
Specifying Event-Based Systems with a Counting
Fluent Temporal Logic

Germán Regis∗, Renzo Degiovanni∗‡, Nicolas D‘Ippolito†‡, Nazareno Aguirre∗‡
∗Departamento de Computación, FCEFQyN, Universidad Nacional de Rı́o Cuarto, Argentina

†Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina
‡Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

Abstract—Fluent linear temporal logic is a formalism for spec-
ifying properties of event-based systems, based on propositions
called fluents, defined in terms of activating and deactivating
events. In this paper, we propose complementing the notion of
fluent by the related concept of counting fluent. As opposed to
the boolean nature of fluents, counting fluents are numerical
values, that enumerate event occurrences, and allow us to specify
naturally some properties of reactive systems.

Although by extending fluent linear temporal logic with count-
ing fluents we obtain an undecidable, strictly more expressive
formalism, we develop a sound (but incomplete) model checking
approach for the logic, that reduces to traditional temporal logic
model checking, and allows us to automatically analyse properties
involving counting fluents, on finite event-based systems.

Our experiments, based on relevant models taken from the
literature, show that: (i) counting fluent temporal logic is better
suited than traditional temporal logic for expressing properties in
which the number of occurrences of certain events is relevant, and
(ii) our model checking approach on counting fluent specifications
is more efficient and scales better than model checking equivalent
fluent temporal logic specifications.

I. INTRODUCTION

The increasingly rich set of tools and techniques for soft-
ware analysis offers unprecedented opportunities for helping
software developers in finding program bugs, and discovering
flaws in software models. An essential part of these tools and
techniques is the formal specification of software properties.
Various formalisms and approaches have been proposed to
specify properties of different kinds of systems. In particular,
temporal logic has gained significant acceptance as a vehicle
for specifying properties of various kinds of software sys-
tems, most notably parallel and concurrent systems. Moreover,
temporal logic has also been employed in other domains, to
formally specify software requirements [20], [10], to express
properties of hardware systems, and other applications.

Temporal logics are more directly applicable to system
property specification when using a state based specification
approach, i.e., when one is able to refer to state properties.
Given the importance of event-based formalisms, such as
CSP [16], CCS [31] and FSP [26], which are convenient
in various specification settings in software engineering and
have influenced a number of modelling languages, including

This work was partially supported by ANPCyT PICT 2010-1690, 2011-
1774, 2012-0724, 2012-1298, 2013-0080, 2013-2341 and 2013-2624; UBA-
CYT 036 and 0384; CONICET PIP 11220110100596CO and by the MEALS
project (EU FP7 MEALS - 295261).

concurrent system specification and architecture description
languages [29], [1], some mechanisms have been proposed to
capture state properties in event-based systems. A particular
case, which we use as a basis in this paper, is that of fluents,
introduced in [14] in order to ease the use of temporal logic for
specifying properties of event-based systems. Event-based for-
malisms center specification around the notion of event, which
is used as a means to represent components behaviour and
interaction, e.g., by expressing sending or receiving messages,
invoking component services, etc; fluents allow one to capture
state propositions in these systems, in terms of activating and
deactivating events.

Despite the success of temporal logic as a mechanism for
specifying system properties, and in particular properties of
event-based systems, correctly capturing software properties
is still an obstacle for many developers. Even though specifi-
cation patterns [12] help in this respect, by proposing patterns
for properties commonly arising in practice, in many cases
the inherent expressiveness of the logic makes it difficult, or
even impossible, to express certain properties. In this paper,
we deal with this issue by proposing counting fluent temporal
logic, an extension of fluent linear temporal logic which allows
one to specify, more naturally, properties of reactive systems in
which the number of occurrences of certain events is relevant.
Counting fluent temporal logic complements the previously
described notion of fluent by the related concept of counting
fluent, which, as opposed to the boolean nature of a fluent
(which is a proposition), represents a numerical value that enu-
merates event occurrences. As we will show later on, counting
fluents enable one to capture more easily some properties
that often arise in reactive system specification. For instance,
counting fluents allow us to easily capture system properties
referring to the difference between send and receive events,
or the number of clock ticks since the last sent message,
in communicating systems. They also allow us to naturally
capture bounded liveness and related properties of discrete-
time event systems. Such properties typically require complex
nestings of temporal operators in linear temporal logic, while
we conveniently capture them using counting fluents.

It is generally accepted that a convenient language for speci-
fying system properties is not enough; such a language must be
accompanied by powerful analysis mechanisms. So, appropri-
ate automated tool support for our logic is a concern. We show
that although the introduced logic is an undecidable, strictly

more expressive, extension of fluent linear time temporal logic,
we can develop a sound (but incomplete) model checking
approach for the logic, that reduces to fluent temporal logic
model checking, enabling one to automatically verify counting
fluent temporal logic properties of finite event-based systems,
under user defined bounds for counting fluents. Thanks to our
proposed model checking approach, that is implemented in a
tool extending LTSA [19], the above described convenience of
our introduced formalism for property specification is achieved
without having to fully sacrifice automated analysability.

In order to evaluate our proposed formalism and model
checking approach, we performed various experiments, based
on relevant models taken from the literature. Our experiments
show that: (i) counting fluent temporal logic is better suited
than traditional fluent temporal logic for expressing properties
in which the number of occurrences of certain events is
relevant, and (ii) our model checking approach on counting
fluent specifications is more efficient and scales better than
model checking equivalent fluent temporal logic specifications.

The remainder of this article is organised as follows.
Section II introduces preliminary concepts necessary in the
paper. Section III presents some motivating examples that
evidence the difficulties in expressing properties such as
those mentioned before, and the suitability of counting fluents
to ease these properties’ specification. Section IV describes
Counting Fluent Temporal Logic in detail. We present the
model checking approach in Section V. In Section VI we eval-
uate our proposed formalism and model checking approach.
Finally, we discuss related work in Section VII and present
our conclusions in Section VIII.

II. BACKGROUND

Labelled Transition Systems (LTS) are typically used to
model the behaviour of interacting components, characterised
by states and transitions between them [26]. Formally, a LTS
P is a quadruple 〈Q,A, δ, q0〉, where Q is a finite set of states,
A is the alphabet of P (a subset of the universe Act of events),
δ ⊆ Q × A ∪ {τ} × Q is a labelled transition relation, and
q0 ∈ Q is the initial state. The semantics of a LTS P can be
defined in terms of its executions, i.e., the set of sequences
of events that P can perform, starting in the initial state and
following P ’s transition relation.

Finite State Processes (FSP) [26] is a process algebra,
whose expressions can be automatically mapped into finite
LTS, and vice versa. In FSP specifications, “->” denotes
event prefix, “|” denotes choice, and conditional choices can
be expressed by means of “when” clauses. Processes may
be indexed and parameterised, and can be composed in a
sequential (“;”) or parallel way (“||”).

Fluent Linear Time Temporal Logic (FLTL) is a variant
of LTL [27], [28], well suited for describing state properties of
event-based discrete systems (e.g., LTS) [14]. FLTL extends
LTL by incorporating the possibility of describing certain
abstract states, called fluents, characterised by events of the
system. Miller and Shanahan informally define propositional
fluents as time-varying properties of the world [30]. Formally,

Fl ≡ 〈I, T,B〉 defines a fluent Fl, where I, T ⊆ A, I∩T = ∅,
and B ∈ {true, false}. B indicates the initial value of Fl.
When any event in I occurs, the fluent starts to be true, and it
becomes false again when any event in T occurs. If the term
B is omitted then Fl is initially false. It is possible to combine
fluents and events in FLTL formulas. Specifically, every event
e has a fluent Fle associated, whose initial set of actions is
the singleton {e} and whose terminating set is A \ {e}.

A FLTL formula is a LTL formula where propositions are
fluents. Given a set Φ of fluents, well-formed FLTL formulas
are defined inductively using the standard boolean operators
and the temporal operators © (next) and U (strong until), in
the following way: (i) every fl ∈ Φ is a formula, and (ii) if φ
and ψ are formulas, then so are ¬φ, φ∨ψ, φ∧ψ, ©φ, φUψ.
We consider the usual definition for the operators 2 (always),
3 (eventually) and W (weak until) in terms of © and U , and
boolean connectives.

III. MOTIVATING EXAMPLE

We will start to motivate our work in this paper with the
Single Lane Bridge Problem (SLB), a modelling problem
introduced in [26] (cf. Section 7.2 therein). The problem
consists of a narrow bridge which only allows for a single
lane of traffic, which must be appropriately controlled to avoid
safety violations. As one may expect, a safety violation occurs
if two cars moving in different directions are on the bridge at
the same time. In order to simplify the presentation of the
problem, cars moving in different directions are represented
by different colours: red and blue cars.

const N = 4 // number of each type of car
range T = 0..N // type of car count
range ID = 1..N // car identities
BRIDGE = BRIDGE[0][0], //initially empty
BRIDGE[nr:T][nb:T] = //nr (nb) is the red (blue) counter

(when (nb==0) red[ID].enter ->BRIDGE[nr+1][nb]
| red[ID].exit ->BRIDGE[nr-1][nb]
|when (nr==0) blue[ID].enter ->BRIDGE[nr][nb+1]
| blue[ID].exit ->BRIDGE[nr][nb-1]).

NOPASS1 = C[1], C[i:ID] = ([i].enter ->C[i%N+1]).
NOPASS2 = C[1], C[i:ID] = ([i].exit ->C[i%N+1]).
CAR = (enter->exit->CAR). //car definition
||CONVOY = ([ID]:CAR || NOPASS1 || NOPASS2).
||CARS = (red:CONVOY || blue:CONVOY).
||SingleLaneBridge = (CARS || BRIDGE).

In this model, the CAR process specifies a simplified be-
haviour of a car with respect to the bridge. Process BRIDGE is
essentially what controls the access to the bridge: it prevents
cars in one direction entering the bridge when cars in the
opposite direction are already on the bridge. The NOPASS
processes strengthen the model, avoiding cars to pass over on
the bridge. Finally, the system is modelled as the composition
of the BRIDGE process with the instances of cars specified by
means of processes CONVOY and CARS.

The safety property associated with this model requires ex-
pressing that it should never be the case that red and blue cars
are on the bridge at the same time. To specify this property, as
put forward in [26], we need to express whether there is at least
one car of each colour on the bridge. Following the solution
presented in [26, Subsection 14.2.1], we take advantage of
the cars identifiers (ID) and define one fluent per car, namely

RED[ID] and BLUE[ID], to indicate whether the correspond-
ing car is on the bridge or not. That is, for instance for red cars,
we have RED[i:ID]=<red[i].enter, red[i].exit>.
Then, the required safety property is specified as follows:

ONEWAY = 2¬((RED[1] ∨ RED[2] ∨ . . . ∨ RED[N])∧
(BLUE[1] ∨ BLUE[2] ∨ . . . ∨ BLUE[N]))

Notice how, in this case, we are capturing the fact that
there is more than one car of a given colour on the bridge
through a (parameterised) disjunction, whose size depends
on the number of cars allowed in each direction (often, a
parameter of a bounded model abstraction of a real world
situation). We will come back to this property below.

To continue our motivating example, let us suppose that
we have to impose an additional constraint on the bridge
model. Besides the fact that, due to the bridge’s width, cars
circulating in different directions must be forbidden, assume
that the bridge has a maximum weight capacity. Exceeding
this capacity is dangerous, so the maximum number of cars on
the bridge must also be controlled. Notice that, although this
restriction was not part of the original model, such a constraint
is common in this kind of models (see, for instance, the
Ornamental Garden, Bounded Buffers, Producers-Consumers,
and Readers and Writers, from [26]). The controller for the
bridge must now forbid new cars entering the bridge when the
maximum capacity is met, which can be achieved as follows:
const C = 3 // maximum capacity of the bridge
BRIDGE = BRIDGE[0][0], //initially empty
BRIDGE[nr:T][nb:T] = //nr (nb) is the red (blue) counter
(when((nb==0)&&(nr<C)) red[ID].enter ->BRIDGE[nr+1][nb]
| red[ID].exit ->BRIDGE[nr-1][nb]
|when((nr==0)&&(nb<C)) blue[ID].enter->BRIDGE[nr][nb+1]
| blue[ID].exit ->BRIDGE[nr][nb-1]).

...

Now we would like to express the fact that this controller
ensures the bridge’s safety, i.e., that the number of cars on
the bridge never exceeds the bridge’s capacity. We may take
advantage of the previously introduced fluents that capture the
fact that a particular car is on the bridge to attempt to capture
this property. But, as the reader may realise, this property
is more difficult to specify, since the number of possible
scenarios to consider, taking into account that all interleavings
of entering and leaving events have to be considered, is in
principle infinite. Nevertheless, assuming that the previously
specified ONEWAY property holds, we can specify the bridge’s
weight safety as the following property CAPACITY SAFE:

2¬((RED[1] ∧ RED[2] ∧ RED[3]) ∨ (RED[1] ∧ RED[2] ∧ RED[4])∨
(RED[1] ∧ RED[3] ∧ RED[4]) ∨ (RED[2] ∧ RED[3] ∧ RED[4])∨

(BLUE[1] ∧ BLUE[2] ∧ BLUE[3]) ∨ (BLUE[1] ∧ BLUE[2] ∧ BLUE[4])∨
(BLUE[1] ∧ BLUE[3] ∧ BLUE[4]) ∨ (BLUE[2] ∧ BLUE[3] ∧ BLUE[4]))

As the reader may notice, this formula grows quickly as the
number of cars and the bridge capacity are increased. More
precisely, the number of disjunctions in this formula is in this
case

(
4
3

)
+

(
4
3

)
= 8, the sum of the combinatorial numbers

between the size of each convoy and the bridge’s capacity.
Notice that, even for small models, this kind of property,
clearly related to the need of “counting” (cars on the bridge,
in this case) in FLTL, can become tricky and complicated.

To address these problems, we propose to introduce the con-
cept of counting fluent. Suppose that we have the possibility of
defining numerical values, that enumerate event occurrences.
For instance, CARS ON BRIDGE may be a numerical value
that keeps count of the number of cars (red or blue) on
the bridge. This value is initially 0, is incremented at each
occurrence of an enter event, and is decremented at each
occurrence of an exit event. Using CARS ON BRIDGE, we
can express the weight safety property of the bridge in a more
natural way, as follows:

CAPACITY SAFE = 2(CARS ON BRIDGE < capacity+ 1)

Let us now go back to the ONEWAY property. Assuming
the definition of numerical values RED CARS ON BRIDGE
and BLUE CARS ON BRIDGE, that keep count of the red
and blue cars on the bridge, respectively, this property can be
specified as follows:

2¬(RED CARS ON BRIDGE > 0∧BLUE CARS ON BRIDGE > 0)

Our motivating example illustrates two issues. First, it
shows that situations in which “counting” events is useful
are common. Second, although some properties related to
the number of times certain events occur (or are allowed to
occur) may be expressed in LTL or FLTL, their specification
can be cumbersome. The reader familiar with the formalisms
used in this section may be aware that, in some cases, one
can simplify the specification of a property by introducing
in the model some property related elements (e.g., events
that are only enabled when a safety property is violated),
and resorting to these elements in the expression of the
property. This is a common workaround that, we believe,
should be avoided whenever possible, since it mixes the actual
model with property related elements, making it harder to
understand, and is less declarative, i.e., reasoning about the
property’s meaning requires dealing both with an operational
part (that incorporated in the model) and a declarative part
(that expressed in the logic).

As we will discuss later on, incorporating counting fluents
is not a mere syntactic sugar on fluent linear temporal logic.
In fact, the resulting logic is strictly more expressive than
FLTL. Its associated advantages are to ease the specification
of properties that involve counting events in some way (as
we have shown in this section), even enabling us to express
some properties not expressible in FLTL; and allowing for a
cleaner separation of concerns between models and properties,
as we will discuss in Section VI. This has a potentially positive
impact on understandability, especially taking into account
some modern approaches to system description that involve
operational component specifications, and constraints on their
concurrent interactions.

IV. COUNTING FLUENT LTL

To describe more naturally properties of reactive systems in
which enumerating the occurrences of certain events is rele-
vant, we introduce Counting fluent temporal logic (CFLTL),
an extension of fluent linear temporal logic [14], which
complements the notion of fluent by the related concept of

counting fluent. Similarly to fluents, counting fluents represent
abstract states in event-based systems whose values depend
on the execution of events. But, as opposed to fluents, which
are logical propositions, counting fluents are numerical values
associated with event occurrences.

Formally, a counting fluent cF l is a 4-tuple defined by three
sets (pairwise disjoint) of events and an initial numerical value,
as follows:

cF l ≡ 〈I,D,R〉 initially N

Set I is the incrementing set of cF l, i.e., when an event of
this set is executed, the value of cF l is incremented by one.
On the other hand, D represents the decrementing set of cF l,
and in this case the value of cF l is decremented when one
of these events occurs. Finally, R is the resetting events set,
whose execution changes the value of cF l to its initial value.

Counting expressions are logical expressions that relate
counting fluents, necessary to deal with their numerical nature.
They can be combined with logical and temporal operators to
specify CFLTL formulas. For instance, a counting expression
can compare the values of two of counting fluents, or query
for the value of a particular counting fluent. Formally, given a
set Ψ of counting fluents and cF l1, cF l2 ∈ Ψ, a valid counting
expression φ is defined as follows:

φ ::= cF l1 ∼ c | cF l1 ∼ cF l2 | cF l1 ∼ cF l2 ± c

where c ∈ N and ∼∈ {=, >,<}. Expressions that involve
just one counting fluent are called unary expressions, while
the others are called binary expressions. Notice that counting
expressions are boolean valued, they predicate on the values
of counting fluents at some point. Thus, counting expressions
can be used as base cases for formulas. We define the set of
well-formed CFLTL formulas as follows:

(1) every counting expression φ is a CFLTL formula;
(2) every propositional fluent f is a CFLTL formula; and
(3) if ϕ1 and ϕ2 are CFLTL formulas, then so are ¬ϕ1,

ϕ1 ∨ ψ2, ϕ1 ∧ ψ2, ©ϕ1, ϕ1Uϕ2, and the usual derived
definitions for 2ϕ1, 3ϕ1 and ϕ1Wϕ2.

In order to interpret CFLTL formulas, first we introduce an
interpretation for counting fluents. Let Ψ be a set of counting
fluents. An interpretation for Ψ is an infinite sequence over
NΨ, that for each instant of time, assigns a value for each
counting fluent. Given an infinite trace w = a1, a2, . . ., we
define the function Vi,w(cF l), that denotes the value of the
counting fluent cF l ∈ Ψ at position i ∈ N, as follows:

Vi,w(cF l) =

N if i = 0

N + (#r≤k≤iai ∈ I)− (#r≤k≤iai ∈ D) if i > 0

where r is the maximum l, with 0 ≤ l ≤ i, such that al ∈ R,
or 0, if ∀l : 0 ≤ l ≤ i : al 6∈ R. Function Vi,w assigns
to each fluent cF l its initial value at the beginning of the
execution, and the value at any other instant of time is obtained
by adding to its initial value the number of occurrences (from
its last resetting event occurrence) of its incrementing events,
and subtracting the number of decrementing events. Notice
that, similar to propositional fluents, our counting fluents are

close on the left and open on the right, since their values are
updated immediately when a relevant event is executed.

We consider the usual FLTL interpretation for propositional
fluents, logical and temporal operators [14]. Then, to obtain
a complete interpretation of CFLTL formulas, we define the
semantics for the counting expressions as follows:

• w, i |= cF l ∼ c⇔ Vi,w(cF l) ∼ c
• w, i |= cF l1 ∼ cF l2 ± c⇔ Vi,w(cF l1) ∼ Vi,w(cF l2)± c

where c ∈ N, ∼∈ {=, >,<} and the symbols ∼, + and −
of the right hand side represent the corresponding relation
or operation on natural numbers. Notice that the expression
cF l1 ∼ cF l2 can be defined as a particular instance of the
expression cF l1 ∼ cF l2 ± 0.

A. CFLTL vs. LTL

Let us compare CFLTL and LTL, in terms of expressiveness
and decidability. It is well known that the expressive power of
LTL is equivalent to that of counter-free Büchi Automata [11].
Intuitively, an automaton is counter-free if it cannot express,
for instance, if a symbol ‘a’ is repeated N times in an
infinite sequence. CFLTL then results to be strictly more
expressive than LTL, since such “counting” property can
straightforwardly be specified in CFLTL, by using a counting
fluent that counts the number of ‘a’s. Regarding decidability,
in [21] it is proven that, if LTL is extended with diagonal
constraints, i.e., expressions of the form]ϕ1−]ϕ2 ∼ k, then it
becomes undecidable. This kind of properties are also directly
expressible in CFLTL, turning it into an undecidable logic. In
the next section we develop a sound but incomplete model
checking approach for CFLTL, which shows that our greater
expressive power does not make us fully sacrifice automated
analysability.

V. A MODEL CHECKING APPROACH

CFLTL may be suitable to express properties of reactive
systems. However, its adoption would be seriously affected
by the lack of analysis mechanisms for the logic. Model
checking [8] provides an automated method for determining
whether or not a property holds on the system’s state graph,
that is available for FLTL. We study in this section how to
perform model checking of CFLTL properties over systems
described via LTS, as is the case of FLTL model checking
[14]. At this point, the undecidability of CFLTL leaves us
with two choices. We can search for a decidable fragment of
CFLTL, or we can keep the full expressive power of CFLTL,
and try to define an inherently incomplete (due to the logic’s
undecidability) model checking mechanism for the logic. We
follow the latter in this section.

In order to be able to define a model checking procedure, it
is important to guarantee finiteness of the model and properties
being analysed. Compared to FLTL, our only potential source
of unboundness may come from counting fluents. In order to
keep counting fluents bounded, we propose restricting them
with bounds and scopes, two kinds of numerical limits to
counting fluents, which we describe in detail below.

Given the limits to the counting fluents, our approach is
based on the definition of a process that monitors the occur-
rence of the events that update the states of the counting fluents
present in the property being analysed. A monitor process
activates propositional fluents that capture the truth value
of the fluent expressions of the properties formulas, when
relevant events occur. Finally, CFLTL formulas are encoded
as FLTL formulas, by replacing the counting expressions with
corresponding propositional fluents and considering states in
which monitors are updating fluent values as unobservable.

The described approach to CFLTL model checking allows
us to verify properties containing counting expressions using
LTSA [26]. Labelled Transition System Analyser (LTSA) is
a verification tool for concurrent systems models. A system
in LTSA is modelled as a set of interacting finite state
machines. LTSA supports Finite State Process notation (FSP)
for concise description of component behaviour, and directly
supports FLTL verification by model checking. Syntactically,
we propose counting fluents to be defined via the following
syntax (extending LTSA’s syntax for propositional fluents):

〈CFluentDef〉 ::= ‘ cfluent ’ 〈fluent name〉 〈fluent bounds 〉 ‘=’
‘<’〈incremental events set〉 ‘ , ’ 〈decremental events set 〉 ‘ , ’
〈reset events set 〉 ‘>’ ‘initially ’ 〈initial value 〉

〈fluent bounds 〉::= (‘[’ | ‘(’) 〈min value〉‘..’〈max value〉 (‘]’ | ‘)’)

where brackets and parentheses are used to indicate the kind
of limit, bound and scope, respectively, on the corresponding
counting fluent.

A. Bounds and Scopes

A bound is a limit that arises as part of modelling, and
comes from an actual constraint on the system being specified.
For instance, suppose that we are modelling a mobile phone
whose volume is restricted to be at most max. Relating
this value to events, clearly once max is reached, further
presses on the “increase volume” button have no effect on the
volume, and therefore can be ignored (at least regarding what
concerns the behaviour of the mobile phone). A counting fluent
associated with increasing the volume can then be restricted
by max as its largest possible value.

Unbounded counting fluents, on the other hand, must be
limited by scopes, to maintain the analysis being fully auto-
mated. As an example of an unbounded counting fluent, that
will have to be limited by a scope, consider an ACK in a model
of a TCP protocol (see the example presented in Section VI).
As opposed to the case of bounds, which are part of the model,
scopes are necessary due to analysis reasons.

When a lower (resp. upper) bound is reached, decrementing
(resp. incrementing) events are ignored, i.e., the value of
the counting fluent remains the same. When a lower (resp.
upper) scope is reached, analysis becomes inconclusive. That
is, exceeding a scope during analysis corresponds to reaching
fluent overflow states, and thus from models with reachable
“overflowed” states nothing can be inferred, neither the valid-
ity of the property, nor the construction of a counterexample.

B. Model Checking

Let Sys and φ be a FSP specification of a system and
a CFLTL property, respectively, and suppose that φ contains
fluent expressions. In order to perform the verification process
using LTSA, our approach generates a new FSP process Sys’
and a FLTL formula φ′, such that Sys’ incorporates the
monitor process that updates the values of the counting fluents
and φ′ encodes the propositional fluents associated to each
counting expression. The construction of Sys’ and φ′ ensures
that every counterexample for φ′ in Sys’ is a counterexample
for φ in Sys. Formally, Sys′ 6|=FLTL φ

′ ⇒ Sys 6|=CFLTL φ.
Below, we describe our approach, consisting of constructing

the monitor and the encoding formula φ′.
1) Monitors for Counting Fluents: Intuitively, a monitor

keeps track of the values of the counting fluents (within
its bounds/scopes) that appear in a counting expression. For
instance, in the case of a unary expression cF l ∼ c, the
monitor records the value of counting fluent cF l.
Sys’ is obtained by the parallel composition of the system

Sys, the monitor process CFMon and a synchroniser process
SYNCH. SYNCH is a scheduler process that avoids the inter-
leaving between the events of the system and the updating
monitor events, as depicted in the Fig. 1.

The specification of SYNCH is shown in Fig. 2, where Evs
is the set of all system events, MonEvs is the set of all events
of Sys which are monitored, CfEvs is the set of updating
events of the CFmon process, and ko,ok are events of the
monitor indicating that the update process is being carried out.

System
Monitor

Evse ;ko
CfEvse

ok
Evse

Fig. 1. Behavioural view of Sys’.

SYNCH = ({Evs\MonEvs} ->SYNCH | MonEvs ->ko ->CFSYNCH),
CFSYNCH = (CfEvs ->CFSYNCH | ok ->SYNCH).

Fig. 2. FSP spec. for SYNCH.

Basically, the monitor considers the system’s events in-
volved in the formula φ being verified. The monitor process
contains one parameter for each counting fluent appearing in φ.
The process body is composed of cases (choices) considering
monitored events of the system and, as guards, conditions
regarding values of the corresponding counting fluents. Each
case triggers a sequence of updating events, ending with the
ok event indicating that the updating process was completed.

The new values for the counting fluents (parameters of the
monitor), are calculated in terms of the membership of the
event to the incrementing, decrementing or resetting event sets
of the corresponding counting fluent definitions.

In case some parameter is in a boundary situation, i.e., when
the counting fluent value reaches its lower (upper) limit, the
process case has one of two possibilities depending on the kind
of limit. If the limit is a scope, we trigger the fluent overflow

event; otherwise, i.e., the limit is a bound, we maintain the
expression value on its lower (upper) bound.

Note that for every event of the original system, the monitor
process has cases whose condition guards’ disjunction is al-
ways true, i.e., we consider all their possibilities. By extending
the alphabet with the events not considered for fluent value
update, this situation ensures that the process is non-blocking
with respect to the original system behaviour Sys.

The additional cost introduced by the monitoring task in
Sys’, depends on the formula to be analysed. In terms of
state space, it is in the worst case the product between the
number of monitored system events MonEvs and the size of
the monitor process CFmon, all possible combinations of the
counting fluent values.

2) Encoding CFLTL formulas: Due to unbounded count-
ing fluents, CFLTL model checking may return one of the
following answers: (i) false, when a counterexample is found
within the provided scopes, (ii) true, when the property has
been proven to hold within the scopes and no fluent overflow
was reached, and (iii) maybe, no counterexample was found
within the scopes and a fluent overflow state was reached.

In order to verify a CFLTL formula φ using LTSA, we
encode it as a FLTL formula φ′ which captures the truth values
of the counting fluent expressions with propositional fluents.
Thus, for each counting fluent expression we define a propo-
sitional fluent which is activated by the event (update value)
of the monitor that satisfies the expression. As an example, if
an expression has the form cF l ∼ c, then its corresponding
propositional fluent is defined by: ≡ 〈ε[∼ c], ε[� c]〉.

Notice that there exist some states in Sys’ in which φ′

must not be evaluated, namely, when the monitor is updating
the counting expression values or a fluent overflow state
has been reached. To avoid the analysis on these states, we
define the notion of observable states as those that satisfy
OBS ≡ OK∧¬F_overflow, where the fluent F_overflow
indicates that a counting fluent has overflowed. With this
notion, the last step of the construction of φ′ is based on the
translation introduced in [24] to guarantee the exclusion of the
non-observable states in the analysis of the validity of φ in a
model. For instance, if φ = 2ϕ, then φ′ = 2(OBS→ ϕ).

In order to illustrate our model checking process, let us
consider the specification of the SLB problem presented in
Section III, and the SAFE CAPACITY property to be verified.
We define the counting fluent CARS ON BRIDGE as follows:

cfluent CARS_ON_BRIDGE [0..C+2)=
< { red[ID].enter,blue[ID].enter },

{ red[ID].exit,blue[ID].exit }, {} > initially 0

where C is the constant representing the capacity of the bridge.
The monitor process generated for the formula is:

CFmon = CFmon_B[0], CFmon_B[i:0..C+2] =
(when (i<C+2) {red[ID].enter,blue[ID].enter}

-> carsOnBridge[i+1] ->ok ->CFmon_B[i+1]
| when (i>=C+2) {red[ID].enter,blue[ID].enter}

-> fluent_overflow ->ok ->CFmon_B[C+2]
| when (i>0) {red[ID].exit,blue[ID].exit}

-> carsOnBridge[i-1] ->ok ->CFmon_B[i-1]
| when (i<=0) {red[ID].exit,blue[ID].exit}

-> carsOnBridge[i] ->ok ->CFmon_B[0]).

Finally, the encoding formula (C instantiated with value 2)
and the propositional fluents capturing the values of the
corresponding counting expression, are the following:
fluent CARS_ON_BRIDGE_LESS_3 = <carsOnBridge[0..2],

carsOnBridge[3..4]> initially True
fluent OK =<ok,ko> initially True
assert SAFE_CAPACITY=[]((OK &&!F_overflow)

->CARS_ON_BRIDGE_LESS_3)

3) Verification: Suppose that the encoding formula φ′ was
successfully verified over system Sys’, i.e., no counterexam-
ple was found within the user provided limits for counting
fluents. Then, our approach proceeds to check if Sys’ can
reach an overflowed state, analysing the formula
2(¬F overflow). If it is verified over Sys’, i.e., the event
fluent_overflow is never executed, then the scopes are
big enough to cover the whole state space of the system, so no
counterexample of φ′ exists. That is, our approach guarantees
in this case the validity of property φ in Sys, and returns yes
to the verification problem. On the other hand, if an overflowed
state is reached, our approach answers maybe indicating that
no counterexamples were found in the state space explored,
but such space is not the whole state space of the system (a
fluent overflow is reachable). This situation may be solved by
increasing the scope.

Our model checking approach is supported by the following
lemmas. Given a set of events Evs and A ⊂ Evs, let us
denote by |A the reduction function such that, given a trace
σ over Evs, σ |A returns the trace obtained by ignoring
the occurrences of events e ∈ A in σ. Moreover, let ΓSys

and ΓSys’ be the sets of execution traces of the LTS of
processes Sys and Sys’, respectively. Consider that set CFset
contains all events performed by the monitor CFmon. Then,
the following lemmas hold.

Lemma 5.1: For every σ ∈ ΓSys, there is a σ′ ∈ ΓSys’ such
that σ = σ′|CFset

.
Lemma 5.2: Let σ′ ∈ ΓSys’ and ϕ be a counting fluent

expression. Then, for every position i: σ′, i |= (OBS∧flϕ)⇒
σ′, i |= ϕ.

Lemma 5.2 expresses that, within the bounded situations
described earlier in this section, the truth value of a counting
fluent expression is captured by the corresponding proposi-
tional fluent generated over the monitored system. Due to
space restrictions, these lemmas’ proofs are not reported here.

For a more detailed description of the model checking
process, we refer the reader to the technical report available
at [9]. An extension of LTSA that supports CFLTL and
implements our model checking approach is available at [19].

VI. EVALUATION

In this section we evaluate our proposal answering these
two main research questions:
RQ1: is counting fluent temporal logic better suited than
traditional fluent temporal logic for expressing properties in
which the number of occurrences of certain events is relevant?
RQ2: how efficient is our model checking approach with
respect to model checking equivalent fluent temporal logic
specifications?

In order to answer these questions, first we present several
examples from the software engineering literature where the
need of counting events arises and is addressed, in our opinion,
unsatisfactorily. We show for each one, that counting fluents
are well suited to formalise properties in which the occurrences
of certain events must be measured, and allows for a cleaner
separation between the behavioural models and the required
properties, that otherwise would be tangled together to support
verification.

We evaluate the quality of CFLTL specifications with re-
spect to two metrics, succinctness [15] and modifiability [3]. To
assess succinctness and modifiability we consider properties
taken from the case studies and evaluate how concise CFLTL
formulas are with respect to their original FLTL counter-
parts, and evaluating the complexity of introducing reasonable
changes into the original specification, and the one developed
by us in CFLTL.

Finally, we evaluate our model checking approach on sev-
eral case studies that involve counting fluent specifications, un-
der different configurations, and compare its efficiency against
model checking equivalent fluent temporal logic specifications.

Elevator: In [12], the following informal requirement for
an elevator controller is mentioned: “Between the time an
elevator is called at a floor and the time it opens its doors at
that floor, the elevator can arrive at that floor at most twice.”
This property was formalised using LTL, as follows:

No Ignore Twice = 2((call ∧3open)→
((¬atfloor ∧ ¬open) U(open ∨ ((atfloor ∧ ¬open) U
(open∨((¬atfloor∧¬open) U(open∨((atfloor∧¬open) U
(open ∨ (¬atfloor U open))))))))))

Dwyer et al. argued that it is really difficult to convince oneself
that this property captures exactly what is wanted. In order to
capture this property, we define the counting fluent ATFLOOR,
that counts the occurrences of the atfloor signal, after a
user called the elevator, and specify the property through a
CFLTL formula:

ATFLOOR ≡ 〈{atfloor}, {}, {call}〉 initially 0
No Ignore Twice = 2((call∧<>open)→ (ATFLOOR ≤ 2 U open))

Timed Light: Let us consider another simple example, a
Timed Light system presented in [24], where a light turns off
automatically after 3 time units. Usually in discrete-time event-
based systems, the progress of time is modelled with a tick
event. Then, using the counting fluent T ≡ 〈tick, {},on〉,
we are able to capture some interesting timed properties for
this system:

EventuallyOffOrPush = 2(on→ 3(T ≤ 3 ∧ (off ∨ push))

Intuitively, counting fluent T counts the occurrences of tick,
after the light is turned on. Property EventuallyOffOrPush
expresses that when the light is turned on, it will be eventually
turned off within 3 time units, except if a push event occurs
during that time. Using the translation rules from bounded

FLTL into FLTL presented in [24], the above timed property
can be specified in FLTL as follows:

EventuallyOffOrPush = 2(on→ ((¬tick ∨©(¬tick ∨©(¬tick∨
©(¬tick ∨©(¬tick W (off ∨ push))) W (off ∨ push))
W (off ∨ push)) W (off ∨ push)) W (off ∨ push)))

ATM: Consider the model of an ATM machine depicted
in Figure 3, taken from [34].

0
1 2 3 4 5 6

7910

enterPwd badPwd enterPwd badPwd

8

insertCard

enterPwd

badPwd

lockAcctunlockAcct

correctPwdcorrectPwd
correctPwd

money

takeCard

Fig. 3. LTS that models the ATM’s behaviour.

Initially, the ATM requests the user to insert a card and enter
the password (Pwd). The validity of the password is verified,
and if this verification succeeds, the user can extract money
and remove the card from the ATM. Otherwise, when the
password is incorrect, the ATM system starts “counting” the
number of successive mistakes made by the user.

A typical security mechanism that ATMs implement con-
sists of blocking account access when the user makes three
consecutive mistakes at entering his password. In order to
check whether the ATM correctly implements this security
mechanism, we may specify the following CFLTL property:
ERRORS ≡ 〈{badPwd}, {}, {correctPwd,unlockAcct}〉 initially 0

NoWrongExtraction = 2¬(ERRORS ≥ 3 ∧ money)

Intuitively, property NoWrongExtraction expresses that it
cannot be the case that, after three consecutive wrong pass-
word insertions, the user extracts money. This property can be
specified in FLTL in the following way:

BadPass ≡ 〈{badPwd}, {correctPwd,unlockAcct}〉
NoWrongExtraction = 2¬(badPwd ∧©(BadPass U (badPwd∧

©(BadPass U(badPwd ∧©(BadPass U money))))))

Notice that, despite the fact that FLTL is expressive enough
to specify this property, the encoding is not straightforward.
The main problem lies in the complex nesting of logical and
temporal operators, needed to represent the number of times
that badPwd was executed.

TCP Sliding Window: Consider the TCP network proto-
col [33], a protocol that provides reliable in-order delivery of
packets in packet based data transmission. Figure 4 shows a
LTS that models the behaviour of a single packet along a TCP
network communication with its usual semantics. We represent
the traffic in a network, combining the behaviour of various
packets (PACKs). The TCP protocol has been improved many
times, to optimize network transfer. In particular, the TCP
Sliding Window protocol dynamically modifies the window
size depending on the channel’s reliability. The term window
refers to the number of packets that can be sent without re-
ceiving their corresponding acknowledgements. This protocol
considers that the window size is initially 1, and each time
an ack is received, the window size is incremented by one

(i.e., the channel’s reliability is increased), until MAX , the
maximum size for the window, is reached. When any loss
in the channel is detected, i.e., when a timeout occurs, the
channel becomes less reliable, so then the window size is
decremented by 1.

0 1 2 3 4

wait

send

receive

timeout

resend

{discard,process}

timeout

ack

Fig. 4. Specification of TCP package behaviour.

An interesting property regarding this protocol is that the
sender should always wait at most for MAX acks. Using
CFLTL we can specify this property as follows:

ACK ≡ 〈{PACKs.send}, {PACKs.ack}, {}〉 initially 0
ACK less MAX = 2(ACK ≤ MAX)

A first attempt to capture this property in FLTL may be, after
fixing the value of MAX (assume, for instance, MAX = 5)
the nesting of temporal operators capturing the occurrence of
MAX + 1 (six) successive send events without receiving an
ack, similar to what was done for the elevator example.

However, this is weaker than desired, since it only captures
a particular case of ACK less MAX . It does not consider,
for instance, the case when 4 successive send occur, then an
ack takes place, and finally 3 more send occur.

Our proposed FLTL solution to capture this property in-
volves introducing N fluents (one per packet) to indicate if
the packet has or has not been acknowledged. Then, the FLTL
formula should encode the possibilities in which more than
MAX sent packets have not been acknowledged.

ACK [p : 1..N] ≡ 〈{p.send}, {p.ack}〉

ACK less MAX = 2¬(ACK [1..6]∨ACK [2..7]∨ . . .∨ACK [(N − 6)..N]

∨(ACK [1]∧ACK [3..7])∨ (ACK [1]∧ACK [4..8]) . . .)

Notice that we have
(

N
MAX+1

)
cases in which property

ACK ≤ MAX is violated. Thus, for instance, for 10 packets and
MAX = 5, the FLTL formula will contain 210 disjunctions.
Dealing with this “counting property” manually in FLTL is
clearly impractical, and definitely error prone.

The above property is actually a simplification of a stronger
intended property of the protocol, namely that it is always the
case that the number of packets not acknowledged is bounded
by the current window size.

It is important to observe that this stronger property needs to
refer to a dynamic value, a value that changes as the system is
executing. So, let us define WINDOW , a counting fluent that
maintains the current window size (i.e., it is incremented when
an ack is received and decremented when a timeout occurs).
Now, we can easily specify this dynamic property as follows:

WINDOW ≡ 〈{PACKs.ack}, {PACKs.timeout}, {}〉 initially 1
ACK less WINDOW = 2(ACK ≤ WINDOW)

In contrast to the previous examples, we cannot express this
property in FLTL nesting temporal and logical operators.

Producers and Consumers: This is a classic concurrency
problem [26], where there are producers (PROD), consumers
(CONS) and a buffer of capacity C. The producers put values
into the buffer and the consumers get them from it. The
usual solutions to this problem consider two semaphores to
synchronise the processes of producing and consuming. More
precisely, a semaphore full models the number of values in the
buffer (initially 0); and a semaphore empty indicates the free
space in the buffer (initially C). A semaphore S is a numeric
variable equipped with two operations, historically denoted as
V (increments S) and P (decrements S).

In order to capture the correct synchronisation between the
elements of the system, we can specify the following property:

CountP ≡ 〈{empty.V}, {empty.P}, {}〉 initially C
CountC ≡ 〈{full.V}, {full.P}, {}〉 initially 0
CorrectSynchronisation = 2(CountP + CountC ≤ C)

CorrectSynchronisation expresses that the number of occupied
spaces plus the number of free spaces (CountP + CountC) in
the buffer should always be less than the capacity C. The
sum may not be exactly equal to C, because the semaphore’s
values are incremented (executing V) only after effectively
producing/consuming the value from the buffer.

In contrast to the TCP example, here the events over the
semaphores are shared by the producers and consumers for
synchronising, i.e., we do not distinguish which producer or
consumer executes a P or V over a semaphore. Then, both
techniques we proposed to specify counting properties in FLTL
do not apply in this case. Inevitably, to overcome this problem,
we have to modify the model.

Further examples: In addition to the presented examples,
we report here a set of properties found in the literature where
the need of counting particular events is present. Due to space
restrictions, we only report the informal description of the
properties and the reference from which it was extracted.
In [5]: count the number of times the Store reports that a
requested item is unavailable; [25]: In an auctioneer web
service, “a user can only bid at most 3 times within each of his
logins”; [6]: “If a certain patient presses the panic-button three
times during a time span of a week, the First-Aid Squad must
hospitalize the patient within one day”; [17]: In a 5 minutes
interval the customer can only do 3 failed payment trials.

A. Succinctness and Modifiability Evaluation

Succinctness [15] is a measure used for comparing how
concisely two logics can specify certain properties. Usually,
it is applied to logics with the same expressive power. For
those properties that can be expressed both in FLTL and
CFLTL mentioned earlier, we evaluate how succinctly these
are expressed in each of the logics. Regarding the modifiability
comparison between FLTL and CFLTL, we propose reasonable
changes to the original requirements for the above introduced
case studies and evaluate the complexity of the revised formu-
las in terms of succinctness. Examples of reasonable changes
to be introduced are the need to increase the number of times
the elevator may visit the floor without opening its doors in

the elevator model, or changing the capacity of the bridge and
the amount of cars in the SLB model.

Table I summarises the comparison between the CFLTL
and FLTL formulas capturing the above mentioned properties
of our case studies. For the evaluation of succinctness, the
considered attributes are: the number of counting/propositional
fluents and events involved in the formulas; the maximum nest-
ing level of temporal operators; and the number of temporal
and logical operators used in the formulas.

TABLE I
COMPARING FLTL & CFLTL ON SUCCINCTNESS/MODIFIABILITY.

Model/prop. Fluent LTL Counting Fluent LTL
changes Fl./e Nes. T.Op. L.Op. Fl./e Nes. T.Op. L.Op.

model: elevator, property: No Ignore C times, changes = C
2 3 5 7 17 3 1 3 2
6 3 13 15 45 3 1 3 2
7 3 15 17 52 3 1 3 2

model: timed light, property: EventuallyOffOrPush
- 4 6 7 14 4 1 2 3

model: SLB, property: Capacity Safe, changes = Cars(each color)/Capacity
6/3 12 0 1 116 1 0 1 0
7/4 14 0 1 205 1 0 1 0
8/4 16 0 1 555 1 0 1 0

model: ATM, property: WrongExtraction
- 3 6 7 4 2 0 1 1
model: TCP, property: ACK less Max, changes = Pack/Window size

10/6 10 0 1 840 1 0 1 0
10/7 10 0 1 360 1 0 1 0
11/5 11 0 1 2772 1 0 1 0
11/6 11 0 1 2310 1 0 1 0

model: TCP, property: ACK less WINDOW
- inexpressible 2 0 1 0

model: Prod-Cons, property: CorrectSynchronisation
- inexpressible 2 0 1 0

It can be observed from the table that the difference in the
number of fluents and logical operators required in some
formulas, when comparing FLTL with CFLTL, is significant.
For instance, when specifying FLTL properties like
CAPACITY SAFE and ACK less MAX , events involving
different items need to be appropriately distinguished (via
fluents), and their combinations handled as a kind of bit
array, to capture the counting of events. Also, when the
occurrences of events need to be counted in FLTL (e.g., three
successive wrong password insertions in the ATM model),
temporal operators have to be nested to capture the counting.
Complex nestings make formulas harder to read and thus more
difficult to contrast with the properties being captured. CFLTL
formulas, on the other hand, require fewer fluent definitions,
and avoid nesting temporal and logical operators by counting
through counting fluents.

Table I also shows that property changes cannot be easily
incorporated in FLTL (requiring further nestings and making
formulas more complex), as opposed to the case of CFLTL,
where these required just minor formula modifications (some
changes were incorporated without altering the CFLTL for-
mula, only changing the constant values counting fluents
were compared with, e.g., the maximum window size). This
is essentially due to the fact that CFLTL allowed us to
express properties involving counting events without the need
to manually instrument the models, making model/formula
modifiability easier to achieve.

Finally, as mentioned earlier, counting fluents enabled us
to capture a system property involving a dynamic value (a
numeric value that changes during system execution), that
cannot be expressed in FLTL.

B. Model Checking Evaluation

To evaluate the performance of our model checking ap-
proach introduced in Section V, we use LTSA model checking
on some of the models and properties presented above. We
compare each original FSP model with the property expressed
in FLTL (when expressible), with the corresponding automati-
cally generated FSP model, that reduces the property expressed
in CFLTL to FLTL model checking. To evaluate the scalability
of our model checking technique in comparison with FLTL
model checking, we assess both model checking approaches
on our case studies as values in models and formulas (in
particular, values relevant to counting) are increased (these
value changes are similar to those used in the modifiability
evaluation). Table II presents the results in terms of state
space required for formula and system representations, and the
maximum memory and total time required for verification.

The translation and verification were performed using an
Intel Core 2 Duo 2Ghz processor, with 3GB DDR2 memory,
running GNU/Linux. As it can be observed in Table II, our
approach is in general more efficient and scales better than
FLTL model checking on the original models. Notice that the
total time reported in the CFLTL analyses includes the fluent
overflow checking, which is roughly the same time spent in the
CFLTL formula verification (i.e., the actual CFLTL formula
verification time is approximately half the total time reported).

TABLE II
MODEL CHECKING EVALUATION.

Model/ Fluent LTL Counting Fluent LTL
prop. Space 2x Mem. Time Space 2x Mem. Time

changes For. Sys. MByte sec. For. Sys. MByte sec.
model: elevator, property: No Ignore C times, changes = C

5 8 10 7.3 77.53 9 16 1.4 0.71
6 9 10 9.4 868.17 9 16 2.0 0.95
7 not enough memory 9 16 6.1 1.57

5000 not enough memory 9 25 312.5 438.60
8000 not enough memory 9 26 709.9 2209.49

model: SLB, property: Capacity Safe, changes = Cars(each color)/Capacity
6/3 14 42 232.3 171.15 5 44 3.3 1.63
7/4 16 48 733.8 4972.94 5 47 3.5 2.00
8/4 not enough memory 5 51 4.1 2.26

100/50 not enough memory 5 255 806.6 1171.35
150/100 not enough memory 5 371 2423.0 12966.32

model: TCP, property: ACK less Max, changes = Pack/Window size
10/6 12 46 976.1 262.91 5 46 1148.1 1107.97
10/7 12 46 1761.8 1938.25 not enough memory
10/8 not enough memory not enough memory
11/5 13 48 864.4 2182.54 5 48 641.2 395.29
11/6 13 50 1369.2 1690.64 5 49 1967.4 5669.30

model: TCP, property: ACK less WINDOW, changes = Pack/Window size
15/12 inexpressible 5 66 7.4 79.06
20/18 inexpressible 5 83 17.0 723.75
25/23 inexpressible 5 99 29.3 3513.01

model: Prod-Cons, property: CorrectSynchronisation, changes = Prod/Cons/Buffer
7/5/15 inexpressible 5 46 1137.8 1046.49
7/5/20 inexpressible 5 49 1612.1 2947.40
7/5/30 inexpressible 5 50 2214.6 15495.29

It is interesting to observe that FLTL properties make the
verification state space grow exponentially, as the size of
models/formulas is increased (with respect to values relevant

to counting events). On the other hand, CFLTL properties
maintain the state space more stable as the size of model-
s/formulas is increased, but with the extra cost of extending
the models with monitors as explained in Section V. This
explains the improved efficiency and scalability of our CFLTL
model checking approach compared to FLTL verification. We
noticed that, in the latter, the Büchi automata generation is
very time consuming, affecting the efficiency of the approach
(an issue that is more prominent when formulas have nested
until operators, as in the elevator and SLB models).

The absence of fluent overflows in the experiments is due to
the fact that we manually selected appropriate tight values for
counting fluents’ bounds and scopes (suggested by inherent
limits present in the models), to prevent these overflows.

An additional benefit that we observed in the experiments,
related to the use of counting fluents, is an easier counterexam-
ple interpretation; when a property is violated in our CFLTL
verification approach, the counterexample explicitly reports
counting fluent modifications as indexed events, helping in
understanding the implications of the change (and the value
of the counting fluent) in the formula that involves it.

More detailed information regarding the model checking
evaluation, including the sources of all original and generated
models and the output of the LTSA runs for the experiments,
can be found in [9].

VII. RELATED WORK

Classical temporal logics such as LTL and CTL are con-
venient formalisms for specifying reactive systems and their
properties. Several quantitative extensions of these formalisms
have been studied, such as timed and probabilistic temporal
logics [2], [4]. Among them, Counting CTL [22] and Counting
LTL [21] are extensions of CTL and LTL that allow one
to express constraints over the number of times that certain
sub-formulas are satisfied along a run. Unlike our approach,
Counting LTL cannot predicate over the relation between the
number of occurrences of relevant events.

In [7], Bianculli et. al. propose SOLOIST, a formalism
based on many-sorted first-order metric temporal logics,
more specifically Metric Linear Temporal Logic with Past
(MPLTL) [32]. SOLOIST provides support for some aggregate
operators for events occurring in a certain time window. The
main advantage of SOLOIST is that it translates to MPLTL
which reduces to PLTL [18], hence, it can be analysed and
verified by a wide range of techniques and tools. However,
such an advantage also imposes limitations in expressiveness.
For instance, it is impossible to compare among occurrences
of events, and hence a simple example such as the Single Lane
Bridge cannot be described as properties relating occurrences
of blue and red cars.

In the AI planning [13], [23] community a technique to
capture numeric values with fluents has been proposed, namely
additive fluents [23]. Additive fluents provide support for
describing measurable quantities, such as money and memory.
Typically, they are incremented/decremented by the execution
of actions, e.g., allocating/deallocating memory. In contrast

to our approach, additive fluents are used explicitly in the
specification, i.e., they can be mentioned in operations pre-
conditions and postconditions. Also, each operation describes
how additive fluents’ values are updated.

As mentioned in Section I, the approach introduced in this
article is closely related to fluent temporal logic (FLTL) [14].
FLTL enables specifying LTL properties of event-based sys-
tems, where propositions are capture via fluents. As opposed
to the boolean nature of fluents, our counting fluents are nu-
merical values, that enable us to enumerate event occurrences,
and as previously described, leads to greater expressive power,
compared to FLTL. Another related extension to FLTL is that
presented in [24], in which special temporal operators for mod-
elling timed properties of discrete-time event-based models are
introduced (basically, temporal operators are equipped with
bounds for counting the progress of time). The work in [24]
shows the necessity for counting the occurrences of certain
events, although the proposal is limited to counting a particular
event, namely tick, that models time progress.

VIII. CONCLUSIONS

We have introduced Counting Fluent Linear Temporal
Logic, an extension of FLTL with the concept of counting
fluent. Counting fluents represent numerical variables that
generalise the boolean character of fluents, and provide the
flexibility to specify naturally many properties of reactive
systems in which the number of occurrences of certain events
is relevant. We proved that the logic is strictly more expressive
than LTL (and FLTL), and also that is undecidable. We also
equipped CFLTL with a sound but incomplete (due to the
undecidability of the logic) model checking approach, that
allows us to analyse CFLTL formulas over finite state models
under user defined scopes. Moreover, we performed a thorough
evaluation of multiple aspects of our proposal. We argued
that counting fluents are well suited to describe properties
in which enumerating the occurrences of certain events is
relevant, and we exhibited that this kind of cases are very
common in the research literature. In addition, we carried out
an evaluation on CFLTL considering two metrics, succinctness
and modifiability, to compare the same properties specified
in CFLTL and FLTL, and showing that CFLTL leads to
simpler, more understandable and more modifiable formulas.
We also evaluated our model checking approach by comparing
the efficiency of our CFLTL verification with standard FLTL
verification on equivalent properties. The results show that our
approach leads to an improved efficiency, and better scalability.

A tool that extends LTSA to support CFLTL and our model
checking approach can be obtained from [19]. The tool is a
prototype, and we are currently working on improving it. In
addition, we are working on the formal underpinnings of the
introduced logic, studying the details of the undecidability of
CFLTL. We also plan to study which fragments of CFLTL are
decidable, and subject to sound and complete model checking,
as an alternative to our incomplete model checking approach,
and to further explore the relationship between our logic and
Counting LTL.

REFERENCES

[1] L. Aceto, A. Ingólfsdóttir, K. Larsen and J. Srba, Reactive Systems:
Modelling, Specification and Verification, Cambridge University Press,
2007.

[2] R. Alur and T. Henzinger, A really temporal logic, J. ACM, Vol. 41,
No. 1, pp. 181-203, 1994.

[3] F. Bachmann, L. Bass, and R. Nord, Modifiability tactics, Technical
report CMU/SEI-2007-TR-002. Software Eng. Inst., 2007.

[4] C. Baier and J.P. Katoen, Principles of Model Checking, MIT Press,
2008.

[5] F. Barbon, P. Traverso, M. Pistore and M. Trainotti, Run-Time Monitor-
ing of Instances and Classes of Web Service Compositions, in Proc. of
ICWS’06, IEEE, pp. 63-71, 2006.

[6] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea and P. Spoletini, Validation
of web service compositions, in Software, IET, pp. 219-232, 2007.

[7] D. Bianculli, C. Ghezzi and P. San Pietro, The Tale of SOLOIST: A
Specification Language for Service Compositions Interactions, in Proc.
of FACS ’12, pp. 55-72, 2012.

[8] E. Clarke, O. Grumberg and D. Peled, Model Checking, MIT Press,
2000.

[9] Counting Fluent Linear Time Temporal Logic Experimental Results
ICSE 2015
http://dc.exa.unrc.edu.ar/staff/gregis/ICSE2015

[10] R. Darimont and A. van Lamsweerde, Formal Refinement Patterns for
Goal-Driven Requirements Elaboration, in Proc. of FSE’96, ACM, pp.
179-190, 1996.

[11] V. Diekert and P. Gastin, First-order definable languages, Logic and
Automata, pp. 261-306, 2008.

[12] M. Dwyer, G. Avrunin and J. Corbett, Patterns in Property Specifications
for Finite-state Verification, in Proc. of ICSE’99, ACM, pp. 411-420,
1999.

[13] E.Erdem and A. Gabaldon, Representing Action Domains with Numeric-
Valued Fluents, Logics in Artificial Intelligence Vol. 4160, pp 151-163,
2006.

[14] D. Giannakopoulou and J. Magee, Fluent Model Checking for Event-
based Systems, in Proc. of ESEC/FSE’03, ACM, pp. 257-266, 2003.

[15] M. Grohe and N. Schweikardt, The succinctness of first-order logic on
linear orders, Logical Methods in Computer Science, Vol. 41, No. 1,
2005.

[16] C. A. R. Hoare, Communicating sequential processes, Prentice-Hall
1985.

[17] S. Kallel, A. Charfi, T. Dinkelaker, M. Mezini and M. Jmaiel, Specifying
and Monitoring Temporal Properties in Web Services Compositions, in
Proc. of ECOWS’09, IEEE, pp. 148-157, 2009.

[18] H.W. Kamp, Tense Logic and the Theory of Linear Order. PhD thesis,
University of California, USA (1968).

[19] Labelled Transition System Analyser with Counting Fluents Support
http://sourceforge.net/projects/cf-ltsa/

[20] A. van Lamsweerde, A. Dardeene, D. Delcourt and F. Dubisy, The
KAOS Project: Knowledge Acquisition in Automated Specification of
Software, in Proc. of AAAI Spring Symposium Series, Track: “Design
of Composite Systems”, Stanford University, pp. 59-62, 1991.

[21] F. Laroussinie, A. Meyer and E. Petonnet, Counting LTL, in Proc. TIME
’10, IEEE, pp. 51-58, 2010.

[22] F. Laroussinie, A. Meyer and E. Petonnet, Counting CTL, in Proc.
FOSSACS ’10, LNCS, vol. 6014, pp. 206-220, 2010.

[23] J. Lee and V. Lifschitz, Describing additive fluents in action language
C+, in Proc. IJCAI ’03, pp. 1079-1084, 2003.

[24] E. Letier, J. Kramer, J. Magee and S. Uchitel,Fluent Temporal Logic for
Discrete-Time Event-Based Models, in Proc. of ESEC/FSE’05, ACM,
pp. 70-79, 2005.

[25] Z. Li, J. Han and Y. Jin, Pattern-Based Specification and Validation of
Web Services Interaction Properties, in Proc. of ICSOC’05, LNCS, pp.
73-86, 2005.

[26] J. Magee and J. Kramer, Concurrency: State Models and Java Programs,
John Wiley & Sons, 1999.

[27] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems - Specification -, Springer, 1991.

[28] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems -
Safety-, Springer, 1995.

[29] N. Medvidovic and R. Taylor, A classification and comparison frame-
work for software architecture description languages, IEEE Transactions
on Software Engineering 26(1), IEEE, 2000.

[30] R. Miller and M. Shanahan, The Event Calculus in Classical Logic -
Alternative Axiomatisations, Linkoping Electronic Articles in Computer
and Information Science, Vol. 4, No. 16, pp. 1-27, 1999.

[31] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[32] M. Pradella, A. Morzenti and P. San Pietro, The Symmetry of the Past

and of the Future: Bi-infinite Time in the Verification of Temporal
Properties, in Proc. of ESEC-FSE ’07, pp. 312-320, 2007.

[33] A. Tanenbaum and D. Wetherall, Computer Networks, Prentice-Hall,
2010.

[34] S. Uchitel, J. Kramer and J. Magee, Synthesis of Behavioral Models from
Scenarios, in Proc. of IEEE Transactions on Software Engineering, Vol.
29, pp. 99-115, 2003.

