews and Thomas E.
Anderson (Eds.). ACM, 87–102. https://doi.org/10.1145/1629575.1629585

[45] Manoranjan Satpathy, Nils T. Siebel, and Daniel Rodríguez. 2004. Assertions
in Object Oriented Software Maintenance: Analysis and a Case Study. In 20th
International Conference on Software Maintenance (ICSM 2004), 11-17 September
2004, Chicago, IL, USA. IEEE Computer Society, 124–135. https://doi.org/10.1109/
ICSM.2004.1357797

[46] Todd W. Schiller, Kellen Donohue, Forrest Coward, and Michael D. Ernst. 2014.
Case Studies and Tools for Contract Specifications. In Proceedings of the 36th

International Conference on Software Engineering (Hyderabad, India) (ICSE 2014).
Association for Computing Machinery, New York, NY, USA, 596–607. https:
//doi.org/10.1145/2568225.2568285

[47] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè. 2020.
Evolutionary Improvement of Assertion Oracles. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020).
Association for Computing Machinery, New York, NY, USA, 1178–1189. https:
//doi.org/10.1145/3368089.3409758

[48] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Generation
for .NET. In Tests and Proofs - 2nd International Conference, TAP 2008, Prato,
Italy, April 9-11, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4966),
Bernhard Beckert and Reiner Hähnle (Eds.). Springer, 134–153. https://doi.org/
10.1007/978-3-540-79124-9_10

[49] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On learning meaningful assert statements for unit test cases. In ICSE
’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27
June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1398–1409.
https://doi.org/10.1145/3377811.3380429

[50] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2019. The Fuzzing Book. In The Fuzzing Book. Saarland University.
https://www.fuzzingbook.org/ Retrieved 2019-09-09 16:42:54+02:00.

1020

