Search-based Inference of Class Invariants

Juan Manuel Copia
IMDEA Software Institute
Universidad Politécnica de Madrid
Spain

Abstract

Many techniques in formal verification and software testing rely on
repOk routines to verify the consistency and validity of software
components with complex data representations. A repOk function
encodes the state properties necessary for an instance to be a valid
object of the class under analysis, enabling early error detection and
simplifying debugging. However, writing a correct and complete
repOk can be challenging. This paper introduces EXPREss, the first
search-based algorithm designed to automatically generate a correct
repOk for a given class. EXPRESs leverages simulated annealing,
using the source code and test suite of the class under analysis to
iteratively construct a repOk. We demonstrate how EXpREss works
on the LinkedList class of the Java standard library, and show that
it produces a correct and complete repOK.

ACM Reference Format:

Juan Manuel Copia, Facundo Molina, Alessandra Gorla, Nazareno Aguirre,
and Pablo Ponzio. 2025. Search-based Inference of Class Invariants. In
Genetic and Evolutionary Computation Conference (GECCO ’25 Compan-
ion), July 14-18, 2025, Malaga, Spain. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3712255.3726698

1 Introduction

Software reliability is a core aspect of software quality, and a pri-
mary concern in software engineering [16]. Advances in automated
program analysis have enabled the efficient creation of extensive
program input sets and the examination of large-scale program
executions [5, 12, 26, 28], facilitating automated reliability analy-
ses. However, determining whether such executions exhibit correct
behavior or uncover defects requires a formal specification of the
program’s intended behavior. This challenge, commonly referred to
as the oracle problem [3], remains a significant problem in software
testing. In object-oriented design, where the software is organized
into classes, intended behavior can be specified through constructs
such as preconditions, postconditions, and class invariants. Among
these, class invariants are particularly important because they de-
fine constraints on the state of a class’s objects that must hold true
throughout the object’s lifecycle. For instance, a class invariant
might specify that a list-based object representation must never
contain duplicate elements.

Class invariants can be captured in code by means of repOk

routines, which explicitly check whether an object satisfies the
invariants defined for its class. A repOk routine is an imperative

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO °25 Companion, July 14-18, 2025, Malaga, Spain

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1464-1/2025/07

https://doi.org/10.1145/3712255.3726698

Facundo Molina

Alessandra Gorla
IMDEA Software Institute
Spain

803

Nazareno Aguirre

Pablo Ponzio
Universidad Nacional de Rio Cuarto
Argentina

function that encodes the class’s invariants and can be used to
verify the consistency of objects during testing, debugging, and
runtime monitoring. These routines are particularly valuable in
enabling automated analyses such as test generation [1, 5, 8, 18],
bug detection [17, 26], and verification [9, 13, 14, 17]. Despite their
importance, repOk routines are rarely written manually due to their
complexity, and class invariants are often described ambiguously
in natural language comments, limiting their utility in practice.

To address this gap, many techniques have been proposed for au-
tomatically inferring specifications, including class invariants [2, 4,
10, 11, 15, 19, 21-25, 29]. Daikon [11] pioneered dynamic invariant
detection based on predefined templates, but its expressiveness is
limited. Tools like SpecFuzzer [22] and Deryaft [19] produce more
sophisticated results, but their output is either hard to integrate
into code or lacks completeness.

To address these limitations, we propose EXPRESS, a framework
based on simulated annealing that automatically generates class
invariants in the form of imperative repOk routines. EXPRESs starts
from the source of a target class and its accompanying test suite,
performing a search to construct a repOk routine. The primary
objective is to ensure the repOKk is correct with respect to the test
suite, meaning it does not discard any valid instance created during
test execution. The secondary objective is to achieve completeness,
discarding as many invalid instances as possible. To support the
latter, we generate a set of allegedly invalid instances through
mutations of valid instances, inspired by prior work [24].

Using Express on the LinkedList class implementation available
in the Java standard library we show that we obtain a correct and
complete repOk.

2 Express Approach

EXPRESS is a novel search-based algorithm designed to automatically
infer class invariants by generating executable repOk routines. The
approach consists of two main phases: (1) Object Generation, where
valid and invalid instances of a class are created, and (2) Search
Process, which uses simulated annealing to refine the repOk method.

In the Object Generation Phase, valid instances are collected
by executing test cases, assuming they represent correct states.
Invalid instances are then produced by mutating valid ones using
two strategies: modifying reference fields to produce structures
that violate heap-constraints (e.g. acyclicity), and altering primitive
values to yield structures that violate primitive-constraints (e.g.
order of nodes in a BST). These invalid instances play a critical role
in refining the repOk method, as the goal is to reject (most of) them
while still accepting valid instances.

The Search Process Phase consists of a four-stage simulated
annealing search that iteratively improves the repOk method. Ini-
tially, repOk is a trivial method that always returns true. Through
a guided search, ExprEss adds and removes constraints to refine



GECCO ’25 Companion, July 14-18, 2025, Malaga, Spain

the method: i) Initialization Search: Ensures essential reference
constraints (e.g., non-null checks). ii) Traversal Search: Identifies
how objects should be traversed, constructing traversal logic based
on the class’s type graph. iii) Heap Constraints Search: Introduces
conditions on reference relationships (e.g., ensuring bidirectional
pointers are consistent). iv) Primitive Constraints Search: Incorpo-
rates constraints on numerical fields (e.g., ensuring size matches the
number of elements). The Objective Function drives the search, pri-
oritizing correctness by minimizing false negatives (valid instances
wrongly rejected) and false positives (invalid instances wrongly
accepted). It also incorporates a secondary penalty to favor concise
repOk methods. By leveraging simulated annealing, EXPRESS effec-
tively escapes local minima, allowing it to discover correct traversal
and structural constraints.

2.1 Object Generation

The first phase of EXPRESs involves generating valid and invalid
instances of the target class, which are crucial for guiding the search
process. The set of valid instances is derived by executing the pro-
vided test cases. Since the test cases interact with the public API of
the target class, we assume that the objects generated during their
execution represent valid states. Invalid instances, on the other
hand, are systematically generated by applying targeted mutations
to the valid instances. The goal is to introduce object states that
deviate from the intended behavior of the class, thereby challeng-
ing the repOk method to correctly identify these deviations. Two
mutation strategies are employed:

o Heap-constraint violations: A reference-typed field of a valid
instance is randomly selected, and deliberately modified to sim-
ulate an invalid state. Three kind of mutations are performed:
assigning null to the field, substituting the current value of the
field with a newly created object of the same type, make the field
reference a different object from the same structure.

e Primitive-constraint violations: A primitive-typed field is
randomly selected and its value is replaced with a randomly
generated value.

It is important to note that not all mutated instances are necessar-
ily invalid. However, this does not hinder the search process as the
objective function prioritizes the classification of valid instances,
and considers correctly classifying most of the invalid instances as
a secondary goal (see Section 2.2). Notice that, the generation of
invalid instances through mutation-based strategies is a common
practice in related work [24].

2.2 Objective Function

The objective function drives the search process in each stage,
balancing correctness and conciseness: Specifically, it evaluates the
effectiveness of the current repOk method in distinguishing valid
instances from invalid ones, and it is defined as follows:

MAX, if #FN > 0

Objective Function: L .
#FP + s otherwise
‘max

where #FN represents the number of false negatives, i.e., valid
instances incorrectly classified as invalid by the current repOk
method; #FP represents the number of false positives, i.e., invalid

804

Juan Manuel Copia, Facundo Molina, Alessandra Gorla, Nazareno Aguirre, and Pablo Ponzio

instances incorrectly classified as valid; L is the length of the repOk
method in characters; and Layx is a predefined maximum length.

The function penalizes false negatives heavily to ensure correct-
ness. Thus, the objective function assigns the worst possible value
(MAX) when #FN > 0.

When the number of false negatives is zero, the goal is to min-
imize the number of false positives and the length of the repOk
method. Thus, in this case, the objective function value is given by
the total number of false positives plus a linear penalty for longer
methods. Concretely, the penalty is introduced by term ﬁ, which
favors more concise solutions. In our experiments, we set Lpax
to 5000, ensuring that the penalty for method length remains sec-
ondary to the primary objective of minimizing false negatives and
false positives. This design balances correctness (avoiding incorrect
classifications) with simplicity (favoring shorter solutions).

2.3 The Search Process

ExpREss performs a four-stage simulated annealing search to itera-
tively refine the repOk method. It starts with a trivial method that
always returns true, then gradually introduces constraints to reject
invalid instances while accepting valid ones. The search is guided by
an objective function that prioritizes correctness—accepting fewer
invalid instances yields a better score. Each stage runs until the
temperature reaches zero, controlled by shared hyperparameters:
the cooling rate and initial temperature.

Each stage targets a specific type of constraint: Initialization
Search enforces basic reference field constraints (e.g., nullability);
Traversal Search builds traversal logic based on the class’s type
graph; Heap Constraints Search adds reference consistency checks
(e.g., bidirectional links); and Primitive Constraints Search introduces
checks over numerical fields (e.g., size).

Across stages, mutation operators add or remove conditional
checks of the form:

if (<CONSTRAINTS-TO-CHECK>) return false;

This design is inspired by the guidelines in Korat [5]. Stage 2 also
includes additional operators for traversal construction, described
below. Operators are applied randomly to enable exploration and re-
finement, with removal operators included to backtrack and escape
local minima. We now describe each stage in detail.

2.3.1 Stage 1: Initialization Search. In this stage, ExPRESs identifies
constraints on reference-typed fields that govern their initializa-
tion. These constraints address properties such as nullability, non-
nullability, and inter-field relationships. For example, in a linked list
implementation with a dummy header node, one such constraint
might ensure that the header field is never null:

if (header == null) return false;

To discover these constraints, this stage employs three generic
operators: (1) single-constraint checks, (2) multiple-constraint
checks, and (3) constraint removal. Each operator is instantiated
multiple times using randomly generated constraints based on the
fields of the target class. This process reflects established practices
for implementing repOk routines, where verifying proper initial-
ization is a crucial step before checking more complex structural
invariants and properties [6, 7].



Search-based Inference of Class Invariants

lthis

™

size

( LinkedList

header

Figure 1: Type graph of the LinkedList class.

boolean traverse(<CYCLIC-TYPE> root, Set<CYCLIC-TYPE> visited) {
/%
MUTABLE BLOCK OF CODE

*/
<CYCLIC-TYPE> current = root;
while (current != null && current.<CYCLIC-FIELD> != root) {

MUTABLE BLOCK OF CODE
/
if (current.<CYCLIC-FIELD> != null) {
if (!visited.add(current.<CYCLIC-FIELD>)) {
return false;
}
}
current = current.<CYCLIC-FIELD>;

MUTABLE BLOCK OF CODE
*/

return true;

Figure 2: Template for traversing circular references.

2.3.2 Stage 2: Traversal Search. The second stage of ExPRESsS fo-
cuses on identifying suitable traversal strategies for the target
class. Traversals are essential in repOk methods, as different struc-
tures—e.g., circular/non-circular linked lists and trees—require dis-
tinct approaches to correctly classify instances.

To guide this, EXPRESs constructs a type graph representing
relationships between the class’s fields and their types [21, 24]. For
example, in the LinkedList type graph (Figure 1), the next and
previous fields are identified as traversable.

This stage uses generic traversal operators that instantiate tem-
plates based on the type graph. A key feature is the inclusion of
aliasing checks to prevent infinite loops in cyclic structures, ensur-
ing correct handling of both valid and mutated invalid cases.

Figure 2 shows a generic template for traversing circular ref-
erences. Placeholders for mutable code blocks are refined in later
stages to tailor the traversal logic. The template captures a general
algorithm for navigating cyclic references while addressing alias-
ing and infinite loops. For instance, substituting <CYCLIC-TYPE>
and <CYCLIC-FIELD> with Entry and next yields a routine that
visits all entries via next. Multiple traversal operators can be com-
bined within a repOk. Beyond constructing traversals, operators
also embed their invocation as conditional checks, e.g.:

if (!traverse(...)) return false;

This stage utilizes five traversal templates tailored to various
scenarios, including arrays, classes implementing the Iterable
interface, circular references, non-circular references, and multiple
references. Furthermore, it incorporates five additional operators

805

GECCO ’25 Companion, July 14-18, 2025, Malaga, Spain

to perform operations such as invoking, replacing, removing, and
unifying traversal routines. Together, these templates and operators
ensure that the traversal strategies are flexible and adaptable to the
diverse structural characteristics of the target class.

2.3.3 Stage 3: Heap Constraint Search. EXPRESsS refines the anal-
ysis by focusing on constraints related to heap-structured data.
The operators introduced here add conditional checks to validate
relationships between reference-typed fields, such as equality, in-
equality, nullability, and set membership. For instance, the following
constraint verifies that the next and previous fields in a linked
structure maintain a correct relationship:
if (current.next.previous != current)
return false;

Constraints like this are generated by selecting a random rela-
tional operator (e.g., == or !=) and deriving field references from
the variable scope where the check will be applied. In the example
above, the constraint is derived from field accesses on the local
variable current.

2.3.4  Stage 4: Primitive Constraints Search. The final stage focuses
on constraints involving primitive-typed fields. In this stage, opera-
tors introduce comparison checks into the repOk routine, utilizing
binary operators such as <, >, <=, >=, ==, and !=. These checks are
applied to primitive fields and can involve expressions derived from
local variables or other field references.

For example, the following constraint verifies that the size field
is consistent with the actual number of elements in the visited
set:

if (size != visited.size()) return false;

This stage employs 12 mutators that integrate these constraints
into either the main repOk method or the mutable sections of tra-
versal templates created in earlier stages. By refining these sections,
ExpREss adapts the repOk method to validate primitive constraints,
ensuring that both structural and value-based properties of the
target class are consistently maintained.

2.3.5 Design of the Algorithm. The design of EXPRESS is inspired
by our own observations about the common structure of repOk
routines, when following Korat’s guidelines. Each stage of the al-
gorithm builds iteratively upon the results of the previous stage,
targeting a specific set of constraints that can be identified inde-
pendently of others. This staged approach reduces the complexity
of the search space, enabling the algorithm to efficiently identify
the required constraints for the target class.

Simulated annealing is well-suited to this problem because it
can accept worse intermediate solutions. For instance, adding a
traversal increases the repOk length and worsens the objective
function. This flexibility enables exploration of regions that may
lead to better solutions, helping the algorithm escape local minima
and discover correct traversal strategies or structural constraints.

3 Preliminary Evaluation

We evaluate our approach focusing on the following research ques-
tion: How effective is EXPRESs in generating class invariants? We
selected LinkedList as case study, for which ground truth in-
variants are already known from our previous work [6, 7]. To run
ExpREss, we first generated a diverse set of valid instances using



GECCO ’25 Companion, July 14-18, 2025, Malaga, Spain

EvoSuite [12]. We then manually added additional test cases to
increase instance diversity. We used such test executions to collect
the generated instances as the set of valid instances.

We compared ExPRESsS inferred invariants against ground truth
invariants using Korat [5], a bounded exhaustive input generation
tool. Given a class and its ground truth invariant, we collect all
valid and invalid instances explored by Korat within a scope of 9.

For the LinkedList class under analysis, Korat generated 9 valid
and 231 invalid input instances. The invariant generated by Ex-
PRESS correctly infers properties such as the circularity of the list
implementation and the consistency between the size of the list
and the actual number of elements. Moreover, it accepts all 9 valid
instances, and correctly rejects all 231 invalid instances. Thus, for
this case study, ExPRrESs produces invariants that are both correct
and complete.

4 Related Work

Several approaches have been proposed to infer class invariants.
Deryaft infers representation invariants as imperative Java meth-
ods [19], similar to ExPrEss, but relies on fixed templates like
Daikon, limiting expressiveness. Machine learning has also been
explored. Molina et al. [23] train neural networks to classify valid
and invalid instances based on test executions. While sometimes
effective, neural networks hinder interpretability and debugging.
EXPRESS, in contrast, generates transparent, executable invariants.
Other work focuses on postconditions rather than class invari-
ants. SpecFuzzer [22] and EvoSpex [24] generate postconditions
via grammar-based fuzzing and genetic algorithms, respectively.
They use a declarative assertion language [22, 24] with reachabil-
ity operators. EXPRESS uses an operational language (Java), which
is more practical for automated tools and familiar to developers.
GAssert [29] also employs evolutionary techniques, but supports
only simple logical and arithmetic constraints, lacking quantifica-
tion and reachability. SpecFuzzer, EvoSpex, and GAssert all target
postconditions. Precis [27] learns method contracts using a basic
assertion language, but cannot express structural properties such
as acyclicity, which ExpREss captures. Another direction uses NLP
to infer specifications from comments. Jdoctor [4] extracts method
specs from Javadoc, and nlp2postcondition [10] applies LLMs. Un-
like these, ExPRESs learns invariants from class behavior, requiring
no comments, which may be absent.

5 Conclusion

We presented EXPRESS, a novel approach for automatically inferring
class invariants in the form of repOk methods. EXPRESS takes as
input a target class and a test suite, and leverages a four-stage
simulated annealing search to iteratively refine and learn structural
constraints that characterize valid object states.

Our evaluation demonstrates that EXPRESS infers very complete
and correct class invariants on the case study we used as example.

Acknowledgments

This work is supported by the Ramén y Cajal fellowship RYC2020-
030800-I and by the Spanish Government through grants TED2021-
132464B-100 (PRODIGY) and PID2022-1422900B-100 (ESPADA).

806

Juan Manuel Copia, Facundo Molina, Alessandra Gorla, Nazareno Aguirre, and Pablo Ponzio

References

[1] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Alfredo Ciolek,
Marcelo F. Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato, Nicolas
Rosner, and Ignacio Vissani. 2013. Improving Test Generation under Rich Con-
tracts by Tight Bounds and Incremental SAT Solving. In ICST. 21-30.

Angello Astorga, Shambwaditya Saha, Ahmad Dinkins, Felicia Wang, P. Madhusu-
dan, and Tao Xie. 2021. Synthesizing contracts correct modulo a test generator.
Proc. ACM Program. Lang. 5, OOPSLA (2021), 1-27.

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE TSE 41, 5 (2015),
507-525.

Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzé, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In ISSTA, 242-253.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:
automated testing based on Java predicates. In ISSTA, 123-133.

Juan Manuel Copia, Facundo Molina, Nazareno Aguirre, Marcelo F. Frias, Alessan-
dra Gorla, and Pablo Ponzio. 2023. Precise Lazy Initialization for Programs with
Complex Heap Inputs. In ISSRE.752-762.

Juan Manuel Copia, Pablo Ponzio, Nazareno Aguirre, Alessandra Gorla, and
Marcelo F. Frias. 2022. LISSA: Lazy Initialization with Specialized Solver Aid. In
ASE. 67:1-67:12.

Marcelo d’Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and Michael D.
Ernst. 2006. An Empirical Comparison of Automated Generation and Classifica-
tion Techniques for Object-Oriented Unit Testing. In ASE. 59-68.

Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular verifica-
tion of code with SAT. In ISSTA,109-120.

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K. Lahiri.
2024. Can Large Language Models Transform Natural Language Intent into
Formal Method Postconditions? Proc. ACM Softw. Eng. 1, FSE (2024), 1889-1912.
Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Sci. Comput. Program. 69, 1-3 (2007).
Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In SIGSOFT FSE. ACM, 416-419.

Carlo A. Furia, Martin Nordio, Nadia Polikarpova, and Julian Tschannen. 2017.
AutoProof: auto-active functional verification of object-oriented programs. Int. J.
Softw. Tools Technol. Transf. 19, 6 (2017), 697-716.

Juan P. Galeotti, Nicolas Rosner, Carlos Lopez Pombo, and Marcelo F. Frias. 2010.
Analysis of invariants for efficient bounded verification. In ISSTA,25-36.
Aayush Garg, Renzo Degiovanni, Facundo Molina, Maxime Cordy, Nazareno
Aguirre, Mike Papadakis, and Yves Le Traon. 2023. Enabling Efficient Assertion
Inference. In ISSRE. 623-634.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. 2002. Fundamentals of Software
Engineering (2nd ed.).

Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and David R. Cok.
2005. How the design of JML accommodates both runtime assertion checking
and formal verification. Sci. Comput. Program. 55, 1-3 (2005), 185-208.

Lisa (Ling) Liu, Bertrand Meyer, and Bernd Schoeller. 2007. Using Contracts and
Boolean Queries to Improve the Quality of Automatic Test Generation. In TAP.
Muhammad Zubair Malik, Aman Pervaiz, Engin Uzuncaova, and Sarfraz Khurshid.
2008. Deryaft: a tool for generating representation invariants of structurally
complex data. In (ICSE), 859-862.

Bertrand Meyer. 1997. Object-Oriented Software Construction, 2nd Edition.
Facundo Molina, César Cornejo, Renzo Degiovanni, German Regis, Pablo F. Cas-
tro, Nazareno Aguirre, and Marcelo F. Frias. 2019. An evolutionary approach to
translating operational specifications into declarative specifications. Sci. Comput.
Program. 181 (2019), 47-63.

Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. 2022. Fuzzing Class
Specifications. In ICSE. 1008-1020.

Facundo Molina, Renzo Degiovanni, Pablo Ponzio, German Regis, Nazareno
Aguirre, and Marcelo F. Frias. 2019. Training binary classifiers as data structure
invariants. In ICSE, 759-770.

Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo F. Frias. 2021.
EvoSpex: An Evolutionary Algorithm for Learning Postconditions. In ICSE.
Facundo Molina, Alessandra Gorla, and Marcelo d’Amorim. 2025. Test Oracle
Automation in the Era of LLMs. In ACM Trans. Softw. Eng. Methodol.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In (ICSE). 75-84.

Corina S. Pasareanu. 2020. Symbolic Execution and Quantitative Reasoning: Appli-
cations to Software Safety and Security. Morgan & Claypool Publishers.

Corina S. Pasareanu, Willem Visser, David H. Bushnell, Jaco Geldenhuys, Peter C.
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic
execution with model checking for Java bytecode analysis. Autom. Softw. Eng.
20, 3 (2013), 391-425.

Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezze. 2020.
Evolutionary Improvement of Assertion Oracles. In ESEC/FSE.1178-1189.

[2

B3

=

8

[9

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]
(21]

(22]

(23]

(24]
(25]
(26]
(27]

(28]

(29]



