
DynAlloy: Upgrading Alloy with Actions

Marcelo F. Frias∗

Juan P. Galeotti
Carlos G. López Pombo

Department of Computer Science
FCEyN

Universidad de Buenos Aires
Argentina

{mfrias, jgaleotti, clpombo}@dc.uba.ar

Nazareno M. Aguirre
Department of Computer Science

FCEFQyN - Universidad Nacional de Rı́o Cuarto
Argentina

naguirre@dc.exa.unrc.edu.ar

ABSTRACT
We present DynAlloy, an extension to the Alloy specifica-
tion language to describe dynamic properties of systems us-
ing actions. Actions allow us to appropriately specify dy-
namic properties, particularly, properties regarding execu-
tion traces, in the style of dynamic logic specifications.
We extend Alloy’s syntax with a notation for partial cor-

rectness assertions, whose semantics relies on an adaptation
of Dijkstra’s weakest liberal precondition. These assertions,
defined in terms of actions, allow us to easily express prop-
erties regarding executions, favoring the separation of con-
cerns between the static and dynamic aspects of a system
specification.
We also extend the Alloy tool in such a way that DynAlloy

specifications are also automatically analyzable, as standard
Alloy specifications. We present the foundations, two case-
studies, and empirical results evidencing that the analysis
of DynAlloy specifications can be performed efficiently.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation; D.2.10 [Software Engineering]: De-
sign—Representation; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms
Languages, Design, Verification.

Keywords
Alloy, dynamic logic, software specification, software valida-
tion.

∗and CONICET.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005 ...$5.00.

1. INTRODUCTION
Alloy [4, 6] is a formal specification language, which be-

longs to the class of the so-called model-oriented formal
methods. Alloy is defined in terms of a simple relational se-
mantics, its syntax includes constructs ubiquitous in object-
oriented notations, and it features automated analysis capa-
bilities [5]; these characteristics have made Alloy an appeal-
ing formal method.
Alloy has its roots in the Z specification language [8], and,

as Z, is appropriate for describing structural properties of
systems. However, in contrast with Z, Alloy has been de-
signed with the goal of making specifications automatically
analyzable.
Alloy’s representations of systems are based on abstract

models. These models are defined essentially in terms of
data domains, and operations between these domains. In
particular, one can use data domains to specify the state
space of a system or a component, and employ operations as
a means for the specification of state change. Semantically,
operations correspond to predicates, in which certain vari-
ables are assumed to be output variables, or, more precisely,
are meant to describe the system state after the operation
is executed. By looking into Alloy’s semantics, it is easy
to verify that “output” and “after” are intentional concepts,
i.e., the notions of output or temporal precedence are not re-
flected in the semantics and, therefore, understanding vari-
ables this way is just a (reasonable) convention. Variable
naming conventions are a useful mechanism, which might
lead to a simpler semantics of specifications. However, as we
advocate in this paper, the inclusion of actions (understood
as a general concept associated with state change, covering
transactions and events, for example), with a well defined
input/output semantics, in order to specify properties of ex-
ecutions, might provide a significant improvement to Alloy’s
expressiveness and analyzability. Moreover, actions enable
us to characterise properties regarding execution traces in a
convenient way.
In order to see how actions might improve Alloy’s ex-

pressiveness, suppose, for instance, that we need to define
the combination of certain operations describing a system.
Some combinations are representable in Alloy; for instance,
if we have two operations Oper1 and Oper2, and denote by
Oper1 ;Oper2 and Oper1 + Oper2 the sequential composi-
tion and nondeterministic choice of these operations, respec-

442

tively, then these can be easily defined in Alloy as follows:

Oper1 ;Oper2(x, y) =

some z | (Oper1(x, z) and Oper2(z, y)) ,

Oper1 +Oper2(x, y) = Oper1(x, y) or Oper2(x, y) .

However, if we aim at specifying properties of executions,
then it is reasonable to think that we will need to predicate
at least about all terminating executions of the system. This
demands some kind of iteration of operations. While it is
possible to define sequential composition or nondeterminis-
tic choice, as we showed before, finite (unbounded) iteration
of operations cannot be defined in Alloy.
Nevertheless, some effort has been put toward represent-

ing the iteration of operations, in order to analyze properties
of executions in Alloy. By enriching models with the inclu-
sion of a new signature (type) for execution traces [6], and
constraints that indicate how these traces are constructed
from the operations of the system, it is possible to simu-
late operation iteration. Essentially, traces are defined as
being composed of all intermediate states visited along spe-
cific runs. While adding traces to specifications provides
indeed a mechanism for dealing with executions (and even
specifications involving execution traces can be automati-
cally analyzed), this approach requires the specifier to ex-
plicitly take care of the definition of traces (an ad hoc task
which depends on the properties of traces one wants to vali-
date). Furthermore, the resulting specifications are cumber-
some, since they mix together two clearly separated aspects
of systems, the static definition of domains and operations
that constitute the system, and the dynamic specification
of traces of executions of these operations. Modules might
help in organizing a specification, by separating the static
and dynamic aspects of a system; however, the specifier still
needs to manually provide the specification of traces, since,
as we said, this is an ad hoc activity, dependent on the par-
ticular property of executions that needs to be validated.
We consider that actions, if appropriately used, consti-

tute a better candidate for specifying assertions regarding
the dynamics of a system (i.e., assertions regarding execu-
tion traces), leading to cleaner specifications, with clearer
separation of concerns.
In order to compare these two approaches, let us suppose

that we need to specify that every terminating arbitrary ex-
ecution of two operations Oper1 and Oper2 beginning in a
state satisfying a formula α terminates in a state satisfying
a formula β. Using the approach presented in [6], it is neces-
sary to provide an explicit specification of execution traces
complementing the specification of the system, as follows:

1. specify the initial state as a state satisfying α,

2. specify that every pair of consecutive states in a trace
is either related by Oper1 or by Oper2,

3. specify that the final state satisfies β.

Using the approach we propose, based on actions, execu-
tion traces are only implicitly used. The above specification
can be written in a simple and elegant way, as follows:

{α}
(Oper1 +Oper2)

∗

{β}

This states, as we required, that every terminating execu-
tion of (Oper1 +Oper2)

∗ (which represents an unbounded
iteration of the nondeterministic choice between Oper1 and
Oper2) starting in a state satisfying α, ends up in a state
satisfying β. This notation corresponds to the traditional
and well-known notation for partial correctness assertions.
Notice that no explicit reference to traces is required. Nev-
ertheless, traces exist and are well taken care of in the se-
mantics of actions, far from the eyes of the software engineer
writing a model. It seems clear then that pursuing our task
of adding actions to Alloy might indeed contribute toward
the usability of the language. Note that finite unbounded
iteration is, in our approach, expressible via the iteration
operation “*”.
As we mentioned, one of the main features of Alloy is

its analyzability. The Alloy tool allows us to automati-
cally analyze specifications by searching for counterexamples
of assertions with the help of the off-the-shelf SAT solvers
MChaff, ZChaff [7] and Berkmin [2]. Therefore, extending
the language with actions, while still an interesting intellec-
tual puzzle, is not important if it cannot be complemented
with efficient automatic analysis. So, we modify the Alloy
tool in order to deal with the analysis of Alloy specifications
involving actions and execution traces assertions. Notice
that, even though finite unbounded iteration is expressible
in DynAlloy, a bound on the depth of the iterations needs
to be imposed for the analysis tasks. So, for SAT solving
based analysis, our extension only covers bounded iteration.
The contributions of this paper are then summarized as

follows.

• We add to Alloy the possibility of defining actions
and asserting properties using partial correctness as-
sertions, as a mechanism for the specification of opera-
tions. We refer to this extension of Alloy as DynAlloy.

• We present a modification of the Alloy tool in order
to allow for an efficient verification of DynAlloy spec-
ifications.

• We present two case-studies for which we compare the
analysis running time when using actions and traces.
We conclude that efficiency increases when using ac-
tions and partial correctness assertions.

The remainder of this paper is organized as follows. In
Section 2 we present the Alloy specification language. In
Section 3 we present the DynAlloy language. In Section 4
we present the DynAlloy tool. In Section 5 we present the
case-studies and their corresponding running times. Finally,
in Section 6 we present our conclusions and proposals for
further work.

2. THE ALLOY SPECIFICATION
LANGUAGE

In this section, we introduce the reader to the Alloy speci-
fication language by means of an example extracted from [6].
This example serves as a means for illustrating the standard
features of the language and their associated semantics, and
will also help us demonstrate the shortcomings we wish to
overcome.
Suppose we want to specify systems involving memories

with cache. We might recognize that, in order to specify
memories, data types for data and addresses are especially

443

necessary. We can then start by indicating the existence
of disjoint sets (of atoms) for data and addresses, which in
Alloy are specified using signatures:

sig Addr { } sig Data { }
These are basic signatures. We do not assume any special
properties regarding the structures of data and addresses.
With data and addresses already defined, we can now

specify what constitutes a memory. A possible way of defin-
ing memories is by saying that a memory consists of set of
addresses, and a (total) mapping from these addresses to
data values:

sig Memory {
addrs: set Addr
map: addrs ->! Data

}
The symbol “!” in the above definition indicates that “map”
is functional and total (for each element a of addrs, there
exists exactly one element d in Data such that map(a) = d).
Alloy allows for the definition of signatures as subsets of

the set denoted by another “parent” signature. This is done
via what is called signature extension. For the example, one
could define other (perhaps more complex) kinds of memo-
ries as extensions of the Memory signature:

sig MainMemory extends Memory {}

sig Cache extends Memory {
dirty: set addrs

}
As specified in these definitions, MainMemory and Cache
are special kinds of memories. In caches, a subset of addrs
is recognized as dirty.
A system might now be defined to be composed of a main

memory and a cache:

sig System {
cache: Cache
main: MainMemory

}
As the previous definitions show, signatures are used to

define data domains and their structure. The attributes
of a signature denote relations. For instance, the “addrs”
attribute in signature Memory represents a binary relation,
from memory atoms to sets of atoms from Addr. Given a set
m (not necessarily a singleton) of Memory atoms, m.addrs
denotes the relational image ofm under the relation denoted
by addrs. This leads to a relational view of the dot notation,
which is simple and elegant, and preserves the intuitive nav-
igational reading of dot, as in object orientation. Signature
extension, as we mentioned before, is interpreted as inclu-
sion of the set of atoms of the extending signature into the
set of atoms of the extended signature.
In Fig. 1, we present the grammar and semantics of Al-

loy’s relational logic, the core logic on top of which all of
Alloy’s syntax and semantics are defined. An important dif-
ference with respect to previous versions of Alloy, as the one
presented in [4], is that expressions now range over relations
of arbitrary rank, instead of being restricted to binary re-
lations. Composition of binary relations is well understood;
but for relations of higher rank, the following definition for

the composition of relations has to be considered:

R ;S = {〈a1, . . . , ai−1, b2, . . . , bj〉 :
∃b (〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj〉 ∈ S)} .

Operations for transitive closure and transposition are
only defined for binary relations. Thus, function X in Fig. 1
is partial.

2.1 Operations in a Model
So far, we have just shown how the structure of data do-

mains can be specified in Alloy. Of course, one would like
to be able to define operations over the defined domains.
Following the style of Z specifications, operations in Alloy
can be defined as expressions, relating states from the state
spaces described by the signature definitions. Primed vari-
ables are used to denote the resulting values, although this
is just a convention, not reflected in the semantics.
In order to illustrate the definition of operations in Alloy,

consider, for instance, an operation that specifies the writing
of a value to an address in a memory:

Write(m, m’: Memory, d: Data, a: Addr) {
m’.map = m.map ++ (a -> d)

}
(1)

The intended meaning of this definition can be easily un-
derstood, having in mind that m’ is meant to denote the
memory (or memory state) resulting of the application of
function Write, a -> d denotes the ordered pair 〈a, d〉, and
++ denotes relational overriding, defined as follows1 :

R++S =

{ 〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S) } ∪ S .

We have already seen a number of constructs available
in Alloy, such as the dot notation and signature extension,
that resemble object oriented definitions. Operations, how-
ever, represented by functions in Alloy, are not “attached”
to signature definitions, as in traditional object-oriented ap-
proaches. Instead, functions describe operations of the whole
set of signatures, i.e., the model. So, there is no notion sim-
ilar to that of class, as a mechanism for encapsulating data
(attributes or fields) and behavior (operations or methods).
In order to illustrate a couple of further points, consider

the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}
There are two important issues exhibited in this function
definition. First, function SysWrite is defined in terms of
the more primitive Write. Second, the use of Write takes
advantage of the hierarchy defined by signature extension:
note that function Write was defined for memories, and in
SysWrite it is being “applied” to cache memories.
As explained in [6], an operation that flushes lines from a

cache to the corresponding memory is necessary in order to
have a realistic model of memories with cache, since usually

1Given a n-ary relation R, dom (R) denotes the set
{ a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R }.

444

problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type→ type
| type⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form→ env → Boolean
X : expr→ env → value
env = (var + type)→ value
value = (atom× · · · × atom)+
(atom→ value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F]e = ¬M [F]e
M [F&&G]e =M [F]e ∧M [G]e
M [F || G]e =M [F]e ∨M [G]e
M [all v : t/F] =V{M [F](e⊕ v�→{ x })/x ∈ e(t)}
M [some v : t/F] =W{M [F](e⊕ v�→{ x })/x ∈ e(t)}

X[a+ b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e;X[b]e
X[+a]e = the smallest r such that
r ;r ⊆ r and X[a]e ⊆ r

X[{v : t/F}]e =
{x ∈ e(t)/M [F](e⊕ v�→{x })}

X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/

∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

Figure 1: Grammar and semantics of Alloy

caches are smaller than main memories. A (nondetermin-
istic) operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++
{a: x, d: Data | d = s.cache.map[a]}

}
}

In the third line of the above definition of function Flush,
x->Data denotes all the ordered pairs whose domains fall
into the set x, and that range over the domain Data.
Functions can also be used to represent special states. For

instance, we can characterize the states in which the cache
lines not marked as dirty are consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(2)

In this context, the symbol “!” denotes negation, indicating
in the above formula that “a” ranges over atoms that are
non dirty addresses.

2.2 Properties of a Model
As the reader might expect, a model can be enhanced

by adding properties (axioms) to it. These properties are
written as logical formulas, much in the style of the Object
Constraint Language (OCL). Properties or constraints in

Alloy are defined as facts. To give an idea of how constraints
or properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache
memories are disjoint:

fact {no (MainMemory & Cache)}
In the above expression, “no x” indicates that x has no
elements, and & denotes intersection. Another important
constraint inherent to the presented model is that, in ev-
ery system, the addresses of its cache are a subset of the
addresses of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the quite

considerable expressive power of the relational logic.

2.3 Assertions
Assertions are the intended properties of a given model.

Consider, for instance, the following simple Alloy assertion,
regarding the presented example:

assert {
all s: System | DirtyInv(s) && no s.cache.dirty
=> s.cache.map in s.main.map

}
This assertion states that, if “DirtyInv” holds in system “s”
and there are no dirty addresses in the cache, then the cache
agrees in all its addresses with the main memory.
Assertions are used to check specifications. Using the Al-

loy analyzer, it is possible to validate assertions, by search-
ing for possible (finite) counterexamples for them, under the
constraints imposed in the specification of the system.

445

3. DYNALLOY: ADDING PARTIAL
CORRECTNESS ASSERTIONS
TO ALLOY

In this section we extend Alloy’s relational logic syntax
and semantics with the aim of dealing with properties of
executions of operations specified in Alloy. It will follow
that DynAlloy extends Alloy and its relational logic.
The reason for this extension is that we want to provide a

setting in which, besides functions describing sets of states,
actions are made available, to represent state changes (i.e.,
to describe relations between input and output data). As
opposed to the use of functions for this purpose, actions have
an input/output meaning reflected in the semantics, and
can be composed to form more complex actions, using well-
known constructs from imperative programming languages.
The syntax and semantics of DynAlloy is described in Sec-

tion 3.1. It is worth mentioning at this point that both were
strongly motivated by dynamic logic [3], and the suitability
of dynamic logic for expressing partial correctness assertions.

3.1 Functions vs. Actions
Functions in Alloy are just parameterized formulas. Some

of the parameters are considered input parameters, and the
relationship between input and output parameters relies on
the convention that the second argument is the result of the
function application. Recalling the definition of function
Write, notice that there is no actual change in the state of
the system, since no variable actually changes its value.
Dynamic logic [3] arose in the early ’70s, with the intention

of faithfully reflecting state change. Motivated by dynamic
logic, we propose the use of actions to model state change
in Alloy, as described below.
What we would like to say about an action is how it trans-

forms the system state after its execution. A (now) tradi-
tional way of doing so is by using pre and post condition
assertions. An assertion of the form

{α}
A
{β}

affirms that whenever action A is executed on a state sat-
isfying α, if it terminates, it does so in a state satisfying
β. This approach is particularly appropriate, since behav-
iors described by functions are better viewed as the result of
performing an action on an input state. Thus, the definition
of function Write could be expressed as an action definition,
of the following form:

{true}
Write(m : Memory,d : Data, a : Addr)

{m′.map = m.map ++ (a → d)} .
(3)

At first glance it is difficult to see the differences between
(1) and (3), since both formulas seem to provide the same
information. The crucial differences are reflected in the se-
mantics, as well as in the fact that actions can be sequen-
tially composed, iterated or composed by nondeterministic
choice, while Alloy functions, in principle, cannot.
An immediately apparent difference between (1) and (3) is

that action Write does not involve the parameter m′, while
function Write uses it. This is so because we use the conven-
tion that m′ denotes the state of variable m after execution
of action Write. This time, “after” means that m′ gets its

value in an environment reachable through the execution of
action Write (cf. Fig. 3). Since Write denotes a binary re-
lation on the set of environments, there is a precise notion
of input/output inducing a before/after relationship.

3.2 Syntax and Semantics of DynAlloy
The syntax of DynAlloy’s formulas extends the one pre-

sented in Fig. 1 with the addition of the following clause for
building partial correctness statements:

formula ::= . . . | {formula} program {formula}
“partial correctness”

The syntax for programs (cf. Fig. 2) is the class of reg-
ular programs defined in [3], plus a new rule to allow for
the construction of atomic actions from their pre and post
conditions. In the definition of atomic actions, x denotes a
sequence of formal parameters. Thus, it is to be expected
that the precondition is a formula whose free variables are
within x, while postcondition variables might also include
primed versions of the formal parameters.
In Fig. 3 we extend the definition of functionM to partial

correctness assertions and define the denotational semantics
of programs as binary relations over env . The definition
of function M on a partial correctness assertion makes clear
that we are actually considering a partial correctness seman-
tics. This follows from the fact that we are not requesting
environment e to belong to the domain of the relation P [p].
In order to provide semantics for atomic actions, we will as-
sume that there is a function A assigning, to each atomic
action, a binary relation on the environments. We define
function A as follows:

A(〈pre, post〉) = ˘ ˙
e, e′

¸
:M [pre]e ∧M [post]e′

¯
.

There is a subtle point in the definition of the semantics of
atomic programs. While actions may modify the value of
all variables, we assume that those variables whose primed
versions do not occur in the post condition retain their input
value. Thus, the atomic action Write modifies the value of
variable m, but a and d keep their initial values. This allows
us to use simpler formulas in pre and post conditions.

M [{α}p{β}]e =
M [α]e =⇒ ∀e′ `˙

e, e′
¸ ∈ P [p] =⇒ M [β]e′

´

P : program → P (env × env)

P [〈pre , post〉] = A(〈pre , post〉)
P [α?] = { 〈e, e′〉 :M [α]e ∧ e = e′ }
P [p1 + p2] = P [p1] ∪ P [p2]
P [p1 ;p2] = P [p1];P [p2]
P [p∗] = P [p]∗

Figure 3: Semantics of DynAlloy.

3.3 Specifying Properties of Executions
in Alloy and DynAlloy

Suppose we want to specify that a given property P is
invariant under sequences of applications of the operations
“Flush” and “SysWrite”, from certain initial state. A tech-
nique useful for stating the invariance of a property P con-
sists of specifying that P holds in the initial states, and

446

program ::= 〈formula, formula〉(x) “atomic action”
| formula? “test”
| program+ program “non-deterministic choice”
| program;program “sequential composition”
| program∗ “iteration”

Figure 2: Grammar for composite actions in DynAlloy

that for every non initial state and every operation O ∈
{F lush, SysWrite}, the following holds:

P (s) ∧O(s, s′) ⇒ P (s′) .

This specification is sound but incomplete, since the in-
variance may be violated in unreachable states. Of course
it would be desirable to have a specification in which the
states under consideration were exactly the reachable ones.
This motivated the introduction of traces in Alloy [6].
The following example, extracted from [6], shows signa-

tures for clock ticks and for traces of states. The first ex-
clamation mark in the definition of “next”’ means that this
relation is total on its declared domain.

sig Tick {}

sig SystemTrace {
ticks: set Tick,
first, last: Tick,
next: (ticks - last) ! → ! (ticks - first),
state: ticks → ! System }

The following “fact” states that all ticks in a trace are
reachable from the first tick, that a property called “Init”
holds in the first state, and that the passage from one state
to the next is through the application of one of the opera-
tions under consideration:

fact {
first.next∗ = ticks
Init(first.state)
all t: ticks - last |
some s = t.state, s’ = t.next.state |
Flush (s,s’) ||
some d : Data, a : Addr | SysWrite(s,s’,d,a)

}

If we now want to assert that P is invariant, it suffices to
assert that P holds in the final state of every trace. Notice
that unreachable states are no longer a burden because all
states in a trace are reachable from the states that occurred
before.
Even though, from a formal point of view, the use of traces

is correct, from a modeling perspective it is less suitable.
Traces are introduced in order to cope with the lack of real
state change in Alloy. They allow us to port the primed vari-
ables used in single operations to sequences of applications
of operations.
The specification of actions SysWrite and Flush in Dy-

nAlloy is done as follows:

{ true }
SysWriteDA(s: System)

{ some d: Data, a: Addr |
s’.cache = s.cache ++ (a→ d) ∧
s’.cache.dirty = s.cache.dirty + a ∧
s’.main = s.main }

{ true }
FlushDA(s: System)

{ some x: set s.cache.addrs |
s’.cache.map = s.cache.map - x→Data ∧
s’.cache.dirty = s.cache.dirty - x ∧
s’.main.map = s.main.map ++
{a: x, d: Data | d = s.cache.map[a]} }

Notice that the previous specifications are as understand-
able as the ones given in Alloy. Moreover, by using partial
correctness statements on the set of regular programs gener-
ated by the set of atomic actions {SysWriteDA,FlushDA },
we can assert the invariance of a property P under finite ap-
plications of functions SysWrite and Flush in a simple and
elegant way, as follows:

{Init(s) ∧ P (s)}
(SysWriteDA(s) + FlushDA(s))∗

{P (s′)}
More generally, suppose now that we want to show that

a property Q is invariant under sequences of applications of
arbitrary operations O1, . . . , Ok, starting from states s de-
scribed by a formula Init. The specification of this assertion
in our setting is done via the following formula:

{Init(x) ∧Q(x)}
(O1(x) + · · ·+Ok(x))

∗ (4)

{Q(x′)}
Notice that there is no need to mention traces in the spec-

ification of the previous properties. This is because finite
traces get determined by the semantics of reflexive-transitive
closure.

3.4 Analysis of DynAlloy Specifications
Alloy’s design was deeply influenced by the intention of

producing an automatically analyzable language. While Dy-
nAlloy is, to our understanding, better suited than Alloy for
the specification of properties of executions, the use of ticks
and traces as defined in [6] has as an advantage that it al-
lows one to automatically analyze properties of executions.

447

Therefore, an almost mandatory question is whether DynAl-
loy specifications can be automatically analyzed, and if so,
how efficiently. The main rationale behind our technique is
the translation of partial correctness assertions to first-order
Alloy formulas, using weakest liberal preconditions [1]. The
generated Alloy formulas, which may be large and quite dif-
ficult to understand, are not visible to the end user, who
only accesses the declarative DynAlloy specification.
We define below a function

wlp : program × formula → formula

that computes the weakest liberal precondition of a formula
according to a program (composite action). We will in gen-
eral use names x1, x2 . . . for program variables, and will use
names x′

1, x
′
2, . . . for the value of program variables after ac-

tion execution. We will denote by α|vx the substitution of
all free occurrences of variable x by the fresh variable v in
formula α.
When an atomic action a specified as 〈pre, post〉(x) is used

in a composite action, formal parameters are substituted
by actual parameters. Since we assume all variables are
input/output variables, actual parameters are variables, let
us say, y. In this situation, function wlp is defined as follows:

wlp[a(y), f] =

pre |y′
x =⇒ all n

“
post|n

x′ |y′
x =⇒ f |n

y′

”
. (5)

A few points need to be explained about (5). First, we
assume that free variables in f are amongst y′, x0. Variables
in x0 are generated by translation pcat given in (7). Second,
n is an array of new variables, one for each variable modified
by the action. Last, notice that the resulting formula has
again its free variables amongst y′, x0. This is also preserved
in the remaining cases in the definition of function wlp.
For the remaining action constructs, the definition of func-

tion wlp is the following:

wlp[g?, f] = g =⇒ f
wlp[p1 + p2, f] = wlp[p1, f] ∧ wlp[p2, f]
wlp[p1 ;p2, f] = wlp[p1,wlp[p2, f]]
wlp[p∗, f] =

V∞
i=0 wlp[pi, f] .

Notice that wlp yields Alloy formulas in all these cases,
except for the iteration construct, where the resulting for-
mula may be infinitary. In order to obtain an Alloy formula,
we can impose a bound on the depth of iterations. This is
equivalent to fixing a maximum length for traces. A function
Bwlp (bounded weakest liberal precondition) is then defined
exactly as wlp, except for iteration, where it is defined by:

Bwlp[p∗, f] =
n̂

i=0

Bwlp[pi, f] . (6)

In (6), n is the scope set for the depth of iteration.
We now define a function pcat that translates partial cor-

rectness assertions to Alloy formulas. For a partial correct-
ness assertion {α(y)} P (y) {β(y, y′)}

pcat ({α} P {β}) =
∀y

“
α =⇒

“
Bwlp

h
p, β|x0

y

i”
|y
y′ |yx0

”
. (7)

Of course this analysis method where iteration is restricted
to a fixed depth is not complete, but clearly it is not meant
to be; from the very beginning we placed restrictions on the

size of domains involved in the specification to be able to
turn first-order formulas into propositional formulas. This
is just another step in the same direction.

4. THE DYNALLOY TOOL
The Alloy tool [5] is open source. This contributes greatly

toward developing extensions of the tool. DynAlloy is an
extension of the Alloy tool that allows the user to write
and analyze specifications involving actions. Once a DynAl-
loy specification (involving actions) is opened, executing the
Build command first translates the DynAlloy specification
to Alloy using function pcat , and then compiles the Alloy
specification thus obtained.
In this section we discuss some modifications on the def-

inition of function pcat provided in (7) that will allow us
to analyze specifications efficiently. We also describe some
implementation details.

4.1 Translating Partial Correctness Assertions
to Alloy

In Section 3.4 we showed how to compute the weakest
liberal precondition wlp and its bounded version Bwlp for
an arbitrary composite action. For atomic actions a and b,
Bwlp(a;b, α) is a formula whose shape is roughly

prea(s)⇒ ∀s1(posta(s, s1)⇒
(preb(s1)⇒ ∀s2 (postb(s1, s2)⇒ α(s2)))) . (8)

When Alloy was fed with a formula like (8) for three ac-
tions, two problems arose:

1. Compilation time was almost unacceptable.

2. Analysis time was in general worse than the time ob-
tained using traces.

Notice that the quantifiers binding variables s1 and s2 can
be promoted to the front of the formula by simple logical
manipulations, yielding

∀s1∀s2(prea(s)⇒ (posta(s, s1)⇒
(preb(s1)⇒ (postb(s1, s2)⇒ α(s2))))) . (9)

Feeding Alloy with a formula like (9) produced running
times that were, in general, significantly better than those
achieved in Alloy using traces. On the negative side, for
an action of the form (a1+a2)

n, the resulting formula was
considerably large. For n = 2, using the definition of Bwlp,
we obtain:

Bwlp
`
(a+b)2, α

´

= Bwlp ((a+b);(a+b), α)

= Bwlp (a+b,Bwlp (a+b, α))

= Bwlp (a,Bwlp (a+b, α))

∧ Bwlp (b,Bwlp (a+b, α))

= prea ⇒ (posta ⇒ Bwlp (a+b, α))

∧ preb ⇒ (postb ⇒ Bwlp (a+b, α)) . (10)

Simple logical properties allow us to rewrite (10) as

(prea ∧ posta)⇒ Bwlp (a+b, α)

∧ (preb ∧ postb)⇒ Bwlp (a+b, α) . (11)

448

At this point, notice that the formula Bwlp(a+b, α) ap-
pears twice in (11). Thus computing Bwlp ((a+b)n , α) yields
a formula whose size is exponential as a function of n. Feed-
ing Alloy with a formula like (11) produced, for small values
of n, analysis times that were significantly better that those
achieved using traces. Unfortunately, compilation time grew
exponentially, proving that analysis using this translation
was unfeasible for reasonable values of n.
Once again, elementary properties of first-order logic allow

us to transform (11) to the equivalent formula

((prea ∧ posta) ∨ (preb ∧ postb))
⇒ Bwlp (a+b, α) . (12)

Formula Bwlp (a+b, α) occurs only once in (12). Applying
this simple transformation made the previous exponential-
size formulaes become linear-size. This is the translation
that is implemented in the DynAlloy tool.
Running times very much depend on the chosen SAT

solver, and while our translation works well in all of them,
different optimizations can be applied depending on the par-
ticular SAT solver chosen.

4.2 Implementation Details
Not only the source code for Alloy is publicly available.

All the necessary software and tools required in order to gen-
erate the source code are freely available, too. For instance,
the Alloy grammar specification, as required by JavaCC (a
parser generator for Java), is also supplied. We extended
this grammar specification to a specification of DynAlloy’s
grammar. Combining the use of the tools JJTree and JavaCC,
we built a parser and abstract syntax tree generator for Dy-
nAlloy. Given a tree for a DynAlloy model, we apply trans-
formations leading to an Alloy specification.
In order to make this process invisible to the end user, we

modified distribution 2.0 of the Alloy Analyzer.We changed
the original Alloy Build command so that it now first trans-
lates a DynAlloy specification to Alloy, and then compiles
the resulting model, in the way standard Alloy does.

5. CASE-STUDIES
In this section we analyze two case-studies. The first one

is an assertion whose validity follows from the specification,
and, therefore, has no counterexamples. It will serve us as a
stress test for Alloy and DynAlloy. The second assertion has
counterexamples, and is useful for verifying how efficiently
can these be found using DynAlloy. The analysis was carried
out using a Sun Sunblade 2000, with two 1GHz processors,
and 2 GB of RAM. For the analysis we will impose a limit of
60’. Those runs that did not finish within 60’ were stopped
and marked in the tables as “> 60′”.

5.1 Case-Study 1: DirtyInv
The problem we will analyze is whether function Dirty-

Inv, defined in (2), is an invariant with respect to finite
applications of operations SysWrite and Flush. Its Alloy
specification is the following:

assert DirtyInvAssertionAlloy {

all tr: SystemTrace |

DirtyInv(tr.state[tr.first]) =>

DirtyInv (tr.state[tr.last])}

The corresponding DynAlloy specification is:

assert DirtyInvAssertionDynAlloy {

{DirtyInv(s)}

(SysWriteDA(s) + FlushDA(s))*

{DirtyInv(s’)}

}

Notice that these specifications are quite similar, in the
sense that both predicate only about the initial and final
states. In Tables 1–3 we compare running CPU times for
the analysis of both specifications for different trace lengths,
domain sizes, and the available SAT solvers.
The “check” condition used in the Alloy specification for

traces of length n and domains of size k, is:

check DirtyInvAssertionAlloy for k but n+1

Tick, 1 SystemTrace.

For the DynAlloy specification, we use:

check DirtyInvAssertionDynAlloy for k.

Tr. length→ ≤ 2 ≤ 3 ≤ 4
elems ↓ Alloy DAlloy Alloy DAlloy Alloy DAlloy

3 0′01′′ 0′01′′ 0′04′′ 0′02′′ 0′20′′ 0′07′′

4 0′13′′ 0′01′′ 3′04′′ 0′11′′ 45′25′′ 1′48′′

5 1′40′′ 0′03′′ 34′40′′ 0′59′′ > 60′ 31′17′′

6 5′52′′ 0′06′′ > 60′ 2′24′′ > 60′ > 60′

Table 1: Verification time for the assertion DirtyInv
using the SAT solver MChaff.

Tr. length→ ≤ 2 ≤ 3 ≤ 4
elems ↓ Alloy DAlloy Alloy DAlloy Alloy DAlloy

3 0′02′′ 0′06′′ 0′07′′ 2′17′′ 0′24′′ 31′53′′

4 0′16′′ 0′18′′ 6′48′′ 1′57′′ > 60′ > 60′

5 5′31′′ 0′40′′ > 60′ 9′53′′ > 60′ > 60′

6 > 60′ 0′58′′ > 60′ > 60′ > 60′ > 60′

Table 2: Verification time for the assertion DirtyInv
using the SAT solver ZChaff.

Tr. length→ ≤ 2 ≤ 3 ≤ 4
elems ↓ Alloy DAlloy Alloy DAlloy Alloy DAlloy

3 0′01′′ 0′01′′ 0′01′ 0′01′′ 0′06′′ 0′01′′

4 0′05′′ 0′01′′ 0′29′′ 0′02′′ 4′35′′ 0′09′′

5 0′16′′ 0′01′′ 2′01′′ 0′10′′ 20′18′′ 0′47′′

6 0′55′′ 0′04′′ 8′15′′ 0′32′′ > 60′ 5′29′′

Table 3: Verification time for the assertion DirtyInv
using the SAT solver Berkmin.

5.2 Case-Study 2: FreshDir
Given an initially empty CacheSystem whose set of ad-

dresses has size k, we will assert that every sequence of ap-
plications of the operations SysWrite and Flush still leaves a
“fresh” address, that is, an address that has never been writ-
ten into. This is a flawed assertion. In order to write the as-
sertion, we require a function specifying that a CacheSystem
is empty, and another describing the fresh address property.
They are given next.

449

fun Init (s: System) {

s.cache.dirty = none[s.cache.dirty]

s.cache.map = none[s.cache.map]

s.main.map = none[s.main.map]

}

fun FreshDir (s: System) {

some a: Addr { all d: Data {

! ((a -> d) in s.main.map) &&

! ((a -> d) in s.cache.map) } }

}

Once Init and FreshDir were specified, we need to specify
our assertion, both in Alloy and DynAlloy.

assert FreshDirAssertionAlloy {

all tr: SystemTrace |

Init(tr.state[tr.first]) =>

FreshDir(tr.state[tr.last])

}

assert FreshDirAssertionDynAlloy {

{Init(s)}

(SysWriteDA(s) + FlushDA(s))*

{FreshDir(s’)}

}

In order to guarantee that there are n addresses, we check
the assertion imposing a scope of n for signature Addr and
include as part of the model a fact asserting that there are n
distinct elements for this signature. So, we verify the Alloy
assertion using the command

check FreshDirAssertionAlloy for 3 but n Addr,

n+1 Memory, n+1 System, n+1 Tick, 1 SystemTrace.

For DynAlloy we use

check FreshDirAssertionDynAlloy for 3 but n

Addr, n+1 Memory, n+1 System.

Table 4 shows a comparison of analysis running times for
these assertions, under MChaff and Berkmin. ZChaff pre-
sented in general worse analysis times.

MChaff Berkmin
Tr. length ↓ Alloy DAlloy Alloy DAlloy

3 0′01′′ 0′01′′ 0′01′′ 0′01′′

4 0′11′′ 0′02′′ 0′05′′ 0′02′′

5 17′12′′ 0′43′′ 0′05′′ 0′19′′

6 > 60′ 2′55′′ 10′30′′ 8′09′′

7 > 60′ 59′18′′ > 60′ > 60′

Table 4: Verification times for FreshDir.

6. CONCLUSIONS AND FURTHER WORK
We believe that using actions within Alloy in order to rep-

resent state change is a methodological improvement. Effec-
tively, using actions favors a better separation of concerns,
since models do not need to be reworked in order to describe
the adequate notion of trace modeling the desired behavior.
Using actions the problem reduces to describing how actions
are to be composed. This methodological improvement is
supported by empirical results evidencing that analysis can
be done more efficiently than resorting to traces.

The shape of the formulas obtained during the transla-
tion of partial correctness assertions into Alloy gives us the
opportunity of parallelizing their analysis process, allowing
for the analysis of larger models.
Different SAT solvers react differently to the formulas re-

sulting from the translation. While all of them behave sat-
isfactorily, we can still generate different translations de-
pending on the chosen SAT solver, in order to improve the
analysis time.
Finally, a new version of Alloy (Alloy 3.0) has been made

recently available. All our developments will be ported to
this new version as soon as its source code is released.

7. REFERENCES
[1] E. W. Dijkstra and C. S. Scholten. Predicate calculus

and program semantics. Springer-Verlag, 1990.

[2] E. Goldberg and Y. Novikov. BerkMin: A fast and
robust sat-solver. In Proceedings of the conference on
Design, automation and test in Europe, pages 142–149.
IEEE Computer Society, 2002.

[3] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic.
Foundations of Computing. MIT Press, 2000.

[4] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Transactions on Software Engineering
and Methodology, 2002.

[5] D. Jackson. A micromodels of software: Lightweight
modelling and analysis with Alloy. MIT Laboratory for
Computer Science, Cambridge, MA, 2002.

[6] D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. In Proceedings of the 8th
European software engineering conference held together
with the 9th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 62–73,
Vienna, Austria, 2001. Association for the Computer
Machinery, ACM Press.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: engineering an efficient SAT
solver. In J. Rabaey, editor, Proceedings of the 38th
conference on Design automation, pages 530–535, Las
Vegas, Nevada, United States, 2001. ACM Press.

[8] J. M. Spivey. Understanding Z: a specification language
and its formal semantics. Cambridge University Press,
1988.

450

