
Specifying and Verifying Business Processes

Using PPML

Germán Regis1, Nazareno Aguirre1, and Tom Maibaum2

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto
and CONICET, Ruta 36 Km. 601, Ŕıo Cuarto (5800), Córdoba, Argentina

{gregis,naguirre}@dc.exa.unrc.edu.ar
2 Department of Computing & Software, McMaster University,

1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1
tom@maibaum.org

Abstract. The Product Process Modeling Language (PPML) is a formal
language for the specification of business processes, which has a formal
semantics based on timed transition systems. As opposed to other busi-
ness process modeling languages, PPML puts an emphasis on products
(not only processes), allowing the specifier to describe properties of these,
and how processes affect them. This facilitates modeling of business pro-
cesses, and combined with other characteristics of the language, most
notably timing constraints in the form of time bounds associated with
processes, makes it an expressive vehicle for modeling business processes.

PPML is more a formalism than an actual modeling language, since
no syntax was ever defined for the formalism. In this paper, we define a
suitable syntax for PPML models, and provide a formal semantics for the
extended language in terms of timed automata. The formal semantics is
given as a translation from PPML into UPPAAL. This formal semantics
enables us to straightforwardly employ the UPPAAL model checker in
order to verify real time properties of PPML specifications.

We show some of the benefits of a product-oriented language for busi-
ness process modeling, the details of our translation and the results of
the use of the UPPAAL model checker for PPML specifications via a
simple case study, regarding a motherboard production line.

1 Introduction

The constant effort of different organizations for improving their business and
manufacturing processes for efficiency and control has led to the development of
languages and methods for business process modeling and analysis. Currently,
there exist several business process modeling languages, such as BPEL, WS-CDL
[14], etc. Most of these have been defined with a significant emphasis on modeling
service oriented systems [1], and generally lack a formal semantics, which makes
them less suitable for automated analysis.

PPML [19], on the other hand, is a formal business process modeling lan-
guage based on timed state transition systems [18]. PPML models are composed
of processes, and their effects on products. Also, processes may include temporal

K. Breitman and A. Cavalcanti(Eds.): ICFEM 2009, LNCS 5885, pp. 737–756, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

738 G. Regis, N. Aguirre, and T. Maibaum

bounds, which enable one to specify timing constraints. These features make the
language appropriate for modeling concurrency related restrictions, process syn-
chronizations, etc. The main difference with other languages is that, in PPML,
products are explicit referents of the model. This provides us with greater flex-
ibility, compared to other business process modeling formalisms, particularly
when describing models in which products are complex, and their description
is as important as that of processes. We believe that having the possibility of
describing products and their structure is essential in cases in which the infor-
mation flow of processes and how products evolve in these processes need to be
explicitly specified, e.g., for stating invariants, properties describing relationships
between different products (or different states of the same product), etc. Some
situations in which this is clearly observed are the specification of certain indus-
trial processes, protocol descriptions such as CORBA, etc. PPML also allows us
to describe the structural state of products in particular moments in time; for
instance, one can describe the state of a product before and after a process is
executed on it. This facilitates the description of properties regarding product
traceability, and other properties not directly associated with the processes, but
with the products and their evolution in the system.

In the last two decades, the development of algorithmic methods for soft-
ware/hardware verification has led to powerful analysis mechanisms, such as
model checking [6]. These mechanisms have been enhanced by increasing com-
puter power, and, in the last decade or so, various tools for automated anal-
ysis/verification have been developed, and are being used in practice. Many
systems have requirements associated with real time (e.g., requirements associ-
ated with response within some preestablished bounds, etc.). For these kinds of
systems and properties, there exist special model checking tools, most notably
the tools Kronos [8] and UPPAAL [3]. Various kinds of timing constraints are
often found in business process descriptions (cf. [15] page 3, [26] Section 1.7),
and therefore, as it will be made clearer later on, we can benefit from the use of
model checking tools for real-time for analyzing business process specifications.

We are interested in formally specifying business processes using a richer lan-
guage for specifying products and their characteristics, as opposed to what
is normally found in business process modeling notations. Moreover, we are
also interested in verifying properties of these models, in particular real time
properties.

The PPML formalism has been carefully defined, and various of its features
have been thoroughly studied [19]. We refer both to the language and the logic
as PPML, as opposed to [19], where PPML is the logic underlying the language,
and the language is called Mensurae. Since no formal, precise syntax has been
provided for PPML, we define a suitable syntax for it, extending the original
language. Moreover, we also provide an encoding of the extended language into
the language associated with the UPPAAL model checking tool. This translation
provides the language with a formal semantics based on timed automata, the
semantic formalism behind UPPAAL. We describe the above mentioned encod-
ing, and develop a case study, based on a simplified version of a motherboard

Specifying and Verifying Business Processes Using PPML 739

production line. This will enable us to justify the usefulness of the encoding,
for verifying interesting real time properties associated with business process
specification.

The paper proceeds as follows. First we describe the PPML language and
provide an overview of the UPPAAL language and tool. We then present our
extension of PPML, its formal syntax as well as the proposed semantics, as a
translation from PPML into the language of the UPPAAL model checker. We
use our case study as a reference for the presentation. We also use the translation
in order to verify properties associated with the case study. Finally, we discuss
related work in the area and draw some conclusions.

2 An Overview of PPML

PPML is a formal language which can be used to model business processes [19].
The basics of the method underlying the language are described in [17]. PPML
has three basic constructs: products, processes and gates. Products are entities
characterized by a set of measurable attributes. Products can be manipulated
by processes. Processes are entities that represent behaviours, which are not
necessarily instantaneous, i.e, they can take some time to be completed. They
are modeled via “single input, single output” tasks. If multiple inputs are nec-
essary, these have to be put together in a composite product. The main element
employed for composing/decomposing products, to be processed by processes, is
the gate. Basically, there exist three types of gate, namely, the multiplexer, the
demultiplexer and the semaphore.

One can also associate timing constraints with processes. This is done in
PPML via two bounds associated with processes: a lower bound (minimum time
that the process needs to fulfill its task) and an upper bound (maximum time
that the process can spend to complete its work).

2.1 Products

Products represent empirical referent objects (i.e., “things” in the world be-
ing modeled). Products are characterized by their measurable attributes, e.g.,
length, weight, color, etc. These characteristics may be directly observable or
can be calculated by functions applied to values of other existing features. The
characteristics associated with a product entity must be given in a suitable mea-
surement scale [9].

In order to define products, we assume a first order theory presentation 〈Σ, A〉,
called a proto-product, which defines the basic types (e.g., for attributes) nec-
essary for products, including a sort of codes (Code), a sort of names (Name),
and a sort for instants (T ime, which corresponds to a discrete totally ordered
set with a first element).

Products can then be either atomic, composite or structured. An atomic
product P is a tuple 〈code numberP , product nameP , timeP , attributesP 〉, where
code numberP is a Code constant, used to identify products; product nameP is a
constant of sort Name, which allows one to refer to particular products; timeP is

740 G. Regis, N. Aguirre, and T. Maibaum

a constant of sort T ime, and it is the time stamp of the product P , indicating the
last time that the product’s attributes have been updated; attributesP ⊆ Σ is a
set of attributes, the measurable characteristics of the corresponding empirical
referent (i.e., the entity in the real world being modeled by the product). Cer-
tain attributes, called direct attributesP , may be directly measured by means
of appropriate measurement procedures, while others, derived attributesP , are
calculated using rules and laws governed by the axioms A. As an example, sup-
pose that we need to model a memory bank with some basic characteristics
such as the memory’s size and a flag indicating if the memory was tested or
not:

〈code memory, memory, 0, {size : nat, tested : bool}〉.
A composite product P is either:

– a pair P = 〈code numberP ,⊗(Pc1, .., Pcn)〉 where ⊗(Pc1, .., Pcn) is an injec-
tion of the components Pci into the cartesian product. This type of composite
product is used to blend products emerging from several previous processes.
This is useful, in particular, for synchronizing products in time, to be con-
sumed as inputs by other processes,

– a pair P = 〈code numberP , ι(P)〉 where P is a finite set of products and
ι(P) ∈ P . This type is the choice product and is used in situations where
an input from any one of some previous processes is chosen based on some
defined condition.

Products that need to be treated as atomic artifacts, but whose definitions are
given in terms of constituent parts, are not the same as composite products.
These are a particular kind of product, called a structured product.

A structured product P may be refined (or specialized), which corresponds in
logic to extending the presentation 〈Σ, A〉 to some new proto-product 〈Σ′, A′〉
by adding some new constants, functions and relations, or aggregate, which cor-
responds to a type of product that allows us to aggregate several constituent
products into a new atomic product.

As it can be observed in the above specification, structured product descrip-
tions are akin of classes in object orientation. The instances of these product
descriptions will represent the individual referents in the real world. That is, the
instances of product descriptions will be involved in the executions of processes.

2.2 Processes

A process models an empirical referent process (i.e., some real world process or
procedure) that transforms an input product into an output one. As for products,
the processes may be atomic (a process without internal constituent “subpro-
cesses”) or structured. They model input/output transformations. In order to
carry out these transformations, each process has a virtual machine that in-
terprets its basic commands. Intuitively, a virtual machine is an object system
with routines, representing basic actions that it is capable of doing, such as
assignments in a conventional programming language.

Specifying and Verifying Business Processes Using PPML 741

In order to specify a process, we define what input/output transformations
are required using basic actions or some combinations of these, via some control
structure of the virtual machine internal to the process. Not all actions of the
virtual machine are under the control of the process. Environmentally controlled
actions may appear. Another control structure that can be useful is parallel
execution.

The formalization of the concept of the virtual machine is based on object
specifications [10] and consists of a logical framework based on timed transition
systems, called RETOOL [4]. The RETOOL semantics is based on the notion of
computation over a timed object frame. The specification (theory presentation)
describing the virtual machine is a pair consisting of a signature and a collection
of sentences describing the behaviour of the system [19].

The definition of a process is given as a transaction defining a computa-
tion segment of the underlying virtual machine. It is specified by five elements,
namely, the initial and final conditions (q, p), the invariant I, and the lower and
upper bounds (l, u). The initial condition q specifies the states in which the
transaction can be initiated; the final condition describes the states in which the
transaction finishes (i.e., a kind of postcondition); the invariant I is a property
that is supposed to hold throughout the execution of the transaction (e.g., re-
quiring that the equipment being used for the process is not unplugged during
the execution of the process!); finally, the lower and upper bounds l and u state
the minimum and maximum time that the execution of the transaction can take,
in order to be completed.

A process behaviour, i.e., its associated transfer function (how the input prod-
uct is transformed into the output product), can then be formally characterized
by a formula (q, I)lΔ

up, which is interpreted with respect to a timed state se-
quence 〈σ, T 〉 for a timed object frame, (where σ is an infinite sequence of states
and T is an infinite sequence of corresponding times), and an instant i of time
(the current time), in the following way: σ, T, i � (q, I)lΔ

up iff, for some k such
that i + l < k ≤ i + u; σ, T, i � q, σ, T, k � p and σ, T, n � I hold, for every
i ≤ n ≤ k.

An atomic process p is a pair 〈proc, V M〉, where V M is the process’ virtual
machine (an object specification [4]) and proc = 〈process code, process name,
PI , PO, (q, I)lΔ

up〉; process code, process name are state variables of the sorts
used for process codes and names, respectively. These variables are rigid (i.e.,
their interpretations are immutable along computations), and their sorts are
assumed to be defined and specified in the proto-product 〈Σ, A〉. PI , PO are the
input and output products and (q, I)lΔ

up is the specification of the properties
of the process (i.e., its associated transfer function). Consider, for instance, the
following tuple describing an atomic tester process:

〈code, tester, memory, memory, (¬memory.tested, true)5Δ10memory.tested〉

This tester process takes as input a non tested memory bank, and after i units
of time (5 ≤ i ≤ 10), the process returns a tested memory bank. For the sake of
simplicity, we skip the description of the virtual machine for this process.

742 G. Regis, N. Aguirre, and T. Maibaum

2.3 Gates

In order to make processes interact, by interconnecting them via products, it is
often necessary to combine products to build composite ones, or decompose prod-
ucts, for instance for feeding other processes with the parts. In order to do this,
PPML provides the concept of gate. Besides gates for composing/decomposing
products, there is a third kind of gate, the semaphore, which is useful for synchro-
nization. Gates are useful for modeling transfer functions that can be regarded as
instantaneous because the time taken is trivial and where the single input/single
output constraint is not met by purely trivial marshalling activities. The types
of gates are formally defined as follows:

– A multiplexer is a tuple M = 〈multiplexer code,P , P, F 〉, where
multiplexer code is a fixed value used to identify the gate, P is the set of
input products, P is the output product of the multiplexer and F is the
multiplexer action function defining P explicitly in terms of the set of input
products P .

– A demultiplexer is the dual of a multiplexer. In this case, the output products
are defined as projections of the input product.

– A semaphore is a tuple S= 〈semaphore code, P, S〉, where semaphore code
is a fixed value used to identify the semaphore, P is the input/output product
and S is the condition that must be satisfied to continue.

Graphically, gates are depicted as shown in Fig. 1 2 3, As an example, consider a
multiplexer gate that receives a memory bank and a processor and returns a com-
posite product putting together the input products. This is specified as follows:

〈codeM , {mem, proc}, 〈codeP ,⊗(p1, p2)〉, {(mem, p1), (proc, p2)}〉

Fig. 1. Multiplexer Fig. 2. Demultiplexer Fig. 3. Semaphore

2.4 Framework Processes

When modeling complex empirical referents, it is often the case that one needs
mechanisms providing us with abstraction and encapsulation, in order to deal
with complexity. This is the usual situation when one decides to model processes
in a bottom up way, i.e., modeling simpler processes first and composing these
later on, as well as in top down approaches, i.e., modeling complex processes
abstractly first and later on refining these into more detailed subprocesses [2].
PPML provides facilities for dealing with abstraction and encapsulation, partic-
ularly the notion of framework process. Framework processes are defined via pro-
cess combinators. These are the following: Let p1 = 〈p1 code, p1 name, p1I, p1O,

Specifying and Verifying Business Processes Using PPML 743

(qp1, Ip1)lp1Δ
up1pp1〉 and p2 = 〈p2 code, p2 name, p2I , p2O, (qp2, Ip2)lp2Δ

up2pp2〉
be two processes,

– Sequential combination: Denoted as p1; p2, combines two processes into a
new one p = 〈p code, p name, p1I , p2O, (qp1, Ip)lp1+lp2Δ

up1+up2pp2〉, in the
expected way. The p code and p name “fields” have new unique code and
name, respectively. The invariant Ip requires that the initial condition of the
first of the processes holds, while the invariant Ip1 holds for some time not
exceeding up1 units of time; after that, the final condition pp1 becomes true
in at least lp1 units of time. Then, eventually the initial condition qp2 holds,
while the invariant Ip2 holds, from that point onwards, for at most up2 units
of time; after that, the final condition pp2 becomes true in at least lp2 units
of time.

– Semaphore (conditional) combination: The semaphore composition of p1 and
p2, denoted by p1;s p2, is defined as for the sequential composition, but
the invariant of the transfer function is strengthened in the sense that s
(semaphore condition) must be true in order to start the second process.

– Parallel combination: Let mO = 〈multiplexer code,PO, PO, FO〉 and dI =
〈demultiplexer code, PI ,PI , FI〉 be a multiplexer and a demultiplexer, re-
spectively, each defined over the set of input and output products of p1 and
p2. Then, the parallel composition p of p1 and p2 with respect to mO and
dI , denoted by [p1; p2](dI , mO) is defined as follows: The process code and
process name “fields” of p have new unique code and name respectively.
The input of p is the input of dI and its output is the output of mO. The
transfer function τ of p is (qp1∧qp2, Ip)max((lp1,lp2))Δ

max((up1,up2))(pp1∧pp2),
where the invariant Ip is defined as (qp1∧qp2) ⇒ (τ1[(pp1U(pp1∧pp2))/pp1]∧
(τ2[(pp2U(pp1∧pp2))/pp2])) (where τ [(pUq)/r] denotes the replacement of the
final condition r in τ by the condition (pUq)). The symbol “U” denotes the
well known strong until temporal operator. This requires that, when the two
processes are ready to start, they are executed in parallel. Further, when one
of them finishes, it must wait for the other process to reach its final state.

A framework process p is an atomic process composed of a set of constituent
processes {p1, ..., pn} using the combinators defined above. We denote frame-
work processes by pairs of the form 〈p, fw.exp〉, where p is the standard PPML
definition of process and fw.exp is the specification of the constituent processes
in terms of the combinators.

3 UPPAAL

UPPAAL is a toolbox for the verification of real-time systems. It is based on
the theory of timed automata, and provides a subset of CTL (computational
tree logic) as a query language to specify properties to be checked. A model
in UPPAAL is a set of instances of templates which can be communicated by
means of various kinds of communication channels.

744 G. Regis, N. Aguirre, and T. Maibaum

An UPPAAL specification consists of three parts: global declarations, schemas
(automata templates) with their corresponding local declarations, and the system
specification.

3.1 Declarations

The global declaration, or the local declaration of a template, may include the
definition of variables, arrays, registers or types (as in the C programming lan-
guage). There exist four predefined types: int (integers), bool (booleans), clock
(clocks), and chan (communications channels). The communications channels
can be basic, urgent or broadcast. Constants can also be defined, using the const
keyword. UPPAAL provides a rich language for the declaration of functions that
can be invoked in the templates. Parameters, conditional sentences and iterative
sentences, such as ‘while’ or ‘for’ statements, can also be specified.

3.2 Templates

Templates are defined as extended timed automata. An automaton consists of
locations and edges, and can also have local declarations and parameters (by
value or by reference).

Locations can be labeled (reference names). We can specify invariants in the
location, indicating that some condition must hold in the state. The invariant
expressions can only be conjunctions of simple conditions over clocks, or boolean
expressions without clock variables. Conditions involving lower bounds on clocks
are not allowed. There are three modifiers for a template’s locations: initial (each
template must have exactly one initial state), urgent (time stops while a process
is in one of these states), and committed (time stops while a process is in one of
these states, as for urgent locations, but they also bind the system scheduler to
choose one of the committed locations in the next transition).

Locations are connected by edges. The edges can be annotated with selections,
guards, synchronizations or updates.

– Selections : Selections non-deterministically bind a given identifier to a value
in a given range. The other three labels of an edge are within the scope of
this binding.

– Guards : An edge is enabled in a state if and only if the guard in it evaluates
to true.

– Synchronization:Processes can synchronize over channels. Edges labeled with
complementary actions over a common channel synchronize.

– Updates : When an edge is “executed”, the update expression of the edge is
evaluated. The side effect of this expression changes the state of the system.

When two processes are synchronized, both synchronized edges are fired at the
same time. Their corresponding updates are performed in an ordered manner:
first the update of the sending process, and then the update of the receiver.
Notice that the edges allow only for a single synchronizing channel. Broadcast
channels represent one-to-many synchronizations, since the sender and all the
receiver edges are fired at the same time.

Specifying and Verifying Business Processes Using PPML 745

3.3 System Specification

The specification of a system model consists of one or more concurrent processes
(template instances), variables and communication channels. The variables, chan-
nels and functions defined at this level are not available in the templates.

3.4 Temporal Properties

UPPAAL provides a CTL temporal logic [20], with some restrictions (only one
path quantifier), as a query language. Thus, the allowed query formulas are the
following:

– E�q: evaluates to true for a timed transition system if and only if there is a
sequence of alternating delay transitions and action transitions s0 → · · · →
sn, where s0 is the initial state and sn satisfies q.

– A�q: evaluates to true if and only if every reachable state satisfies q.
– E�q: evaluates to true for a timed transition system if and only if there is a

sequence of alternating delay or action transitions s0 → s1 → · · · → si → · · ·
for which q holds in all states si.

– A�q: evaluates to true if and only if all possible transition sequences even-
tually reach a state satisfying q.

In the above formulas, q is a well formed logical expression. The variables or
states of a process in an expression can be referenced. For instance,

A�Motherboard.End → Motherboard.hasProcessor

expresses that, for all execution sequences, it is always the case that, if a moth-
erboard is in its end state, then it must have a processor (its hasProcessor
variable is set to true).

4 PPML Syntax and Extensions

In previous work on PPML, all the elements that are part of business process
specifications are formally defined, but no actual syntax for the specifications is
proposed. In order to provide a suitable high level syntax for specifying PPML
models, we propose a syntax for products, processes and gates. This syntax has
two objectives, namely, it allows us to provide a more flexible and user friendly
way of writing PPML specifications (as in other business description languages),
and to standardize the syntax so that tools for the language, such as parsers and
analyzers, can be built.

For the sake of simplicity, we will mainly show the proposed syntax for PPML
using a case study as a reference. The case study is the following. Suppose that
we need to model a simplified version of part of a production line of a com-
pany that assembles motherboards. In this simplification, the assembly process
receives as initial source products base motherboards, with two (empty) slots,
one for a processor, and the other for a memory bank. Once assembled, each

746 G. Regis, N. Aguirre, and T. Maibaum

base motherboard is complemented with a processor and a memory bank, each
seated in its corresponding slot. At the end of the manufacturing process, the
assembled motherboard is tested, more precisely, the motherboard is tested in
combination with the memory bank, and in combination with the processor. In
order to reduce the manufacturing time, these tests can be done in parallel by
two independent testing processes.

Motherboards are structured products. Consider the definition of the Moth-
erboard product shown in Fig. 4, and illustrating the syntax of products.

Product MotherBoard {

Proccessor MProccessor,

Memory MMemory,

int Proccessor_Socket,

boolean hasProcessor,

boolean hasMemory,

boolean tested

}

Fig. 4. Structured Product MotherBoard

As it can be observed, structured product descriptions are akin to classes in ob-
ject orientation (although is not shown in the example, the only kind of “method”
allowed in product specifications are the definitions of derived attributes). The
instances of products will be involved in the executions of processes.

When modeling business processes, one often finds situations in which certain
products are built or transformed in several steps. In these cases, sometimes the
state of some of the products’ attributes being built or transformed are unknown,
e.g., when these have not yet been assigned a particular value. In order to model
these situations, it is necessary to introduce null values.

In order to illustrate a process definition, let us model part of the motherboard
production line, namely the process that takes a motherboard without processor
and a processor, and returns the partially assembled motherboard resulting from
seating the processor in its corresponding slot in the motherboard. The input
product is a composite product, consisting of a motherboard without processor,
and a processor. The initial condition requires the compatibility of sockets and
the processor slot in the motherboard being empty. The invariant for this process
should specify that the processor cannot be assembled in parallel with the seating
of the memory for this motherboard. The output product is simply the original
motherboard with the processor put in its corresponding slot. We might associate
time bounds with this process, for instance saying that the process cannot take
less than 5 units of time to be performed, and it takes 10 units of time or less
to be completed. This process is specified, in our proposed syntax, in Fig. 5.

Due to space restrictions, we include here only the formal syntax of atomic and
structured products (see Fig. 6) and atomic processes (see Fig. 7). More complex
processes, composed of simpler ones, are easier to express using a graphical
notation, as we will see later on in the paper.

Specifying and Verifying Business Processes Using PPML 747

Process assem_1 {

input: [Motherboard Mother_in; Proccessor Proc_in],

output: MotherBoard Mother_out,

invariant: Mother_in.HasMemory == false,

requires: Mother_in.Proccessor_Socket == Proc_in.Proccessor_Socket

&& Mother_in.HasProccessor=false,

ensure: Mother_out == Mother_in && Mother_in.MProcessor == Proc_in

&& Mother_in.hasProcessor == true,

l_time: 5 ,

u_time:10

}

Fig. 5. Process that assembles a motherboard and a processor

Product → ’Product’ Product name ’{’ Product body ’}’
Product body → Product refs ’,’ Product atts | Product atts
Product refs → Product ref ’,’ Product refs | Product ref
Product atts → Product att ’,’ Product atts | Product att
Product ref → Product ref name Product ref ID
Product att → Product direct att | Product derived att
Product direct att → Product att type Product att ID
Product derived att → Product att type Product att ID ’=’ Expression
Product att type → ’int’ | ’boolean’
Expression → Expression Binary op Expression | Unary op Expression

| Product att ID | Product ref name’.’Product att ID
| ’(’Expression’)’ | NAT const | BOOLEAN const

Binary op → ’+’ | ’-’ | ’*’ | ’/’ | ’==’ | ’and’ | ’or’ | ’&&’ | ’||’
Unary op → ’-’ | ’not’ | ’ !’

Fig. 6. BNF for the syntax of atomic and structured products

Process → ’Process’ Process name ’{’ Process body ’}’
Process body → ’input:’ Input def ’,’ ’output:’ Output def ’,’

’invariant:’ Invariant def ’,’ ’requires:’ Requires def ’,’
’ensures:’ Ensure def ’,’ Times def

Input def → Product ref | Composite product ref
Output def → Product ref | Composite product ref
Invariant def → Expression
Requires def → Expression
Ensure def → Expression
Times def → ’l time :’ NAT ’,’ ’u time :’ NAT

Fig. 7. BNF for the syntax of atomic processes

5 From PPML to UPPAAL

With the aim of verifying temporal properties of PPML specifications, and provid-
ing a semantics for PPML in terms of timed automata, we propose a translation

748 G. Regis, N. Aguirre, and T. Maibaum

from PPML into UPPAAL. This will enable us, in particular, to employ the UP-
PAAL model checker for verifying real time properties of PPML models.

Essentially, the encoding of PPML into UPPAAL is defined in the following
way. Each product class will correspond to a template, which will represent the
product states in the system (i.e., all states that the product can have in the
system) and a type that represents the product configuration, i.e., a structure
that describes the product’s attributes.

Processes are encoded as templates that mimic the PPML processes’ be-
haviours in the system.

Gates are encoded as arrays of integers, declared as global variables. The
values of an array representing a gate will correspond to the presence of the
expected product at a given instant in the system. More precisely, if the array
has in position i a value n �= 0, then n is the code of a product available as input
for the gate at instant i. Code 0 represents the absence of products. Since codes
are unique for each product, they can be interpreted as references (with 0 being
the null reference).

The encoding of gates is merged with those of products and process templates,
in the following way:

– For a multiplexer gate M , the process that waits for the gate’s output will
have a conditional transition, checking whether M [i] �= 0, for every i. All
the products to be collected at the gate will also have in their corresponding
templates a conditional transition checking whether the values in their corre-
sponding positions in the gate are 0. If the condition holds and the transition
is fired, the products update the array values with their corresponding codes.

– For a demultiplexer gate D, each process waiting for D’s output checks if its
input product is available.

– Semaphore gates are encoded as multiplexers, but with the process transition
including an extra condition corresponding to the semaphore pass condition.

As is usual in model checking, we are forced to consider finite state systems, and
thus we have to consider a maximum number of instances for product classes.
For each product class (e.g., motherboard in our case study), we declare an array
whose length is the maximum number of instances of the class, and which will
hold the values of the attributes of these instances. For each process, we declare
a broadcast channel, which is shared between the process and its input products,
and is used to synchronize the start and finish tasks. The process manipulates
products by updating their attributes, stored in the corresponding data array.

The independence of templates for processes and products enables us to pro-
vide a flexible parametrization of the system domain. For example, we can change
the number of instances of products very easily, without altering the other con-
stituents of the system. In our case study, for instance, we exploit this flexibility
in order to “test” the system using different numbers of motherboards, processors
and memory banks.

In order to illustrate the encoding, let us consider the process depicted in
Fig. 8.

Specifying and Verifying Business Processes Using PPML 749

Fig. 8. Diagram for PPML process: assem1;assem2;[test1 ;test2](D1,M 3)

The assembly process begins with the process assem1 that takes a mother-
board and a processor, and returns them assembled with a delay between 5 and
10 units of time. The next process is assem2, which receives the output of the
previous process and a memory bank, and assembles them with the same tem-
poral bounds as the previous process. After that, the components are tested in
parallel by the processes test1 and test2, whose lower and upper time bounds
are 3 and 5 units of time.

5.1 Translation of Products

For each PPML product we generate:

– As global declarations, a range definition 0..n of integers, which specifies
n instances of the product. These values will be used as codes for each of
the system products, with 0 representing the null product. For each prod-
uct class, a struct type declaration containing the data information of the
product is also defined. In the case of a structured product, for each of its
components, its type will have a variable of the corresponding product type.
These variables will have the code of the composite product, or the value 0
(null, for incomplete products). Finally we declare an array of the product
class type, whose length is the number of product instances. This array will
contain the data values associated with these instances.

– A template with:
• A clock variable declaration (time of the product in the system).
• A function definition that updates its derived attributes.
• A constant, used for representing the codes of the instances of products

in the system.
• Locations : an initial location, a location for each gate or process that

manipulates it, and a final location.
• Edges : without loss of generality, let us assume that we have a gate before

every process. Thus we have two possible scenarios for edges: the edges
go from a gate location to a process location, or from process locations
to gate locations. Edges of the form (egate, eproc), corresponding to the
first of the scenarios described, are labeled with a conditional array gate
update, where the update data is its code, and the condition expressing
that the gate’s product port is empty. Edges of the form (eproc, egate),
corresponding to the second kind of scenario described, are labeled with

750 G. Regis, N. Aguirre, and T. Maibaum

a waiting message in the channel corresponding to the process whose
code is in the gate. It also includes a call to the function that describes
the updates of its calculated attributes.

When products are “copied” by a demultiplexer, all possible interleav-
ings of processes modifying the product are taken into consideration.

– The instances of templates are declared in the system declarations.

As an example of product encoding, consider the specification given in Fig. 9,
which is the result of encoding the memory product.

Global Declarations

//number of instances 2

typedef int[1,2] n_memories;

//number of instances 2 + null

typedef int[0,2] n_memories0;

//Prod. Structures declarations

typedef struct {

int size;

bool assembled;

bool tested ;

} TMemory;

//Arrays for Prod. attr. values

TMemory

DataMemories[n_memories];

Template Declarations

clock x;

//Calculated Attr. Update

void UpdateAttr(){}

System Declarations

Memories (const n_memories id)

:= Memory(id);

Template states and edges

e1: Initial State (M2)
l1: Guard: gMult2[1]== 0;

Update: gMult2[1]:= id
e2: assem2

l2: Guard: gMultiplexer2[1]== id
Sync.: cassem2?
Update: UpdateAttr()

e3: D1

l3: Guard: gMultiplexer3[1]== 0;
Update: gMult3[1]:=id

e4: test2
l4: Guard: gMult3[1]== id

Sync.: ctest2?
Update: UpdateAttr()

e5: Final State (M3)

Fig. 9. Memory Product translation

5.2 Translation of Processes

For each PPML process we generate:

– As global system declarations, channels to communicate the process with the
products it is fed with, i.e., one channel and a variable of the corresponding
code type are declared for each product involved in the process. The mar-
shalled input products are simulated by the synchronizations of the above
declared channels. We also generate a broadcast channel used by the process
to “inform” the products that they are being processed.

Specifying and Verifying Business Processes Using PPML 751

– A template with:
• A clock variable declaration (time within current process).
• An initial location.
• An update function, which expresses the action that the process per-

forms on the products being processed. This is defined as an update of
attributes of the products involved, defined as global shared variables.

• The locations corresponding to: the idle process’s location (a location for
awaiting the arrival of products), a ready to process location (a location
for the state in which all required products are queued for processing),
and a final location (for the post-process state).

• An edge connecting the idle location with the ready location, labeled
with the condition that every array cell (codes of necessary products to
start) be nonzero, and resetting its internal clock.

The edge from the ready location to the post-processing location rep-
resents the activity of the process. So, it is labeled with the time con-
straints over the internal process clock, a broadcasting signal to the prod-
ucts involved and the update function call described above. Finally, an
edge connecting the post-processing and idle locations is included, for
resetting the process to receive a new job.

– In the system declarations, we create an instance for each process template.

As an example clarifying the process encoding, consider the specification shown
in Fig. 10, which is the result of encoding the process of assembling a mother-
board with a memory bank.

Global Declarations

//processing communication channel

broadcast chan cAssem2;

Template Declarations

clock x;

//Process Updates

void pAssem2(){

//MotherBoard Update;

DataMotherB[gMult2[0]].id_Memory:=

gMult2[1];

}

System Declarations

Assem20 = Assem2();

States and Edges

e1: Initial State (M2)
l1: Guard: gMult2[0]!=0 and

gMult2[1]!=0
Update: x:=0;

e2: Pre-assem2
l2: Guard: x >=3 && x<=5

Sync.: cassem2!
e3: Pos-assem2
l3: Update: x:=0;

gMult2[0]:= 0;
gMult2[1]:= 0;

Fig. 10. assem2 Process translation

752 G. Regis, N. Aguirre, and T. Maibaum

5.3 System Specification and Verification of Real Time Properties

We finish the specification of the system by defining the product and process
templates. Once this is done, we have a complete UPPAAL specification, and we
can employ the UPPAAL model checker in order to verify real time properties
of our PPML model.

For our case study, we considered the following properties for verification:
1) Processors and memory chips cannot be shared by (different) motherboards.

A[] forall (i:n_motherboards) forall (j:n_motherboards)

i != j imply ((MotherBoards(i).End and MotherBoards(j).End)

imply (DataMotherBoards[i].id_Memory != DataMotherBoards[j].id_Memory

and DataMotherBoards[i].id_Processor!=DataMotherBoards[j].id_Processor))

2) Every motherboard that reaches the final location has its processor and memory
already tested.

A[] forall (i:n_motherboards) (MotherBoards(i).End imply

DataMotherBoards[i].tested)

3) The processing of the motherboards can be completed in less than 14 units of
time.
Notice that this corresponds to the testing phases being performed in parallel.

E<> exists(i:n_motherboards)(MotherBoards(i).End and

MotherBoards(i).x<=13)

4) There exists the possibility that all motherboards can be assembled and tested
successfully.

E<> forall(i:n_motherboards)(DataMotherBoards[i].tested)

The above properties were verified in a PC with an 2.33GHz Intel Core2 Duo
CPU processor, with 2GB of DDR2 memory, running GNU/Linux with kernel
version 2.6.28-11. The UPPAAL version employed was 4.1.1. The details of the
verifications are summarized in the following time table:

Test 1 Test 2 Test 3 Test 4 Test 5
1) 0,231 s 4,651 s 22,093 m 2,694 m -
2) 0,013 s 2,583 s 14,371 m 2,413 m -
3) 0,001 s 0,792 s 1,642 s 1,931 s 20,053 s
4) 0,001 s 3,970 s 13,339 m 6,017 m -

In the above table, (s) indicates seconds, (m) minutes and (-) indicates that
the verification process was stopped after the system memory was exhausted,
i.e., when the amount of virtual memory used doubled the size of real (hard)
memory. At this point the trashing process made the verification infeasible. The
experiments associated with the columns of the table, referred to as “tests”, are
the following:

Specifying and Verifying Business Processes Using PPML 753

– Test 1: 2 instances of each of the products, i.e., two motherboards, two
processors and two memories.

– Test 2: 3 instances of each of the products.
– Test 3: 4 instances of each of the products.
– Test 4: three instances of motherboards and, five instances of processors and

memories.
– Test 5: 6 instances of each of the products.

Notice that the experiments were carried out with quantities of processors and
memories sufficient for assembling all the instances of Motherboard, i.e., at least
one processor and one memory per motherboard. If we run the verification with
fewer instances of memories or processors than instances of motherboards, some
properties, such as, for instance, properties 2 and 4, may not be satisfied by the
model.

These experiments are not only provided for illustration purposes, but also
to show how limited the straightforward real time model checking is, for these
kinds of specifications. Indeed, even though our case study is rather small, the
number of instances of products that the model checker is able to deal with (in
a standard desktop computer) is also quite small. The reader might argue that
the inefficiency might be due to our translation; however, checking an ad hoc
UPPAAL characterisation of the described case study yielded similar analysis
results.

This fact shows that abstraction mechanisms, such as those supported by
PPML via framework processes, are crucial for scaling up the analysis tasks.
We plan, as future work, to take advantage of framework processes in order
to improve the analyzability of PPML specifications (most likely, employing
abstraction techniques).

6 Related Work and Conclusions

There are several approaches proposing formalizations for business process lan-
guages and their web services extensions, such as BPEL and WS-BPEL. A survey
of formal verification for business process modelling approaches can be found in
[22], where a classification of proposals for formally analyzing business processes
is presented. Three kinds of formal semantics are the focus of the survey, namely
automata, Petri nets and process algebra based semantics. Exhaustive reviews
of approaches in the area of business process modeling and analysis are also
presented in [11,12], where a translation from UML web services into FSP is
proposed, so that web service specifications can be analyzed using LTSA.

Some approaches focus on providing formal semantics for the Business Process
Modeling Notation (BPMN), such as for instance the works presented in [27,29].
Such semantics allows for the analysis of compatibility of business collaborations
at design level. It also enables a pattern-based approach to the specification of
behavioural properties (which can be verified), using Dwyer et al.’s approach.
The same authors present a relative-timed semantic model for BPMN [28], and
show how properties can be automatically verified using model checking via the

754 G. Regis, N. Aguirre, and T. Maibaum

FDR tool. Another related approach is that presented in [16], where a semi
automated translation from business process diagrams (BPD) into TLA+ is
presented, using Petri nets as an intermediate formalism for the translation.
This (conservative) translation allows one to model check properties of business
processes, expressed as TLA formulas, using the TCL model checker.

A BPEL formalization, closely related to ours, is proposed in [23], mapping
BPEL into timed automata. This formalization allows for checking deadlock
freedom and reachability properties via the UPPAAL model checker, and is
integrated into the ActiveBPEL tool. Other related approaches based on BPEL
and BPEL4WS are the business process formalizations associated with the study
of transactions and fault handling via compensations [24].

Other attempts at formalizing and analyzing workflow languages, such as
UML activity diagrams, have been proposed; an example of this is that presented
in [13], translating these kinds of diagrams into PROMELA (the language of the
SPIN model checker). There exist various approaches providing formal semantics
for workflow languages based on Petri nets or timed extensions of Petri nets [25].

A primary difference of our approach with respect to the ones described above
is that PPML puts an emphasis on product description that, as far as we are
aware of, is not available in any other business process modeling language. This
capability enables the specifier to “balance” the description of business processes
adequately, using a rich language for describing products in order to make pro-
cess descriptions simpler. The language also offers timing constraints, given in
the form of two bounds associated with processes, the lower and upper bounds.
These are useful features with an intuitive meaning, that enable the specifier to
annotate activities with timing restrictions, so that timing related properties,
such as throughput or response time, can be analyzed. We took into consid-
eration these characteristics of the language, and proposed a translation from
PPML into UPPAAL, so that real time properties of PPML models can be ver-
ified using model checking. The query language (the language for expressing the
properties to be checked) is a rather expressive language (computational tree
logic with certain restrictions), enabling one to specify a wide range of proper-
ties, including safety and liveness properties. We have introduced a syntax for
the language (the constituent elements of the formalisms have been formally
defined in previous work, but no appropriate syntax for the language was pro-
vided), and an encoding of the language into UPPAAL, that provides, indirectly,
a timed automata semantics of the language, and the direct possibility of model
checking specifications. We have also illustrated the verification of some sample
properties, using the proposed translation into UPPAAL.

Currently, we are developing a software tool to assist in the creation of PPML
models, and the translation of PPML models into UPPAAL is being developed
as a plug-in of this tool. We believe that PPML is a language that is useful for
the formal specification (and now the analysis) of industrial processes. Directions
for future work include developing abstract interpretation mechanisms associated
with PPML models, so that the verification via model checking can be improved
(by tackling the well known state explosion problem). More precisely, we plan to

Specifying and Verifying Business Processes Using PPML 755

work on predicate abstraction [7] techniques for PPML analysis, exploiting the
framework processes available in the language.

We also plan to prove that the new semantics, that is indirectly provided
for the language via the encoding into UPPAAL, is in fact compatible with the
original timed transition systems semantics of PPML given in [19].

Acknowledgements

The first two authors were partially supported by CONICET, the Argentinian
Agency for Scientific and Technological Promotion (ANPCyT) and the Ministry
of Science and Technology of the Province of Córdoba in Argentina. The third
author was partially supported by McMaster University, the Canada Research
Chair programme, and the Natural Sciences and Engineering Council of Canada.

References

1. Andrews, T., et al.: Business Process Execution Language for Web Services ver-
sion 1.1, http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel/ws-bpel.pdf

2. Baum, G., Frias, M.F., Maibaum, T.S.E.: A Logic for Real-Time Systems Speci-
fication. In: Algebraic Semantics, and Equational Calculus, AMAST, pp. 91–105
(1998)

3. Bengtsson, J., et al.: UPPAAL- A Tool Suite for the Automatic Verification of
Real-time Systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995.
LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996)

4. Carvalho, S., Fiadeiro, J., Haeusler, E.: A Formal Approach to Real-Time Object
Oriented Software. In: Proceedings of the Workshop on Real-Time Programming
IFAP/IFIP, Lyon, France, pp. 91–96 (1997)

5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8, 244–263 (1986)

6. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

7. Das, S., Dill, D., Park, S.: Experience with Predicate Abstraction. In: 11th In-
ternational Conference on Computer-Aided Verification, pp. 160–172. Springer,
Heidelberg (1999)

8. Daws, C., et al.: The Tool KRONOS. In: Alur, R., Sontag, E.D., Henzinger, T.A.
(eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996)

9. Fenton, N., Pfleeger, S.L.L.: Software Metrics: A Rigorous and Practical Approach,
Course Technology 2nd edn. (1998)

10. Fiadeiro, J., Maibaum, T.: Temporal Theories as Modularisation Units for Concur-
rent System Specification. In: Formal Aspects of Computing, pp. 239–272 (1992)

11. Foster, H., et al.: LTSA-WS: A Tool for Model-based Verification of Web Service
Compositions and Choreography. In: 28th International Conference on Software
Engineering (ICSE 2006), pp. 771–774 (2006)

12. Foster, H., et al.: WS-Engineer: A Model-Based Approach to Engineering Web
Service Compositions and Choreography. In: Test and Analysis of W.S., pp. 87–
119 (2007)

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf

756 G. Regis, N. Aguirre, and T. Maibaum

13. Guelfi, N., Mammar, A.: A Formal Semantics of Timed Activity Diagrams and its
PROMELA Translation. In: APSEC, pp. 283–290 (2005)

14. Kavantzas, N., et al.: Web Services Choreography Description Language Ver-
sion 1.0, http://www.w3.org/2002/ws/chor/edcopies/cdl/cdl.html

15. Koehler, J., Tirenni, G., Kumaran, S.: From Business Process Model to Consistent
Implementation: A Case for Formal Verification Methods. In: 6th International
Enterprise Distributed Object Computing Conference (EDOC 2002), pp. 96–106.
IEEE Computer Society, Los Alamitos (2002)

16. Masalagiu, C., et al.: A Rigorous Methodology for Specification and Verification
of Business Processes. In: Formal Aspects of Computing. Springer, London (2009)

17. Myers, M., Kaposi, A.: A First Systems Book: Technology and Management, 2nd
edn. Imperial College Press, London (2004)

18. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed Transition Systems (1996)
19. Maibaum, T.S.E.: An Overview of The Mensurae Language: Specifying Business

Processes. In: Rigorous Object-Oriented Methods, BCS (2000)
20. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems -

Specification. Springer, Heidelberg (1991)
21. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems -Safety. Springer,

Heidelberg (1995)
22. Morimoto, S.: A Survey of Formal Verification for Business Process Modeling. In:

ICCS 2008, pp. 514–522 (2008)
23. Qian, Y., et al.: Tool Support for BPEL Verification in ActiveBPEL Engine. In:

Australian Software Engineering Conference, pp. 90–100. IEEE Computer Society,
Los Alamitos (2007)

24. Qiu, Z., et al.: Semantics of {BPEL4WS}-Like Fault and Compensation Handling.
In: Proceedings of the International Symposium on Formal Methods 2005, pp.
350–365. Springer, Heidelberg (2005)

25. Van der Aalst, W., Ter Hofstede, A.: YAWL: Yet Another Workflow Language.
Information Systems 30, 245–275 (2003)

26. W3C, Web Service Choreography Interface 1.0 (2002),
http://www.w3.org/TR/wsci

27. Wong, P.Y.H., Gibbons, J.: A Process Semantics for BPMN. In: Liu, S., Maibaum,
T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidel-
berg (2008)

28. Wong, P.Y.H., Gibbons, J.: A Relative Timed Semantics for BPMN. In: Proceed-
ings of 7th International Workshop on the Foundations of Coordination Languages
and Software Architectures. ENTCS (2008)

29. Wong, P.Y.H., Gibbons, J.: Property Specifications for Workflow Modelling. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 56–71. Springer,
Heidelberg (2009)

http://www.w3.org/2002/ws/chor/edcopies/cdl/cdl.html
http://www.w3.org/TR/wsci

	Specifying and Verifying Business Processes Using PPML
	Introduction
	An Overview of PPML
	Products
	Processes
	Gates
	Framework Processes

	UPPAAL
	Declarations
	Templates
	System Specification
	Temporal Properties

	PPML Syntax and Extensions
	From PPML to UPPAAL
	Translation of Products
	Translation of Processes
	System Specification and Verification of Real Time Properties

	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

