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Abstract. In this paper we show that, by translating Alloy formulas to
formulas in the language of fork algebras, we obtain a complete, equa-
tional, and purely relational calculus for Alloy.

1 Introduction

Alloy [10] is a formal modeling language that is gaining acceptance within the
formal methods community. Its main feature is its tool support. The Alloy An-
alyzer [8] performs a kind of bounded model checking that allows one to find
counterexamples of supplied assertions within a model description written in
Alloy. Another important feature of Alloy is its amenable language, which in-
corporates constructs ubiquitous in object modeling notations. Also, its easy to
understand semantics, based on relations, makes the language appealing.

Contributions of This Paper: At the same time a vast research has been carried
on about the analysis of Alloy specifications using SAT solving [9, 10], not much
research has been done so far on the analysis of Alloy specifications using theorem
proving. In order to prove Alloy assertions from Alloy specifications, in this paper
we propose the following procedure:

1. Translate both the assertions and the specification to equations in the lan-
guage of fork algebras [4].

2. Verify equationally whether the translated assertions can be derived from
the translation of the specification.

The language of fork algebras is quite similar to Alloy in that it predicates
exclusively about relations (binary in this case). The advantage of moving to fork
algebras comes from the fact there is a complete (equational) calculus for rea-
soning about this class of algebras. Therefore, proving an Alloy formula reduces
to proving its translation in this complete equational calculus.
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Relevance to Formal Engineering Methods: The Alloy modeling language and
the Alloy Analyzer are being applied in domains such as air traffic control [3]
or verification of medical software [12]. While the kind of analysis provided by
Alloy is extremely useful, it does not substitute analysis techniques such as
theorem proving. There has been a growing interest in combining the SAT-
solving approach of Alloy with theorem proving (we will elaborate on this in the
next paragraph), and our hope is that new tools developed in this direction take
into account the limitations pointed out here, as well as the possible solutions
we offer.

Comparison with Previous Work: Since a broad comparison with other formal
methods that combine model checking and theorem proving might make us loose
focus, we will compare with the specific work that has already been done on the-
orem proving from Alloy specifications. Prioni [2] is a tool that combines the
model checking capabilities offered by Alloy with the theorem proving capa-
bilities provided by the (semi-automatic) theorem prover Athena [1]. Athena’s
characterisation of Alloy allows one to reason about specifications, using (semi
automatic) theorem proving. However, the proposed characterisation does not
capture well some features of Alloy and its relational logic, such as, for instance,
the uniform treatment for scalars, singletons and relations. Quoting the authors,

“Recall that all values in Alloy are relations. In particular, Alloy
blurs the type distinction between scalars and singletons. In our Athena
formalization, however, this distinction is explicitly present and can be
onerous for the Alloy user.” (cf. [2, p. 6])

Prioni has also a number of further shortcomings, such as the, in our opinion,
awkward representations of Alloy ’s composition operation ‘.’ and of ordered pairs
[2, p. 4]. This tool, however, manages to integrate the use of theorem proving with
the SAT solving based analysis of the Alloy Analyzer, cleverly assisting theorem
proving with SAT solving and vice versa. The mechanisms used to combine SAT
solving and theorem proving are independent of the theorem prover used and
the axiomatic characterisation of Alloy. Thus, they could also be employed to
combine the Alloy Analyzer with other approaches to reasoning about Alloy
specifications, such as, for instance, the one presented in this paper.

In a previous paper [6] we presented a semantics for Alloy based on fork
algebras. In that paper, the way in which we assigned semantics to quantification
followed Alloy’s definition, which is not equational. In this paper we present a
complete and equational calculus for reasoning about Alloy assertions, in the
context of Alloy specifications. Moreover, the language of fork algebras is closer
to Alloy than the language used in Prioni because fork algebras talk about
relations at the same level of abstraction that Alloy does.

Structure of the Paper: In Section 2 we present the syntax and semantics of
Alloy, as well as a sample of Alloy specification that will be used in Section 3.4.
In Section 3 we present the main results of the paper. It contains a descrip-
tion of fork algebras, including ways to deal with relations that are not binary.
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It presents the translation of Alloy formulas to fork algebra equations, and a
theorem that shows that the translation indeed captures the meaning of Alloy
formulas. The section finishes with an example. Finally, in Section 4, we state
our conclusions about the presented work.

2 Syntax and Semantics of Alloy

In this section we present the syntax and semantics of Alloy’s relational logic as
extracted from [10]. The relational logic is the kernel of Alloy. The language is
then defined by means of extensions of the kernel that can be reduced to rela-
tional logic formulas. Constructs such as ‘Functions’ allow one to define abbrevi-
ations for formulas. ‘Facts’ are axioms constraining the model, and ‘Assertions’
are properties intended to hold that are subject to analysis within the model.
For a careful description of these concepts, the reader is directed to [10]. A good
source of information on Alloy is the paper [9], but the semantics is given in
terms of binary relations unlike the latest version of Alloy [10], where relations
have arbitrary finite ranks. In Fig. 1, we present the grammar and semantics
of Alloy ’s relational logic. Composition of binary relations is well understood;
but for relations of higher rank, the following definition for the composition of
relations has to be considered:

R ;S = {〈a1, . . . , ai−1, b2, . . . , bj〉 :
∃b (〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj〉 ∈ S)} .

Example 1. Let us consider the following fragment of Alloy specification for
memories, extracted from [10].

sig Addr { } sig Data { }
These are basic signatures. We do not assume any special properties regarding

the structures of data and addresses.
A possible way of defining memories is by saying that a memory consists of

set of addresses, and a (total) mapping from these addresses to data values:

sig Memory {
addrs: set Addr
map: addrs ->! Data

}
The symbol “!” in the above definition indicates that “map” is functional and

total (for each element a of addrs, there exists exactly one element d in Data
such that map(a) = d).

Alloy allows for the definition of signatures as subsets of the set denoted by
other “parent” signature. This is done via what is called signature extension. For
the example, one could define other (perhaps more complex) kinds of memories
as extensions of the Memory signature:
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problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr − expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom × · · · × atom)+

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧ M [G]e
M [F || G]e = M [F ]e ∨ M [G]e
M [all v : t/F ] =∧{M [F ](e ⊕ v�→{x })/x ∈ e(t)}
M [some v : t/F ] =∨{M [F ](e ⊕ v�→{x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪ X[b]e
X[a&b]e = X[a]e ∩ X[b]e
X[a − b]e = X[a]e \ X[b]e
X[∼ a]e = (X[a]e)̆
X[a.b]e = X[a]e;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =

{x ∈ e(t)/M [F ](e ⊕ v�→{x })}
X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/

∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

Fig. 1. Grammar and semantics of Alloy

sig MainMemory extends Memory {}

sig Cache extends Memory {
dirty: set addrs

}
With these definitions, MainMemory and Cache are special kinds of memo-

ries. In caches, a subset of addrs is recognised as dirty.
A system might now be defined to be composed of a main memory and a

cache:

sig System {
cache: Cache
main: MainMemory

}
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3 A Complete Equational Calculus for Alloy, Based on
Fork Algebras

We begin this section by introducing in Section 3.1 the class of fork algebras.
Fork algebras are closely related to Alloy’s semantics because they provide a
formalism for dealing with (binary) relations. Actually, fork algebras are even
closer to NP [7], a specification language also developed by Jackson and that
later evolved to Alloy. Since fork algebras allow us to deal with binary relations
and Alloy handles relations of arbitrary arity, in Sections 3.2 and 3.3 we show
how to emulate these kinds of relation in fork algebras. Finally, in Section 3.4 we
present the mapping and present a theorem connecting Alloy terms with their
translation. Finally, we present an example illustrating the way the translation
works.

3.1 Fork Algebras

Fork algebras [4] are described through few equational axioms. The intended
models of these axioms are structures called proper fork algebras, in which the
domain is a set of binary relations (on some base set, let us say B), closed under
the following operations for sets:

– union of two binary relations, denoted by ∪,
– intersection of two binary relations, denoted by ∩,
– complement of a binary relation, denoted, for a binary relation r, by r,
– the empty binary relation, which does not relate any pair of objects, and is

denoted by ∅,
– the universal binary relation, usually B × B, that will be denoted by 1.

Besides the previous operations for sets, the domain has to be closed under
the following operations for binary relations:

– transposition of a binary relation. This operation swaps elements in the pairs
of a binary relation. Given a binary relation r, its transposition is denoted
by r̆,

– composition of two binary relations, which, for binary relations r and s is
denoted by r ;s,

– reflexive–transitive closure, which, for a binary relation r, is denoted by r∗,
– the identity relation (on B), denoted by Id.

Finally, a binary operation called fork is included, which requires the base set
B to be closed under an injective function �. This means that there are elements
x in B that are the result of applying the function � to elements y and z. Since
� is injective, x can be seen as an encoding of the pair 〈y, z〉. The application of
fork to binary relations R and S is denoted by R∇S, and its definition is given
by:

R∇S = { 〈a, b � c〉 : 〈a, b〉 ∈ R and 〈a, c〉 ∈ S } .

The operation cross (denoted by ⊗) performs a kind of parallel product. Its
set-theoretical definition is given by:

R⊗S = { 〈a � c, b � d〉 : 〈a, b〉 ∈ R ∧ 〈c, d〉 ∈ S } .
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Once the class of proper fork algebras has been presented, the class of fork
algebras is axiomatized with the following formulas:

1. Your favorite set of equations axiomatizing Boolean algebras. These axioms
define the meaning of union, intersection, complement, the empty set and
the universal relation.

2. Formulas defining composition of binary relations, transposition, reflexive–
transitive closure and the identity relation:

x; (y ;z) = (x;y) ;z,
x;Id = Id;x = x,
(x;y) ∩ z = ∅ iff (z ; y̆) ∩ x = ∅ iff (x̆;z) ∩ y = ∅,
x∗ = Id ∪ (x;x∗) ,
x∗ ;y ;1 ≤ (y ;1) ∪ (

x∗ ;(y ;1 ∩ (x;y ;1))
)
.

3. Formulas defining the operator ∇:

x∇y = (x; (Id∇1)) ∩ (y ; (1∇Id)) ,
(x∇y) ;(w∇z)̆ = (x;w̆) ∩ (y ; z̆) ,
(Id∇1)̆ ∇(1∇Id)̆ ≤ Id.

The axioms given above define a class of models. Proper fork algebras satisfy
the axioms [5], and therefore belong to this class. It could be the case that there
are models for the axioms that are not proper fork algebras. Fortunately, as was
proved in [5], [4, Thm. 4.2], if a model is not a proper fork algebra then it is
isomorphic to one.

In Section 3.4 we will need to handle fork terms involving variables denoting
relations. Following the definition of the semantics of Alloy, we define a mapping
Y that, given an environment in which these variables get values, homomorphi-
cally allows to calculate the values of terms. The definition is given in Fig. 2.
The set U is the domain of a fork algebra, and therefore a set of binary relations.

Y : expr → env → U
env = (var + type) → U.

Y [∅]e = smallest element in U
Y [1]e = largest element in U

Y [a]e = Y [a]e
Y [a ∪ b]e = Y [a]e ∪ Y [b]e
Y [a ∩ b]e = Y [a]e ∩ Y [b]e
Y [ă]e = (Y [a]e)̆
Y [Id]e = Id
Y [a;b]e = Y [a]e;Y [b]e
Y [a∇b]e = Y [a]e∇Y [b]e
Y [a∗]e = (Y [a]e)∗

Y [v]e = e(v)

Fig. 2. Semantics of fork terms involving variables
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3.2 Representing Objects and Sets

We will represent sets by binary relations contained in the identity relation.
Thus, for an arbitrary type t and an environment env , env(t) ⊆ Id must
hold. That is, for a given type t, its meaning in an environment env is a binary
relation contained in the identity binary relation. Similarly, for an arbitrary
variable v of type t, env(v) must be a relation of the form { 〈x, x〉 }, with
〈x, x〉 ∈ env(t). This is obtained by imposing the following conditions
on env(v)1:

env(v) ⊆ env(t),
env(v);1;env(v) = env(v),
env(v) = ∅ .

Actually, given binary relations x and y satisfying the properties:

y ⊆ Id, x ⊆ y, x;1;x = x, x = ∅, (1)

it is easy to show that x must be of the form { 〈a, a〉 } for some object a. Thus,
given an object a, by a we will also denote the binary relation { 〈a, a〉 }. Since y
represents a set, by x : y we assert the fact that x is an object of type y, which
implies that x and y satisfy the formulas in (1).

3.3 Representing and Navigating Relations of Higher Rank in
Fork Algebras

In a proper fork algebra the relations π and ρ defined by

π = (1,∇1)̆ , ρ = (1∇1,)̆

behave as projections with respect to the encoding of pairs induced by the injec-
tive function �. Their semantics in a proper fork algebra A whose binary relations
range over a set B, is given by

π = { 〈a � b, a〉 : a, b ∈ B } ,

ρ = { 〈a � b, b〉 : a, b ∈ B } .

From the definitions of fork, π and ρ, operation ⊗ is definable as follows:

R⊗S = (π ;R)∇(ρ;S) .

Given a n-ary relation R ⊆ A1 × · · · ×An, we will represent it by the binary
relation

{ 〈a1, a2 � · · · � an〉 : 〈a1, . . . , an〉 ∈ R } .

1 The proof requires relation 1 to be of the form B × B for some nonempty set B.
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This will be an invariant in the representation of n-ary relations by binary
ones.

For instance, given an Alloy ternary relation

map ⊆ Memory × addrs × Data,

in our framework it is encoded as a binary relation map whose elements are pairs
of the form 〈m,a � d〉 for m : Memory , a : Addr and d : Data. We will in general
denote the encoding of a relation C as a binary relation, by C. Given an object
(in the relational sense — cf. 3.2) m : Memory, the navigation of the relation
map through m should result in a binary relation contained in Addr × Data.
Given a relational object a : t and a binary relation R encoding a relation of
rank higher than 2, we define the navigation operation • by

a • R = π̆ ;Ran (a;R) ;ρ . (2)

Operation Ran in (2) returns the range of a relation as a partial identity. It
is defined by

Ran (x) = (x;1) ·1, .

Its semantics in terms of binary relations is given by

Ran (R) = { 〈a, a〉 : ∃b s.t. 〈b, a〉 ∈ R } .

If we denote by x R y the fact that x and y are related via the relation R,
then Fig. 3 gives a graphical explanation of operation •.

y ��
��

π̆
y

�

z

Ran(x a x R
z
�
y

)
z

�

y

��
�� ρ

z

Fig. 3. Semantics of •

For a binary relation R representing a relation of rank 2, navigation is easier.
Given a relational object a : t, we define

a • R = Ran (a;R) .

Going back to our example about memories, it is easy to check that for a
relational object m′ : Memory such that m′ = { 〈m,m〉 },

m′ • map = {〈a, d〉 : a ∈ Addr , d ∈ Data and 〈m,a � d〉 ∈ map} .

3.4 Translating Alloy Formulas to Fork Algebra Equations

It is well known [13, p. 26] that Boolean combinations of relation algebraic
equations can be translated into a single equation of the form R = 1. Since
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Alloy terms are typed, the translation must be modified slightly. We denote by 1
the untyped universal relation. By 1k we will denote the universal k-ary relation,
and by Idk we denote the k-ary identity relation. The transformation, for n-ary
Alloy terms a and b, is:

a in b � 1n − (a − b) = 1n

For a formula of the form !(a = 1n), we reason as follows:

!(a = 1n) ⇐⇒ !(1n − a = 0) .

Now, from a nonempty n-ary relation, we must generate a universal n-ary
relation. Notice that if 1n − a is nonempty, then 11.(1n − a) is nonempty, and
has arity n − 1. Thus, the term

11.(· · · .(11︸ ︷︷ ︸
n−1

.(1n − a)) · · · )

yields a nonempty 1-ary relation. If we post compose it with 12, we obtain
the universal 1-ary relation. If the resulting relation is then composed with the
(n+1)-ary universal relation, we obtain the desired n-ary universal relation. We
then have

!(a = 1n) � (11.(· · · .(11︸ ︷︷ ︸
n−1

.(1n − a)) · · · ).12).1n+1 = 1n .

If we are given a formula of the form

a = 1n && b = 1m,

with n = m, then the translation is trivial:

a = 1n && b = 1m � a&b = 1n .

If m > n, we will convert a into a m-ary relation a′ such that a′ = 1m if and
only if a = 1n. Let a′ be defined as

a.Id3.1m−n+1 .

Then,
a = 1n && b = 1m � a′&b = 1m .

Therefore, we will assume that whenever a quantifier occurs in a formula,
it appears being applied to an equation of the form R = 1n, for some n. Since
variables in RL stand for single objects, we will first convert term R into a term
of the form

(IdS1⊗ · · · ⊗IdSk
) ⊗R .
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Intuitively, the term IdS1⊗ · · · ⊗IdSk
allows us to pass on the value of the

free variables occurring in R so that the values can be retrieved at any time. If
we define relations Xi(1 ≤ i ≤ k) by

Xi =

{
ρ ;(i−1) ;π if 1 ≤ i < k,

ρ ;(i−1) if i = k ,

an input a1 � · · · �ak is related through term Xi to ai. Notice then that the term
Dom (π ;Xi ∩ ρ) filters those inputs (a1 � · · · � ak) � b in which ai = b (i.e., the
value b is bound to be ai). The translation is defined as follows:

T (C) = (IdS1⊗ · · · ⊗IdSk
) ⊗C,

T (xi) = Dom (π ;Xi ∩ ρ) ,
T (r+s) = T (r) ∪ T (s),
T (r&s) = T (r) ∩ T (s),
T (r − s) = T (r) ∩ T (s) ∩ ((IdS1⊗ · · · ⊗IdSk

) ⊗1) ,
T (∼ r) = T (r)̆ ,
T (+r) = T (r);T (r)∗.

In order to define the translation for navigation r.s and application s[v], we
need to distinguish whether s is a binary relation, or if it has greater arity. The
definition is as follows:

T (r.s) =

{
T (r) • T (s) if s is binary,

T (r) • (T (s); ((Id⊗π)∇(Id⊗ρ))) otherwise.

T (s[v]) =

{
T (v) • T (s) if s is binary,

T (v) • (T (s); ((Id⊗π)∇(Id⊗ρ))) otherwise.

In case there are no quantified variables, there is no need to carry the values
on, and the translation becomes:

T (C) = C,
T (r+s) = T (r) ∪ T (s),
T (r&s) = T (r) ∩ T (s),
T (r − s) = T (r) ∩ T (s),
T (∼ r) = T (r)̆ ,
T (+r) = T (r);T (r)∗,
T (r.s) = T (r) • T (s),
T (s[r]) = T (r) • T (s) .

It is now easy to prove a theorem establishing the relationship between Alloy
terms and the corresponding translation. Notice that:

– Given a type T , e(T ) is a nonempty set.
– Given a variable v, e(v) is a n-ary relation for some n ∈ IN.
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We define the environment e′ by:

– Given a type T , e′(T ) = { 〈a, a〉 : a ∈ e(T ) }.
– Given a variable v such that e(v) is a n-ary relation,

e′(v) =

{
{ 〈a, a〉 : a ∈ e(v) } if n = 1,

{〈a1, a2 � · · · � an〉 : 〈a1, a2, . . . , an〉 ∈ e(v)} otherwise.

Theorem 1 establishes the relationship between the semantics of Alloy terms
and their translation, and allows us to assess that the translation is sound in the
sense that it captures the semantics of Alloy terms. For the theorem we assume
that whenever the transpose operation or the transitive closure occur in a term,
they affect a binary relation. Notice that this is the assumption in [10]. We also
assume that whenever the navigation operation is applied, the argument on the
left-hand side is a unary relation (set). This is because our representation of
relations of arity greater than two makes defining the generalized composition
more complicated than desirable. At the same time, use of navigation in object-
oriented settings usually falls in the situation modeled by us. In order to simplify
notation, we will denote by b� the element b1 � · · · � bm.

Theorem 1. For every Alloy term t such that:

1. X[t]e defines a n-ary relation,
2. there are m free variables x1, . . . , xm in t,

Y [T (t)]e′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{〈b� � a, b� � a〉 :

a ∈ X[t]e(b �→ x)
}

if n = 1
{〈b� � a1, b

� � (a2 � · · · � an)〉 :
〈a1, . . . , an〉 ∈ X[t]e(b �→ x)

}
if n > 1

Proof. (Sketch of the proof) With the aim of using a shorter notation, the value
(according to the standard semantics) of an Alloy term t in an environment e
will be denoted by e(t) rather than by X[t]e. Similarly, the value of a fork algebra
term t in an environment e′ will be denoted by e′(t) rather than by Y [t]e′. The
proof follows by induction on the structure of term t. As a sample we prove it
for the variables, the remaining cases end up being simple applications of the
semantics of the fork algebra operators.

If v is a quantified variable (namely, xi), then e(t) is a unary relation.

e′ (T (xi))
= e′ (Dom (π ;Xi ∩ ρ)) (by def. T )
= { 〈b� � a, b� � a〉 : a = bi } (by semantics)
= { 〈b� � a, b� � a〉 : a ∈ { bi } } (by set theory)

=
{ 〈b� � a, b� � a〉 : a ∈ (

e(b �→ x)
)
(xi)

}
. (by def. e(b �→ x))

If v is a variable distinct of x1, . . . , xm, there are two possibilities.
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1. e(v) denotes a unary relation.
2. e(v) denotes a n-ary relation with n > 1.

If e(v) denotes a unary relation,

e′ (T (v)) = e′ ((IdS1⊗ · · · ⊗IdSm
) ⊗v) (by def. T )

= (IdS1⊗ · · · ⊗IdSm
) ⊗e′(v) (by semantics)

= (IdS1⊗ · · · ⊗IdSm
) ⊗ { 〈a, a〉 : a ∈ e(v) } (by def. e′)

= { 〈b� � a, b� � a〉 : a ∈ e(v) } (by semantics)

=
{ 〈b� � a, b� � a〉 : a ∈ (e(b �→ x)))(v)

}
. (by def. e(b �→ x))

If e(v) denotes a n-ary relation (n > 1),

e′ (T (v)) = e′ ((IdS1⊗ · · · ⊗IdSm
) ⊗v) (by def. T )

= (IdS1⊗ · · · ⊗IdSm
) ⊗e′(v) (by semantics)

= (IdS1⊗ · · · ⊗IdSm
) ⊗ { 〈a1, a2 � · · · � an〉 : 〈a1, . . . , an〉 ∈ e(v) }

(by def. e′)

= { 〈b� � a1, b
� � (a2 � · · · � an)〉 : 〈a1, . . . , an〉 ∈ e(v) } (by semantics)

=
{ 〈b� � a1, b

� � (a2 � · · · � an)〉 : 〈a1, . . . , an〉 ∈ (e(b �→ x)))(v)
}

.

(by def. e(b �→ x))

From the set-theoretical definition of fork and the remaining relational oper-
ators, it follows that2

(x1 � · · · � xn) � x T (t) (x1 � · · · � xn) � y ⇐⇒
(x1 � · · · � xn) � x � y ∈ ran (Id ∇ T (t);ρ) . (3)

Now, it only remains to adequately quantify, using relational expressions,
variables x1, . . . , xn, x, y. We define the relational term ∃xi

as follows:

∃xi
= X1∇ · · · ∇Xi−1∇1S∇Xi+1∇ · · · ∇Xk .

For instance, if k = 3, we have ∃x2 = X1∇1S∇X3. This term defines the
binary relation

{ 〈a1 � a3, a1 � a2 � a3〉 : a2 ∈ S } .

Notice that the term generates all possible values for variable x2. The term

∃x2 ;Ran (Id ∇ T (t(x1, x2, x3));ρ) ;1

describes the binary relation

2 Given a binary relation R, ran (R) denotes the set { b : ∃a such that 〈a, b〉 ∈ R }.
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{ 〈(a1 � a3) � a � b, c〉 : (∃a2 : S) (〈a1 � a2 � a3) � a, b〉 ∈ T (t(x1, x2, x3)) } .

This term allows us to quantify over the right domain. Profiting from the
interdefinability of ∃ and ∀, the term

∃x2 ;T (t)

allows us to quantify variable x2 universally. We will denote such a term as
∀x2T (t).

Since variables x and y abstract the input and output values for term T (t)
(cf. (3)) and the original equation is of the form T (t) = 1, variables x and y
must be quantified universally.

Example 2. Let us consider the following Alloy assertion, to be understood in
the context of the specification for memories provided in Section 2.

some s : System | s.cache.map in s.main.map . (4)

Once converted to an equation of the form R = 1, assertion (4) becomes

some s : System | 12 − (s.cache.map − s.main.map) = 12 . (5)

If we apply translation T to the term on the left-hand side of the equality in
(5), it becomes

Dom (π ;Xs ∩ ρ) •
IdS

⊗
cache

•
⎛
⎝ IdS

⊗
map

;
Id⊗π
∇

Id⊗ρ

⎞
⎠ ∩

⎛
⎝ IdS

⊗
1

⎞
⎠

∪ Dom (π ;Xs ∩ ρ) •
IdS

⊗
main

•
⎛
⎝ IdS

⊗
map

;
Id⊗π
∇

Id⊗ρ

⎞
⎠ . (6)

Since s is the only variable, Xs = ρ0 = Id, and therefore (6) becomes

Dom (π ∩ ρ) •
IdS

⊗
cache

•
⎛
⎝ IdS

⊗
map

;
Id⊗π
∇

Id⊗ρ

⎞
⎠ ∩

⎛
⎝ IdS

⊗
1

⎞
⎠

∪ Dom (π ∩ ρ) •
IdS

⊗
main

•
⎛
⎝ IdS

⊗
map

;
Id⊗π
∇

Id⊗ρ

⎞
⎠ . (7)

Certainly (7) is harder to read than the equation in (4). This can probably
be improved by adding adequate syntactic sugar to the language. Let us denote
by E the term in (7). Following our recipe, we arrive to the following equation

∃s ;∀x∀y (Ran (Id ∇ E ;ρ) ;1) = 1 . (8)
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4 Conclusions

Even although theorem proving was not considered a critical issue during the
development of Alloy, it has been lately recognized as a significant problem that
deserves to be addressed. The tool Prioni allows one to prove properties from
Alloy specification but at the expense of requiring the user to learn another
language conceptually different of Alloy in order to understand proof steps. Al-
though the language of fork algebras is not the same as Alloy, from a conceptual
viewpoint the language of fork algebras shares common principles with Alloy, as
for instance the fact that objects are relations. This is one of the cornerstones of
Alloy, and is shared by fork algebras but not by the language used in Athena.
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