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Abstract. Superpositions are useful relationships between programs or
components in component based approaches to software development.
We study the application of invasive superposition morphisms between
components in the architecture design language CommUnity. This kind
of morphism allows us to characterise component extension relationships,
and in particular, serves an important purpose for enhancing components
to implement certain aspects, in the sense of aspect oriented software de-
velopment. We show how this kind of morphism combines with regulative
superposition and refinement morphisms, on which CommUnity relies,
and illustrate the need and usefulness of extension morphisms for the
implementation of aspects, in particular, certain fault tolerance related
aspects, by means of a case study.

1 Introduction

The demand for adequate methodologies for modularising designs and develop-
ment is increasing rapidly, due to the inherent complexities of modern software
systems. Of course, these modularisation methodologies do not affect only the
final implementation stages, but they also have an impact on earlier stages of
software development processes. Thus, it is generally accepted that, for the mod-
ularisation to be effective (and persistent, and resistant to evolution), it needs
to be applied from the start, at the level of specification or modelling of systems.
Modularising, or structuring, specifications has important benefits. It allows one
to divide the specifications into manageable parts, and to evaluate the conse-
quences of our architectural design decisions prior to the implementation of the
system. Moreover, it also favours the reuse of parts of the resulting implemen-
tations, and their adaptations and extensions for new application domains.

In the area of critical systems, specification languages are required to have
a precise meaning (since formal semantics is crucial for eliminating ambigui-
ties in specifications, and for developing tools for verification), and therefore
specifications tend to be much longer than those of informal frameworks. Thus,
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mechanisms for structuring or modularising specifications and designs are es-
pecially important for formal specification languages, as they help to make the
specification and verification activities scalable. There exist many formal spec-
ification languages which put an emphasis on the way systems are built out of
components (e.g., those reported in [19,9,20,18]). CommUnity is one of these
languages; it is a formal program design language which puts special emphasis
on ways of composing abstract designs of components to form designs of systems
[6,5]. CommUnity is based on Unity [3] and IP [8], and its foundations lie in the
categorical approach to systems design [10]. Its mechanisms for composing speci-
fications have a formal interpretation in terms of category theoretic constructions
[5,6]. Moreover, CommUnity’s composition mechanisms combine nicely with a
sophisticated notion of refinement, which involves separate concepts of action
blocking and action progress.

We are particularly interested in CommUnity because, in our view, its design
composition mechanisms make it suitable for the specification and combination
(or “weaving”) of aspects, in the aspect oriented software development sense
[7]. Moreover, its rather abstract designs for components allow us to deal with
aspects at a design level, in contrast to most of the work on aspects, which
concerns implementation related stages (e.g., [14]). Some evidence of the ade-
quacy of CommUnity as a design language for aspects relies on the possibility of
defining higher-order connectors [16]. As shown in [16], a wide variety of aspects
(e.g., fault tolerance, security, monitoring, compression, etc) can be superim-
posed on existing CommUnity architectures, by building “stacks” of more and
more complex connectors between components.

Higher-order connectors provide a very convenient way of enhancing the be-
haviour of an architecture of component designs, by the superimposition of as-
pects. A crucial characteristic of CommUnity, which makes this possible, is the
complete externalisation of the definition of interaction between components
(a feature also exhibited by various other architecture description languages).
The component coordination mechanism of CommUnity reduces the coupling
between components to a minimum, and makes it feasible to superimpose be-
haviour (related to aspects) on existing systems via superposition and refinement
of components. However, higher-order connectors are not powerful enough for
defining various kinds of aspects, since some of these, as we will show, require
extensions of the components as well as in the connectors. Thus, we are forced
to consider another kind of superposition, known as invasive superposition [12],
which allows us to define extensions of components. By combining extension with
regulative superposition and refinement, we believe that we obtain a powerful
framework in which we can define architectures, and enhance their behaviours
by superimposing behaviour through aspects defined in terms of component
extension and higher-order connectors. Having the possibility of extending com-
ponents also provides us with a way of balancing the distribution of extended
behaviour among connectors and components, which would otherwise be put
exclusively on the connector side. This problem has also arisen in the context
of object oriented design and programming, attempting to define various forms
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of inheritance, resulting in the proposals attempting to characterise the concept
of substitutability [15,21]. We believe that this proposal provides a more solid
foundation for substitutivity, one that is better structured and more amenable
to analysis. We propose a definition of extension in CommUnity, partly mo-
tivated by the definitions and proof obligations used to define the structuring
mechanisms in B [1,4], that justifies the notion of substitutivity and provides a
structuring principle for augmenting components by breaking encapsulation of
the component. (Perhaps this should be considered a contradiction in terms!)

We show how extension morphisms combine with the superposition and re-
finement morphisms already present in CommUnity. We will also illustrate the
need and usefulness of extension morphisms for the implementation of aspects,
by means of a case study, based on a simple sender/receiver architecture com-
municating via an unreliable channel, which is then enhanced with some typical
aspects, imposing a standard fault tolerance mechanism.

2 The Architecture Design Language CommUnity

In this section, we introduce the reader to the CommUnity design language and
its main features, by means of an example. The computational units of a system
are specified in CommUnity through designs. Designs are abstract programs, in
the sense that they describe a class of programs (more precisely, the class of all
the programs one might obtain from the design by refinement), rather than a
single program [23,5].

Before describing in some detail the refinement and composition mechanisms
of CommUnity, let us describe the main constituents of a CommUnity design.
Let us first assume that we have a fixed set ADT = 〈ΣADT , ΦADT 〉 of datatypes,
specified as usual via a first-order specification. A CommUnity design is com-
posed of:

– A set V of channels, typed with sorts in ADT . V is partitioned into three
subsets Vin, Vprv and Vout, corresponding to input, private and output chan-
nels, respectively. Input channels are the ones controlled, from the point of
view of the component, by the environment. Private and output channels are
the local channels of the component. The difference between these is that
output channels can be read by the environment, whereas private channels
cannot.

– A first-order sentence Init(V ), describing the initial states of the design4.
– A set Γ of actions, partitioned into private actions Γprv and public actions

Γpub. Each action g ∈ Γ is of the form:

g[D(g)] : L(g), U(g) → R(g)

where D(g) ⊆ Vprv ∪ Vout is the (write) frame of g (the local channels that
g modifies), L(g) and U(g) are two first-order sentences such that ΦADT �

4 Some versions of CommUnity, such as the one presented in [17], do not include an
initialisation constraint.
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U(g) ⇒ L(g), called the lower and upper bound guards, respectively, and
R(g) is a first-order sentence α(V ∪ D(g)′), indicating how the action g
modifies the values of the variables in its frame. (D(g) is a set of channels
and D(g)′ is the corresponding set of “primed” versions of the channels in
D(g), representing the new values of the channels after the execution of the
action g.)

The two guards L(g) and U(g) associated with an action g are related to re-
finement, in the sense that the actual guard of an action gr implementing the
abstract action g, must lie between L(g) and U(g). As explained in [17], the
negation of L(g) establishes a blocking condition (L(g) can be seen as a lower
bound on the actual guard of an action implementing g), whereas U(g) estab-
lishes a progress condition (i.e., an upper bound on the actual guard of an action
implementing g, in the sense that it implies the enabling condition of an action
implementing g).

Of course, R(g) might not uniquely determine values for the variables D(g)′.
As explained in [17], R(g) is typically composed of a conjunction of implications
pre ⇒ post , where pre is a precondition and post defines a multiple assignment.

To clarify the definition of CommUnity designs, let us suppose that we would
like to model the unreliable communication between a sender and a receiver. We
will abstract away from the actual contents of messages between these compo-
nents, and represent them simply by an integer, identifying particular messages.
Then, a sender is a simple CommUnity design composed of:

– An output channel msg:int, representing the current message of the sender.
– A private channel rts: bool (“ready to send”), indicating whether the

sender is ready to send the current message or not (messages need to be
produced before sending them).

– An action send, which, if the sender is ready to send (indicated by the
boolean variable above), then goes back to a “ready to produce” state (char-
acterised by the rts variable being false).

– An action prod, that, if the sender is in a “ready to produce” state, incre-
ments by one the msg variable (i.e., generates a new message to be sent) and
moves to a “ready to send” state.

The CommUnity design corresponding to this component is shown in Figure 1.
In Fig. 1, the actions of the design have a single guard, meaning that their

lower and upper bound guards coincide. We will illustrate refinement through
more abstract designs below. An important point to notice in the sender design
is the way it communicates with the environment through the send action. This
action does not make a call to an external action, as one might expect; it will
be the responsibility of other components to “extract” the value of the output
variable msg, by synchronising other actions with the send action of the sender.
This will become clearer later on, when we build architectures and describe in
more detail the model of interaction between components in CommUnity.

To complete the picture, let us introduce some further designs. One is a simple
component with a single integer typed output variable, used for communication
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Design Sender

out

msg: int

prv

rts: bool

init

msg=0 ∧ rts=false

do

prod[msg,rts]: ¬rts → rts’=true ∧ msg’=msg+1

[] send[rts]: rts → rts’=false

Fig. 1. A CommUnity design for a simple sender component.

and for modelling the loss of messages (Figure 2). The other one is a receiver
component, somewhat similar in structure to the sender, but with an input
variable instead of an output one, and a boolean channel rtr (ready to receive)
instead of rts (Figure 3). To complete the picture, let us introduce some further
designs. One is a simple component with a single integer typed output variable,
used for communication and for modelling the loss of messages (Figure 2). The
other one is a receiver component, somewhat similar in structure to the sender,
but with an input variable instead of an output one, and a boolean channel rtr
(ready to receive) instead of rts. To complete the picture, let us introduce
some further designs. One is a simple component with a single integer typed
output variable, used for communication and for modelling the loss of messages
(Figure 2). The other one is a receiver component, somewhat similar in structure
to the sender, but with an input variable instead of an output one, and a boolean
channel rtr (ready to receive) instead of rts.

Design Communication_Medium

in

in_msg: int

out

out_msg: int

prv

rts: bool

init

out_msg=0 ∧ rts=false

do

transmit[out_msg,rts]: ¬rts → out_msg’=in_msg ∧ rts’=true

[] lose[]: ¬rts → true

[] send[rts]: rts → rts’=false

Fig. 2. A CommUnity design for an unreliable communication medium.
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Design Receiver

in

msg: int

out

curr_msg: int

local

rtr: bool

init

curr_msg=0 ∧ rtr=true

do

rec[rtr,curr_msg]: rtr → rtr’=false ∧ curr_msg’=msg

[] prv cons[rtr]: ¬rtr → rtr’=true

Fig. 3. A CommUnity design for a receiver component.

2.1 Refinement Morphisms

Refinement morphisms constitute an important relationship between CommU-
nity designs. Not only do these morphisms allow one to establish “realisation”
relationships, indicating that a component is a more refined or concrete version
of another one, but they also serve an important purpose for parameter instanti-
ation. In particular, refinement morphisms are essential for the implementation
of higher-order connectors [16].

We will not give a fully detailed description of refinement morphisms here. We
refer the interested reader to [6,23,16,17,5] for a detailed account of refinement
in CommUnity.

A refinement morphism σ : P1 → P2 between designs P1 = (V1, Γ1) and
P2 = (V2, Γ2) consists of a total function σch : V1 → V2 and a partial function
σac : Γ2 → Γ1 such that:

– σch preserves the sorts and kinds (output, input or private) of channels;
moreover, σch is injective on input and output channels,

– σac maps shared actions to shared actions and private actions to private
actions; moreover, every shared action in Γ1 has at least one corresponding
action in Γ2 (via σ−1

ac ),
– the initialisation condition is strengthened through the refinement, i.e.,

ΦADT � InitP2 ⇒ σ(InitP1),
– every action g ∈ Γ2 whose frame D2(g) includes a channel σch(v), with

v ∈ V1, is mapped to an action σac(g) whose frame D1(σac(g)) includes v,
– if an action g ∈ Γ2 is mapped to an action σac(g), then ΦADT � L2(g) ⇒

σ(L1(σac(g))) and ΦADT � R2(g) ⇒ σ(R1(σac(g))),
– for every action g ∈ Γ1, ΦADT � σ(U1(g)) ⇒

∨
h∈σ−1(g) U2(h).

As specified by these conditions, the interval determined by the lower and
upper bound guards can be reduced through refinement, and the assignments can
be strengthened. The interface of a component design, determined by the output
and input channels and shared actions, is preserved along refinement morphisms,
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and the new actions that can be defined in a refinement are not allowed to modify
the channels originating in the abstract component. Essentially, one can refine a
component by making its actions more detailed and less underspecified (cleverly
characterised by the reduction of the guard interval and the strenghthening of
the assignments), and possibly adding more detail to the component, in the form
of further channels or actions [17].

As an example of refinement, consider the more abstract version of the sender
design shown in Figure 4. Notice that the assignment associated with prod is
more abstract or liberal than the assignment of the same action in the Sender
design. Also, the lower bound guards of both actions are equivalent to those of the
corresponding actions in Sender, but the upper bound guards are strengthened
to false. Clearly, Abstract Sender is a more abstract version of the Sender
(or, equivalently, Sender is a refinement of Abstract Sender), and it is not
difficult to prove that there exists a refinement morphism between these designs.
In fact, Abstract Sender is also a refinement of the Communication Medium
component (where the abstract prod operation corresponds to the operations
lose and transmit), although it is less evident than in the first case.

Design Abstract_Sender

out

msg: int

prv

rts: bool

init

msg=0 ∧ rts=false

do

prod[msg,rts]: ¬rts, false → rts’=true ∧ msg’∈int
[] send[rts]: rts, false → rts’=false

Fig. 4. A more abstract CommUnity design for a sender component.

2.2 Component Composition

In order to build a system out of the above components, we need a mechanism
for composition. The mechanism for composing designs in Community is based
on action synchronisation and the “connection” of output channels to input
channels (shared memory). Basically, we need to connect the sender and receiver
through the unreliable medium. This can be achieved by:

– identifying the output channel msg of the sender with the input channel
in msg of the medium,

– identifying the input channel msg of the receiver with the output channel
out msg of the medium,
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– synchronising the action send of the sender with actions transmit and lose
of the medium,

– synchronising the action send of the medium with action rec of the receiver.

The resulting architecture can be graphically depicted as shown in Figure 5. In
this diagram, the architecture is shown using the CommUnity Workbench [24]
graphical notation, where boxes represent designs, with its channels and actions5,
and lines represent the interactions (“cables” in the sense of [17]), indicating
how input channels are connected to output channels, and which actions are
synchronised. Notice that, in particular, action send of the sender is connected
to two different actions of the medium; this requires that, in the resulting system,
there will be two different actions corresponding to (or “invoking”) the send
action in the sender, one that is synchronised with transmit and another one
that is synchronised with lose. This allows us to model very easily the fact that,
sometimes, the sent message is lost (when the action send-lose is executed),
without using further channels in the communication medium.

Fig. 5. A graphical view of the architecture of the system.

Semantics of Architectures. CommUnity designs have an operational seman-
tics based on (labelled) transition systems. Architectural configurations, of the
kind shown in Fig. 5, also have a precise semantics; they are interpreted as cat-
egorical diagrams, representing the architecture [17]. The category has designs
as objects and the morphisms are superposition relationships. A superposition
morphism between two designs A and B captures, in a formal way, the fact that
B contains A, and uses it while respecting the encapsulation of A (regulative
superposition). The interesting fact is that the joint behaviour of the system
can be obtained by taking the colimit of the categorical diagram corresponding
to the architecture [5,6]. Therefore, one can obtain a single design (the colimit
object), capturing the behaviour of the whole system.

5 Private actions are not displayed by the CommUnity Workbench, although we de-
cided to show these actions, conveniently annotated, in the diagrams.
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More formally, a superposition morphism σ : P1 → P2 between designs P1 =
(V1, Γ1) and P2 = (V2, Γ2) consists of a total function σch : V1 → V2 and a partial
function σac : Γ2 → Γ1 such that:

– σch preserves the sorts of channels; private and output channels must be
mapped to channels of the same kind, but input channels can be mapped to
output channels,

– σac maps shared actions to shared actions and private actions to private
actions,

– the initialisation condition is strengthened through the superposition, i.e.,
ΦADT � InitP2 ⇒ σ(InitP1),

– every action g ∈ Γ2 whose frame D2(g) includes a channel σch(v), with
v ∈ V1, is mapped to an action σac(g) whose frame D1(σac(g)) includes v,

– if an action g ∈ Γ2 is mapped to an action σac(g), then ΦADT � L2(g) ⇒
σ(L1(σac(g))), ΦADT � R2(g) ⇒ σ(R1(σac(g))), and ΦADT � U2(g) ⇒
σ(U1(σac(g))).

As for refinement morphisms, superposition morphisms allow assignments to be
strengthened, but not weakened. Intuitively, P2 enhances the behaviour of P1

via the superposition of additional behaviour, described in other components
(and synchronised with P1). So, the actions of the augmented component P2

“using” corresponding actions in P1 do at least what the actions of P1 origi-
nally did. Since actions in P2 should use the corresponding actions in P1 within
enabledness bounds, the lower bound guards of actions in P1 must be strength-
ened when superposed in actions of P2. Notice however that, as opposed to the
case of refinement morphisms, upper bound guards can be strengthened, but not
weakened; as explained in [17], this is a key difference between refinement and
superposition, and reflects the fact that “all the components that participate in
the execution of a joint action have to give their permission for the action to
occur.” (cf. p. 9 of [17]).

3 Component Extension in CommUnity

In this section we describe the main contribution of this paper, namely, a new
kind of morphism between components for CommUnity. This kind of morphism,
that we call extension morphism, enables us to establish extension relationships
between components (of the kind defined by inheritance in object orientation),
and is of a different nature, compared to the already existing refinement and
superposition morphisms of CommUnity.

In order to illustrate the need for extension morphisms, let us consider the fol-
lowing case. Suppose that, for the existing system of communicating sender and
receiver, we would like to superimpose behaviour related to the monitoring of the
received messages. As explained in [16], this is possible to achieve, in an elegant
and structured way, by using higher-order connectors. Essentially, an abstract
monitoring structure is defined; this structure is composed of various abstract
designs, used for characterising roles of the architecture, like sender, receiver and
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monitor, and others necessary for the implementation of the “observed connec-
tor”. These abstract designs are interconnected as shown in Figure 6. We will not
describe these designs in detail, and refer the reader to [16], where a detailed de-
scription of this higher-order connector is given. However, it is important to men-
tion that Abstract Sender (which is given in Fig. 4) and Abstract Receiver
can be refined by, essentially, any pair of components providing the basic func-
tionality for sending and receiving messages. Then, this higher-order connec-
tor is plugged into the existing architecture, through refinement, to obtain the
resulting architecture of Figure 7. It is important to notice the difference be-
tween Figures 6 and 7; Fig. 6 describes the (abstract, non instantiated) higher-
order connector for monitoring, whereas Fig. 7 described the instantiation of
this higher-order connector (see how Abstract Sender, Abstract Receiver and
Abstract Monitor have been instantiated by Communication Medium, Receiver
and Simple Monitor, respectively). The reader might observe that the actual
monitor that we are using, described in Figure 8, simply counts the number
of messages received by the receiver component. Notice that the guard of the
monitor must be as weak as possible (i.e., true), to avoid interfering with the
behaviour of the monitored operations.

In [16], several aspects are characterised and superimposed by using this same
technique.

Fig. 6. A higher-order connector for monitoring.

Now suppose that we would like to superimpose a “resend message” mecha-
nism on the architecture, in order to make the communication reliable. We can
capture the loss of a “packet” through a monitor, instead of using it simply for
counting the messages, as we did before. However, for the sender to reset and
start sending the message again, we need to replace it with a slightly more sophis-
ticated sender component, namely one with a reset operation, such as the one
shown in Figure 9. Notice that RES Sender cannot be obtained from Sender by
superposition, since it is clear that the new reset operation modifies a channel
originating in Sender. RES Sender cannot be obtained through the refinement of
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Fig. 7. Communication enhanced with a monitoring system.

Design Simple_Monitor

in

msg: int

prv

counter: int

init

counter=0

do

rec[counter]: true → counter’=counter+1

Fig. 8. A simple monitor to count received messages.

Sender either, since clearly its reset action, which modifies channels originating
in Sender, should be mapped to a corresponding action in this design, but it
does not respect any of the original assignments of actions prod and send, so it
cannot be mapped to any of these.

However, there exists a clear relationship between the original Sender com-
ponent and the new RES Sender: the state of the original is extended, and more
operations are provided (which might modify the channels of the original com-
ponent), but the effect of the original actions is maintained. This relationship is
a special case of what is called invasive superposition [12].

Invasive superposition has already been recognised as a possible relationship
between CommUnity designs in [6]; moreover, therein it has been shown that
CommUnity designs and invasive superpositions constitute a category. However,
not much attention has been paid to invasive superposition for the architec-
tural modelling of systems in CommUnity so far. Although not in the context
of CommUnity, some researchers have employed various kinds of superpositions
for defining architectures of components and augmenting their behaviours, par-
ticularly the work in [11]. Here, we propose the use of invasive superposition for
characterising component extension in CommUnity.
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Design RES_Sender

in

lost-msg: int

out

msg: int

prv

rts: bool

init

msg=0 ∧ rts=false

do

prod[msg,rts]: ¬rts → rts’=true ∧ msg’=msg+1

[] send[rts]: rts → rts’=false

[] reset[msg,rts]: true → rts’=true ∧ msg’=lost-msg

Fig. 9. A CommUnity design for a sender component with a reset capability.

A distinguishing property typically associated with sound component ex-
tension is what is normally known as the substitutability principle [15]. This
principle requires, in concordance with the now highly regarded “design by con-
tract” approach [21], that if a component P2 extends another component P1,
then one must be able to replace P1 by P2, and the “clients” of the original com-
ponent must not perceive the difference. In other words, component P2 should
behave exactly as P1, when put in a context where P1 was expected. It is our aim
to characterise such extensions through the definition of extension morphisms
below.

Definition 1. An extension morphism σ : P1 → P2 between designs P1 =
(V1, Γ1) and P2 = (V2, Γ2) consists of a total function σch : V1 → V2 and a
partial mapping σac : Γ2 → Γ1 such that:

– σch is injective and σac is surjective,
– σch preserves the sorts and kinds of channels,
– σac maps shared actions to shared actions and private actions to private

actions,
– there exists a formula α, using only variables that are contained in (V2 −

σch(V1)), and such that ΦADT � ∃v : α(v) and ΦADT � InitP2 ⇔ σ(InitP1)∧
α,

– for every g ∈ Γ2 such that σac(g) is defined, and for every v ∈ V1, if σch(v) ∈
D2(g), then v ∈ D1(σac(g)),

– if an action g ∈ Γ2 is mapped to an action σac(g), then ΦADT �
σ(L1(σac(g))) ⇒ L2(g) and ΦADT � σ(U1(σac(g))) ⇒ U2(g),

– for every g ∈ Γ2 such that σac(g) is defined, there exists a formula α, using
only primed variables that are contained in (V ′

2−σch(V1)′), such that ΦADT �
σ(L1(σac(g))) ⇒ (R2(g) ⇔ σ(R1(σac(g)))∧α) and ΦADT � ∃v : α(v), where
v represents the primed variables of α.

The first condition for extension morphisms requires all actions of the original
component to be mapped to actions in the extended one, and the preservation
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of all the channels of the original component. In particular, it is not allowed for
several channels to be mapped to a single channel in the extended component.
(Notice that if this was allowed, then the extended component might not be
“plugged” into architectures where the original component could be “plugged”,
due to insufficient “ports” in the interface.) The second and third conditions
above require the types and kinds of channels and actions to be preserved. The
fourth condition allows the initialisation to be strengthened when a component
is extended, but respecting the initialisation of the channels of the original com-
ponent, and via realisable assignments for the new variables. The fifth condition
indicates that “old actions” of the extended component can modify new vari-
ables, but the only old variables these can modify are the ones they already
modified in the original component (in other words, frames can be expanded
only with new channels). The sixth condition establishes that both the lower
and upper bound guards can be weakened, but not strengthened. Finally, the
last condition establishes that the actions corresponding to those of the orig-
inal component must preserve the assignments to old variables, if the lower
bound guard of the original component is satisfied; this provides the extension
with some freedom, to decide how the action might modify old and new vari-
ables when executed under circumstances where the original action could not
be executed. Again, it is required for the assignments for new variables to be
“realisable”.

Going back to our example, notice that RES Sender is indeed an extension
of Sender, where the associated extension morphism σ = 〈σch, σac〉 is composed
of the identity mappings σch and σac on channels and actions, respectively. It
is clear that these mappings are injective and surjective, respectively, and that
sorts and kinds of channels are preserved by σch, and the visibility constraints
on actions are preserved by σac. Moreover, since the initialisation and the write
frames, guards and assignments of actions send and prod are not modified in
the extension, the last four conditions in the definition of extension morphisms
are trivially met.

Notice that extension morphisms are invasive, in the sense that new ac-
tions in the extended component are allowed to modify variables of the origi-
nal component. However, extension morphisms differ from invasive superposi-
tion morphisms, as formalised in [6] in various ways. In particular, guards are
weakened in extension morphisms, whereas these are strengthened in invasive
superposition morphisms. Moreover, our allowed forms of assignment and ini-
tialisation strengthening are more restricted than those of invasive superposition
morphisms.

It is not difficult to prove the following theorem, showing that, as for other
morphisms in CommUnity, designs and extension morphisms constitute a cate-
gory.

Theorem 1. The structure composed of CommUnity designs and extension mor-
phisms constitutes a category, where the composition of two morphisms σ1 and
σ2 is defined in terms of the composition of the corresponding channel and action
mappings of σ1 and σ2.
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Proof. The proof can be straightforwardly reduced to proving that the compo-
sition of extension morphisms is an extension morphism (the remaining points
to prove that the proposed structure is a category are straightforward). So, let
σ1 : P1 → P2 and σ2 : P2 → P3 be extension morphisms. The composition σ1; σ2

is defined by the composition of the corresponding mappings of these morphisms.
Let us prove each of the restrictions concerning the definition of extension

morphism.

– First, σ1ch
; σ2ch

must be injective, and σ2ac ; σ1ac must be surjective; this is
easy to show, since the composition of injective mappings is injective, and
the composition of surjective mappings is surjective.

– It is clear that since both σ1ch
and σ2ch

preserve the sorts and kinds of
channels, so does the composition σ1ch

; σ2ch
.

– We have as hypotheses that there exist two formulas α1 and α2, referring to
variables in (V2 − σ1ch

(V1)) and (V3 − σ2ch
(V2)) respectively, and such that

ΦADT � InitP2 ⇔ σ1(InitP1) ∧ α1 and ΦADT � InitP3 ⇔ σ2(InitP2) ∧ α2;
moreover, both these formulas are “satisfiable”, in the sense that ΦADT �
∃v1 : α1(v1) and ΦADT � ∃v2 : α2(v2) . We must show that there exists a
formula α3, using only variables that are contained in (V3 − σ1ch

; σ2ch
(V1)),

such that ΦADT � ∃v3 : α3(v3) and ΦADT � InitP3 ⇔ σ1; σ2(InitP1) ∧ α3.
We propose α3=̂σ2ch

(α1) ∧ α2.
• The fact that α3 refers only to variables in V3−σ1ch

; σ2ch
(V1)) is obvious.

• Let us prove that α3 is satisfiable. First, since α1 is satisfiable, so is
σ2ch

(α1) (satisfiability is preserved under injective language translation).
Second, it is easy to see that σ2ch

(α1) and α2 refer to disjoint sets of vari-
ables; therefore (and since the only free variables allowed in initialisation
conditions are the ones corresponding to channels), the safisfiability of
the conjunction σ2ch

(α1) ∧ α2 is guaranteed.
• Let us now prove that ΦADT � InitP3 ⇔ σ1; σ2(InitP1) ∧ α3. We know

that ΦADT � InitP3 ⇔ σ2(InitP2) ∧ α2, and that ΦADT � InitP2 ⇔
σ1(InitP1) ∧ α1. Combining these two hypotheses, we straightforwardly
get that ΦADT � InitP3 ⇔ σ2(σ1(InitP1) ∧ α1) ∧ α2, which leads us to
ΦADT � InitP3 ⇔ (σ2(σ1(InitP1)) ∧ σ2(α1)) ∧ α2), as we wanted.

– We have to prove that for every g ∈ Γ3 such that σ2ac ; σ1ac(g) is defined, and
for every v ∈ V1, if σ1ch

; σ2ch
(v) ∈ D3(g), then v ∈ D1(σ1ac ; σ2ac(g)). This

is straightforward, thanks to our hypotheses regarding frame preservation of
morphisms σ1 and σ2.

– To prove that the composition of the morphisms σ1 and σ2 weakens both
the lower and the upper bound guards is also straightforward.

– We have as hypotheses that:
• for every g ∈ Γ2 such that σ1ac(g) is defined, there exists a formula α1

whose referring primed variables are contained in (V ′
2 − σ1ch

(V1)′) such
that: ΦADT � ∃v1 : α1(v1) and ΦADT � σ(L1(σ1ac(g))) ⇒ (R2(g) ⇔
σ1(R1(σ1ac(g))) ∧ α1),

• for every g ∈ Γ3 such that σ2ac(g) is defined, there exists a formula α2

whose referring primed variables are contained in (V ′
3 − σ2ch

(V2)′) such
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that: ΦADT � ∃v2 : α2(v2) and ΦADT � σ(L2(σ2ac(g))) ⇒ (R3(g) ⇔
σ2(R2(σ2ac(g))) ∧ α2).

Let g ∈ Γ3 such that σ2ac ; σ1ac(g) is defined. We have to find a formula
α3 whose referring primed variables are contained in (V ′

3 − σ1ch
; σ2ch

(V1)′)
such that: ΦADT � ∃v3 : α3(v3) and ΦADT � σ(L1(σ2ac ; σ1ac(g))) ⇒
(R3(g) ⇔ σ1; σ2(R1(σ2ac ; σ1ac(g))) ∧ α3). We propose α3=̂σ2ch

(α1) ∧ α2.
The justification of the “satisfiability” of α3 is justified, as for the case
of the initialisation, by the fact that both σ2(α1) and α2 are “satisfi-
able”, and they refer to disjoint sets of variables. Proving that ΦADT �
σ(L1(σ2ac ; σ1ac(g))) ⇒ (R3(g) ⇔ σ1; σ2(R1(σ2ac ; σ1ac(g))) ∧ α3) is also sim-
ple; having in mind that σ(L1(σ2ac ; σ1ac(g))) is stronger than σ(L2(σ2ac(g)))
and L3(g), we can “expand” R3(g) into σ2(R2(σ2ac(g)))∧α2), and this into
(σ1; σ2(R1(σ2ac ; σ1ac(g)) ∧ α1) ∧ α2), obtaining what we wanted.

The rationale behind the definition of extension morphisms is the character-
isation of the substitutability principle (a property that can be shown to fail for
invasive superposition as defined in [6]). The following result shows that, if there
exists an extension morphism σ between two designs P1 and P2 (and this exten-
sion is realisable), then all behaviours exhibited by P1 are also exhibited by P2.
Since superposition morphisms, used as a representation of “clientship” (strictly,
the existence of a superposition morphism between two designs indicates that
the first is part of the second, as a component is part of a system when the first
is used by the system), restrict the behaviours of superposed components, it is
guaranteed that all behaviours exhibited by a component when this becomes
part of a system will also be exhibited by an extension of this component, if
replaced by the first one in the system. Of course, one can also obtain more be-
haviours, resulting from the explicit use of new actions of the component. But if
none of the new actions are used, then the extended component behaves exactly
as the original one.

Theorem 2. Let P1 and P2 be two CommUnity designs, and σ : P1 → P2

an extension morphism between these designs. Then, every run of P1 can be
embedded in a corresponding run of P2.

Proof. For this theorem, we consider a semantics based on runs, i.e., infinite
sequences of interpretations such that they all coincide on the interpretation for
ADT , the first interpretation in the sequence satisfies the initial condition and
any pair of consecutive interpretations in the sequence either only differ in the
interpretation of input variables (stuttering), or they are in the “‘consequence”
relation for one of the actions of the component.

Let P1 and P2 be two CommUnity designs, and σ : P1 → P2 an extension
morphism between these designs. Let s = s0, s1, s2, . . . be a run for P1. We will
inductively construct a sequence s′ = s′0, s

′
1, s

′
2, . . . which is a run for P2, and

such that, for all i, (s′i)|σch(V1) ≡ si, i.e., the reduct of each s′i to the symbols
originating in P1 coincides with the interpretation si.

– Base case. The initialisation of P2 is of the form σ(InitP1) ∧ α, with α a
formula satisfying ΦADT � ∃v : α(v), and whose variables are “new vari-
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ables”, in the sense that they differ from those appearing in the initiali-
sation of P1. Then, there exists an interpretation Iα of the variables in α
that makes it true. We define s′0 as the extension of the interpretation s0,
appropriately translated via σ, with the interpretation Iα for the remaining
variables. Clearly, this interpretation satisfies the initial condition of P2, and
its reduct to the language of P1 coincides with s0.

– Inductive step. Assuming that we have already constructed a prefix s′ =
s′0, s

′
1, s

′
2, . . . , s

′
i of the run s′, we build the interpretation s′i+1 in the following

way. We know that si+1 is in one of the following two cases:
• si+1 is reached from si via stuttering. In such a case, we define s′i+1=̂s′i,

and clearly, by inductive hypothesis, we have that the reduct of s′i+1 to
the variables of P1 coincides with si+1, and (s′i, s

′
i+1) are in the “stut-

tering relationship”.
• there exists some action g ∈ Γ1 such that (si, si+1) are in the consequence

relationship corresponding to g. If this is the case, notice that, under the
“stronger guard” L1(g), the assignment of an action g2 in σ−1

ac (g) (which
is nonempty, since σac is surjective) is of the form σ(R1(σac(g)))∧α), for
a formula α referring only to the primed versions of new variables. Since
we know that ΦADT � ∃v : α(v), there exists an interpretation Iα of the
variables in α that makes is true. We define s′i+1 as the extension of the
interpretation si+1, with symbols appropriately translated via σ, with
Iα for the interpretation of the remaining variables. It is straightforward
to see that (s′i, s

′
i+1) are in the consequence relation of g2, and that the

reduct of s′i+1 to the variables originating in P1 coincides with si+1.

3.1 Replacing Components by Extensions in Configurations

The intention of extension morphisms is to characterise component extension,
respecting the substitutability principle. One might then expect that, if a com-
ponent C can be “plugged” into an architecture of components, then we should
be able to plug an extension C′ in the architecture, instead of C. Due to the re-
strictions for valid extension, it can be guaranteed that a design in a well formed
diagram can be replaced with an extension of it, preserving the wellformedness
of the diagram (although it is necessary to consider an “open system” semantics,
since extensions might introduce new input variables, which would be “discon-
nected” after the replacement). Moreover, we can also prove that the colimit
of the new diagram (where a component was replaced by an extension of it) is
actually an extension of the colimit of the original diagram. This basically means
that the joint behaviour of the original system is augmented by the extension
of a component, but never restricted (i.e., the resulting system exhibits all the
behaviours of the original one, and normally also more behaviours).

We are not in a similar situation when combining extension and refinement.
As we mentioned, refinement plays an important role in the implementation
of higher-order connectors, since it allows us to “instantiate” roles with actual
components. Roles, as the Abstract Sender example, specify the minimum re-
quirements that have to be satisfied in order to be able to plug components using
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a higher-order connector. Notice that, in particular, the interval determined by
the guards of actions of the role has to be preserved or reduced by the actual
parameter, i.e., the component with which the role is instantiated. Consider, for
instance, the case of the Abstract Sender. As we mentioned, the design Sender
refines this more abstract Abstract Sender, and therefore we can instantiate
the abstract sender with the concrete one. Moreover, RES Sender, an extension
of Sender, also refines Abstract Sender, so it also can instantiate this role.
However, since extensions weaken both guards, it is not difficult to realise that,
if a component B refines a component A, and B′ is an extension of B, then it
is not necessarily the case that B′ also refines A. With respect to configurations
of systems, this means that, when replacing components by corresponding ex-
tensions, one might lose the possibility of applying or using some higher-order
connectors.

Although this might seem an unwanted restriction, it is actually rather nat-
ural. The conditions imposed by roles of a higher-order connector are a kind
of “rely-guarantee” assumptions. When extending a component we might lose
some properties the role requires for the component.

4 An Example Using Extension

Let us go back to our example of communicating components via an unreli-
able channel. As we explained in previous sections, we would like to superpose
behaviour on the existing architecture, to make the communication reliable by
implementing a reset in the communication when packets are lost. The mecha-
nism we used was very simple, and required a “reset” operation on the sender,
which, as we discussed, can be achieved by component extension. In order to
complete the enhanced architecture to implement the reset acknowledgement
mechanism, we need a monitor that, if it detects a missing packet, issues a call
for reset. The idea is that, if a message is not what the monitor expected (char-
acterised by the msg-exp), then it will go to a “reset” cycle, and wait to see if
the expected packet arrives. If the expected packet arrives, then the component
will start waiting for the next packet. Notice that, for the sake of simplicity, we
assume that the communication between the monitor and the extended sender
is reliable. The monitor used for this task is shown in Figure 10. The final ar-
chitecture for the system is shown in Figure 11.

Notice that, since the superposed monitor is spectative, we can guarantee
that, if the augmented system works without the need for reset in the commu-
nication, i.e., no messages are lost, then its behaviour is exactly the same as the
one of the original architecture with unreliable communication.

5 Related Work

The original work on CommUnity took its inspiration from languages like Unity
[3] and IP [8] and on related software engineering research [12] using superim-
position/superposition as structuring principles. Recently, research by Katz and
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Design RES_Monitor

in

msg: int

out

msg-rst: int

prv

msg-exp: int

w: bool

init

msg-rst=0 ∧ msg-exp=0 ∧ w=true

do

rec1[msg-exp]: w ∧ msg-exp=msg → msg-exp’=msg-exp+1

rec2[msg-exp,msg-rst,w]: w ∧ msg-exp�=msg →
msg-exp’=msg-exp ∧ msg-rst’=msg-exp ∧ w’=false

rec3[msg-exp]: ¬w → msg-exp’=msg-exp

res[w]: ¬w → w’=true

Fig. 10. A monitor for detecting lost packets.

his collaborators has recognised the usefulness of superimposition as a way of
characterising aspects [13,11,22]. Especially in [11], there is a recognition of the
same principles we espouse in this paper, namely that aspects should be charac-
terised and applied at the architectural level of software development. Aspects
are seen as patterns to be applied to underlying architectures (which may already
have been modified by the application of previous concerns), based on specifica-
tions of the aspects. These specifications include descriptions of components and
connectors used to define the aspect, as well as “dummy” components defining
required services in order to be able to apply the aspect. The relationships and
structuring mechanisms and the instantiation of the “dummy” components are
explained in terms of superimpositions.

The motivation for our research is very similar, we want to lift the treatment
of aspects to the architectural level and view the application of aspects to the
design of some underlying system as the application of a transformation defined
by the aspect design to the underlying architecture, resulting in an augmented
architecture. The application of various aspects can be seen as the application of
a sequence of transformations to the underlying architecture (see [2]). This raises
concerns analogous to those discussed in [11]. In order to develop this framework,
we found it necessary to come to a better understanding of invasive superposi-
tions in the context of CommUnity. In particular, we needed to characterise a
structured use of invasive superpositions, which allows arbitrary changes break-
ing encapsulation of the component being superimposed. As noted earlier, this
problem has also arisen in the context of object oriented design and program-
ming, resulting in the various proposals attempting to characterise the concept
of substitutivity ([15]). We believe that this proposal provides a more solid foun-
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Fig. 11. The architecture of the system, with the reset mechanism.

dation for substitutivity, one that is better structured and more amenable to
analysis.

Of course, the work reported in [16,17] is related to our work, both because
it is based on CommUnity and because it recognises that the concept of higher
order connector (a kind of parameterised connector that can be applied to other
connectors to obtain more sophisticated connectors) can be used to characterise
certain aspects. Again the emphasis is on using the specification of the aspect, as
a higher order connector, to transform an existing architectural pattern in order
to apply the aspect. As we demonstrate in this paper, some interesting aspects
cannot be characterised in terms of this mechanism alone and it is necessary to
consider transformations that apply uniformly to connectors and to the compo-
nents they connect. Furthermore, some of the transformations require the use
of invasive superpositions, as in the main example used in this paper. This is a
subject that has received very little scrutiny in the CommUnity literature.

6 Conclusion

We have studied a special kind of invasive superposition for the characterisation
of extensions between designs in the CommUnity architecture design language.
This kind of morphism, that we have defined with special concern regarding
the substitutability principle [15] (an essential property associated with sound
component extension), allows us to complement the refinement and (regulative)
superposition morphisms of CommUnity, and obtain a suitable formal frame-
work to characterise certain aspects, in the sense of aspect oriented software de-
velopment. We have argued that some useful aspects require extensions on the
components, as well as in the connectors, and therefore the introduced extension
morphisms are necessary. Also, having the possibility of extending components
provides us a way of balancing the distribution of augmented behaviour in the
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connectors and the components, which would otherwise be put exclusively on
the connector side (typically by means of higher-order connectors).

We illustrated the need for extension morphisms by means of a simple case
study based on the communication of two components via an unreliable channel.
We then augmented the behaviour of this original system with a fault tolerance
aspect for making the communication reliable, which required the extension of
components, as well as the use of higher-order connectors. This small case study
also allowed us to illustrate the relationships and combined use of extension,
superposition and refinement morphisms.

As we mentioned before, This problem has also arisen in the context of ob-
ject oriented design and programming, attempting to define various forms of
inheritance, resulting in the proposals attempting to characterise the concept
of substitutability [15,21]. We believe that this proposal provides a more solid
foundation for substitutivity, one that is better structured and more amenable
to analysis. The definition of extension in CommUnity that we introduced has
been partly motivated by the definitions and proof obligations used to define
the structuring mechanisms in B [1,4], that justifies the notion of substitutivity
and provides a structuring principle for augmenting components by breaking the
encapsulation of the component.
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