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ABSTRACT

In this paper we present CLTSA (Counting Fluents Labelled
Transition System Analyser), an extension of LTSA (Labelled
Transition System Analyser) that incorporates counting flu-
ents, a useful mechanism to capture properties related to
counting events. Counting fluent temporal logic is a formal-
ism for specifying properties of event-based systems, which
complements the notion of fluent by the related concept of
counting fluent. While fluents allow us to capture boolean
properties of the behaviour of a reactive system, counting flu-
ents are numerical values, that enumerate event occurrences.

The tool supports a superset of FSP (Finite State Pro-
cesses), that allows one to define LTL properties involving
counting fluents, which can be model checked on FSP pro-
cesses. Detailed information can be found at http://dc.exa.
unrc.edu.ar/tools/cltsa.
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1 INTRODUCTION

The increasingly rich set of tools and techniques for software
analysis offers unprecedented opportunities for helping soft-
ware developers in finding program bugs, and discovering
flaws in software models [4, 11, 12]. An essential part of these
tools and techniques is the formal specification of software
properties. Various formalisms and approaches have been pro-
posed to specify properties of different kinds of systems. In
particular, temporal logic has gained significant acceptance
as a vehicle for specifying properties of software systems,
most notably parallel and concurrent systems.

Temporal logics are more directly applicable to system
property specification when using a state based specification
approach, i.e., when one is able to refer to state properties.
Given the importance of event-based formalisms, such as
CSP [5], CCS [10] and FSP [9], some mechanisms have been
proposed to capture state properties in event-based systems,
too. Through the notion of event, which is used as a means
to represent components behaviour and interaction on event-
based formalisms, fluents are proposed in [1] in order to
enable the use of temporal logic for specifying properties
of event-based systems. Fluents are propositional variables
that allow one to capture state propositions in these systems,
in terms of activating and deactivating events. Based on
the fluent concept and with the aim of dealing with proper-
ties of reactive systems in which the number of occurrences
of certain events is relevant, the notion of counting fluent
was introduced in [13]. As opposed to the boolean nature
of a fluent, a counting fluent represents a numerical value
that enumerates event occurrences in terms of incrementing,
decrementing and resetting events.

Of course, a convenient language for specifying system
properties is not enough: such a language must be accom-
panied by powerful tool support. In [13], a prototypical tool
was presented to support counting fluents. Given an FSP
model of a reactive system, the tool allowed one to specify
counting fluents that monitored the behaviour of the system
and to use them as part of counting expressions for specify-
ing counting properties. Moreover, the tool could also model
check these properties. Intuitively, given the counting fluent
temporal formula, and the limits for each counting fluent,
the approach of [13] automatically generated a monitoring
process to capture the valuation of the counting expressions,
and then reduced the problem of model checking the counting
property to model checking an “equivalent” propositional
temporal property by using LTSA [9].
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In this tool demonstration paper, we present CLTSA
(Counting Fluents Labelled Transition System Analyser),
a new tool that implements a direct model checking tech-
nique for counting fluents linear temporal logic, building
upon a traditional LTS model verification. In contrast with
the approach in [13], this new technique implements an au-
tomata representation for counting expressions, improving
the efficiency and scalability of the analysis. In addition, as
an advantage of the automata representation for counting
expressions, CLTSA supports richer counting properties than
those supported by [13]. For instance, CLTSA allows expres-
sions with any number of counting fluents and a wide range
of arithmetical operators, including addition, subtraction,
multiplication, integer division and remainder.
Contribution. CLTSA supports: ∙ Counting fluents defini-
tion in terms of system events. ∙ Specification of LTL prop-
erties that involve counting fluents and counting expressions
that may involve a wide range of arithmetical expressions.
∙ Definition of different kinds of limits for counting fluents,
required by the model checking approach. ∙ An automated
model checking algorithm that can verify a property, produce
a counterexample when it is deemed invalid, or it can answer
that the result is inconclusive when the limits provided for the
counting fluents are not sufficiently large for the analysis. ∙
CLTSA enhances the LTSA counterexample trace report and
the trace animator, providing relevant information regarding
counting fluents evaluations.

2 INTRODUCING CLTSA

As in LTSA, the system’s model is described in CLTSA in
terms of the FSP language [9]. In FSP specifications, “->”
denotes event prefix, “|” denotes choice, and conditions can
be expressed by means of “when” clauses. Processes may
be indexed and parameterised, and can be composed in a
sequential “;” or parallel way “||”.

One of the main features that LTSA provides is that we
can specify temporal properties on the modelled system, and
then we can analyse their validity via model checking. LTSA
support FLTL (Fluent Linear-Time Temporal Logic) for
properties specification. FLTL enriches the traditional LTL
logic [7, 8] with propositional fluents. A propositional fluent
𝐹𝑙 = ⟨𝐼, 𝑇,𝐵⟩, is a propositional variable that captures states
of the system in terms of activating (𝐼) and deactivating (𝑇 )
events, starting with a default value 𝐵. These fluents can be
used as part of the property formula to be verified.

In CLTSA the properties can be expressed in CFLTL
[13], an extension of FLTL with counting fluent support.
As opposed to the boolean nature of propositional fluents,
counting fluents represent numerical values that enumerate
event occurrences in terms of incrementing, decrementing and
resetting events. The syntax of counting fluents declarations
in CLTSA is characterised by the following grammar:

⟨CFluentDef⟩ ::= ’ cfluent ’ ⟨fluent name⟩ ’=’
’<’⟨incremental events set⟩ ’,’ ⟨decremental events set⟩ ’,’
⟨reset events set ⟩ ’>’ ’ initially ’ ⟨initial value ⟩

Due to their numerical nature, for system’s properties
specification, counting fluents can be combined to conform a
counting expression, i.e. an arithmetical expression that as-
serts some state of counting fluents. The counting expression
can be specified according to the following grammar:

𝜖 ::= ⟨expr⟩ ⟨rel op ⟩ ⟨expr⟩
⟨expr⟩ ::= ⟨value⟩ | ’ (’ ⟨expr⟩ ’ )’ | ⟨expr⟩ ⟨arith op⟩ ⟨expr⟩
⟨value⟩ ::= ⟨intValue⟩ | ⟨countingFluent⟩
⟨rel op ⟩ ::= == | != | < | <= | >= | >
⟨arith op⟩ ::= + | − | ∗ | / | %

As an example, let us consider the Single Lane Bridge
Problem (SLB), a modelling problem introduced in [9], in
this case with an additional constraint. Besides the fact
that, due to the bridge’s width, cars circulating in different
directions at the same time must be forbidden, assume that
the bridge has a maximum weight capacity. Exceeding this
capacity is dangerous, so the maximum number of cars on
the bridge must also be controlled.

To address this system analysis, as depicted in the Fig. 1, in
the CLTSA editor, the counting fluent CARS ON BRIDGE
is declared to keep track of the number of cars (red or blue)
on the bridge. This value is initially 0, is incremented at
each occurrence of an enter (red or blue car) event, and
is decremented at each occurrence of an exit event. Using
CARS ON BRIDGE, we can express the weight safety prop-
erty of the bridge in a quite natural way, as follows:

assert CAPACITY SAFE = [](CARS ON BRIDGE <= C)

The user can find this and other case studies, mostly pre-
sented in [13], in the File Examples CountingFluents case

menu.
The user can perform verification of the properties by

selecting them from the Check property menu. Due to the
arithmetic nature of the counting fluents, and their potential
infinite state representation, some limits to counting fluents
possible values must be provided, namely the lower (mini-
mum) and upper (maximum) values that they can take during
any system execution. In case of missing limits declarations,
as shown in Fig. 1, a window will ask for them. These limits
can be applied by means of the apply declaration, using the
following syntax:

⟨CFluentDef⟩ ’apply’ ( ⟨limit name⟩ | ⟨CFluentLimitDef⟩ )

’ limit ’ ⟨limit name⟩ ’=’ ⟨CFluentLimitDef⟩
⟨CFluentLimitDef⟩ ::= (’[’ | ’(’) ⟨min value⟩’..’⟨max value⟩ (’]’ | ’)’)

where brackets and parentheses are used to indicate the strict
and non-strict limits, respectively. Notice that the syntax
allows one to define generic limits, with a name, to be applied
in one or more counting fluent definitions.

The distinction between the strict and non-strict limits lies
in the behaviour that our model checking approach adopts
when a counting fluent has reached its maximum (resp. min-
imum) value and some incrementing (resp. decrementing)
event takes place.

When a strict limit is exceeded, the counting fluent value
remains as is, on the maximum (resp. minimum) value, and
the analysis goes on. On the other hand, when a non-strict
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Figure 1: Editor and C.Fluent limits configurator Figure 2: Results of a property check

limit is exceeded, i.e., a fluent overflow state has been reached,
the current trace is discarded by our model checking algo-
rithm. This procedure guarantees that, if the tool finds a
counterexample, that trace never reaches an overflow scenario
and the property is reported as invalid.

However, if no counterexample was found, but some over-
flow trace has been explored, then the result will be reported
as inconclusive, in the sense that the property cannot be
deemed valid nor invalid. This situation can take place when
the limits defined for counting fluents are not large enough
to produce a fully concrete counterexample. On the other
hand, if no counterexample has been found, and no overflow
trace has been explored, then our approach can guarantee
the validity of the property being analysed.

Fig. 2 shows an example of an invalid property for which a
counterexample was found. The original output of LTSA was
modified in order to report the information corresponding to
counting fluents along (counterexample) traces.

Another useful feature of the tool is the animator. It pro-
vides a window which can simulate the system execution
by selecting the enabled events on each step ( Check Run

system ). Usually, the animator is very useful for reproduc-
ing counterexample traces. CLTSA incorporates a fluents
report (see Fig. 3) which shows the values of propositional
and counting fluents, as well as the counting expressions, in
each step along the trace being animated.

3 ARCHITECTURAL OVERVIEW

In order to describe the implementation of CLTSA, let us first
consider an overview of the LTSA model checking process
shown in Fig. 4. Basically, the technique consists of checking
the emptiness of the synchronous product between the sys-
tem model ℳ and the formula negation ¬𝜙. In order to use
propositional fluents in the formula specification, as proposed
in [1], LTSA generates a fluent automata for each of them.
Intuitively, a fluent automata is an automata that consists of

Figure 3: Animator window

two states, representing the truth values of the fluent (true
or false), and a set of transitions labelled with the activating
and deactivating events, according the propositional fluent’s
definition. Finally the product with a synchronizer automata
induces that for each step that the system takes the automa-
ton corresponding to the fluent updates its state accordingly.
For each step of this process, we highlight (black circled
numbers) the modifications introduced in the development
of CLTSA.
1 In order to use counting fluents in our specifications, we
updated LTSA’s lexer and parser to support the following
constructions, whose syntax were presented in Sec.2: limits
definitions, counting fluents definitions and counting expres-
sions as part of LTL formulas.

2 Similar to the approach proposed in [1], for each counting
expression present in the formula to be verified, our model
checking approach generates a counting automata that cap-
tures the truth value of the corresponding counting expression.
As a simple example, consider that we have a counting flu-
ent F, defined as: F =< {a}, {b}, {𝑐} > initially 0. Moreover,
suppose that we have the counting expression F <= 1 (𝛼 in
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BRIDGE = BRIDGE[0][0],  //initially empty
BRIDGE[nr:T][nb:T] =    //nr is the red 
CAR = (enter->exit->CAR).
NOPASS1   = C[1],
C[i:ID]   = ([i].enter -> C[i%N+1]).
NOPASS2   = C[1],
C[i:ID]   = ([i].exit -> C[i%N+1]).
||CONVOY = ([ID]:CAR || NOPASS1 || 
NOPASS2).

||CARS = (red:CONVOY || blue:CONVOY).

fluent BLUE[i:ID] = <blue[i].enter, 
blue[i].exit>
assert ONEWAYP = []!(exists[i:ID] RED[i]
                 && exists[j:ID] BLUE[j])
property ONEWAY = (red[ID].enter  -> 
RED[1] 

System and Property
Specification

Model’s Automata

Property’s Automata

M

| |

fluent1 fluent2

M

¬' ¬'

||

Valid

Counterexample

1

2

3

4SYNCH

Figure 4: Architectural Overview

the figure) in the specified property. If we select [0..2] as
the strict limits for counting fluent F, then Fig. 5 shows the
counting automata that CLTSA generates for the counting
expression F <= 1.

0 1 2
a a

bb

↵ ↵ ¬↵

b a

c cc

Figure 5: Counting automata for F <=1.

In case of non-strict limits, we add an overflow state which
is reached through an incrementing (decrementing) event
from the maximum (minimum) value state of the count-
ing automata. The overflow state works as a sink state, in
the sense that once this state is reached, then every event
that takes place associated to the counting fluent, will self-
transition to the overflow state. Notice that this state is not
a state of acceptance or denial of the corresponding expres-
sion value; from this state only an overflow situation can be
reported.

3 As mentioned before, in the presence of non-strict bounds,
our approach can return an inconclusive result. To address
this situation, we modify the model checking algorithms
present in LTSA. LTSA provides different algorithms for
safety and liveness formulas, since the shape of counterexam-
ples will be different in each case.
Safety properties Safety properties express that “bad things”
will never happen. A counterexample for this kind of property
is a finite trace. After the composition of the automata is
generated, the model checking algorithm looks for a trace
that leads us to the ERROR state, i.e., a counterexample that
violates de property. To tackle the overflow situations in pres-
ence of non-strict bounds, we update the original algorithm
by checking that no overflow state appear in a counterexam-
ple trace. Finally, as mentioned before, for these scenarios
we distinguish between these three possible cases with their
corresponding results: i) valid, when no trace to an ERROR

state was found; ii) invalid, when a trace to an ERROR state
was found and no overflow state appears in the trace; iii)
inconclusive, when no counterexample was found, but some
overflow state was explored.
Liveness properties This kind of property expresses that
“good things” will eventually happen. A counterexample for
this kind of property will be an infinite trace, named a lasso
trace: a trace conformed by a prefix and a loop-part, in which
a set of events are repeated within a cycle and some of them
are undesired. For this kind of properties, LSTA searches for
strongly connected components (SCC) in which the property
to be analysed does not hold.

In a similar way that for safety properties, to tackle over-
flow situations, we update the algorithm by analysing the
SCC found in the verification process to distinguish between
three possible results: i) valid, when no SCC was found; ii)
invalid, when an SCC was found and it does not contain an
overflow event; iii) inconclusive, if no SCC was found, but
some overflow state was explored.

4 To enhance the report for the model checking process,
we updated the output taking into account the possible in-
conclusive outcome. In addition, in case of invalid properties,
i.e., when a counterexample is found, we update the report
by providing useful information regarding the value of propo-
sitional fluents, counting fluents, and counting expressions at
each step of the trace.

4 REMARKS

This tool demonstration paper introduced CLTSA, an exten-
sion of LTSA with counting fluent temporal logic support.
CLTSA allows one to specify and verify LTL properties over
reactive systems, providing us with an intuitive and nature
way to capture properties related to the number of times that
certain system events occur. Due to the potentially infinite
size of counting fluents, the user is required to introduce
limits for each counting fluent, in order to make the model
finite. Moreover, in order not to oversimplify system models
and properties regarding counting fluents, different kinds of
limits are allowed, allowing for the model checking process
to return a third possible result: inconclusive.

In comparison with the previous prototype presented in
[13], CLTSA incorporates an automata based representation
for counting expressions, instead of a monitoring process auto-
matically generated to instrument the model under analysis.
In addition, CLTSA enriches the language of the counting
expressions, by supporting expressions with an arbitrary
number of counting fluents and a wider range of arithmetical
operators. In order to produce a more user friendly report
of the results, CLTSA also updates the original LTSA trace
report with the counting expression status present in the
formula to be analysed. Also it incorporates to the Animator
the status of fluents, counting fluents and counting expression
values at each step of the animation. In terms of efficiency
and scalability, it is important to remark that CLTSA was
able to efficiently handle all the case studies addressed in [13].
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Moreover, the CLTSA’s model checking algorithm outper-
forms that presented in [13], mainly in those cases where the
property to be analysed is complex, like liveness properties.
This is because the automated instrumentation generated
by [13] adds many additional events to the system in order
to capture the counting property, producing a considerable
increase in the state space required by the formulas and
models. Contrary to that approach, in the new automata
based implementation, the increase in complexity only af-
fects the automata of the formula, which grows with respect
to the range of selected limits for counting fluents. Finally,
it is important to remark that CLTSA has shown a good
performance for both verifying the validity of properties and
generating counterexamples.

Several extensions to LSTA were proposed, for instance [2,
6, 14]. In particular, in [6] an extensive set of LTS layout
capabilities was provided for LTSA, which contributes with
different layout algorithms, that allow us to manually edit
the visualisation graph, navigate from state to state, etc. We
would like to thank Cédric Delforge and Charles Pecheur, who
kindly allowed us to incorporate these LTS layout features
into CLTSA.

Some CLTSA features currently being developed are: i)
Counting Fluent indexing and Counting Fluent array arith-
metical operations such as array summation. ii) Conditional
Counting Fluents: to relate a counting fluent with some
propositional fluent 𝐶, in such a way that the counting fluent
values can be updated only when the propositional fluent 𝐶
is true.

The tool, all the case studies, and a description of how to
reproduce the experiments, can be found in http://dc.exa.
unrc.edu.ar/tools/cltsa.
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