
Goal-Conflict Likelihood Assessment based on Model Counting
Renzo Degiovanni

Universidad Nacional de Río Cuarto
Argentina

rdegiovanni@dc.exa.unrc.edu.ar

Pablo Castro
Universidad Nacional de Río Cuarto

and CONICET, Argentina
pcastro@dc.exa.unrc.edu.ar

Marcelo Arroyo
Universidad Nacional de Río Cuarto

Argentina
marcelo.arroyo@dc.exa.unrc.edu.ar

Marcelo Ruiz
Universidad Nacional de Río Cuarto

Argentina
mruiz@exa.unrc.edu.ar

Nazareno Aguirre
Universidad Nacional de Río Cuarto

and CONICET, Argentina
naguirre@dc.exa.unrc.edu.ar

Marcelo Frias
Instituto Tecnológico de Buenos Aires

and CONICET, Argentina
mfrias@itba.edu.ar

ABSTRACT
In goal-oriented requirements engineering approaches, conflict
analysis has been proposed as an abstraction for risk analysis. Intu-
itively, given a set of expected goals to be achieved by the system-to-
be, a conflict represents a subtle situation that makes goals diverge,
i.e., not be satisfiable as a whole. Conflict analysis is typically driven
by the identify-assess-control cycle, aimed at identifying, assessing
and resolving conflicts that may obstruct the satisfaction of the
expected goals. In particular, the assessment step is concerned with
evaluating how likely the identified conflicts are, and how likely
and severe are their consequences.

So far, existing assessment approaches restrict their analysis to
obstacles (conflicts that prevent the satisfaction of a single goal), and
assume that certain probabilistic information on the domain is pro-
vided, that needs to be previously elicited from experienced users,
statistical data or simulations. In this paper, we present a novel au-
tomated approach to assess how likely a conflict is, that applies to
general conflicts (not only obstacles) without requiring probabilistic
information on the domain. Intuitively, given the LTL formulation
of the domain and of a set of goals to be achieved, we compute goal
conflicts, and exploit string model counting techniques to estimate
the likelihood of the occurrence of the corresponding conflicting
situations and the severity in which these affect the satisfaction of
the goals. This information can then be used to prioritize conflicts
to be resolved, and suggest which goals to drive attention to for
refinements.

CCS CONCEPTS
• Software and its engineering → Requirements analysis;
Risk management; • Theory of computation → Modal and
temporal logics; Regular languages;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180261

KEYWORDS
Goal Conflicts, Risk Likelihood Assessment, Model Counting

ACM Reference Format:
Renzo Degiovanni, Pablo Castro, Marcelo Arroyo, Marcelo Ruiz, Nazareno
Aguirre, and Marcelo Frias. 2018. Goal-Conflict Likelihood Assessment
based on Model Counting. In Proceedings of ICSE ’18: 40th International
Conference on Software Engineering , Gothenburg, Sweden, May 27-June 3,
2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180261

1 INTRODUCTION
As many errors in software development are due to an incorrect
understanding of what the system should do, putting sufficient
emphasis in requirements analysis and specification is known to be
a major task toward successful software development projects [27].
There exist many reasons for requirements descriptions to be in-
adequate, including requirements being too ideal (e.g., assuming
that some aspect of the environment will behave unrealistically
benevolently with the system), requirements being too abstract and
thus leaving room for conflicting situations whose treatment goes
unspecified, missing some requirements altogether or leaving them
implicit, and even having inconsistent requirements that cannot
be satisfied as a whole [40]. The requirements analysis phase deals
precisely with these issues, and attempts to identify such problems
as early as possible, so that appropriate actions can be taken to
improve the software requirements prior to development.

A particular family of approaches toward requirements analy-
sis and specification are the so called goal-oriented requirements
methodologies [14, 45]. In such approaches, requirements are orga-
nized around goals, prescriptive statements that specify what the
system to be developed should do. These goals are subject to a num-
ber of activities (that are part of the requirements process); they
can be analyzed, decomposed, refined, assigned to agents for their
realization, and assessed in a number of different ways, including
assessments that evaluate their feasibility, and potential threats to
their satisfaction. Indeed, risk analysis deals precisely with this last
issue, in various ways, including goal-conflict analysis [41]. Goal-
conflict analysis aims at identifying conflicts, i.e., conditions that,
when present, make a set of otherwise consistent goals inconsistent,
as well as assessing and controlling such conflicts. Once a conflict
is identified, the assessment step is concerned with evaluating how
likely the identified conflict is, and how severe are its consequences.
So far, existing assessment approaches [4, 11–13, 43] restrict their

https://doi.org/10.1145/3180155.3180261
https://doi.org/10.1145/3180155.3180261

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden R. Degiovanni, P. Castro, M. Arroyo, M. Ruiz, N. Aguirre, and M. Frias

analyses to simpler kind of conflicts, called obstacles, and assume
that certain probabilistic information on the domain is provided.

While goal-conflict assessment can be naturally thought of as a
quantitative analysis that uses probabilities of conflicting situations
to analyze their impact in the overall requirements description,
many times one is unable to come up with the required probabili-
ties for such analyses. The reason is that the required probabilistic
information needs to be obtained prior to the goal-conflict analysis
from some trusted source, e.g., available statistical data, simula-
tions, or stakeholders whose expertise allows them to estimate
these probabilities. In many development projects, especially new
developments, such information may be unavailable, in particular
in early phases of requirements analysis. Thus, in these situations,
important requirements activities such as conflict prioritization and
goal refinement, that benefit from goal-conflict analysis, need to be
postponed or performed without such information.

In this paperwe propose an automated technique for goal-conflict
analysis. This technique is novel in two respects, namely, it does not
demand probabilistic information, and it applies to general conflicts
(as opposed to previous works that are restricted to goal obstacles).
The approach is based on automatically computing goal conflicts,
capturing these as formulas, and using model counting to estimate
their corresponding likelihood. More precisely, given an LTL for-
mulation of the domain and of a set of goals to be achieved, we com-
pute goal conflicts, and exploit string model counting techniques
to estimate the likelihood of the occurrence of the corresponding
conflicting situations and the severity in which these affect the
satisfaction of the goals.

Basically, from an LTL formula φ, we can generate a regular
expression eφ representing the prefixes accepted by φ. We can
then use a string model counter to compute the number of strings
(prefixes) of length k that are recognized by the regular expression
eφ , as an estimation of the number of models that satisfy φ. This
tool can compute the number of (finite) traces, for a given bound,
that satisfy the domain description, and to calculate how many of
these correspond to a particular conflicting situation, as a way of
estimating the likelihood of the conflict. This information can then
be used to prioritize conflicts to be resolved, and suggest which
goals to drive attention to for refinements. We develop a number of
case studies, with requirements models taken from the literature,
for which we perform automated goal conflict detection, and model
counting for their assessment.

The remainder of the paper is organized as follows. Section 2
introduces preliminary concepts necessary in subsequent sections.
Section 3 presents an illustrating example, that motivates our ap-
proach. Section 4 describes the approach in detail. In Section 5 we
evaluate our technique, by analyzing how model counting can be
used to estimate the likelihood of conflicting situations, in a number
of case studies. Finally, we discuss related work in Section 6, and
present our conclusions in Section 7.

2 BACKGROUND
2.1 Goal-Oriented Modelling and Conflict

Analysis
Among the various approaches to Requirements Engineering, goal-
oriented methodologies, and in particular the one presented in [40],

propose organizing the specification of how a system should behave
around a set of goals. These goals are prescriptive statements that the
system to be developed is expected to achieve in cooperation with
other agents (e.g., devices, users, etc, besides the software itself),
within a given domain. The domain is captured through domain
properties, descriptive statements about the problem world, such as,
e.g., natural laws relevant to the system. A goal model indicates,
through refinements, how higher-level goals can be achieved in
terms of simpler ones, eventually simple enough so that they can
be assigned to single agents for their fulfillment.

There exist many reasons for requirements descriptions to be
inadequate, including requirements being too ideal (e.g., assuming
that some aspect of the environment will behave unrealistically
benevolently with the system), requirements being too abstract
(and thus leaving room for conflicting situations whose treatment is
underspecified), missing some requirements altogether (or leaving
them implicit), and even having inconsistent requirements that
cannot be satisfied as a whole.

The process leading to the right requirements is not straightfor-
ward. Conflict analysis [40, 42] helps in improving requirements
specifications through three main steps: (i) identify as many con-
flicts as possible and relate them to (sets of) goals in the goal model,
(ii) assess how likely the identified conflicts are, and how likely
and severe are their consequences; and (iii) resolve those conflicts
whose likelihood deems them critical, by providing appropriate
countermeasures and, consequently, transforming the goal model.

Conflicts in goal models represent conditions whose occurrence
result in the loss of satisfaction of the goals, i.e., that make the goals
diverge. Formally, a set G1, . . . ,Gn of goals is said to be divergent
with respect to a set Dom of domain properties iff there exists a
boundary condition BC such that the following conditions hold [41]:

{Dom,BC,
∧

1≤i≤n
Gi } |= false (logical inconsistency)

{Dom,BC,
∧
j,i

Gj } ̸|= false, for each 1 ≤ i ≤ n (minimality)

BC , ¬(G1 ∧ . . . ∧Gn) (non-triviality)

Intuitively, the above conditions indicate that the boundary con-
dition is consistent with domain and captures a particular combi-
nation of circumstances that makes the goals conflicting. That is,
when the boundary condition BC holds, then the goals cannot be
simultaneously satisfied in Dom under any circumstances. Bound-
ary conditions represent a very general form of conflict, that in
particular subsume obstacles [43], a particular instance of conflicts
in which G only contains one single goal.

There are relevant approaches that can automatically identify
boundary conditions for conflicting goals written in Linear-Time
Temporal Logic (LTL). The pattern-based approach put forward
in [41] supports a limited set of patterns and only produces pre-
determined formulations of boundary conditions. The approach
introduced in [15] automatically produces boundary conditions
through the processing of an LTL tableaux for the goals and domain
properties. We will use the latter to identify boundary conditions,
whose likelihood will be assessed through model counting.

2.2 Linear-Time Temporal Logic
Linear-Time Temporal Logic (LTL) [34] is a logical formalismwidely
employed to formally state properties of reactive systems. This logic

Goal-Conflict Likelihood Assessment based on Model Counting ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

is used as the specification formalism in various tools for formal
analysis, including model checkers [26, 33], trace checkers [7] and
theorem provers [10], among others.

LTL assumes that time is linear, i.e., each instant is succeeded
by a single future instant. The syntax of LTL is formally defined
as follows. Given a set AP of propositional variables, LTL formulas
are inductively defined using the standard logical connectives and
temporal operators ⃝ and U, by the following rules: (i) every
p ∈ AP is an LTL formula, and (ii) if f1 and f2 are LTL formulas,
then so are ¬f1, f1 ∨ f2, f1 ∧ f2, ⃝ f1 and f1U f2. We consider the
usual definition for the operators 2 (always) and 3 (eventually) in
terms of ⃝,U and logical connectives [34].

2.3 LTL Model Counting
LTL formulas are interpreted over infinite traces of propositional
valuations. These traces are typically finitely-represented through
finite-state transition systems, i.e., they correspond to (infinite) words
over a given finite-state transition system. Thus, problems regarding
LTL are usually expressed in relation to these finite-state transition
systems. A known example is model checking [6], which is defined
as the problem of deciding, given a transition system T and an LTL
formula φ, whether all executions of T satisfy φ. Similarly, LTL
satisfiability can be defined as the problem of deciding, given an
LTL formula φ, if there exists a finite-state transition systemT with
at least one execution that satisfies φ. The model counting problem
for LTL is then the problem of, given an LTL formula φ, counting
how many transition systems satisfy φ. It is not difficult to see that,
if an LTL formula φ has a model, then it has an infinite number of
models (e.g., one can “unfold” a satisfying transition system T any
finite number of times, obtaining again a model of φ). Then, an LTL
formula can have either an infinite number of models (when it is
satisfiable), or no model at all (when it is unsatisfiable).

In order to obtain a more useful value, the LTL model counting
problem is usually restricted to bounded models. That is, given an
LTL formula φ and a bound k , the model counting problem consists
of calculating how many models of at most k states exist. Based on
known results from the area of bounded model checking [9], one can
typically restrict the analysis to certain kind of canonical models.
In [20], for instance, two different kinds of bounded models for LTL
are considered, namely k-word models and k-tree models. We will
concentrate in k-word models.

A word model can be represented by a finite sequence of states,
called the base of the word, such that the last state has a loop to some
previous state. These are called lasso traces [20], and Figure 1 shows
their general shape. Formally, given a setAP of atomic propositions,
a word model σ is a sequence of states s0, . . . , si−1, (si , . . . , sk)ω ,
such that, s0, . . . , sk ∈ 2AP ; in such a word model, there is a loop
from state k to state i .

s0 si sk

Figure 1: Shape of word models.

The straightforward approach one can use to count the num-
ber of word-models is through SAT-based Bounded Model Check-
ing [9]. For a given bound k , LTL formulas can be encoded as

propositional formulas [32]. The encoding is such that each satis-
fying valuation of the encoding corresponds to a lasso trace of k
states of the LTL formula. Then, a model counter for propositional
logic, e.g., RelSAT [28], cachet [37] and sharpSAT [38], can be used
for “indirect” LTL (bounded) model counting. An alternative ap-
proach, presented in [20], introduces an automata-based algorithm
for counting word models of safety LTL formulas. It proceeds in
two steps: first, it constructs a word automaton that accepts a finite
sequence of size k if it is a base for a word model of φ; and second, it
uses the word automaton to calculate how many loops are allowed
in order to count the number of word models of φ.

As explained in [20], both of the above approaches become im-
practical for relatively small values of k . On one hand, the reduction
to propositional counting leads us to propositional constraints with
thousands of variables that cannot be efficiently handled by avail-
able model counters. In case of the algorithm in [20], it is linear in
k , but double exponential on the size of the LTL formula, and only
applies to safety formulas.

2.4 String Model Counting
In order to perform a significant assessment on how likely a goal-
conflict is, we need the model counting analysis to scale to relatively
large values of k , and thus current LTL model counting technology
quickly reaches its limits. However, if we consider counting word
bases instead of word models, the problem can be very efficiently
solved by using string model counting. The problem of string model
counting consists of computing the number of strings of a given
length k , that satisfy a set of string constraints. For instance, given
a regular expression e = (a |b)∗, we may need to know how many
strings of, say, length 2, satisfy the constraint e (in this case, it is 4:aa,
ab, ba and bb). In this work, we use the recently introduced string
model counter ABC [5]. Given a setC of string constraints, ABC first
constructs an automaton that accepts all the strings satisfying the
constraints inC , and then produces a generating function that takes
a length bound k as input and returns the total number of strings of
length k , that are accepted by the automaton. We denote by #(C,k)
the result of evaluating in k the generating function produced from
the set of string constraints C . ABC checks the satisfiability of C
only once, when producing the generating function; after that,
we can evaluate the generating function on many different values
of k , without having to check for satisfiability again. This is the
main feature of ABC that allows us to scale to considerably large
values of k (e.g., 1000), in seconds. ABC supports a wide set of string
constraints, but we use only regular expressions.

2.5 Word Base Counting
Figure 1 shows the general shape of a word model. In particular,
the sequence of states s0, . . . , sk is the base of the word. Notice
that the word base can be thought of as a finite string of length
k that can be accepted by a regular expression. Then, if we can
encode an LTL formula φ into a setCφ of string constraints, we can
use ABC to compute #(Cφ ,k), the number of word bases of length k
satisfyingφ. For instance, for the LTL formula2(p∨q), our approach
produces the regular expression (a |b |c)∗, where characters a, b and
c characterise the 3 different possible ways of making p ∨ q true.
Thus, for k = 4, #((a |b |c)∗, 4) = 81, meaning that there are 81 word

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden R. Degiovanni, P. Castro, M. Arroyo, M. Ruiz, N. Aguirre, and M. Frias

bases that can be obtained from word models of at most 4 states.
Notice that each string we count may be the base of different word
models. For instance, we count the word base aaaa only once, but
there are 4 different word models with the same base but with
different loops (namely, (aaaa)ω , a(aaa)ω , aa(aa)ω and aaa(a)ω).

More precisely, given an LTL formula φ, we generate the regular
expression eφ by performing the following encodings: (1) we gen-
erate the Büchi automaton Bφ that recognises φ; (2) we generate
a Finite State Automaton Aφ from Bφ ; and (3) we generate the
regular expression eφ from Aφ . Intuitively, the Büchi automaton
Bφ recognises all the word models for formula φ. Recall that Büchi
automata only recognise infinite words, since their accepting con-
dition requires that some accepting state has to be visited infinitely
often in the word model. However, when we generate the finite
automaton Aφ from Bφ , the strings recognised by Aφ are finite
(its accepting condition requires only reaching some final state).
Because of that, the words recognised by Aφ are the bases of some
word model. Finally, we can convert Aφ to a regular expression eφ
that recognises exactly the same language, i.e., the word bases for
the LTL formula φ.

Along the process, we apply a minimization algorithm to the
Büchi automaton, to produce a regular expression that is more
compact and easier to analyse. All the conversions are done with
the tools LamaConv [2] and JFLAP [1]. Our experimental evaluation
shows that the translations can be performed very efficiently.

3 MOTIVATING EXAMPLE
Let us consider a simplified version of the Mine Pump Controller
(MPC) [30], to illustrate both the problem addressed and our pro-
posed approach. The MPC controls a pump in a mine. It communi-
cates with a sensor that detects when the water level is high, and a
sensor to detect the presence of methane in the environment. The
propositional variables hw, m and po are employed to represent
the facts that the water level has reached a high threshold, that
methane is present in the environment, and that the pump is on,
respectively. For this problem setting, the following assumption
and goals have already been elicited:

Assumption: PumpEffect
InformalDef: If the pump is on, the level of water decreases in at
most two time units.
FormalDef: 2(2≤2(po) → 3≤2(¬hw))

Goal: NoExplosion
InformalDef: The pump should be off when methane is detected.
FormalDef: 2(m → ⃝(¬po))

Goal: NoFlooding
InformalDef: The pump should be on when the water level is
above the high threshold.
FormalDef: 2(hw → ⃝(po))

The above assumption captures the presumed behaviour of the
pump actuator in relation to the environment: when the pump is
on, then at most in 2 time units the water level should decrease. The
goals prescribe how the pump should work when there is methane
present in the environment, andwhen thewater level is high, respec-
tively. Notice that while these goals can be simultaneously satisfied
(e.g., when the water level is never high or methane is never present

in the environment), they become logically inconsistent when, at
the same time, the water level is high and methane is present. Such
conflicting situations, that as we mentioned are called boundary
conditions, are many times subtle and difficult to identify, and at the
same time their finding is essential for the requirements process. In
this case, the mentioned boundary condition is BC1 : 3(hw ∧m),
and is one of the two boundary conditions automatically computed
using the tool presented in [15]. The other boundary condition is
less legible: BC2 : 3(hw∧¬m∧po∧⃝(¬hw∧¬po∨hw∧(m∨¬po))).

These boundary conditions capture different conflicting situ-
ations that lead us to violating the goals. To continue with the
identify-assess-control approach for goal-conflict analysis, we should
now attempt to assess how likely these conflicting situations are,
and in what degree they affect each of the goals. This information
is of course very useful for the engineer, as it can be used for clas-
sifying the boundary conditions according to their criticality, and
based on which goals are more affected, may suggest actions to the
engineer toward resolving the conflicts.

In an ideal situation, we may have statistical information regard-
ing the chances of sensing methane in the environment, or how
often the water level reaches the high threshold, enabling us to per-
form some probabilistic analysis as in [11], even with uncertainties
in the elicited values [13]. Our current approach, on the other hand,
tries to help the engineer when such information is unavailable.

A typical approach when no probabilistic information is avail-
able, is assuming that all events are equally likely, and performing
a probabilistic analysis under such hypothesis. For instance, under
such an assumption, we can use a quantitative analysis such as
probabilistic model checking [6], to analyze the likelihood of our
identified boundary conditions. This approach is however ineffec-
tive: both boundary conditions can be eventually reached with
probability 1, and thus are indistinguishable (in terms of severity)
by such technique.

As mentioned before, our technique is based on using string
model counting to assess the boundary conditions. We can start
by computing, for some given bound k , the number of word bases
that satisfy our domain properties (true for this example) and as-
sumptions (PumpEffect), denoted by #(PumpEffect,k). Notice that
by #(PumpEffect,k)we denote the number of strings of lengthk that
are recognised by the regular expression obtained from PumpEffect.
Then, we can compute how many of these finite traces have a state
where boundary condition BC1, and (separately) boundary con-
dition BC2, are reached (i.e., we compute #({PumpEffect,BC1},k)
and #({PumpEffect,BC2},k)). The quotient between the number of
word bases of length k that satisfy BC1 (resp. BC2) and the number
of all “valid” word bases (i.e., word bases that satisfy the domain
properties and assumptions) of length k , give us an estimation of
the likelihood of reaching the boundary condition BC1 (resp. BC2)
in k steps. Table 1 summarizes, for several values of k , the number
of word bases that satisfy the assumption, and in addition each of
the boundary conditions, for our mine pump model.

This first straightforward analysis already allows us to classify
the boundary conditions. Notice that, as the evaluation shows, the
chances of reaching BC1 tends to 0% as the value of k is increased
(despite of having good chances initially – 22%); while the chances
of reaching BC2 converges to %6.2. So, we can classify BC2 as being
“more likely” than BC1 in the long term, and the engineer should

Goal-Conflict Likelihood Assessment based on Model Counting ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Counting word bases of length k for the boundary conditions of the Mine Pump Controller.

k
#(Cφ ,k) 1 2 3 4 5 6 10 20 50 75 100 1000

#(PumpEffect,k) 9 64 448 3136 21888 152320 357462016 9.53E+16 1.81E+42 2.01E+63 2.43E+84 5.17E+843
#({PumpEffect,BC1},k) 2 12 54 306 1620 8586 6918210 1.27E+13 7.81E+35 1.12E+54 1.616E+72 9.62E+725

%BC1 0.22 0.19 0.12 0.1 0.07 0.06 0.02 0.001 0 0 0 0
#({PumpEffect,BC2},k) 0 5 28 192 1376 9472 22265856 5.94+15 1.12+41 1.31E+62 1.5E+83 3.76E+841

%BC2 0 0.08 0.062 0.061 0.063 0.062 0.062 0.062 0.062 0.062 0.062 0.062

prioritise BC2 in the search for mechanisms that would allow us to
reduce the chances of reaching BC2.

Our simple model counting approach also enables us to perform
some more detailed analyses. We know that when a boundary
condition is reached, then the goals are violated. Despite the fact
that we have already estimated that BC2 is more likely than BC1,
we do not know how much each boundary condition affects the
satisfaction of every particular goal. To analyze this, we can first
compute #({PumpEffect,NoExplosion},k), and then calculate how
many of these are consistent with each boundary condition, by
computing:

#({PumpEffect,NoExplosion,BC1},k),
#({PumpEffect,NoExplosion,BC2},k).

The quotient between the number of word bases of length k that
satisfy both the goal NoExplosion and the boundary conditions, and
the number of all word bases satisfying only the goal, give us useful
information to assess to what extent each of BC1 and BC2 affect
the satisfaction of goal NoExplosion (the same counting problem
is applied for goal NoFlooding). Table 2 shows how the boundary
conditions identified for our MPC example affect the satisfaction
of each particular goal.

Various issues become immediately apparent, as we analyze
Table 2. Regarding BC1 (i.e., 3(hw ∧m)), clearly this conflicting
situation affects the satisfaction of both goals to the same extent,
since the 0% that is observed as k is increased indicates that no trace
reaching BC1 will be able to satisfy the goals. Regarding BC2, it is
clear that it seriously affects both goals, but it affects to a greater
extent to goal NoExplosion: there is no way in which NoExplosion
can be satisfied when BC2 holds. Depending on the value that
the engineer assigns to each goal, this information may suggest
priorities in the actions to take to improve the model. For instance,
if guaranteeing NoExplosion is mandatory, then dealing with BC2
is critical, as it forbids the satisfaction of this goal.

4 THE APPROACH
Our approach for goal-conflict likelihood assessment receives a
goal-oriented requirements specification, composed of LTL formu-
las capturing the domain properties Dom, as well as goals G =
{G1, . . . ,Gn }. The process starts by identifying goal conflicts. If no
conflict is detected, there is nothing else to be done. On the other
hand, when some conflicts are detected, these are automatically
produced as a set BC = {BC1, . . . ,BCm } of boundary conditions,
characterizing different divergent situations between the goals in
the domain. Assuming that we have no statistical information regard-
ing the likelihood of events in the specification, we will estimate
the likelihood of the identified boundary conditions, and to what

extent these affect the goals, through model counting, as put for-
ward in the previous section. These estimations can be exploited
by the engineer to prioritize the treatment of conflicts, and to drive
attention to certain aspects of the specification, for its modification
or refinement. This of course is a task that requires ingenuity, and
the specific corrective actions to be taken to handle conflicts cannot
be derived solely from our likelihood estimation; we nevertheless
provide, for the sake of example, some requirements modification
and refinement cases, based on our analysis. Figure 2 depicts the
workflow followed by our approach.

Goal-Conflict
DetectionDom

{G1, . . . , Gn} no conflict

BC1

BCm

...

Goal-Conflict
Likelihood
Assessment

Dom

Conflicts
Priority

...
{G1, . . . , Gn}1. BCi

m. BCj

ABC LamaConv

conflicts

JFLAP

Figure 2: Overview of the approach.

Goal-Conflict Detection. Our approach starts by identifying goal
conflicts. While any approach to goal conflict identification would
fit our technique, including manual ones, we employ an automated
technique to compute boundary conditions, introduced in [15]. The
reasons are many-fold. Firstly, having an automated goal-conflict
detection approach allows us to start from goals and domain prop-
erties, and automate the whole process of prioritizing conflicts, and
assessing the effect of conflicts on goals satisfaction. Secondly, the
approach is more general than other techniques for identifying
boundary conditions, notably [41], that is restricted to certain pat-
terns. Thirdly, boundary conditions are more general, as conflict
descriptions, than other kinds of conflicts such as obstacles, thus
broadening the scope of our analysis.

Goal-conflict detection is not the main issue in this paper, and
we refer the reader to [15] for details on the tableaux-based goal-
conflict computation approach. We use the tool in a “black-box”
manner. We will simply remark that the tool is able to identify
boundary conditions from safety as well as liveness goals, as long
as the latter are expressed as reachability or response patterns [34].
So, we assume that the goals and domain properties are of these
kinds. Boundary conditions are always of the form 3φ, where φ is
a state property if the goals are safety goals, and is a persistence
formula 2φ ′, when the goals are liveness goals.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden R. Degiovanni, P. Castro, M. Arroyo, M. Ruiz, N. Aguirre, and M. Frias

Table 2: Loss of Goal Satisfaction for the Mine Pump Controller, in k-bounded word bases.

k
#(Cφ ,k) 1 2 3 4 5 6 10 20 50 75 100 1000

#({PumpEffect,NoExplosion},k) 9 48 224 1040 4864 22400 9990144 4.17E+13 3.05E+33 1.09E+50 3.89E+66 3.16E+662
#({PumpEffect,NoExplosion,BC1},k) 0 2 11 62 332 1580 667624 1.37E+12 6.82E+30 2.52E+46 9.32E+61 2.58E+622

%BC1 0 0.042 0.049 0.059 0.068 0.070 0.067 0.033 0.002 0 0 0
#({PumpEffect,NoExplosion,BC2},k) 0 0 2 8 52 266 146568 6.73E+11 4.95E+31 1.76E+48 6.31E+64 5.12E+660

%BC2 0 0 0.009 0.008 0.01 0.011 0.014 0.016 0.016 0.016 0.016 0.016
#({PumpEffect,NoFlooding},k) 9 48 248 1280 6504 32984 21633944 2.37E+14 3.14E+35 1.25E+53 5.02E+70 2.27+E704

#({PumpEffect,NoFlooding,BC1},k) 0 2 16 104 546 2722 1280356 3.92E+12 8.87E+31 1.19E+48 1.59E+64 6.25E+644
%BC1 0 0.042 0.065 0.081 0.084 0.083 0.059 0.016 0 0 0 0

#({PumpEffect,NoFlooding,BC2},k) 0 4 12 80 400 2084 1407600 1.55E+13 2.06E+34 8,23E+51 3.28E+69 1.49E+703
%BC2 0 0.083 0.048 0.062 0.061 0.063 0.065 0.065 0.065 0.065 0.065 0.065

Goal-Conflict Likelihood Assessment. This phase, concerned with
evaluating how likely the identified conflicts are and how severe
are their consequences, is the main phase of our approach, where
model counting takes place. The input for this phase are the LTL for-
mulation Dom of the domain, the set {G1, . . . ,Gn } of goals, and the
set {BC1, . . . ,BCm } of boundary conditions previously identified.

As explained in Section 2, given an LTL formula φ, we can gen-
erate a regular expression eφ , such that eφ is satisfiable iff there
exists a word-model whose word-base is recognised by eφ . Then,
we can feed this regular expression to a string model counter, in
our case ABC, to compute the number of strings that satisfy eφ . The
obtained number of instances indirectly represents the number of
word bases, that are part of some word model that satisfies the LTL
formula φ. We denote this last notion by #(eφ ,k), or, equivalently,
by #(φ,k). Recall that when the string constraint eφ is satisfiable,
ABC produces a generating function that can be used for solving
the counting problem for different values of k , without the need
of rechecking the satisfiability of eφ . This feature is of utmost im-
portance to scaling the analysis to sufficiently large values of k ,
allowing us to perform a meaningful assessment on how likely a
boundary condition is.

Recall that every boundary condition BCi ∈ BC has the canonical
shape 3φi (see above). Thus, the canonical shape of the regular
expression generated from BCi is:

e3φi = e∗¬φi eφi alph
∗

where alph represents any character from the alphabet of the reg-
ular expression. Intuitively, the regular expression e3φi recognises
strings that initially have a prefix in which φi does not hold (e∗¬φi),
then the eventuality φi is fulfilled (eφi), and from that point on any
character is recognised. Given e3φi , by removing the suffix alph∗,
we can obtain a regular expression e ′3φi that recognises the word
bases of the LTL formula 3φi :

e ′3φi = e∗¬φi eφi

Notice that e ′3φi forces the boundary conditionφi to hold exactly in
the last state of any string recognised by such a regular expression.

Thus, for each boundary conditionBCi ∈ BC , we start by generat-
ing the regular expression that characterises the domain properties
Dom, and the regular expression e ′3φi as we just explained. Then,
we perform the string model counting process for each one of the
following string constraints:

(A)#(Dom,k) (B)#({Dom, e ′3φi },k)

Intuitively, the model counting problem (A) gives us the number
of all possible word bases, of length k , that are part of some word
model that satisfies the domain properties Dom. On the other hand,
the model counting problem (B) gives us how many of the word
bases computed in (A), reach the boundary condition BCi , for the
first time, exactly in the k-th state. The reason for counting in
this way, as opposed to directly counting the traces that reach the
boundary condition BCi in any state, has to do with avoiding to
count several times what would be, essentially, the same violation.
For instance, assume an alphabet {p,q} of two propositional letters,
the boundary condition being represented by 3(p ∧ q), and a k
value of 3. If p ∧ q holds in the first state, then no matter what
happens later on in the trace, they will all be violations (a known
fact of safety properties as interpreted in [31] and formalized in
[3]). Then, we will be counting 16 different violations (4 different
valuations for the second state, times 4 different violations for the
third state), that are, in essence, all the same one. A more precise
way of counting violations is, as we propose, taking into account
the traces that reach the property of interest exactly in the k-th
state, as we do (or, even, calculating the sum of violations from 1
up to k , where, in each case, we stipulate that the property must be
first reached exactly at the last state).

Using the results of model counting as shown in (A) and (B), we
can compute the quotient (B)/(A), that represents the likelihood of
reaching, for the first time, the boundary condition BCi in exactly
k steps. In order to assess how this probability is modified as the
trace length is increased, we perform the above model counting
iteratively for increasingly large values of k , until some predefined
maximum value N is reached (or some other predefined stopping
criterion is reached, e.g, a timeout). These computed likelihoods
can be used to generate a progression of how the number of word
bases reaching BCi relate to the number of word bases satisfying
domain properties. These progressions generated for eachBCi ∈ BC
should be analysed by the engineer, to determine which boundary
conditions are more likely, and prioritize these for resolution.

The selection of the maximum value N should be large enough
to allow the model counting process to converge the likelihood
computation to some average value. In our experimental evalua-
tion we use 1000 as the maximum value for k . If the progressions
computed converge to some constant value, then the average of the
progressions can be used as a quantifiable value to classify which
boundary condition is more likely. For instance, in the Mine Pump
Controller, the progressions for BC1 converges to 0%, while the
progressions of %BC2 converges to 6.2%. This indicates that BC2

Goal-Conflict Likelihood Assessment based on Model Counting ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

has more chances to be reached than BC1 and the engineer should
prioritise BC2 in the search for mechanisms that would allow him
to reduce the chances of reaching BC2.

Goal-Conflict Severity Assessment. When a boundary condition
is reached, it is not possible to satisfy, simultaneously, all the goals.
Our above quantitative assessment based on model counting only
tells us how many violations of length k we have, over the total
number of possible “valid” executions (i.e., executions where do-
main properties hold) of length k . In order to assess the impact
of a boundary condition on a specific goal, we need to perform a
different analysis. Essentially, we would like to evaluate to what
extent a boundary condition contradicts a specific goal. In order to
analyze this issue, for each boundary condition BCi ∈ BC and goal
G j ∈ G, we perform the following model counting tasks:

(C)#({Dom,G j },k) (D)#({Dom,G j , e
′
3φi },k)

Intuitively, counting problem (C) counts the number of word
bases of length k that satisfy both the domain and goal G j . On the
other hand, model counting problem (D) counts how many of the
word bases that satisfy Dom andG j reach the boundary condition
BCi in the k-th step, for the first time. Then, the quotient (D)/(C)
characterizes the likelihood of reaching the boundary condition
BCi , exactly in k steps, without violating goal G j . Intuitively, the
smaller this number, the worse, since having a very small value
for (D)/(C) would mean that when the boundary condition BCi is
reached, there are higher chances of violating goalG j (i.e., BCi has
severe consequences on the satisfaction of goal G j).

Again, if we perform the above model counting tasks for in-
creasingly larger values of k , for each of the identified boundary
conditions and every goal, we can produce a progression, to facili-
tate the analysis of how the satisfaction of the goals is affected by
the boundary conditions. This information can help the engineer
in focusing on those goals that result to be affected to a greater
extent, thus suggesting which goals should receive more attention
for refinements.

5 EVALUATION
In this section we evaluate our proposal, on various demonstrating
examples from the literature on formal requirements specifications.
We compute goal-conflicts for each of them, following the approach
presented in [15], and then perform model counting experiments as
described in the previous section. All the experiments were run on
an Intel Core i5 4460 processor, 3.2Ghz, with 8Gb of RAM, running
GNU/Linux (Ubuntu 16.04). The scripts to run the experiments,
the specifications for all case studies, and a description of how to
reproduce the experiments, can be found in https://dc.exa.unrc.
edu.ar/staff/rdegiovanni/ICSE2018.html.

5.1 Case Studies and Conflict Detection
We evaluate our approach on the following demonstrating exam-
ples taken from the literature: the Mine Pump Controller [30], the
ATM [39], the London Ambulance Service (LAS) [21], the Rail Road
Crossing System [8], the TCP network protocol, and Telephone [18].
Table 3 summarizes the size of each specification, in terms of the
corresponding number of domain properties and goals, the number
of computed boundary conditions, and the time it took the tool

for the corresponding computation. Notice that only for three case
studies, namely, MPC, ATM and TCP, the tool produced more than
one boundary condition.

Table 3: Case Studies: Computation of BoundaryConditions.

Case Study Spec. Size BCs Time (sec.)
MPC 3 2 11
ATM 3 3 2.71
LAS 5 1 11.68
RRCS 4 1 0.50
TCP 2 2 1.31

Telephone 5 1 11.43

5.2 Goal-Conflict Likelihood Evaluation
We already presented in Table 1 the model counting based analysis
of conflicts for the Mine Pump Controller. Table 4 summarizes the
results of the same assessment, for the boundary conditions identi-
fied for each of the remaining case studies. This information is also
graphically depicted, as graphs plotting the number of models of
boundary conditions in relation to the models of the corresponding
domain properties, as the length trace is increased, in Figure 3.

Notice that, normally, one would expect that models of domain
properties grow exponentially as the trace length is increased. A
relatively unlikely boundary condition may cover an important
number of models for a smallk (where the overall number of models
for the domain properties is small), but as the trace length increases,
the ratio between models of the boundary condition and models of
the domain properties should exponentially decrease.

Let us focus, for instance, on the plot for the MPC case study.
Notice that the above observation applies to BC1: as trace length
is increased, the probability of reaching BC1 (i.e., 3(hw ∧m)) de-
creases exponentially. On the other hand, the probability of reaching
BC2 remains more stable, and in fact quickly becomes more likely
than BC1 as trace length grows. The engineer should prioritize the
treatment of BC2 over BC1 for resolution.

A similar observation applies to the ATM case study. Observing
the ATMboundary conditions plot, we notice that, although initially
the probability of reachingBC1 is much greater than that of reaching
BC2 and BC3, both BC1 and BC2 show an exponential decrease as
trace length grows (in fact, BC2 shows a very small probability of
occurring right from the beginning). On the other hand, notice
how the probability of reaching BC3 shows more stability than the
others’ as trace length is increased. Again, the engineer should
prioritize dealing with BC3 over BC1 and BC2.

Regarding the TCP case study, notice that both probabilities
remain stable as trace length grows, but BC1 is more likely than BC2
while the trace length is increased. The engineer should prioritize
dealing with BC1 over BC2.

For the other three case studies we have only one identified
boundary condition, so no prioritization is needed. Both RRCS and
LAS show an exponential decrease in the probability of reaching the
corresponding boundary condition as the trace length is increased.
In the case of Telephone, on the other hand, the probability shows
more stability, again calling for attention.

https://dc.exa.unrc.edu.ar/staff/rdegiovanni/ICSE2018.html
https://dc.exa.unrc.edu.ar/staff/rdegiovanni/ICSE2018.html

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden R. Degiovanni, P. Castro, M. Arroyo, M. Ruiz, N. Aguirre, and M. Frias

Table 4: Counting k-bounded word bases for the boundary conditions, for each case study.

Case Study k
ATM 1 2 3 4 5 6 10 20 50 75 100 1000 Time

#(Dom,k) 4 32 256 1536 10240 61440 97517568 1.20E+16 2.58E+40 4.87E+60 9.21E+80 8.07E+810 1s
#({Dom,BC1},k) 2 10 50 190 830 3226 1023346 2.48E+12 4.12E+31 4.30E+47 4.47E+63 1.94E+640 1s

%BC1 0.5 0.312 0.195 0.123 0.081 0.052 0.010 0,002 0 0 0 0 -
#({Dom,BC2},k) 0 0 2 8 64 256 425984 5.48E+13 1.17E+38 2.22E+58 4.19E+78 3.68E+808 1s

%BC2 0 0 0.008 0.005 0.006 0.004 0.004 0.004 0.004 0.004 0.004 0.004 -
#({Dom,BC3},k) 0 2 16 64 512 2560 4456448 5.74E+14 1.23E+39 2.32E+59 4.39E+79 3.85E+809 1s

%BC3 0 0.062 0.062 0.042 0.05 0.042 0.046 0.048 0.048 0.048 0.048 0.048 -
TCP 1 2 3 4 5 6 10 20 50 75 100 1000 Time

#(Dom,k) 9 64 512 4096 32768 262144 1073741824 1.15E+18 1.42E+45 5.39E+67 2.03E+90 1.23E+903 1s
#({Dom,BC1},k) 3 24 192 1536 12288 98304 402653184 4.32E+17 5.35E+44 2.02E+67 7.63E+89 4.61E+902 1s

%BC1 0.333 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 -
#({Dom,BC2},k) 2 16 128 1024 8192 65536 268435456 2.88E+17 3.56E+44 1.34E+67 5.09E+89 3.07E+902 1s

%BC2 0.222 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 -
LAS 1 2 3 4 5 6 10 20 50 75 100 1000 Time

#(Dom,k) 129 16384 2097152 2.68E+8 3.43E+10 4.39E+12 1.18E+21 1.39E+42 2.29E+105 1.09E+148 5.26E+210 1.62E+2107 1s
#({Dom,BC1},k) 90 3420 129960 4.93E*6 1.87E+8 7.13E+9 1.48E+16 9.33E+31 2.31E+79 7.21E+118 2.25E+158 1.43E+1580 1s

%BC1 0.697 0.208 0.062 0.018 0.005 0.001 0 0 0 0 0 0 -
RRCS 1 2 3 4 5 6 10 20 50 75 100 1000 Time

#(Dom,k) 32 320 3052 29196 278264 2647284 2.23E+10 1.51E+20 4.76E+49 1.83E+74 7.08E+98 9.10E+983 1s
#({Dom,BC1},k) 14 42 258 1686 11514 79026 2.10E+8 7.93E+16 3.85E+42 9.78E+63 2.48E+85 9.05E+855 1s

%BC1 0.437 0.131 0.084 0.057 0.041 0.0293 0.009 0.005 0 0 0 0 -
Telephone 1 2 3 4 5 6 10 20 50 75 100 1000 Time
#(Dom,k) 9 64 512 4096 32768 262144 1.07E+9 1.15E+18 1.42E+45 5.39E+67 2.03E+90 1.23E+903 1s

#({Dom,BC1},k) 0 3 24 192 1536 12288 5.03E+7 5.40E+16 6.69E+43 2.52E+66 9.54E+88 5.76E+901 1s
%BC1 0.0 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 -

�

���

���

���

���

���

� �� �� �� �� �� �� �� �� �� ���

��� ���

������
������
������

�

����

���

����

���

����

� �� �� �� �� �� �� �� �� �� ���

�������� ���

������
������

����

����

����

����

���

����

����

����

����

� �� �� �� �� �� �� �� �� �� ���

��� ���

������
������

�

����

���

����

���

����

���

����

���

����

� �� �� �� �� �� �� �� �� �� ���

���� ��

������

�

���

���

���

���

���

���

���

� �� �� �� �� �� �� �� �� �� ���

��� ��

������

�

�����

����

�����

����

�����

����

�����

����

�����

����

� �� �� �� �� �� �� �� �� �� ���

��������� ��

������

Figure 3: Plotting boundary condition models in relation to domain models, as trace length increases.

Let us now turn our attention to how the identified boundary
conditions affect the goals. The relationship between the number of
models of each goal, and the number of these models that reach the
corresponding boundary condition is graphically plotted in Figure 4
(due to space restrictions, the table is available in the site).

Let us first analyze the MPC case. As it can be seen in the plots,
both BCs seriously affects the satisfaction of the goals (recall that,

for the effect of boundary conditions on the satisfaction of the
goals, the smaller the number, the worse). In particular, notice that
boundary condition BC2, the most likely conflict, affects to a greater
extent the satisfaction of goal G1, compared to its effect on the
satisfaction of G2. So, we would recommend the engineer that goal
G2 (G(hw → ⃝(po))) is the one that should receive more attention,
in relation to boundary condition BC1 (3(hw ∧m)). A common

Goal-Conflict Likelihood Assessment based on Model Counting ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

mechanism for requirements improvement, in these situations, is
goal refinement by strengthening. In fact, the identified situation
leads to a well known action for this case study, present in the
literature, namely, solving the conflict by strengthening goal G2 to
get rid of the conflict. A solution is based on replacing the original
goal with: G ′

2 = G(hw ∧ ¬m → ⃝(po)).
Regarding the ATM case study, we previously indicated that

BC3 is more likely than the other boundary conditions. In addition,
given the plots in Figure 4, we can notice that boundary condition
BC3 affects more the satisfaction of goal G1 than the satisfaction
of goal G2. So then our approach would suggest the engineer to
focus on G1, in relation to conflict BC3, for refinements (a closer
look at the conflicting situation shows that this boundary condition
is enabled by a weak characterization of the domain in relation to
account unblocking, that directly affects G1).

With respect to the TCP example, we previously mentioned that
BC1 is more likely than BC2. The plots in Figure 4 indicate that BC1
affects more the satisfaction of goal G1, while BC2 strongly affects
more the satisfaction of goal G2. Thus, our approach would recom-
mend the engineer to focus on goalG1 when resolving conflict BC1,
and focus on goal G2 when resolving conflict BC2.

Now, regarding the RRCS case study, notice that BC1G2 is con-
stantly zero, indicating that, through boundary condition BC1, goal
G1 cannot be violated without violating G2 at the same time. Thus,
concentrating in resolving the conflict between BC1 and G2, i.e.,
trying to avoid violating G2, directly implies that the chances of
violating G1 are decreased.

In the case of Telephone, both goals are equally affected by
boundary condition BC1. In the case of LAS, boundary condition
BC1 affects to a greater extent goals G2 and G3, but there is no a
significant difference. All the goals are affected in a similar way,
suggesting that these should be resolved as a whole.

Regarding the scalability of our approach, notice that the ex-
periments use goal models for which conflicts are computed auto-
matically, and then use model counting on the obtained boundary
conditions. While model counting is efficient (the experiments scale
well on formula behaviours of up to 1000 steps or more), the com-
plete approach has a bottleneck in the conflict detection phase: it is
very costly, due to it being based on LTL tableau [15]. However, if
goals and conflicts are provided (e.g., computed previously, manu-
ally identified), then the model counting phase can be applied with
improved scalability compared to the complete approach. Dealing
with more complex case studies requires formal goal models with
pre-identified conflicts (most in the literature identify obstacles that
affect only one goal, deeming the analysis of conflict impact on
different goals less interesting).

Notice that, instead of using our approach, one might think of
using [11] with a uniform probabilistic distribution to estimate
conflicts likelihood. However, this is different to our approach. A
uniform distribution with [11] would apply to all executions of
the system, but our approach calculates likelihood using partial
executions. E.g., in a goal decomposition into two leaves, imposing
a uniform probability implies assigning 50% chances each leaf, over-
ruling other possible executions. In our approach, we use partial
executions to analyze in which of these we reach a BC, but other
possible partial executions besides the two cases are also considered.
See the site for further details.

6 RELATEDWORK
Detecting inconsistencies in requirements specifications is a very
challenging problem that has received significant attention [24, 25,
29]. Inconsistency management, i.e., how to deal with inconsisten-
cies in requirements, has also been the focus of several studies, in
particular on the formal side, e.g., [16, 17, 23, 36, 41]. Much work has
been done on the qualitative end, e.g., [22, 35], where the general
focus has been on identifying contradictory low-level requirements
and computing the degree to which goals are satisfied or denied
by them. In general, these approaches focus on the relation be-
tween non-functional and behavioural requirements. Our approach
tackles a problem of a finer granularity. We propose the use of an
approach for identifying inconsistencies, that are captured via the
generation of boundary conditions (i.e., declarative expressions)
that characterize different conflicting situations, and introduce a
novel approach to classify these according their likelihood and
severity on the goals. This information can then be used to guide
the engineer when goal refinements are required.

In the context of goal-oriented requirements engineering, most
of the work contributing to risk analysis [4, 11–13, 43] has been
restricted to obstacles, a particular kind of conflicts, making them
ineffective in situations that arise when the goals themselves are
conflicting. The works in [15, 41], on the other hand, focus on goal-
conflicts identification, but do not provide any mechanism to assess
the criticality of the computed conflicts. In contrast to these works,
our approach provides a more general support to risk analysis: it
builds upon a mechanism to compute general goals conflicts, not
only obstacles, and puts forward a quantitative approach to assess
how likely and severe the identified conflicts are.

A work particularly close to our approach is that presented
in [11], where a probabilistic framework to propagate obstacle
probabilities into the obstacle/goal model is proposed, that enables
one to calculate the loss of satisfaction of the obstructed goals. This
approach assumes that certain probabilistic information on the
domain is provided. More precisely, it assumes that the likelihood
of the leaf obstacle is known, having been previously elicited from
some experience users, statistical data or some other source. As
we mentioned earlier in the paper, our approach tries to help in
situation where such information is unavailable, and adopts a model
counting mechanism to assess the likelihood of a given identified
conflict being reached, and its impact on the goals.

Our work applies to specifications formally captured as LTL
formulas. One natural choice would be to resort to an LTL model
counter, as that presented in [20], for the purposes of this paper.
While the work in [20] deals with the kind of canonical LTL models
we are interested in, namely, word models, the approach is only able
to deal with safety properties, making it unsuitable for our purposes.
Another alternative is to translate the LTL formula to a proposi-
tional formula, given a bound k , and then exploiting some proposi-
tional model counter to, indirectly, count the number of instances of
the original LTL formula. Despite the fact that there exist various ef-
ficient propositional model counters, e.g., RelSAT [28], cachet [37]
and sharpSAT [38], the reduction to propositional counting leads
us to constraints with thousands of variables that cannot be effi-
ciently handled. For these reasons, in this work we use a recently
presented string model counter ABC [5], that has been demonstrated

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden R. Degiovanni, P. Castro, M. Arroyo, M. Ruiz, N. Aguirre, and M. Frias

�

����

����

����

����

����

����

����

����

� �� �� �� �� �� �� �� �� �� ���

�������� ��

�����
�����

�

����

����

����

����

����

����

����

����

����

� �� �� �� �� �� �� �� �� �� ���

�������� ��

�����
�����

�

����

���

����

���

����

���

����

� �� �� �� �� �� �� �� �� �� ���

��� ��

�����
�����
�����

�

����

���

����

���

����

���

����

� �� �� �� �� �� �� �� �� �� ���

��� ��

�����
�����
�����

����

����

���

����

����

����

����

���

����

����

����

� �� �� �� �� �� �� �� �� �� ���

��� ��

�����
�����

�

����

���

����

���

����

���

����

� �� �� �� �� �� �� �� �� �� ���

��� ��

�����
�����

�

����

���

����

���

����

� �� �� �� �� �� �� �� �� �� ���

���� �� ��� ��

�����
�����

�

���

���

���

���

���

���

���

���

� �� �� �� �� �� �� �� �� �� ���

��� ��� ��� ��� �� ��� ��

�����
�����
�����
�����
�����

�

�����

�����

�����

�����

����

�����

�����

�����

�����

����

� �� �� �� �� �� �� �� �� �� ���

��������� �� ��� ��

�����
�����

Figure 4: The effect of Boundary Conditions on Goal Satisfaction.

to be very efficient when applied to complex string constraints. The
scalability of ABC is related to the fact that it asks for satisfiability
only once, producing a generating function that can be evaluated
for big values of k very efficiently.

Model counting techniques have been recently used in novel
ways to provide quantitative information related to relevant soft-
ware engineering problems. For instance, in [19] a model count-
ing algorithm is defined with the aim of counting the number of
data structures that satisfy a given invariant, generalizing model
counting techniques that are restricted to linear constraints, and
enabling applications in probabilistic software analysis. In [44], a
model counter for linear constraints is used in the context of mu-
tation testing, to determine how difficult it is to kill a particular
mutant. We consider that our approach also presents an original
application of model counting techniques, in our case, to aid in the
construction of requirements specifications.

7 CONCLUSION
Getting a correct and sufficiently complete understanding of what a
software system to be developed should do is a crucial step toward
a successful development project, and the subject of challenging
research in software engineering. Among the many problems that
arise while producing a software requirements specification, iden-
tifying and dealing with inconsistencies in requirements, as early

as possible, has a major significance, both from a economical per-
spective, helping to avoid costly software reworks, and of course
in terms of its impact in software quality. In this paper we have
presented an approach that builds upon a technique for identify-
ing subtle conflicting situations in requirements specifications, the
so called goal conflicts, and proposes the use of modern model
counting techniques to assess the criticality of these conflicts, and
the severity of their impact in system goals’ satisfaction. While re-
lated techniques deal with this issue, they require the provision of
probabilistic information regarding the likelihood of some system
events, a knowledge that must be gathered from statistical data,
stakeholders’ experience or system simulations. Our approach, on
the other hand, is to the best of our knowledge the only one that is
able to quantitatively assess goal conflicts and their impact when
such information is unavailable. Indeed, our approach does not re-
quire a probabilistic model of the environment; instead, it computes
probabilities by counting how many models satisfy a conflicting
situation, among the models that satisfy the requirements assump-
tions, and similar kinds of calculations. We showed, through the
analysis of various case studies, that this information can be very
useful for the engineer, in tasks such as prioritizing the resolution
of certain goal conflicts, and directing attention to most affected
goals for their refinement.

Goal-Conflict Likelihood Assessment based on Model Counting ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Jflap. urlhttp://www.jflap.org.
[2] Lamaconv—logics and automata converter library. urlhttp://www.isp.uni-

luebeck.de/lamaconv.
[3] Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett.,

21(4):181–185, 1985.
[4] Dalal Alrajeh, Jeff Kramer, Axel van Lamsweerde, Alessandra Russo, and Se-

bastián Uchitel. Generating obstacle conditions for requirements completeness.
In 34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, pages 705–715, 2012.

[5] Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. Automata-based model count-
ing for string constraints. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I, pages 255–272, 2015.

[6] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, May 2008.

[7] Benjamin Barre, Mathieu Klein, Maxime Soucy-Boivin, Pierre-Antoine Ollivier,
and Sylvain Hallé. Mapreduce for parallel trace validation of LTL properties. In
Shaz Qadeer and Serdar Tasiran, editors, Runtime Verification, Third International
Conference, RV 2012, Istanbul, Turkey, September 25-28, 2012, Revised Selected
Papers, volume 7687 of Lecture Notes in Computer Science, pages 184–198. Springer,
2012.

[8] Adrian Beer, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer, and Stefan
Leue. Symbolic causality checking using bounded model checking. In Proc. of
the 22nd Intl. Sym. on Model Checking Software, pages 203–221, 2015.

[9] Armin Biere, Alessandro Cimatti, EdmundM. Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In Proceedings of the 5th International Conference
on Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99,
pages 193–207, London, UK, UK, 1999. Springer-Verlag.

[10] Nikolaj Bjørner, Anca Browne, Michael Colón, Bernd Finkbeiner, Zohar Manna,
Henny Sipma, and Tomás E. Uribe. Verifying temporal properties of reactive
systems: A step tutorial. Formal Methods in System Design, 16(3):227–270, 2000.

[11] Antoine Cailliau and Axel van Lamsweerde. A probabilistic framework for goal-
oriented risk analysis. In 2012 20th IEEE International Requirements Engineering
Conference (RE), Chicago, IL, USA, September 24-28, 2012, pages 201–210, 2012.

[12] Antoine Cailliau and Axel van Lamsweerde. Integrating exception handling in
goal models. In IEEE 22nd International Requirements Engineering Conference, RE
2014, Karlskrona, Sweden, August 25-29, 2014, pages 43–52, 2014.

[13] Antoine Cailliau and Axel van Lamsweerde. Handling knowledge uncertainty in
risk-based requirements engineering. In 23rd IEEE International Requirements
Engineering Conference, RE 2015, Ottawa, ON, Canada, August 24-28, 2015, pages
106–115, 2015.

[14] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. In SCIENCE OF COMPUTER PROGRAMMING, pages
3–50, 1993.

[15] Renzo Degiovanni, Nicolás Ricci, Dalal Alrajeh, Pablo F. Castro, and Nazareno
Aguirre. Goal-conflict detection based on temporal satisfiability checking. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 507–518, 2016.

[16] Christian Ellen, Sven Sieverding, and Hardi Hungar. Detecting consistencies and
inconsistencies of pattern-based functional requirements. In Proc. of the 19th
Intl. Conf. on Formal Methods for Industrial Critical Systems, pages 155–169, 2014.

[17] Neil A. Ernst, Alexander Borgida, John Mylopoulos, and Ivan J. Jureta. Ag-
ile requirements evolution via paraconsistent reasoning. In Proc. of the 24th
Intl. Conf. on Advanced Information Systems Engineering, pages 382–397, 2012.

[18] Amy P. Felty and Kedar S. Namjoshi. Feature specification and automated conflict
detection. ACM TOSEM, 12(1):3–27, 2003.

[19] Antonio Filieri, Marcelo F. Frias, Corina S. Pasareanu, and Willem Visser. Model
counting for complex data structures. In Model Checking Software - 22nd Inter-
national Symposium, SPIN 2015, Stellenbosch, South Africa, August 24-26, 2015,
Proceedings, pages 222–241, 2015.

[20] Bernd Finkbeiner and Hazem Torfah. Counting models of linear-time temporal
logic. In Adrian Horia Dediu, Carlos Martín-Vide, José Luis Sierra-Rodríguez,
and Bianca Truthe, editors, Language and Automata Theory and Applications - 8th
International Conference, LATA 2014, Madrid, Spain, March 10-14, 2014. Proceedings,
volume 8370 of Lecture Notes in Computer Science, pages 360–371. Springer, 2014.

[21] A. Finkelstein and J. Dowell. A comedy of errors: The london ambulance service
case study. In Proceedings of the 8th International Workshop on Software Spec-
ification and Design, IWSSD ’96, pages 2–, Washington, DC, USA, 1996. IEEE
Computer Society.

[22] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-oriented require-
ments analysis and reasoning in the troposmethodology. Engineering Applications
of Artificial Intelligence, 18(2):159 – 171, 2005.

[23] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited: Generating
statechart models from scenario-based requirements. In Formal Methods in
Software and Systems Modeling: Essays Dedicated to Hartmut Ehrig on the Occasion
of His 60th Birthday, pages 309–324, 2005.

[24] J.H. Hausmann, R. Heckel, and G. Taentzer. Detection of conflicting functional
requirements in a use case-driven approach. In ICSE, pages 105–115, 2002.

[25] Sebastian J.I. Herzig and Christiaan J.J. Paredis. A conceptual basis for inconsis-
tency management in model-based systems engineering. Procedia CIRP, 21:52 –
57, 2014.

[26] Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

[27] IEEE. Ieee recommended practice for software requirements specifications, 1998.
[28] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve

real-world SAT instances. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence
Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island., pages
203–208, 1997.

[29] M. Kamalrudin. Automated software tool support for checking the inconsistency
of requirements. In ASE, pages 693–697, 2009.

[30] J. Kramer, J. Magee, andM. Sloman. CONIC: An integrated approach to distributed
computer control systems. In IEE Proc., Part E 130, pages 1–10, 1983.

[31] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

[32] Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi A. Junttila. Simple
bounded LTL model checking. In Formal Methods in Computer-Aided Design, 5th
International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004,
Proceedings, pages 186–200, 2004.

[33] Jeff Magee and Jeff Kramer. Concurrency - state models and Java programs (2. ed.).
Wiley, 2006.

[34] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[35] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional
requirements: A process-oriented approach. IEEE Trans. Softw. Eng., 18(6):483–
497, June 1992.

[36] Tuong Huan Nguyen, Bao Quoc Vo, Markus Lumpe, and John Grundy. KBRE:
a framework for knowledge-based requirements engineering. Software Quality
Journal, 22(1):87–119, 2013.

[37] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi.
Combining component caching and clause learning for effective model counting.
In SAT 2004 - The Seventh International Conference on Theory and Applications of
Satisfiability Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings,
2004.

[38] Marc Thurley. sharpsat - counting models with advanced component caching
and implicit BCP. In Theory and Applications of Satisfiability Testing - SAT 2006,
9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,
pages 424–429, 2006.

[39] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral models
from scenarios. IEEE Trans. Software Eng., 29(2):99–115, 2003.

[40] Axel van Lamsweerde. Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, 2009.

[41] Axel van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing
conflicts in goal-driven requirements engineering. IEEE Trans. Software Eng.,
24(11):908–926, 1998.

[42] Axel van Lamsweerde and Emmanuel Letier. Integrating obstacles in goal-driven
requirements engineering. In Proceedings of the 20th International Conference on
Software Engineering, ICSE ’98, pages 53–62, Washington, DC, USA, 1998. IEEE
Computer Society.

[43] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented
requirements engineering. IEEE Trans. Softw. Eng., 26(10):978–1005, October
2000.

[44] Willem Visser. What makes killing a mutant hard. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, pages 39–44, 2016.

[45] Eric S. K. Yu. Towards modeling and reasoning support for early-phase require-
ments engineering. In Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering, RE ’97, pages 226–, Washington, DC, USA, 1997. IEEE
Computer Society.

	Abstract
	1 Introduction
	2 Background
	2.1 Goal-Oriented Modelling and Conflict Analysis
	2.2 Linear-Time Temporal Logic
	2.3 LTL Model Counting
	2.4 String Model Counting
	2.5 Word Base Counting

	3 Motivating Example
	4 The Approach
	5 Evaluation
	5.1 Case Studies and Conflict Detection
	5.2 Goal-Conflict Likelihood Evaluation

	6 Related Work
	7 Conclusion
	References

