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Abstract. In this paper we present an attempt to represent dynamic
communication links between abstract machines in the B method. The
approach complements a previously proposed extension to B, that sup-
ports dynamic creation and deletion of machine instances, providing
a mechanism for dynamically connecting or disconnecting machine in-
stances for communication. This mechanism is based on the concept of
connector, in the software architectures sense.

We propose an extension to B’s notation to support the definition of
connectors. The extension has been defined with the intention of making
it fully compatible with the standard B method, and allows one to enable
communication, under certain restrictions, between abstract machines in
a specification which presents dynamic creation and deletion of machine
instances. We present the extension, its semantics and an example il-
lustrating its use based on a producer-consumer specification. We also
discuss possible ways of extending the proposed connector definitions to
more general forms of communication.

Keywords: B method, structuring mechanisms, dynamic reconfigura-
tion, object orientation.

1 Introduction

The B formal specification language is one of the most successful model based
formalisms for software specification. It has an associated method, the B Method
[1], and commercial tool support, including proof assistance [5][7]. As all formal
methods, the B method provides a formal language in which one can describe
systems, allowing for analysis and verification of certain system properties prior
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to implementation. Moreover, the B method and its associated tools also cover
refinement, implementation and code generation [5][7].

Various facilities for structuring specifications are provided in B, helping to
make the specification and refinement activities scalable. However, the B method
has an important restriction regarding structuring mechanisms, namely, it does
not provide, as a structuring feature, the dynamic creation and deletion of mod-
ules or components. More precisely, all structuring mechanisms of B are static,
in the sense that they allow one to define abstract machines whose architectural
structure in terms of other components is fixed, i.e., it does not change at run
time [8].

In this context of static configurations of abstract machines in the B method,
communication between machines is achieved, essentially, in one of the following
ways:

– either one of the machines is contained in the other (and therefore the second
can access information from the first one respecting the visibility rules of the
corresponding structuring mechanism employed), or

– a common substructure of these machines is “factored away” as a separate
machine, and is shared in a “one writer-many readers” fashion [1]. Note that
in this case the communication is in an asynchronous mode.

As we mentioned, B lacks dynamic management of abstract machines. Dy-
namic management of the population of components is a feature often associated
with object oriented languages, since the replication of objects is intrinsic to these
languages [12]. In fact, dynamic management of “objects” is currently accepted
as a common software design practice, perhaps due to the success of object ori-
ented methodologies and programming languages. In order to allow for dynamic
management of components in B, it is not necessarily a good approach to extend
B to support fully fledged object orientation, since this would imply a significant
change to B’s neat syntax and semantics, and would excessively complicate the
tool support implementation (especially in relation to proof support). Neverthe-
less, we have been engaged in the development of extensions to the B method
to support dynamic creation and deletion of machines [2][3], but we have done
so trying to make the extensions fully compatible with the standard B method.
Indeed, we have complemented B’s structuring mechanisms with an extra clause,
the AGGREGATES. A clause AGGREGATES M ′ within the definition of a ma-
chine M intuitively indicates that M counts on a dynamic set of instances of
machines of type M ′, which can be created or deleted at run time [2]. More-
over, we have also shown how this clause can be treated at the refinement and
implementation stages of the B method [3].

As we have advocated, having a structuring mechanism that allows for the
dynamic creation/deletion of machine instances can favour the structuring of
specifications, and therefore, contribute to the decomposability of proof obliga-
tions and the understandability of system specifications [2]. However, allowing
for the dynamic creation and deletion of machine instances via the use of the AG-
GREGATES clause restricts the applicability of the above mentioned approaches
for communicating machines. This is not surprising, since these were designed
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for static architectural configurations of abstract machines. In fact, when try-
ing to achieve communication between dynamically generated machines (i.e., in
“dynamic architecture scenarios”), one usually ends up building complex and un-
structured specifications. The complexities associated with these specifications
are related to the fact that the specifier has to manually construct the machin-
ery for dynamic creation of “objects”, for managing the communication, etc,
usually all encapsulated in a single, flat abstract machine. Thus, we propose an
alternative, based on an extension to B’s notation to support the definition of
connectors [4]. The extension is built on top of standard B, i.e., specifications
written using the extension can be systematically translated into standard B
specifications. The extension we propose here allows one to define synchronous
communication between abstract machines in a specification with dynamic cre-
ation and deletion of machine instances. The mechanism we present is limited to
some specific kinds of communications, but, as we will also show, more general
forms of communication can also be characterised (although these need to be
asynchronous). As for our previously proposed extensions, this extension has
been defined with the intention of making it fully compatible with the standard
B method. We present the extension, its semantics and an example illustrating
its use based on a producer-consumer specification.

The remainder of this paper is organised as follows: In Section 2 we start
by showing how machines are typically communicated (statically) in B. We ar-
gue about the unsuitability of these mechanisms when combined with dynamic
aggregations of machines (Section 2.1). We then briefly describe the AGGRE-
GATES structuring mechanism, its use and semantics. We show how a system
with dynamic creation and deletion of components can be specified using aggre-
gation, but these cannot be connected for communication using B’s mechanisms
(Section 2.2). In Section 3 we present the syntax we propose for connectors in
B, and connectors’ intuitive meaning. In Section 4 we are engaged with the de-
scription of the semantics of connectors, in terms of standard B constructs. We
discuss the proof obligations associated with connector definitions (Section 4.2),
and show how connectors are used by means of an example. We end Section 4
enumerating some of the limitations that our connectors have for defining com-
munication between abstract machines, and discuss the characterisation of more
general forms of communication. Finally, in Section 5 we present our conclusions,
some comparison with related work and lines for future work.

2 Communicating Abstract Machines in the B Method

Let us introduce the problems that we attempt to solve (at least partially) in
this paper by means of an example. This example is a simple variant of a com-
ponent based specification given in [9] for the producer-consumer problem. Let
us suppose that we need to specify a system consisting of a producer that sends
“products” to a consumer. Assuming that the products are encoded as non-
zero integer numbers, and choosing to specify the producer and the consumer
as separate machines, one might define a basic machine Channel in order to
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MACHINE
Channel

VARIABLES
var

INVARIANT
var ∈ INT

INITIALISATION
var := 0

OPERATIONS
set(i) =̂ PRE i ∈ INT THEN var := i END;
x←− get =̂ BEGIN x := var END

END

Fig. 1. A simple abstract machine used for communication between a producer and a

consumer

“implement” the communication, as in Fig. 1. Then, we can define the producer
and the consumer as structured definitions on top of machine Channel, as shown
in Figs. 2 and 3. Note that, for the sake of simplicity, we do not model the cor-
responding acknowledgement that the consumer should send after consuming
a product (note that without the acknowledgement, a producer can overwrite
a product before the consumer gets it). Such acknowledgements can be easily
“implemented” in a structured way, by taking a renamed copy of Channel, say
Channel’, and use it for “backward communication”, i.e., the consumer writes
on it (machine Consumer includes Channel’) and the producer reads it (ma-
chine Producer sees Channel’). Notice that machine Producer simultaneously
includes Channel (for forward communication) and sees Channel’ (for backward
communication), and the converse is true for machine Consumer.

This corresponds to one of the alternatives that a specifier has for specifying
the system, with producer and consumer as separate machines. Of course, one
could also decide to specify the whole system as a sole, flat abstract machine;
following this latter approach, although sound, does not favour the decomposi-
tion of the proofs of consistency (i.e., the proofs of the proof obligations) nor the
understandability of the specification (more detail on this in Section 5).

MACHINE
Producer

INCLUDES
Channel

VARIABLES
p-var

INVARIANT
p-var ∈ INT

INITIALISATION
p-var := 0

OPERATIONS
prod(x) =̂ PRE x �= 0 ∧ p-var = 0 THEN p-var := x END;
send =̂ PRE p-var �= 0 THEN p-var := 0 || set(p-var) END

END

Fig. 2. A specification of Producer including a channel
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MACHINE
Consumer

SEES
Channel

VARIABLES
c-var

INVARIANT
c-var ∈ INT

INITIALISATION
c-var := 0

OPERATIONS
obtain =̂ PRE var �= 0 ∧ c-var = 0 THEN c-var := var END;
cons =̂ PRE c-var �= 0 THEN c-var := 0 END

END

Fig. 3. A specification of Consumer “seeing” a channel

2.1 Communication in the Presence of Aggregation

Let us now suppose that we need to specify a system with a varying number
of producers and consumers, and with dynamism in the communication. For
instance, suppose that, besides dynamically creating and deleting producers and
consumers, we want to change dynamically the consumer a particular producer
produces for. In order to specify such a system, we are unable to use the option of
a common machine, such as Channel, for implementing the communication, since
changing the consumer to which a producer is “connected” would not be possible
to specify (it would require a dynamic change in the structural organisation
of the system specification, not supported in B). So, we are left with a flat,
unstructured machine as the only option for specifying this system, at least if
we use standard B.

However, in this paper, we will show how we can specify the above described
dynamic system of producers and consumers in a structured way, by using the
AGGREGATES clause. As we previously described, this structuring mechanism
intuitively allows one to manipulate a dynamic set of instances of the aggre-
gated machine. Of course, we cannot enable the communication between these
machines directly, so we first have to consider the uncommunicating versions of
producer and consumer, as shown in Fig. 4. (We will “connect” these machines
later.) Then, we can easily obtain a system with dynamic populations of (un-
communicating) producers and consumers, by aggregating these machines, as
in Fig. 5. Note that, in this case, we are able to create and delete producers
and consumers dynamically, but there is no interaction/communication between
producer instances and consumer instances.

2.2 The AGGREGATES Clause

The aggregation of an abstract machine relies on the (systematic) generation
of a population manager for the aggregated machine. A population manager of
an abstract machine M puts together the relativisation of the operations of M
(so they work for multiple instances) with operations that mimic the creation
and deletion of machines instances. To illustrate the use of AGGREGATES, and
its semantics in terms of a population manager, consider the simple machine
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MACHINE
Producer

VARIABLES
p-var

INVARIANT
p-var ∈ INT

INITIALISATION
p-var := 0

OPERATIONS
prod(x) =̂

PRE p-var = 0∧x ∈ INT−{0}
THEN p-var := x
END;

send() =̂
PRE p-var �= 0
THEN p-var := 0
END

END

MACHINE
Consumer

VARIABLES
c-var

INVARIANT
c-var ∈ INT

INITIALISATION
c-var := 0

OPERATIONS
obtain(x) =̂

PRE c-var = 0∧x ∈ INT−{0}
THEN c-var := x
END;

cons() =̂
PRE c-var �= 0
THEN c-var := 0
END

END

Fig. 4. Abstract Machines Producer and Consumer

MACHINE
SYSTEM

AGGREGATES
PRODUCER, CONSUMER

.

.

.
END

Fig. 5. Fragment of a machine aggregating Producer and Consumer

Producer that we show in Fig. 4. The corresponding population manager for
this abstract machine is shown in Figs. 6. Notice that, due to the automatic
generation of the managers, some conjuncts in the invariants are redundant. For
a detailed explanation of how these machines are synthesised see [2] .

The “AGGREGATES Producer” in the abstract machine System in Fig. 5
is simply interpreted as “EXTENDS ProducerManager”. Within System we
can manage the population of producers (resp. consumers) by invoking the
implicitly defined add Producer (resp. add Consumer) and del Producer (resp.
del Consumer). Furthermore, we can call Producer (resp. Consumer) operations,
now operating on particular live instances. Consider, for instance, a deliver
operation that enforces a live instance of Consumer to consume the product
produced by a live Producer p.

deliver(p, c) =̂
PRE

p ∈ ProducerSet ∧ c ∈ ConsumerSet ∧ p.p-var �= 0 ∧ c.c-var = 0
THEN

p.send || c.obtain(p.p-var)
END

Note that the AGGREGATES clause constitutes in effect a structuring mech-
anism: the consistency of machines aggregating other machines can be reduced
to the consistency of the aggregate, and a number of further conditions on the
aggregating machine. This is the case thanks to the fact that the population
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manager of a machine M is internally consistent by construction1, provided that
M is internally consistent. Then, the population manager of a basic machine
M is automatically constructed and can be hidden from the specifier, who can
use AGGREGATES as other conventional structuring mechanism of B [2]. More-
over, the population managers can be hidden from the developer even during
refinement and implementation [3].

MACHINE
Producer Manager

VARIABLES
p-var , ProducerSet

INVARIANT
(∀n · n ∈ ProducerSet ⇒ p-var(n) ∈ INT) ∧
(ProducerSet ⊆ NAME) ∧ (p-var ∈ ProducerSet → INT)

INITIALISATION
p-var , ProducerSet := ∅, ∅

OPERATIONS
prod(x, n) =̂

PRE n ∈ ProducerSet ∧ x ∈ INT− {0} ∧ p-var(n) = 0
THEN p-var(n) := x
END;

send(n) =̂
PRE n ∈ ProducerSet ∧ p-var(n) �= 0
THEN p-var(n) := 0
END;

add Producer(n) =̂
PRE n ∈ NAME− ProducerSet
THEN

ProducerSet := ProducerSet∪{n}||p-var := p-var∪{n, 0}
END;

del Producer(n) =̂
PRE n ∈ ProducerSet
THEN

p-var := {n} �− p-var ||
ProducerSet := ProducerSet − {n}

END;
END

Fig. 6. ProducerManager: Population manager of abstract machine Producer

We adopt the “dot notation” to access variables and operations of the aggre-
gated machines. For instance, the expression m.y represents the value of variable
y corresponding to instance m; analogously, the expression m.op(x) represents
a “call” to operation op, with argument x , corresponding to instance m (see
the definition of operation deliver ). The prefix of an expression employing the
dot notation simply represents the “instance parameter” of the corresponding
operation or variable (i.e., m.y and m.op(x ) are convenient ways of writing y(m)
and op(x ,m), respectively).

1 An abstract machine is internally consistent if it satisfies its proof obligations, i.e. if it
satisfies the requirements imposed in the B method for considering a machine correct.
Proof obligations for the correctness of an abstract machine include conditions such
as nonemptiness of the state space determined by the machine, or the preservation
of the machine’s invariant by the machine’s operations [1].
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3 Communicating Dynamically Generated Machines

We now consider how to enable communication between dynamically generated
machines. We propose to extend B’s notation with the definition of connectors
[4]. In software architectures [13], connectors represent communication “links”
between components, and have the particularity of being external to the defini-
tion of the related components. This is precisely what we need, a mechanism for
relating machine instances outside the definition of the interacting machines.

3.1 Connector Definitions in B

A connector consists of: (i) a name, (ii) a pair of participants (names of abstract
machines), and (iii) a list of connections. The purpose of connections is to define
how the operations of the participants are linked when two instances of the
participants are connected. Consider, for instance, the connector definition in
Fig. 7. This connector indicates that, whenever an instance p of Producer is
connected to an instance c of Consumer via R, then the occurrence of p.send()
forces the occurrence of (or makes a call to) c.obtain(p.p-var ).

A connection can have one of the following forms:

op1 → op2
op1 ← op2

where op1 is an operation of the first participant and op2 is an operation of the
second one. The intended meaning of op1 → op2 is that op1 “calls” op2 ; the
connection in the other direction is interpreted in a similar way. Subsequently,
given a connection c, we will denote by src(c) the operation at the source of the
arrow, and by tgt(c) the operation at the target of the arrow.

For a connector R between two machines M1 and M2 to be well defined, we
have a number of syntactic conditions:

– Machines M1 and M2 must be unrelated (i. e., M1 cannot be defined in
terms of M2 and vice versa),

– if we have a connection op1 → op2 (resp. op1 ← op2 ), then op1 must be
an operation of M1 and op2 an operation of M2,

– if we have a connection c, then the formal parameters of src(c) must be
distinct variables different from the state variables of M1 and M2, and the
parameters of tgt(c) can only be linguistic elements of M1 or M2, or formal
parameters of src(c),

– a connector cannot contain two different connections c1 and c2 such that
src(c1) = src(c2).

We need to enforce these conditions to guarantee that we can build the machinery
for representing connections in B, as we will show in the next section.

3.2 Intuitive Meaning of Connectors

Connectors allow us to intuitively define relations between instances of abstract
machines. These relations also define an interaction between the related in-
stances, described by the connections. In order to clarify how connectors can
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CONNECTOR
R

PARTICIPANTS
Producer, Consumer

CONNECTIONS
send()→ obtain(p-var)

END

Fig. 7. A connector for communicating producers and consumers

MACHINE
Prod Cons

AGGREGATES
Producer, Consumer WITH R

OPERATIONS
feedback(c, p) =̂

PRE c ∈ ConsumerSet ∧ p ∈ ProducerSet ∧ (p, c) ∈ RSet ∧
p.p-var = 0 ∧ c.c-var �= 0
THEN c.cons() || p.prod(c.c-var)
END

END

Fig. 8. An example of a machine with aggregation and connectors

be used in practice, let us define an abstract machine Prod Cons with dynamic
sets of producers and consumers related by R, shown in Fig. 8. Within ma-
chine Prod Cons, one can manage the population of producers and consumers
as explained before; furthermore, one can dynamically connect and disconnect in-
stances of producers and consumers by using two implicitly defined operations,
connect R(x, y) and disconnect R(x, y). As for the case of the AGGREGATES
clause, connectors have an “instance set”; for our example, the instance set cor-
responding to connector R is denoted by RSet (see the definition of operation
feedback ).

Connector R then defines a relation between instances of producers and in-
stances of consumers. Besides this relation, connector R has an important effect
on the operations linked by R: whenever an instance p of Producer is related
to an instance c of Consumer, a call to p.send() enforces a synchronous call
to c.obtain(p.p-var ), as the connection of R indicates. If a producer p is not
connected to a consumer c, then the effect of p.send() is not altered.

When a producer is connected to a consumer, we need to call the obtain
operation on the corresponding consumer; therefore, we need to unequivocally
determine which one is the consumer we have to call. So, we need to restrict
the relation RSet to be functional. Conversely, when we have a connection on
the other direction (e.g., from consumer to producer), we have to restrict the
relation RSet to be injective. These restrictions will be clarified in the next
section, regarding the semantics of connectors.

4 Semantics of Connectors

As we mentioned, it is our aim to extend the B method to support more sophis-
ticated mechanisms for specification, but we want to do so in a way compatible
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with standard B. This would ensure that one could remain using the extensive
work developed on B, as well as the traditional tool support. So, we have the
same intention with our extension supporting connectors. Our connector def-
initions can be mapped into specifications in standard B. More precisely, we
“implement” support for connectors as standard B specifications.

We build an abstract machine for the definition of a connector R relating
two machine (types) M1 and M2. This machine, that we call R Manager , is
structurally defined in terms of the managers for M1 and M2. Moreover, this
machine contains the redefinition of those operations involved in connections.
Then, a clause “AGGREGATES M1, M2 WITH R” within a machine M is sim-
ply interpreted as “EXTENDS R Manager .” Note that R Manager contains the
population managers for M1 and M2.

4.1 Building the Connector Manager

Let M1 and M2 be two internally consistent abstract machines, and R a syn-
tactically valid connector (see the syntactic conditions for valid connectors in
the previous section) with M1 and M2 as participants. Let us assume that there
are no name clashes between the definitions within M1 and M2 (note that name
clashes can be avoided via renaming). We start by constructing the managers
M1 Manager and M2 Manager , for M1 and M2. Since machines M1 and M2 are
internally consistent, we can ensure M1 Manager and M2 Manager are also con-
sistent [2]. Then, we “prime” the operations in M1 Manager and M2 Manager ,
and call the resulting machines M1 Manager ′ and M2 Manager ′, respectively.
The priming is necessary, because we will need to redefine some of the operations
(those involved in connections) of the related machines.

The general form of machine R Manager is shown in Fig. 9. As it can be seen,
this machine has a variable RSet , which represents the sets of active connectors.
As is forced by the invariant, only instances of the corresponding participants
can be connected. If the definition of R includes connections of the form op1 →
op2 , then the invariant is complemented with RSet ∈ M1Set+→ M2Set ; if the
definition of R includes connections of the form op1 ← op2 , then the invariant
is complemented with RSet−1 ∈ M1Set+→M2Set (note that a given connector
can have both types of connections).

The operation for disconnecting instances is easily defined. On the other
hand, the operation for connecting machines depends on the types of connec-
tions. If a connection of type op1 → op2 is present in the definition of R, then
R connect has to preserve the functionality of RSet ; on the other hand, if a
connection of type op1 ← op2 is present in the definition of R, then R connect
has to preserve the injectivity of RSet . This gives us four possible definitions for
R connect , depending on the types of connections present. For instance, if we
only have connections of type op1 → op2 , then R connect is defined as follows:

R connect(x, y) =̂
PRE x ∈M1Set ∧ y ∈M2Set THEN RSet(x) := y END

The other three possibilities are also easily defined, and are left as an exercise
for the interested reader.
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MACHINE
R Manager

EXTENDS
M1 Manager ′, M2 Manager ′

VARIABLES
RSet

INVARIANT
RSet ⊆ M1Set ×M2Set ∧ . . .

INITIALISATION
RSet := ∅

OPERATIONS
R disconnect(x, y) =̂

PRE (x, y) ∈ RSet THEN RSet := RSet − {(x, y)} END
R connect(x, y) =̂ . . .
op1 (x) =̂

PRE pre(op1’(x)) THEN
(RSet [{x}] �= ∅ =⇒ op1’(x)||op2’(RSet(x)))[](RSet[{x}] = ∅ =⇒ op1’(x)) END

op3 (x) =̂ PRE pre(op3’(x)) THEN op3’(x) END

.

.

.
END

Fig. 9. The general form of a connector manager for machines M1 and M2

Notice the definition for operation op1 (x) in Fig. 9. This definition assumes
that we have a connection op1 → op2 . It has as a precondition the precondition
of the original op1 (x) operation (now primed). However, its effect, as shown
in the THEN section of its definition, depends on whether x has a connected
instance of M2 or not. In the case it has a connected instance, the operation
op2 ′ is called on the connected instance R(x) (here it becomes clearer why we
need to restrict RSet to be functional/injective), in parallel with op1’ (x); in the
case that x has no connected instance, we simply call op1’ (x).

The definition of op3 (x) in Fig. 9 assumes that op3 is not at the source of a
connection of R, and therefore, it only needs to call op3 ′(x).

4.2 Proof Obligations for Connector Definitions

The initialisation of the connector manager trivially respects the machine’s in-
variant (since the empty relation is both injective and functional). Also, oper-
ations R connect and R disconnect are defined to make them comply with the
machine’s invariant (as we said, R disconnect trivially preserves the invariant,
whereas R connect has four possible definitions, according to the types of connec-
tions present). However, some proof obligations which cannot be automatically
discharged will be generated from the connector manager. These have to do with
the way in which the original operations (the primed ones) are called. When-
ever the connector contains a connection op1 → op2 , the definition of op1 in
R Manager invokes op1’ respecting its precondition; however, it is not guaran-
teed by construction that the call to op2’ within the definition of op1 respects
the precondition of op2’ , and therefore this will have to be proved.

Essentially, these proof obligations force us to prove that, whenever we have
a connection op1 → op2 (resp. op1 ← op2 ), we guarantee that the precondition
of op2 (resp. op1 ) is subsumed by the precondition of op1 (resp. op2 ).
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4.3 An Example

As an example, let us build the connector manager for our example of produc-
ers and consumers related by our previously defined R connector. The resulting
machine is shown in Fig. 10. Note how operation send , which is involved in a
connection, has changed its definition. Also, note how the connect R operation
and the invariant look like for this particular case. Operation prod , which was not
involved in any connection, simply calls the original (now prod’ ) operation. No-
tice that, due to the automated generation of this specification, some (harmless)
redundancies emerge (see the invariant of the connector manager, for instance).

MACHINE
R Manager

EXTENDS
Producer Manager ′, Consumer Manager ′

VARIABLES
RSet

INVARIANT
RSet ⊆ ProducerSet × ConsumerSet ∧ RSet ⊆ ProducerSet+→ ConsumerSet

INITIALISATION
RSet := ∅

OPERATIONS
R disconnect(x, y) =̂

PRE (x, y) ∈ RSet THEN RSet := RSet − {(x, y)} END
R connect(x, y) =̂

PRE x ∈ ProducerSet ∧ y ∈ ConsumerSet
THEN RSet(x) := y
END

send(x) =̂
PRE x ∈ ProducerSet ∧ x.p-var �= 0 THEN
(RSet [{x}] �= ∅ =⇒ x.send’()||RSet(x).obtain’(x.p-var) []
(RSet [{x}] = ∅ =⇒ x.send’())
END

prod(i, x) =̂
PRE x ∈ ProducerSet ∧ (i �= 0) ∧ (x.p-var = 0)
THEN prod’(i, x)
END

.

.

.
END

Fig. 10. The manager for connector R, relating machines Producer and Consumer

4.4 Current Limitations of Connector Definitions

According to our definition of connectors, there exist various limitations on how
machine instances can be related.

First, connectors are just binary, i.e., they can involve only two participants.
It is not difficult to think of more general n-ary connectors, although the func-
tionality/injectivity restrictions on the corresponding relation will have to be
generalised (restrictions of the kind of functional dependencies as in databases
would be necessary for n-ary connectors).

Second, due to the functionality/injectivity restrictions, having a connector
of type op1 → op2 (resp. op1 ← op2 ) forbids having a one-to-many (resp. many-
to-one) connector “topology”. Clearly, the specifier cannot employ connectors, as
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we have defined them, for these kinds of communication. Nevertheless, in those
cases where our extension is applicable, the specifier gets a structured definition
of the dynamism, in which most of the proof obligations can be automatically
discharged (except those related to preconditions of operations at the target
of connections, as we explained). Furthermore, it is possible to generalise the
mechanism to connectors of arbitrary multiplicities, but in the general case the
communication needs to be done asynchronously, since it requires an iteration
mechanism. Of course, iteration is not available at the specification stage in
B, so it needs to be characterised as a transaction. Due to space restrictions,
we are unable to show in full detail the generalised form of connectors. But,
essentially, the mechanism is the following: Suppose that we have a connection
op1 → op2 in a connector R relating M1 and M2, and which requires a one-
to-many multiplicity. Then, the characterisation of n.op1 within R Manager
consists of:

1. a set remaining ⊆ M2Set , that keeps track of those instances waiting to be
called,

2. a boolean variable sending to indicate if the manager is engaged in a “send-
ing” transaction,

3. an extra operation send , that:
– if remaining is nonempty and sending is true, it nondeterministically

chooses an element m from remaining , removes it from remaining and
calls m.op2 ,

– if remaining is empty and sending is true, it finishes the sending trans-
action by setting sending to false.

4. the assertion sending = false is added as an extra precondition of all other
operations (i.e., the other operations are blocked if the connector manager is
involved in a sending transaction).

5 Conclusions and Future Work

We have defined an extension to the B method to support the definition of con-
nectors [4], in the software architectures sense [13]. The extension allows one to
relate dynamically generated instances of abstracts machines for communication.
The approach complements a previously proposed extension to B to support dy-
namic creation and deletion of machine instances, using additional structuring
mechanisms. The extension has been defined with the intention of making it fully
compatible with the standard B method. Indeed, specifications written using our
extensions are systematically mapped into standard B specifications.

The connector definitions that we propose allow us to enable the communi-
cation, under certain restrictions, between abstract machines in a specification
which presents dynamic creation and deletion of machine instances. The way in
which we provide semantics to the extension is based on the work in [6]. Although
the allowed forms of communication are restricted, the use of connectors favours
specification structuring (with its well known advantages for understandability
and simplification of proofs), and allows one to specify systems with structural
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dynamism at a higher level of abstraction. The provided level of abstraction
is based on ideas developed by the software architectures community, partic-
ularly, the view of component based systems as modules related by means of
connectors, and the externalisation of component interaction. This higher level
of abstraction might have a positive impact in the effort needed to complement
the B method with modern system design methodologies, such as object ori-
entation. In fact, currently there exist various approaches to the modelling of
object oriented features in B, particularly the work of H. Treharne [15], K. Lano
et al. [10] and C. Snook and M. Butler [14]. We believe that these approaches
might benefit from our characterisation of dynamic creation/deletion of machine
and connector instances, and their advantages in the decomposability of spec-
ifications. For example, in [15], classes and associations are translated into B
as an ad hoc unstructured specification; in [10], a notion similar to that of class
manager is the smallest unit of modularity (as opposed to our finer grained aggre-
gation mechanism); in [14], entire class diagrams are translated into B as single
abstract machines. Being able to exploit the modularisation of specifications
not only benefits the specifier by alleviating the proof efforts (by decomposing
proofs in smaller “lemmas”) and making specifications easier to understand [5];
modularisation also greatly improves analysability. For example, a structured B
specification of a system allows us to validate modules independently, via anima-
tion. It also allows fully automated verification mechanisms, such as those based
on model checking [11], to scale up and be applicable to a wider range of system
specifications, by contributing to cope with the well known combinatorial state
explosion problem.

As work in progress, we are currently working on a better developed gener-
alisation of connectors, that covers more cases of communication. We are also
studying the treatment of our connector definitions at refinement and imple-
mentation stages. Notice that, since our extensions to the B language are defini-
tional, the feasibility of refinement and implementation is guaranteed. Neverthe-
less, we are exploring ways of systematically producing correct implementations
for connector definitions, supplementing what has been done in [3] for machine
aggregation. Also, we are currently studying how our AGGREGATES structuring
mechanism, together with the support for connectors, combines with other struc-
turing mechanisms of B when the architectural organisation of a specification
involves various layers of abstract machines.
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