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Abstract
Many techniques in formal veri�cation and software testing rely on 
repOk routines to verify the consistency and validity of software 
components with complex data representations. A repOk function 
encodes the state properties necessary for an instance to be a valid 
object of the class under analysis, enabling early error detection and 
simplifying debugging. However, writing a correct and complete 
repOk can be challenging. This paper introduces E������, the �rst 
search-based algorithm designed to automatically generate a correct 
repOk for a given class. E������ leverages simulated annealing, 
using the source code and test suite of the class under analysis to 
iteratively construct a repOk. We demonstrate how E������ works 
on the LinkedList class of the Java standard library, and show that 
it produces a correct and complete repOK.
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1 Introduction
Software reliability is a core aspect of software quality, and a pri-
mary concern in software engineering [16]. Advances in automated 
program analysis have enabled the e�cient creation of extensive 
program input sets and the examination of large-scale program 
executions [5, 12, 26, 28], facilitating automated reliability analy-
ses. However, determining whether such executions exhibit correct 
behavior or uncover defects requires a formal speci�cation of the 
program’s intended behavior. This challenge, commonly referred to 
as the oracle problem [3], remains a signi�cant problem in software 
testing. In object-oriented design, where the software is organized 
into classes, intended behavior can be speci�ed through constructs 
such as preconditions, postconditions, and class invariants. Among 
these, class invariants are particularly important because they de-
�ne constraints on the state of a class’s objects that must hold true 
throughout the object’s lifecycle. For instance, a class invariant 
might specify that a list-based object representation must never 
contain duplicate elements.

Class invariants can be captured in code by means of repOk 
routines, which explicitly check whether an object satis�es the 
invariants de�ned for its class. A repOk routine is an imperative
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function that encodes the class’s invariants and can be used to
verify the consistency of objects during testing, debugging, and
runtime monitoring. These routines are particularly valuable in
enabling automated analyses such as test generation [1, 5, 8, 18],
bug detection [17, 26], and veri�cation [9, 13, 14, 17]. Despite their
importance, repOk routines are rarely written manually due to their
complexity, and class invariants are often described ambiguously
in natural language comments, limiting their utility in practice.

To address this gap, many techniques have been proposed for au-
tomatically inferring speci�cations, including class invariants [2, 4,
10, 11, 15, 19, 21–25, 29]. Daikon [11] pioneered dynamic invariant
detection based on prede�ned templates, but its expressiveness is
limited. Tools like SpecFuzzer [22] and Deryaft [19] produce more
sophisticated results, but their output is either hard to integrate
into code or lacks completeness.

To address these limitations, we propose E������, a framework
based on simulated annealing that automatically generates class
invariants in the form of imperative repOk routines. E������ starts
from the source of a target class and its accompanying test suite,
performing a search to construct a repOk routine. The primary
objective is to ensure the repOk is correct with respect to the test
suite, meaning it does not discard any valid instance created during
test execution. The secondary objective is to achieve completeness,
discarding as many invalid instances as possible. To support the
latter, we generate a set of allegedly invalid instances through
mutations of valid instances, inspired by prior work [24].

Using E������ on the LinkedList class implementation available
in the Java standard library we show that we obtain a correct and
complete repOk.

2 Express Approach
E������ is a novel search-based algorithm designed to automatically
infer class invariants by generating executable repOk routines. The
approach consists of two main phases: (1) Object Generation, where
valid and invalid instances of a class are created, and (2) Search
Process, which uses simulated annealing to re�ne the repOk method.

In the Object Generation Phase, valid instances are collected
by executing test cases, assuming they represent correct states.
Invalid instances are then produced by mutating valid ones using
two strategies: modifying reference �elds to produce structures
that violate heap-constraints (e.g. acyclicity), and altering primitive
values to yield structures that violate primitive-constraints (e.g.
order of nodes in a BST). These invalid instances play a critical role
in re�ning the repOk method, as the goal is to reject (most of) them
while still accepting valid instances.

The Search Process Phase consists of a four-stage simulated
annealing search that iteratively improves the repOk method. Ini-
tially, repOk is a trivial method that always returns true. Through
a guided search, E������ adds and removes constraints to re�ne
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the method: i) Initialization Search: Ensures essential reference
constraints (e.g., non-null checks). ii) Traversal Search: Identi�es
how objects should be traversed, constructing traversal logic based
on the class’s type graph. iii) Heap Constraints Search: Introduces
conditions on reference relationships (e.g., ensuring bidirectional
pointers are consistent). iv) Primitive Constraints Search: Incorpo-
rates constraints on numerical �elds (e.g., ensuring size matches the
number of elements). The Objective Function drives the search, pri-
oritizing correctness by minimizing false negatives (valid instances
wrongly rejected) and false positives (invalid instances wrongly
accepted). It also incorporates a secondary penalty to favor concise
repOk methods. By leveraging simulated annealing, E������ e�ec-
tively escapes local minima, allowing it to discover correct traversal
and structural constraints.

2.1 Object Generation
The �rst phase of E������ involves generating valid and invalid
instances of the target class, which are crucial for guiding the search
process. The set of valid instances is derived by executing the pro-
vided test cases. Since the test cases interact with the public API of
the target class, we assume that the objects generated during their
execution represent valid states. Invalid instances, on the other
hand, are systematically generated by applying targeted mutations
to the valid instances. The goal is to introduce object states that
deviate from the intended behavior of the class, thereby challeng-
ing the repOk method to correctly identify these deviations. Two
mutation strategies are employed:
• Heap-constraint violations: A reference-typed �eld of a valid
instance is randomly selected, and deliberately modi�ed to sim-
ulate an invalid state. Three kind of mutations are performed:
assigning null to the �eld, substituting the current value of the
�eld with a newly created object of the same type, make the �eld
reference a di�erent object from the same structure.

• Primitive-constraint violations: A primitive-typed �eld is
randomly selected and its value is replaced with a randomly
generated value.
It is important to note that not all mutated instances are necessar-

ily invalid. However, this does not hinder the search process as the
objective function prioritizes the classi�cation of valid instances,
and considers correctly classifying most of the invalid instances as
a secondary goal (see Section 2.2). Notice that, the generation of
invalid instances through mutation-based strategies is a common
practice in related work [24].

2.2 Objective Function
The objective function drives the search process in each stage,
balancing correctness and conciseness: Speci�cally, it evaluates the
e�ectiveness of the current repOk method in distinguishing valid
instances from invalid ones, and it is de�ned as follows:

Objective Function:

(
MAX, if #FN > 0
#FP + !

!max
, otherwise

where #FN represents the number of false negatives, i.e., valid
instances incorrectly classi�ed as invalid by the current repOk
method; #FP represents the number of false positives, i.e., invalid

instances incorrectly classi�ed as valid; ! is the length of the repOk
method in characters; and !max is a prede�ned maximum length.

The function penalizes false negatives heavily to ensure correct-
ness. Thus, the objective function assigns the worst possible value
(MAX) when #FN > 0.

When the number of false negatives is zero, the goal is to min-
imize the number of false positives and the length of the repOk
method. Thus, in this case, the objective function value is given by
the total number of false positives plus a linear penalty for longer
methods. Concretely, the penalty is introduced by term !

!max
, which

favors more concise solutions. In our experiments, we set !max
to 5000, ensuring that the penalty for method length remains sec-
ondary to the primary objective of minimizing false negatives and
false positives. This design balances correctness (avoiding incorrect
classi�cations) with simplicity (favoring shorter solutions).

2.3 The Search Process
E������ performs a four-stage simulated annealing search to itera-
tively re�ne the repOk method. It starts with a trivial method that
always returns true, then gradually introduces constraints to reject
invalid instances while accepting valid ones. The search is guided by
an objective function that prioritizes correctness—accepting fewer
invalid instances yields a better score. Each stage runs until the
temperature reaches zero, controlled by shared hyperparameters:
the cooling rate and initial temperature.

Each stage targets a speci�c type of constraint: Initialization
Search enforces basic reference �eld constraints (e.g., nullability);
Traversal Search builds traversal logic based on the class’s type
graph; Heap Constraints Search adds reference consistency checks
(e.g., bidirectional links); and Primitive Constraints Search introduces
checks over numerical �elds (e.g., size).

Across stages, mutation operators add or remove conditional
checks of the form:

if (<CONSTRAINTS-TO-CHECK>) return false;

This design is inspired by the guidelines in Korat [5]. Stage 2 also
includes additional operators for traversal construction, described
below. Operators are applied randomly to enable exploration and re-
�nement, with removal operators included to backtrack and escape
local minima. We now describe each stage in detail.

2.3.1 Stage 1: Initialization Search. In this stage, E������ identi�es
constraints on reference-typed �elds that govern their initializa-
tion. These constraints address properties such as nullability, non-
nullability, and inter-�eld relationships. For example, in a linked list
implementation with a dummy header node, one such constraint
might ensure that the header �eld is never null:

if (header == null) return false;

To discover these constraints, this stage employs three generic
operators: (1) single-constraint checks, (2) multiple-constraint
checks, and (3) constraint removal. Each operator is instantiated
multiple times using randomly generated constraints based on the
�elds of the target class. This process re�ects established practices
for implementing repOk routines, where verifying proper initial-
ization is a crucial step before checking more complex structural
invariants and properties [6, 7].
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Figure 1: Type graph of the LinkedList class.

boolean traverse(<CYCLIC-TYPE> root, Set<CYCLIC-TYPE> visited) {
/*
MUTABLE BLOCK OF CODE

*/
<CYCLIC-TYPE> current = root;
while (current != null && current.<CYCLIC-FIELD> != root) {
/*
MUTABLE BLOCK OF CODE

*/
if (current.<CYCLIC-FIELD> != null) {
if (!visited.add(current.<CYCLIC-FIELD>)) {
return false;

}
}
current = current.<CYCLIC-FIELD>;

}
/*
MUTABLE BLOCK OF CODE

*/
return true;

}

Figure 2: Template for traversing circular references.

2.3.2 Stage 2: Traversal Search. The second stage of E������ fo-
cuses on identifying suitable traversal strategies for the target
class. Traversals are essential in repOk methods, as di�erent struc-
tures—e.g., circular/non-circular linked lists and trees—require dis-
tinct approaches to correctly classify instances.

To guide this, E������ constructs a type graph representing
relationships between the class’s �elds and their types [21, 24]. For
example, in the LinkedList type graph (Figure 1), the next and
previous �elds are identi�ed as traversable.

This stage uses generic traversal operators that instantiate tem-
plates based on the type graph. A key feature is the inclusion of
aliasing checks to prevent in�nite loops in cyclic structures, ensur-
ing correct handling of both valid and mutated invalid cases.

Figure 2 shows a generic template for traversing circular ref-
erences. Placeholders for mutable code blocks are re�ned in later
stages to tailor the traversal logic. The template captures a general
algorithm for navigating cyclic references while addressing alias-
ing and in�nite loops. For instance, substituting <CYCLIC-TYPE>
and <CYCLIC-FIELD> with Entry and next yields a routine that
visits all entries via next. Multiple traversal operators can be com-
bined within a repOk. Beyond constructing traversals, operators
also embed their invocation as conditional checks, e.g.:

if (!traverse(...)) return false;

This stage utilizes �ve traversal templates tailored to various
scenarios, including arrays, classes implementing the Iterable
interface, circular references, non-circular references, and multiple
references. Furthermore, it incorporates �ve additional operators

to perform operations such as invoking, replacing, removing, and
unifying traversal routines. Together, these templates and operators
ensure that the traversal strategies are �exible and adaptable to the
diverse structural characteristics of the target class.

2.3.3 Stage 3: Heap Constraint Search. E������ re�nes the anal-
ysis by focusing on constraints related to heap-structured data.
The operators introduced here add conditional checks to validate
relationships between reference-typed �elds, such as equality, in-
equality, nullability, and set membership. For instance, the following
constraint veri�es that the next and previous �elds in a linked
structure maintain a correct relationship:

if (current.next.previous != current)
return false;

Constraints like this are generated by selecting a random rela-
tional operator (e.g., == or !=) and deriving �eld references from
the variable scope where the check will be applied. In the example
above, the constraint is derived from �eld accesses on the local
variable current.

2.3.4 Stage 4: Primitive Constraints Search. The �nal stage focuses
on constraints involving primitive-typed �elds. In this stage, opera-
tors introduce comparison checks into the repOk routine, utilizing
binary operators such as <, >, <=, >=, ==, and !=. These checks are
applied to primitive �elds and can involve expressions derived from
local variables or other �eld references.

For example, the following constraint veri�es that the size �eld
is consistent with the actual number of elements in the visited
set:

if (size != visited.size()) return false;

This stage employs 12 mutators that integrate these constraints
into either the main repOk method or the mutable sections of tra-
versal templates created in earlier stages. By re�ning these sections,
E������ adapts the repOkmethod to validate primitive constraints,
ensuring that both structural and value-based properties of the
target class are consistently maintained.

2.3.5 Design of the Algorithm. The design of E������ is inspired
by our own observations about the common structure of repOk
routines, when following Korat’s guidelines. Each stage of the al-
gorithm builds iteratively upon the results of the previous stage,
targeting a speci�c set of constraints that can be identi�ed inde-
pendently of others. This staged approach reduces the complexity
of the search space, enabling the algorithm to e�ciently identify
the required constraints for the target class.

Simulated annealing is well-suited to this problem because it
can accept worse intermediate solutions. For instance, adding a
traversal increases the repOk length and worsens the objective
function. This �exibility enables exploration of regions that may
lead to better solutions, helping the algorithm escape local minima
and discover correct traversal strategies or structural constraints.

3 Preliminary Evaluation
We evaluate our approach focusing on the following research ques-
tion: How e�ective is E������ in generating class invariants? We
selected LinkedList as case study, for which ground truth in-
variants are already known from our previous work [6, 7]. To run
E������, we �rst generated a diverse set of valid instances using
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EvoSuite [12]. We then manually added additional test cases to
increase instance diversity. We used such test executions to collect
the generated instances as the set of valid instances.

We compared E������ inferred invariants against ground truth
invariants using Korat [5], a bounded exhaustive input generation
tool. Given a class and its ground truth invariant, we collect all
valid and invalid instances explored by Korat within a scope of 9.

For the LinkedList class under analysis, Korat generated 9 valid
and 231 invalid input instances. The invariant generated by E��
����� correctly infers properties such as the circularity of the list
implementation and the consistency between the size of the list
and the actual number of elements. Moreover, it accepts all 9 valid
instances, and correctly rejects all 231 invalid instances. Thus, for
this case study, E������ produces invariants that are both correct
and complete.

4 Related Work
Several approaches have been proposed to infer class invariants.
Deryaft infers representation invariants as imperative Java meth-
ods [19], similar to E������, but relies on �xed templates like
Daikon, limiting expressiveness. Machine learning has also been
explored. Molina et al. [23] train neural networks to classify valid
and invalid instances based on test executions. While sometimes
e�ective, neural networks hinder interpretability and debugging.
E������, in contrast, generates transparent, executable invariants.
Other work focuses on postconditions rather than class invari-
ants. SpecFuzzer [22] and EvoSpex [24] generate postconditions
via grammar-based fuzzing and genetic algorithms, respectively.
They use a declarative assertion language [22, 24] with reachabil-
ity operators. E������ uses an operational language (Java), which
is more practical for automated tools and familiar to developers.
GAssert [29] also employs evolutionary techniques, but supports
only simple logical and arithmetic constraints, lacking quanti�ca-
tion and reachability. SpecFuzzer, EvoSpex, and GAssert all target
postconditions. Precis [27] learns method contracts using a basic
assertion language, but cannot express structural properties such
as acyclicity, which E������ captures. Another direction uses NLP
to infer speci�cations from comments. Jdoctor [4] extracts method
specs from Javadoc, and nlp2postcondition [10] applies LLMs. Un-
like these, E������ learns invariants from class behavior, requiring
no comments, which may be absent.

5 Conclusion
We presented E������, a novel approach for automatically inferring
class invariants in the form of repOk methods. E������ takes as
input a target class and a test suite, and leverages a four-stage
simulated annealing search to iteratively re�ne and learn structural
constraints that characterize valid object states.

Our evaluation demonstrates that E������ infers very complete
and correct class invariants on the case study we used as example.
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