
Implementing Dynamic Aggregations of
Abstract Machines in the B Method

Nazareno Aguirre1, Juan Bicarregui2, Lucio Guzmán1, and Tom Maibaum3

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Enlace Rutas 8 y 36 Km. 601, Ŕıo Cuarto, Córdoba, Argentina

{naguirre, lucio}@dc.exa.unrc.edu.ar
2 Rutherford Appleton Laboratory, Chilton, Didcot,

OXON, OX11 0QX, United Kingdom
J.C.Bicarregui@rl.ac.uk

3 Department of Computing & Software, McMaster University,
1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1

tom@maibaum.org

Abstract. We previously defined an extension to the B method to be
able to dynamically aggregate components. The proposed extension al-
lowed one to build specifications which can create and delete instances
of machines at run time, a feature often associated with object oriented
languages and not directly supported in the B method. In this paper, we
study the refinement of specifications written using this extension.

We define a procedure that, given a valid implementation of an abs-
tract machine M , systematically generates an implementation for a ma-
chine representing a dynamic aggregation of “instances” of M . Moreover,
the generated implementation is guaranteed to be correct by construc-
tion.

Following the approach initiated in our previous work, the refinement
process is defined in a way that is fully compatible with the standard B
method.

1 Introduction

The B formal specification language is one of the most successful model based
formalisms for software specification. It has an associated method, the B Method
[1], and commercial tool support, including proof assistance [3][4]. As all formal
methods, the B method provides a formal language to describe systems, allowing
for analysis and verification of certain system properties prior to implementation.
An important characteristic of B is that it covers the whole development process,
from specification to implementation.

Various facilities for structuring specifications are provided in B, helping to
make the specification and refinement activities scalable. However, the B method
has an important restriction regarding structuring mechanisms, namely, it does
not provide dynamic creation and deletion of modules or components. All struc-
turing mechanisms of B are static; they allow one to define abstract machines

J. Davies et al. (Eds.): ICFEM 2004, LNCS 3308, pp. 403–417, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

404 N. Aguirre et al.

(the specification components of B) whose architectural structure in terms of
other components is fixed, i.e., it does not change at run time [5]. Dynamic
management of the population of components is a feature often associated with
object oriented languages, since the replication of objects is intrinsic to these
languages [9]. Indeed, dynamic management of “objects” appears frequently
and naturally when modelling software, perhaps due to the success of object
oriented methodologies and programming languages. However, fully fledged ob-
ject oriented extensions of B would imply a significant change to B’s (rather
neat) syntax and semantics, and would excessively complicate the tool support
implementation (especially in relation to proof support).

In [2], an extension of the syntax of B is proposed for supporting dynamic
population management of components. This extension, in contrast with other
proposed extensions to model based specification languages with this feature,
such as some of the object oriented extensions to Z [11] or VDM [7], is not object
oriented. Moreover, it does not imply any changes to the standard semantics
of B, since it can be mapped into the standard language constructs [2]. The
extension is essentially the provision of an extra structuring mechanism, the
AGGREGATES clause, which intuitively allows us to dynamically “link” a set of
abstract machines to a certain including machine.

The aggregation relies on the generation of a population manager of the aggre-
gated machines. A population manager of an abstract machine M puts together
the relativisation of the operations of M (so they work for multiple instances)
with operations that mimic the creation and deletion of machine instances. How-
ever, these population managers are meant to be hidden from the specifier, who
can use aggregation without worrying or knowing about the managers, via the
“dot notation”, borrowed from object orientation, and an extra combinator of
substitutions, the interleaving parallel composition. In fact, AGGREGATES works
as other conventional structuring mechanisms of B: the internal consistency1 of
machines aggregating other machines can be reduced to the consistency of the
aggregate, and a number of further conditions on the aggregating machine. This
is the case thanks to the fact that the population manager of a machine M is
internally consistent by construction, provided that M is internally consistent
[2].

In this paper, we complement the work of [2] by showing how the new AG-

GREGATES clause can be refined. Since we want to keep the managers hidden
from the software engineer, the refinement process consists of the systematic
generation of implementations for the managers introduced by a specification
using AGGREGATES. More precisely, if a machine M ′ “aggregates” a machine
M , then, given a valid implementation of M , we generate an implementation

1 An abstract machine is internally consistent if it satisfies its proof obligations, i.e., if it
satisfies the requirements imposed in the B method for considering a machine correct.
Proof obligations for the correctness of abstract machines include conditions such as
non-emptiness of the state space determined by the machine, or the preservation of
the machine’s invariant by the machine’s operations [1].

Implementing Dynamic Aggregations of Abstract Machines in B Method 405

MACHINE
MinMax

VARIABLES
y

INVARIANT
y ∈ F(NAT1)

INITIALIZATION
y := ∅

OPERATIONS
ins(x) =̂ PRE x ∈ NAT1 THEN y := y ∪ {x} END;
x ←− getMin =̂ PRE y �= ∅ THEN x := min(y) END;
x ←− getMax =̂ PRE y �= ∅ THEN x := max(y) END

END

Fig. 1. Abstract machine MinMax

of MManager , which is guaranteed to be internally consistent by construction.
The generated implementation of MManager can then be used as part of an
implementation for M ′.

2 Aggregating Abstract Machines

Consider the abstract machine MinMax shown in Fig. 1. This is a simple variant
of machine Little Example, from page 508 of [1]. To illustrate the use of AG-

GREGATES, suppose we want a dynamic set of “instances” of machine MinMax,
together with extra operations, to somehow “synchronise” the “min” or “max”
values of two instances. This can be defined easily, by exploiting AGGREGATES

and interleaving parallel composition, as shown in Fig. 2. The AGGREGATES M
clause within a machine M ′ can be understood as the inclusion of a dynamic
set of “instances” of M in M ′, in the style of EXTENDS, i.e., promoting the

MACHINE
MultipleMinMax

AGGREGATES
MinMax

OPERATIONS
syncMin(m1, m2) =̂

PRE m1, m2 ∈ MinMaxSet∧ (m1.y∪m2.y �= ∅)
THEN

ANY x
WHERE x = min(m1.y ∪ m2.y)
THEN m1.ins(x) ||| m2.ins(x)
END

END;
syncMax(m1, m2) =̂

PRE m1, m2 ∈ MinMaxSet∧ (m1.y∪m2.y �= ∅)
THEN

ANY x
WHERE x = max(m1.y ∪ m2.y)
THEN m1.ins(x) ||| m2.ins(x)
END

END
END

Fig. 2. Abstract machine MultipleMinMax, a dynamic aggregation of MinMax ma-

chines

406 N. Aguirre et al.

operations of the included machine as part of the “interface” of the including
machine.

MSet represents the set of “live instances” of M within an aggregating ma-
chine. In our case, MinMaxSet represents the live MinMax instances (see the
preconditions of operations syncMin and syncMax).

Note that we employ the “dot notation” to access the variables and opera-
tions of the aggregated machines. For instance, the expression m1.y intuitively
represents the value of variable y corresponding to instance m1; analogously,
the expression m1.ins(x) represents a “call” to operation ins, with argument
x, corresponding to instance m1 (see the definitions of operations syncMin and
syncMax). As we said, the operations of the aggregated machines are promoted
by the aggregating machine. For our example, this means that the operations
ins, getMin and getMax of the live instances are accessible from the interface of
MultipleMinMax.

Besides the operations explicitly defined in the aggregating machine M ′, we
have available the operations originating in the aggregated machine M and two
further (implicitly defined) operations. These further operations are add M and
del M , and correspond to the population management of M , allowing for the
creation and deletion of instances of machine M within M ′.

2.1 The Population Managers

The AGGREGATES structuring mechanism relies on the generation of a population
manager of the aggregated machines. A population manager of an abstract ma-
chine M puts together the relativisation of the operations of M with operations
that mimic the creation and deletion of machine instances. The relativisation
of the operations is a process that transforms the definitions of the operations
of a basic machine so they work for multiple instances. An extra parameter is
given for the relativised operations. This extra parameter represents the name
of the “instance” on which the operation performs. When “calling” relativised
operations, we simply put the extra parameter as a prefix, using the dot notation
from object orientation.

Fig. 3. The meaning of AGGREGATES in terms of EXTENDS

Implementing Dynamic Aggregations of Abstract Machines in B Method 407

As the reader might imagine, AGGREGATES M within a machine definition
is simply interpreted as EXTENDS MManager. Figure 3 illustrates this. The
population manager for the MinMax machine is shown in Fig. 4. Note how the
operations ins, getMin and getMax have changed.

MACHINE
MinMaxManager

VARIABLES
y, MinMaxSet

INVARIANT
(∀n · n ∈ MinMaxSet ⇒ y(n) ∈ F(NAT1)) ∧
(MinMaxSet ⊆ NAME) ∧ (y ∈ MinMaxSet → F(NAT1))

INITIALIZATION
y, MinMaxSet := ∅, ∅

OPERATIONS
ins(x, n) =̂

PRE n ∈ MinMaxSet ∧ x ∈ NAT1
THEN y(n) := y(n) ∪ {x}
END;

x ←− getMin(n) =̂
PRE n ∈ MinMaxSet ∧ y(n) �= ∅
THEN x := min(y(n))
END;

x ←− getMax(n) =̂
PRE n ∈ MinMaxSet ∧ y(n) �= ∅
THEN x := max(y(n))
END;

add MinMax(n) =̂
PRE n ∈ NAME − MinMaxSet
THEN

MinMaxSet := MinMaxSet ∪ {n} || y := y ∪ {n, ∅}
END;

del MinMax(n) =̂
PRE n ∈ MinMaxSet
THEN

y := {n} �− y ||
MinMaxSet := MinMaxSet − {n}

END;
END

Fig. 4. MinMaxManager: Population manager of abstract machine MinMax

The population manager of a basic machine M is automatically constructed.
Moreover, the population manager of a machine M is internally consistent by
construction, provided that M is internally consistent [2]. Thus, population man-
agers can be hidden from the specifier, who can use AGGREGATES as other con-
ventional structuring mechanisms of B.

2.2 Interleaving Parallel Composition

Note that, in machine MultipleMinMax (see Fig. 2), we have used a new combi-
nation of substitutions, denoted by |||. The reason for the use of this operator has
to do with the conditions under which parallel composition is well formed. In B,
a (reasonable) restriction on the parallel composition S||T of two substitutions
S and T is that these substitutions must not write on the same variables.

408 N. Aguirre et al.

In order to understand the need for the triple bar, consider the operations
m1.ins and m2.ins within a machine aggregating MinMax (MultipleMinMax, for
instance). When m1 and m2 are different, m1.ins and m2.ins seem to update
different variables, namely m1.y and m2.y . Thus, we would like to be able to
combine these substitutions in parallel, using ||. However, what actually happens
is that m1.ins and m2.ins are the same operation, called with different parame-
ters; so, m1.ins and m2.ins modify the same variable, namely, the mapping y .
For defining operations such as syncMin(m1,m2) and syncMax (m1,m2), we still
want to somehow obtain the joint “behaviour” of m1.ins and m2.ins; we could
use sequential composition, but this is not allowed in B at the specification stage,
for very good reasons. Hence, we decided to introduce a new combinator of sub-
stitutions, called interleaving parallel composition. This is a derived combinator
of substitutions, whose semantics, in terms of weakest precondition, is:

[S|||T]P ≡ [S][T]P ∧ [T][S]P

Note that there are no syntactic restrictions on S and T for the well-formedness
of S|||T . In particular, S and T can write on the same variables. Also, triple bar
maintains the abstraction required at the specification stage, not allowing us to
enforce sequentiality on substitutions.

We refer the reader to [2] for more details on this combinator, as well as its
relationship with parallel composition.

3 The Refinement Process in the Presence of
Aggregation

Our promise with aggregation during specification is that the specifier will not
need to see or know about the managers, and should just use them abstractly, via
the dot notation and interleaving parallel composition. However, AGGREGATES

exists only at the specification stage. So, the specifier cannot, in principle, es-
cape from the managers when considering refinements and implementations of
machines with aggregation.

As explained in [1][3], the purposes of structuring a development at specifi-
cation stage are different from the purposes of structuring it in the implemen-
tation. When decomposing a specification, one primarily seeks to alleviate the
effort of proving consistency and to make specifications more understandable.
On the other hand, the main motivations for structuring an implementation are
to allow separate implementability and to promote reuse (of both library imple-
mentations and subsystems of the development). Thus, the architectural shape
of a development at specification stage might be completely different from its
architectural structure at implementation.

An extreme case of “architectural refactoring” during a development would be
to flatten the top level machine of a specification (after proving its consistency)
and then refine the resulting flat machine, introducing a new structure during
the refinement process. However, in practice, both the purposes of structuring

Implementing Dynamic Aggregations of Abstract Machines in B Method 409

at specification and the purposes of structuring at implementation concern us
throughout the whole development process (e.g., we factor implementations to
make them more understandable, we decompose specifications to reuse common
substructures, etc). So, one usually prefers to preserve, perhaps partially, the
decomposition of the specification when refining.

Indeed, this last approach is an alternative available in the B method. In
particular, the INCLUDES structure of a specification can be preserved when
refining or implementing:

“if a specification component B INCLUDES a machine A then we can use
an IMPORTS A clause in the implementation B 1 of B to carry out the
functionality supplied by A in the specification” (cf. pp. 148-149 of [8]).

A diagrammatic presentation of the above situation is shown in Fig. 5. We
refer the reader to [8] for details on the exact process needed for translating the
INCLUDES into IMPORTS at implementation.

Fig. 5. The INCLUDES structure being preserved by implementations

We would like to provide the same result for our AGGREGATES clause, i.e.,
to somehow translate the AGGREGATES structure into a corresponding structure
at implementation. For that purpose, we need to keep the managers hidden.
Our intention is to make the process of refining the managers fully automated,
making the use of aggregations completely transparent. Essentially, we propose
the following procedure: Let M be a basic machine, and M ′ a machine aggre-
gating M . M ′ then relies on a manager MManager of M . If M is refined and
eventually implemented by an implementation IM , then we can automatically
produce an implementation IMManager for the manager MManager of M . We
can then exploit the above cited result, relating INCLUDES to IMPORTS, to cons-
truct an implementation of M ′ based on IMManager . Finally, what keeps the
manager hidden is the fact that we generate the implementation IMManager of
MManager in such a way that its consistency is ensured, provided that IM is a
valid implementation of M . Therefore, the specifier will be able to use abstractly
the dynamic aggregation of M within M ′, and will just need to deal with M
and M ′ and their implementations.

410 N. Aguirre et al.

3.1 Refining the Machine Managers

During a development in standard B, the whole state in implementations of abs-
tract machines (i.e., the variables) must be imported from the state of other
machines [1]. These imported (simpler) machines either (i) have already been
refined and implemented, or (ii) will need to be subsequently refined and im-
plemented, to obtain an implementation of the whole system. So, we can always
assume that if a machine M is imported in some implementation, we count (or
will eventually count) on an implementation of it. A set of library machines, for
which there exist (proved correct) implementations, constitutes the base case of
this recursive process of implementation.

Our main requirement for automatically implementing managers of arbitrary
machines is the following: For every library machine Ml, there exists a prov-
ably correct implementation of its corresponding manager MlManager. Note
that machine MlManager is systematically produced from Ml, and is consistent
provided that Ml is consistent; but the implementation of MlManager will have
to be provided. These managers, and their implementations, will constitute the
base case for the implementations of managers for arbitrary machines.

For every machine M with a corresponding implementation IM , an imple-
mentation of MManager is built via the following procedure:

/* --- */

/* implManager(M, I_M): builds an implementation for the manager */

/* MManager of M. */

/* Precondition: I_M is a valid implementation of M, and all machines */

/* imported in I_M are already implemented. */

/* Postcondition: A valid implementation of MManager is returned. The */

/* implementation of the manager is constructed from the */

/* implementation I_M of M. */

/* --- */

implManager(Machine M, Implementation I_M) returns Implementation

begin

create an "Empty Implementation" I_MManager

add "REFINES MManager" to I_MManager

let N1, ..., Nk be the machines imported by I_M

for every Ni do

begin

let NiManager be the manager of Ni

if (Ni is not a library machine and

NiManager is not implemented) then

create an impl. of NiManager via implManager(Ni, I_Ni)

add "IMPORTS NiManager" to I_MManager

end

relativise the invariant in I_M and add it to I_MManager

relativise the operations defs. in I_M and add them to I_MManager

add operations for creation/deletion of instances, with standard

implementations

return I_MManager

end

Implementing Dynamic Aggregations of Abstract Machines in B Method 411

Note that the above process is recursive. Each “IMPORTS Ni” is translated
into “IMPORTS NiManager”, and incorporated as part of the implementation
being built. In case these imported managers do not have corresponding imple-
mentations, we recursively employ the procedure to obtain implementations for
them. The process is guaranteed to terminate, since the recursive calls will
eventually reach library machines, for which, as we assume, there exist imple-
mented managers. An important point to note is that the decision on how the
deferred set NAME is implemented will have to be made only in the implemen-
tation of the managers of library machines (then it will be simply used by the
rest of the implementations for managers).

The relativisation of the invariant and the operations is similar to the relativi-
sation involved in the creation of a machine manager from an abstract machine.
We will describe in detail the relativisation in implementations later on in this
paper.

In order to get an intuition of the process for implementing managers, con-
sider the following example.

Example 1. Let us consider the abstract machine MinMax (Fig. 1), previously
introduced, and an implementation of it, shown in Fig. 6. This implementation
is based on another machine, called Pair and shown in Fig. 7. Machine Pair is
also implemented, as shown in Fig. 8, this time by using the library machine
Scalar. Note that, strictly speaking, the implementation in Fig. 8 is not a proper
B implementation: we are not allowed to use the suffix dot mechanism in order
to import multiple instances of a machine in an implementation. However, this
mechanism can be easily implemented in B, by replicating the machine specifi-
cations we need to import.

IMPLEMENTATION
IMinMax

REFINES
MinMax

IMPORTS
Pair(maxint, 0)

INVARIANT
first = min({maxint} ∪ y) ∧ second = max({0} ∪ y)

OPERATIONS
ins(x) =̂

VAR v, w IN
v ←− getFirst;
w ←− getSecond;
IF x < v THEN setFirst(x) END;
IF w < x THEN setSecond(x) END

END;
x ←− getMin =̂ BEGIN x ←− getFirst END;
x ←− getMax =̂ BEGIN x ←− getSecond END

END

Fig. 6. An implementation of abstract machine MinMax

Let us apply the previous algorithm to obtain an implementation of the
manager MinMaxManager . The resulting implementation is shown in Fig. 9.

412 N. Aguirre et al.

Note how the operations and the invariant have been relativised. Also, stan-
dard implementations for the operations for creation and deletion of instances
are incorporated. The exact process of relativisation will be described later
on.

Since IMinMax is defined in terms of Pair, the algorithm recursively genera-
tes an implementation for PairManager . Again, the generation of PairManager
from Pair is systematic (and is left as an exercise for the interested reader).
The obtained implementation of PairManager , generated from IPair, is shown in
Fig. 10. The implementation IPair is based on Scalar, which is a library machine;
IPairManager is then based on ScalarManager , for which, as we assumed, there
exists a proved correct implementation.

3.2 Relativisation of Invariant and Operations of an
Implementation

The algorithm for the generation of implementations for managers involves the
relativisation of invariants and operations. We already had examples of these
relativisations, for the implementations of MinMaxManager and PairManager .
Here, we define precisely how operations and invariants are relativised.

Relativisation of Invariants. Let M be an abstract machine, with a valid
implementation IM . The invariant of IM is an expression that relates the “state
space” of M (i.e., its variables) with the “state space” of IM (composed of the
variables of the machines imported by IM). Thus, if v are the variables of M ,
and M1, . . . ,Mk are machines imported in IM , with variables M1.v, . . . ,Mk.v
respectively, then the invariant of IM has the form:

INV (v,M1.v, . . . ,Mk.v)

The relativisation of this invariant has the purpose of relating the state space
of MManager with the implementation for it that we generate from IM . It has
the following form:

(MSet = M1Set ∧ . . . ∧ MSet = MkSet) ∧
[∀n · n ∈ MSet ⇒ INV (v(n),M1.v(n), . . . , Mk.v(n))]

MACHINE
Pair(x, y)

VARIABLES
first, second

INITIALIZATION
first := x || second := y

OPERATIONS
setFirst(fst) =̂ BEGIN first := fst END;
setSecond(snd) =̂ BEGIN second := snd END;
fst ←− getFirst =̂ BEGIN fst := first END;
snd ←− getSecond =̂ BEGIN snd := second END

END

Fig. 7. Abstract machine Pair

Implementing Dynamic Aggregations of Abstract Machines in B Method 413

IMPLEMENTATION
IPair(x, y)

REFINES
Pair

IMPORTS
xx .Scalar(x), yy.Scalar(y)

INVARIANT
xx .var = first ∧ yy.var = second

OPERATIONS
setFirst(fst) =̂ BEGIN xx .chg(fst) END;
setSecond(snd) =̂ BEGIN yy.chg(snd) END;
fst ←− getFirst =̂ BEGIN fst ←− xx .val END;
snd ←− getSecond =̂ BEGIN snd ←− yy.val END

END

Fig. 8. An implementation of abstract machine Pair

IMPLEMENTATION
IMinMaxManager

REFINES
MinMaxManager

IMPORTS
PairManager(maxint, 0)

INVARIANT
(MinMaxSet = PairSet) ∧
[∀n · n ∈ MinMaxSet ⇒

(n.first = min({maxint} ∪ n.y) ∧ n.second = max({0} ∪ n.y))]
OPERATIONS

ins(x, n) =̂
VAR v, w IN

v ←− n.getFirst;
w ←− n.getSecond;
IF x < v THEN n.setFirst(x) END;
IF w < x THEN n.setSecond(x) END

END;
x ←− getMin(n) =̂ BEGIN x ←− n.getFirst END;
x ←− getMax(n) =̂ BEGIN x ←− n.getSecond END;
add MinMax(n) =̂ BEGIN add Pair(n) END;
del MinMax(n) =̂ BEGIN del Pair(n) END

END

Fig. 9. The implementation of MinMaxManager obtained from IMinMax

The first conjunct indicates how MSet is represented in the implementation
of MManager , by identifying it with each of the instance sets of the imported
managers. The second conjunct shows how the variables of MManager are rep-
resented by using the representation of M ’s variables introduced by IM .

Example 2. Consider the following expression:

first = min({maxint} ∪ y) ∧ second = max({0} ∪ y)

This is the invariant of the implementation IMinMax. The relativisation of this
is the following:

(MinMaxSet = PairSet) ∧
[∀n · n ∈ MinMaxSet ⇒

(first(n) = min({maxint} ∪ y(n)) ∧ second(n) = max({0} ∪ y(n)))]

414 N. Aguirre et al.

IMPLEMENTATION
IPairManager (x, y)

REFINES
PairManager

IMPORTS
xx .ScalarManager(x), yy.ScalarManager(y)

INVARIANT
(PairSet = xx.ScalarSet ∪ yy.ScalarSet) ∧
[∀n · n ∈ PairSet ⇒ (xx .var(n) = n.first ∧ yy.var(n) = n.second)]

OPERATIONS
setFirst(fst, n) =̂ BEGIN xx .chg(fst, n) END;
setSecond(snd, n) =̂ BEGIN yy.chg(snd, n) END;
fst ←− getFirst(n) =̂ BEGIN fst ←− xx .val(n) END;
snd ←− getSecond(n) =̂ BEGIN snd ←− yy.val(n) END;
add Pair(n) =̂ BEGIN xx .add Scalar(n); yy.add Scalar(n) END;
del Pair(n) =̂ BEGIN xx .del Scalar(n); yy.del Scalar(n) END

END

Fig. 10. The implementation of machine PairManager generated from I Pair

Relativisation of Operations. Let M be an abstract machine, with a valid
implementation IM . Let op be an operation of M , implemented in IM . The
implementation of op is a substitution with certain restrictions, that can be, as
any substitution, reduced to the normal form as described in page 284 of [1]. So,
we can say that the implementation of op in IM has the following form:

r ← op(p) =̂ P ′(p,Mi.v) @x′.(Q′(x′, p,Mi.v) =⇒ Mi.v, r := x′)

The relativisation of this operation has the following form:

r ← op(p, n) =̂
P ′(p,MiManager .v(n))

@x′.(Q′(x′, p,MiManager .v(n)) =⇒ MiManager .v(n), r := x′)

Example 3. Consider the following operation:

ins(x) =̂
VAR v, w IN

v ←− getFirst ;
w ←− getSecond ;
IF x < v THEN setFirst(x) END;
IF w < x THEN setSecond(x) END

END

This is the implementation of ins provided by IMinMax. Its relativisation,
which corresponds to an implementation of ins as an operation of
MinMaxManager is the following:

ins(x, n) =̂
VAR v, w IN

v ←− getFirst(n);
w ←− getSecond(n);
IF x < v THEN setFirst(x, n) END;
IF w < x THEN setSecond(x, n) END

END

Implementing Dynamic Aggregations of Abstract Machines in B Method 415

Note that, in Fig. 9, we denoted this operation by using the dot notation,
i.e., denoting the extra parameter n as a prefix of the corresponding expressions.

3.3 Refining Interleaving Parallel Composition

The implementation of interleaving parallel composition does not present any
difficulties, since this combinator of substitutions is a derived one. In fact, refin-
ing S|||T is equivalent to refining:

S;T [] T ;S

4 Proving Consistency of Automatically Generated
Implementations

Unfortunately, due to space restrictions we are unable to reproduce the proof of
the fact that the implementations that we generate are correct by construction.
We restrict ourselves to giving a sketch of the proof in this section.

The proof proceeds as follows. We first consider a generic abstract machine
M which has a valid implementation IM . Then, the following proof obligations
indicating that IM is a correct implementation of M are fulfilled:

a1 Correct instantiation of the parameters of imported machines in IM ,
a2 Non-emptiness of the joint state space of M and IM ,
a3 refinement of the initialisation of M by IM ,
a4 Refinement of the operations of M by IM .

Assuming that M is internally consistent, we automatically generate the man-
ager MManager of M , which, as proved in [2], is consistent by construction;
moreover, we apply the algorithm presented previously in this paper to produce
an implementation for MManager . We then prove that the following proof obli-
gations, indicating that I MManager is a correct implementation of MManager ,
are satisfied as a consequence of our hypotheses:

b1 Correct instantiation of the parameters of imported machines in I MManager ,
b2 Non-emptiness of the joint state space of MManager and I MManager ,
b3 refinement of the initialisation of MManager by I MManager ,
b4 Refinement of the operations of MManager by I MManager .

Proof obligation b1 follows immediately from a1, since the constraints and
properties of M and IM are preserved by MManager and I MManager , respec-
tively. The non-emptiness of the joint state space of machine MManager and its
implementation I MManager , i.e. proof obligation b2, is easily proved by taking
the instance sets MSet ,M1Set , . . . ,MkSet as empty sets. Proof obligation b3 is
proved by relatively simple calculations, using the form of the initialisation of
MManager and its refinement in I MManager . Finally, proof obligation b4 is
actually split into two parts: (i) refinement of the population management op-
erations add M and del M , and (ii) refinement of the operations originating in

416 N. Aguirre et al.

M . The correctness of the refinement of the population management operations
requires some calculations, and concerns the general forms of these operations
and their implementations. The correctness of the refinement of the operations
originating in M requires more complex calculations, and uses the fact that the
refinements of the operations of M by IM are correct, i.e., proof obligation a4.

5 Conclusions

We have defined a procedure that, given an abstract machine M correctly imple-
mented, automatically generates an implementation for a machine representing
a dynamic aggregation of “instances” of M . The implementation is generated in
such a way that its consistency is guaranteed by construction.

This work complements the work initiated in [2], where we proposed an ex-
tension to the B language to support dynamic creation or deletion of instan-
ces of abstract machines. The extension was based on the provision of a new
structuring mechanism, AGGREGATES. Now the specifications written using the
AGGREGATES clause can be implemented in a way that is fully transparent to
the specifier.

The semantics of standard B is preserved by the defined extensions (including
the conditions for the generation of implementations). Only some basic machin-
ery has to be built on top of standard B.

There is some evidence of the need for complementing model oriented formal
specification languages with support for some of the current systems engineer-
ing practices. The work in [12] and the various object oriented extensions to
model oriented specification languages (e.g., [13], [10]), for instance, are cases
in which this need becomes manifest. The proposed extension, although pre-
liminary, builds into B support for some common activities of the current sys-
tems design practice (highly influenced by object orientation), and avoids the
complexities often associated with the semantics of fully-fledged object oriented
languages.

As work in progress, we are currently studying some further properties of the
interleaving parallel composition operator, in particular, trying to find a stronger
relationship between the standard parallel composition and triple bar. We are
doing so in the context of Dunne’s theory of generalised substitutions [6], which
has so far simplified our proof efforts. We are also exploring ways of incorpo-
rating support for associations between dynamic instances of abstract machines,
trying not to fall into the complexities of object orientation, i.e., keeping the
structural organisation of machines hierarchical. Also, we are currently studying
how our AGGREGATES structuring mechanism combines with other structuring
mechanisms of B when the architectural organisation of a specification involves
various layers of abstract machines. We believe there will be no difficulties in
applying our aggregation approach to abstract machines with complex architec-
tural organisations.

Implementing Dynamic Aggregations of Abstract Machines in B Method 417

Acknowledgments

Nazareno Aguirre wishes to thank the Z User Group for supporting him and
other students for their participation in the ZB2003 Conference, where some
of the ideas presented in this paper evolved. The authors wish to thank Steve
Dunne, Kevin Lano and the anonymous referees for their useful comments on a
preliminary version of this paper.

References

1. J.-R. Abrial, The B-Book, Assigning Programs to Meanings, Cambridge University
Press, 1996.

2. N. Aguirre, J. Bicarregui, T. Dimitrakos and T. Maibaum, Towards Dynamic Pop-
ulation Management of Components in the B Method, in Proceedings of the 3rd In-
ternational Conference of B and Z Users ZB2003, Turku, Finland, Springer-Verlag,
June 2003.

3. The B-Toolkit User’s Manual, version 3.2, B-Core (UK) Limited, 1996.
4. Digilog, Atelier B - Générateur d’Obligation de Preuve, Spécifications, Technical

Report, RATP SNCF INRETS, 1994.
5. T. Dimitrakos, J. Bicarregui, B. Matthews and T. Maibaum, Compositional Struc-

turing in the B-Method: A Logical Viewpoint of the Static Context, in Proceedings
of the International Conference of B and Z Users ZB2000, York, United Kingdom,
LNCS, Springer-Verlag, 2000.

6. S. Dunne, A Theory of Generalised Substitutions, in Proceedings of the Interna-
tional Conference of B and Z Users ZB2002, Grenoble, France, LNCS, Springer-
Verlag, 2002.

7. C. Jones, Systematic Software Development Using VDM, 2nd edition, Prentice Hall
International,1990.

8. K. Lano, The B Language and Method, A Guide to Practical Formal Development,
Fundamental Approaches to Computing and Information Technology, Springer,
1996.

9. B. Meyer, Object-Oriented Software Construction, Second Edition, Prentice-Hall
International, 2000.

10. G Smith, The Object-Z Specification Language, Advances in Formal Methods,
Kluwer Academic Publishers, 2000.

11. M. Spivey, The Z Notation: A Reference Manual, 2nd edition, Prentice Hall Inter-
national, 1992.

12. H. Treharne, Supplementing a UML Development Process with B, in Proceedings of
FME 2002: Formal Methods– Getting IT Right, Denmark, LNCS 2391, Springer,
2002.

13. R. Holzapfel and G. Winterstein, VDM++ – A Formal Specification Language for
Object-oriented Designs, in Proceedings of Ada-Europe Conference 1988, Ada in
Industry, Cambridge University Press, 1989.

	Introduction
	Aggregating Abstract Machines
	The Population Managers
	Interleaving Parallel Composition

	The Refinement Process in the Presence of Aggregation
	Refining the Machine Managers
	Relativisation of Invariant and Operations of an Implementation
	Refining Interleaving Parallel Composition

	Proving Consistency of Automatically Generated Implementations
	Conclusions

