
DynAlloy Analyzer: A Tool for the Specification and Analysis of
Alloy Models with Dynamic Behaviour

Germán Regis
Dept. of Computer Science,
University of Rio Cuarto,

Argentina

César Cornejo
Dept. of Computer Science,
University of Rio Cuarto,

Argentina

Simón Gutiérrez Brida
Dept. of Computer Science,
University of Rio Cuarto,

Argentina

Mariano Politano
Dept. of Computer Science,
University of Rio Cuarto,

Argentina

Fernando Raverta
Digital Communications Lab,

University of Cordoba, Argentina

Pablo Ponzio
Dept. of Computer Science,
University of Rio Cuarto,

Argentina

Nazareno Aguirre
Dept. of Computer Science,
University of Rio Cuarto,

Argentina

Juan Pablo Galeotti
Dept. of Computer Science,
University of Buenos Aires,

Argentina

Marcelo Frias
Dept. of Software Engineering,

Buenos Aires Institute of
Technology, Argentina

ABSTRACT

We describe DynAlloy Analyzer, a tool that extends Alloy
Analyzer with support for dynamic elements in Alloy models.
The tool builds upon Alloy Analyzer in a way that makes it
fully compatible with Alloy models, and extends their syntax
with a particular idiom, inspired in dynamic logic, for the de-
scription of dynamic behaviours, understood as sequences of
states over standard Alloy models, in terms of programs. The
syntax is broad enough to accommodate abstract dynamic
behaviours, e.g., using nondeterministic choice and finite
unbounded iteration, as well as more concrete ones, using
standard sequential programming constructions. The analysis
of DynAlloy models resorts to the analysis of Alloy models,
through an optimized translation that often makes the anal-
ysis more efficient than that of typical ad-hoc constructions
to capture dynamism in Alloy.

Tool screencast, binaries and further details available in:
http://dc.exa.unrc.edu.ar/tools/dynalloy

CCS CONCEPTS

• Software and its engineering → Software verifica-
tion; Specification languages; Automated static analysis;

KEYWORDS

Alloy, dynamic logic, software specification, software valida-
tion

Partially supported by ANPCyT PICT-2012-1298, PICT-2013-2624.
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ESEC/FSE’17, Paderborn, Germany

© 2017 ACM. 978-1-4503-5105-8/17/09. . . $15.00
DOI: 10.1145/3106237.3122826

ACM Reference format:
Germán Regis, César Cornejo, Simón Gutiérrez Brida, Mariano

Politano, Fernando Raverta, Pablo Ponzio, Nazareno Aguirre,
Juan Pablo Galeotti, and Marcelo Frias. 2017. DynAlloy Analyzer:
A Tool for the Specification and Analysis of Alloy Models with

Dynamic Behaviour. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineer-
ing, Paderborn, Germany, September 4–8, 2017 (ESEC/FSE’17),

6 pages.

DOI: 10.1145/3106237.3122826

1 INTRODUCTION

Software models are an important part of most software devel-
opment approaches. They come in many forms and concern
different stages of software development, from requirements,
where problem domain concepts relevant to the system as well
as its goals need to be explicitly described [33], to design and
implementation, where design concepts and implementation
details, conveying decisions made during software construc-
tion, need to be (abstractly) captured [17]. Since models often
concentrate on a particular aspect of the problem or system
being described, they are easier for developers to grasp and
more useful to communicate ideas, as well as for anticipating
properties or concerns that arise, for instance, from design
decisions or problem domain facts.

Formal models, i.e., models in a language with a formal
syntax and precise semantics, are better suited for rigorous
analysis than their informal counterparts, thanks to the fact
that they have a precise meaning from which one can logi-
cally obtain conclusions [30]. Moreover, if a formal language
is appropriately designed, its specifications can also be auto-
matically analyzed, thus relieving their users from having to
manually perform logical reasoning from specifications [34].

Alloy [21] is a popular formal specification language, that
has been carefully designed to support automated analysis.
Alloy features a simple syntax, with a few constructs with

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Regis et al.

intuitive meaning, and a simple formal semantics, based on
relations. Both the syntax and semantics are based on con-
cepts that many developers are familiar with. This simplicity
plays an important role in making the language’s specifica-
tions automatically analyzable. Indeed, Alloy is supported by
the Alloy Analyzer, a powerful analysis tool that allows one
to search for instances of specifications as well as to check
intended properties of models by resorting to SAT solving.

Alloy is a very expressive language, suitable for specifying a
wide variety of static properties of systems, through formulas
in relational logic, the logical formalism underlying Alloy, used
to capture the intention of operations, assumed and intended
properties of systems [20]. Alloy’s expressiveness makes the
analysis of specifications based on SAT solving necessarily
incomplete: one may find counterexamples of intended prop-
erties and instances of specified models in bounded scenarios,
but the absence of such counterexamples or instances does
not imply their nonexistence [20]. While Alloy is expressive
enough so that one may encode dynamic properties of sys-
tems, i.e., properties that predicate over system executions or
successive state changes of some sort, models involving such
kind of properties often become intricate by the inclusion
of ad-hoc constructions to capture dynamism (cf. [21, 22]).
This kind of ad-hoc characterizations of state change and
dynamic behaviour is not standardized, so models requiring
such kind of construction may significantly differ from one
another, reducing model understandability. Moreover, char-
acterizations of dynamic behaviour over Alloy specifications
have a significant impact in analyzability, in many cases
causing serious scalability issues that call for sophisticated
optimizations that reduce readability even further [10–12].

The DynAlloy language, originally introduced in [11] and
further developed in [10, 12, 13], deals precisely with the
above described issue. DynAlloy extends Alloy’s syntax with
a particular idiom, inspired in dynamic logic [18], for the de-
scription of dynamic behaviours, understood as sequences of
states over standard Alloy models, in terms of programs. The
DynAlloy syntax is broad enough to accommodate abstract
dynamic behaviours, e.g., using nondeterministic choice and
finite unbounded iteration, as well as more concrete ones,
using standard sequential programming constructions. The
analysis of DynAlloy models resorts to an analysis of Alloy
models, through a optimized translation that often makes
the analysis more efficient than that of typical ad-hoc con-
structions to capture dynamism in Alloy [10, 12].

In this tool demonstration paper we describe DynAlloy
Analyzer, a tool that extends the highly regarded Alloy An-
alyzer with support for dynamic elements in Alloy models.
The tool builds upon Alloy Analyzer in a way that makes it
fully compatible with Alloy models, and extends the model’s
syntax with elements for describing actions (atomic state
changes), abstract programs over these actions, and correct-
ness assertions. Programs can be run and partial correctness
assertions involving programs can be checked in DynAlloy
Analyzer, in the same way that predicates can be run and
assertions can be checked in Alloy Analyzer. DynAlloy Analyzer

is a complete redevelopment of the original DynAlloy tool;
while the original tool was implemented as a separate com-
piler that translated DynAlloy specifications into Alloy ones,
and did not include commands for analysis in the notation,
the new tool is integrated into Alloy Analyzer, enabling a
fully transparent usage for Alloy users, and providing anal-
ysis commands that better reflect the style found in Alloy
specifications.

2 ALLOY MODELS WITH STATE
CHANGE

Alloy is a model-oriented specification language, similar to
other formal languages such as Z [31], VDM [23] and B [2].
As for these other languages, specifications (or models, as
these are more often called) are written by defining data
domains, properties and operations between these domains.
Data domains are defined in Alloy via signatures. Signatures
represent sets of atoms, and can be extended, with signa-
ture extension representing set containment. A signature is
called abstract if it does not have proper elements, but all
its elements are those of its extending signatures. Alloy does
not allow one to define atoms in its models; these can be
captured instead through singleton signatures. Consider the
following signature definitions taken from the Farmer model
(a model of the well-known puzzle that asks whether it is
possible for a farmer to cross a river with a chicken, a sack of
grain and a fox, with a boat that can hold the farmer and at
most one element, and avoiding that the fox eats the chicken
or the chicken the grain, if they become unsupervised):

abstract sig Object {

eats: set Object

}

one sig Farmer, Fox, Chicken, Grain extends Object { }

fact { eats = Fox->Chicken + Chicken->Grain }

Data domain Object is composed of exactly four “elements”
(singletons), Farmer, Fox, Chicken and Grain (signatures
that extend a same signature are disjoint). As the definition
of Object shows, signatures can have fields, that represent
relations; in the case of field eats, it denotes a relation
between objects, indicating what objects each object eats.

We would like to refer to a state changing situation, that
maintains two sets of objects, those on the near and far sides
of the river, respectively. The usual Alloy way of capturing
this situation is via an additional signature for states, and
using total orders (from a library specification) of states to
capture executions, as follows:

open util/ordering[State]

sig State {

near, far: set Object

}

We then need to impose restrictions, via Alloy facts (assumed
properties of the model), to capture that in the initial state all

DynAlloy Analyzer ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

objects are in the near side of the river, and how transitions
are governed (unsupervised objects eat other objects, farmer
can only take one other item with him, etc.).

fact { first.near = Object && no first.far }

pred crossRiver[from, from’, to, to’: set Object] {

one x: from | {

from’ = from - x - Farmer - from’.eats

to’ = to + x + Farmer

}

}

fact {

all s: State, s’: s.next | {

Farmer in s.near =>

crossRiver[s.near, s’.near, s.far, s’.far]

else crossRiver[s.far, s’.far, s.near, s’.near] }

}

Finally, the puzzle is attempted to be solved by trying to get
a trace in which, in its last state, all objects reached the far
side of the river:

run { last.far = Object } for exactly 8 State

3 STATE CHANGE: THE DYNALLOY
APPROACH

Let us describe how the Farmer model would be modeled
in DynAlloy. DynAlloy is an extension of Alloy for better
describing state change; the part of the model that does not
deal with state change is done exactly as in the case of Alloy:
we will maintain the definition of Object and composing
signatures, and the facts constraining them. But, we will
not use signature State, nor linear orderings. Instead, we
will use actions to describe state change. We will first use
atomic actions, to indicate basic state change steps, and then
programs to get the same traces got in the Alloy approach.

Atomic Actions. Atomic actions are the basic building
block for describing state change. An atomic action is specified
by indicating what it applies to (the parameters, what the
action changes), the required conditions to execute the action
(the enabling condition, that we call precondition), and the
effect of the action (the postcondition). As a first example of
an atomic action, consider the following:

act crossRiver[from, to: set Object] {

pre { Farmer in from }

post { one x: from |

from’ = from - (x + Farmer) - from’.eats &&

to’ = to + (x + Farmer)

}

}

In a DynAlloy action, the parameters define the state the
action changes, in this case, the formal parameters from and
to. There is no need to define a special signature to represent
the state, since the state is implicitly defined as the parame-
ters of the action. Moreover, it is indicated explicitly what
is expected for the action to be applicable, namely that the

farmer must be in from; it is important to remark that action
preconditions are enabling conditions: when they are not
satisfied, the action cannot be executed. Finally, the primed
versions of the parameters of the action are not parameters
themselves: they refer to the state of these parameters after
the action has been executed.

Composite Actions (programs). While in Alloy character-
izations of state change, executions are described via facts
that explicitly indicate how state changes, in DynAlloy these
are more conveniently defined by the construction of actions.
Atomic actions are the base case for describing more complex
behaviours, in composite actions or programs. The DynAl-
loy version of what is captured via orderings in the Alloy
approach, is shown below. It features various program con-
structs: assumptions, test actions, nondeterministic choice,
sequential composition, and iteration:

program solvePuzzle[near, far: set Object] {

assume (Object in near && no far);

(crossRiver[near, far] + crossRiver[far, near])*;

[Object in far]?

}

Again, it is important to remark that this program’s state is
given by its formal parameters, the sets of object near and
far (no need for a special signature representing the state).
The program is composed of the sequential composition of
three parts. The first is an assumption of what is expected
at the beginning (i.e., an enabling condition given as part
of the code). It indicates that it is assumed that initially all
objects are on the near side of the river. The second is a finite
iteration of a nondeterministic choice of two actions; these
actions correspond to the two possibilities: either the river
is crossed from near to far or is crossed from far to near.
And these are iterated (in each iteration, any of the enabled
actions might be taken, although for this case we know that
exactly one of them will be enabled) a finite number of times.
Finally, the execution is allowed to continue only if, after the
iteration, all the objects got to the far side of the river.

DynAlloy features other mechanisms for building com-
posite actions, although these can all be reduced to atomic
actions, sequential composition, tests/assumptions and itera-
tion. They are however very useful for more conveniently cap-
turing some state changing behaviours. For example, atomic
action crossRiver can be redefined in terms of a more con-
crete program, as follows:

act choose[x: univ, s: set univ] {

pre { some s }

post{ x’ in s }

}

prog refCrossRiver[from, to: set Object] var [x: Object] {

assume (Farmer in from);

choose[x, from];

from := from - (Farmer + x);

from := from - from.eats;

to := to + (Farmer + x)

}

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Regis et al.

This program has the same effect as the atomic action
crossRiver, although not in a single, atomic step. It per-
forms the river crossing by nondeterministically choosing an
object in the from side, and then updating the state of from
and to via atomic assignments. Program solvePuzzle can
simply call program refCrossRiver instead of the atomic
action crossRiver.

3.1 Analysis of DynAlloy Models

Alloy provides two ways of analyzing a specification: via runs,
which search for satisfying models of a given predicate, and
via asserts, which search for counterexamples of intended
properties of a specification. DynAlloy provides similar fea-
tures, but targeting the analysis of dynamic properties. These
are program runs, and partial correctness assertions. A pro-
gram run is very much like a run of a predicate. A run of
a program will search for satisfying models of the program,
i.e., executions of the program. A partial correctness asser-
tion is, as in the context of program verification [8, 19], an
expression of the form: { pre } prog { post }, where prog is a
program, and pre and post are formulas over the state of the
program (the precondition and postcondition, respectively).
Such an assertion is true if and only if, for every execution
of the program prog, if the execution starts in a state sat-
isfying pre, then if the execution terminates it must do so
in a state satisfying post. As examples of partial correctness
assertions, consider the following. The first states that ob-
jects cannot be on both sides of the river at the same time
(noQuantumObjects, an assertion also present in the original
Alloy model); the second is an assertion that states that, once
an object is lost in an execution, it cannot be resurrected.

assert NoQuantumObjects [near, far: set Object] {

pre { no (near & far) }

prog { (crossRiver[near, far] + crossRiver[far, near])* }

post { no (near’ & far’) }

}

assert noResurrection[near, far: set Object, x: Object] {

pre { Object in near && no far }

prog { (crossRiver[near, far] + crossRiver[far, near])*;

[x !in (near+far)]? ;

(crossRiver[near, far] + crossRiver[far, near])*

}

post { x !in (near’+far’) }

}

The analysis mechanism behind Alloy Analyzer is SAT
based bounded verification (or SAT based bounded model
finding). Alloy Analyzer employs user provided bounds, the
scope, in order to exhaustively search for counterexamples of
intended properties, within the provided bounds. DynAlloy’s
main analysis mechanism resorts to Alloy’s analysis: DynAlloy
Analyzer will use Alloy Analyzer “behind the scenes”, in order
to check a partial correctness assertion, or run a program.
But DynAlloy models have an additional source of potential
unboundedness: program iteration. So, the user will have to
provide an extra bound, to indicate the maximum number

of iterations to be considered in programs (also called loop
unrolls). This is done as part of the commands for program
runs and partial correctness assertions, as in the following
examples (lurs stands for loop unrolls):

run solvePuzzle for 4 lurs 7

check noResurrection for 4 lurs 8

To automatically analyze DynAlloy specifications using
Alloy Analyzer, we translate annotated DynAlloy programs
into Alloy specifications. This is realized through a bounded
version of weakest liberal precondition [8], as described in [10].
This predicate transformer allows us, given a bound 𝑛 in the
number of loop unrolls, to transform a program into an Alloy
predicate. This translation often leads to better performance
compared to the traditional Alloy approach to state change,
as shown in [10] and with further examples in the DynAl-
loy website. For atomic actions, it is straightforward; more
complex programs are translated as follows:

bwlp[𝑔?, 𝑓] = 𝑔 =⇒ 𝑓
bwlp[𝑝1 + 𝑝2, 𝑓] = bwlp[𝑝1, 𝑓] ∧ bwlp[𝑝2, 𝑓]
bwlp[𝑝1; 𝑝2, 𝑓] = bwlp[𝑝1, bwlp[𝑝2, 𝑓]]
bwlp[𝑝*, 𝑓] =

⋀︀𝑛
𝑖=0 bwlp[𝑝

𝑖, 𝑓] .

4 RELATED WORK

The need to capture dynamic behavioural properties over Al-
loy specifications is present in a wide number of applications.
Various tools capture program semantics in Alloy, notably
Forge [6, 7] and TACO [14, 15]. The latter uses DynAlloy as
an intermediate language for reducing program verification
to SAT solving, as well as some related tools do [1, 28, 29].
These tools also significantly exploit relational bounds as
introduced through KodKod [32], and have seen a dramatical
increase in performance thanks to KodKod being current
Alloy’s model finding engine. There have also been proposals
to extend Alloy with dynamic behaviour constructs for more
abstract modeling. Besides DynAlloy [10], other extensions
such as Imperative Alloy [27] and Electrum [26], have been
used to complement Alloy with rich logical languages for
dynamic behaviour, e.g., linear temporal logic as realized in
TLA+ [25], and use these to specify and check properties in a
bounded manner. Applications of Alloy models with dynamic
behaviour appear in the context of dynamic software archi-
tecture [4, 5], dynamic access control policies [9], and the
analysis of specifications originating in informal languages
such as the UML. Many direct uses of Alloy also require
dynamic behaviours, as is shown, e.g., in examples and case
studies in [3, 7, 21, 22].

5 CONCLUSIONS

The importance of powerful and efficient automated analysis
to accompany formal specification languages is widely ac-
knowledged, and the success of Alloy has been in great part
due to its emphasis in automated analysis. The significant
advances in SAT solving, as well as in improved encodings
of analysis problems from different contexts into SAT (indi-
rectly) through Alloy and similar languages, maintains the

DynAlloy Analyzer ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

language being relevant in various areas of software engi-
neering (cf., e.g., [3, 7, 15, 16, 24]). The need for dynamic
elements in Alloy models arises naturally in many of these
contexts, which is evidenced by the various approaches that
have emerged, to conveniently capture dynamic behaviours.
This tool demonstration paper presented a full redevelop-
ment of DynAlloy Analyzer, a tool that incorporates one of
these approaches into Alloy Analyzer. This implementation is
faithful to the style of the Alloy tool, e.g., in the way com-
mands are issued, and how programs and partial correctness
assertions are introduced. The tool is fully compatible with
standard Alloy, produces detailed compile-time error reports,
and features a mature encoding of dynamic behaviour into
Alloy [13] that has proved to be more efficient than many
similar ad-hoc Alloy constructions for capturing dynamism.

REFERENCES
[1] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Ciolek,

Marcelo F. Frias, Juan P. Galeotti, Tom Maibaum, Mariano M.
Moscato, Nicolás Rosner, and Ignacio Vissani. Improving test gen-
eration under rich contracts by tight bounds and incremental SAT
solving. In Sixth IEEE International Conference on Software
Testing, Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, 2013, pages 21–30. IEEE Computer
Society, 2013.

[2] J.-R. Abrial. The B-book: Assigning Programs to Meanings.
Cambridge University Press, New York, NY, USA, 1996.

[3] Hamid Bagheri and Sam Malek. Titanium: efficient analysis
of evolving alloy specifications. In Thomas Zimmermann, Jane
Cleland-Huang, and Zhendong Su, editors, Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, Seattle, WA, USA, Novem-
ber 13-18, 2016, pages 27–38. ACM, 2016.

[4] Roberto Bruni, Antonio Bucchiarone, Stefania Gnesi, Dan Hirsch,
and Alberto Lluch-Lafuente. Graph-based design and analysis of
dynamic software architectures. In Pierpaolo Degano, Rocco De
Nicola, and José Meseguer, editors, Concurrency, Graphs and
Models, Essays Dedicated to Ugo Montanari on the Occasion of
His 65th Birthday, volume 5065 of Lecture Notes in Computer
Science, pages 37–56. Springer, 2008.

[5] Antonio Bucchiarone and Juan P. Galeotti. Dynamic software
architectures verification using dynalloy. ECEASST, 10, 2008.

[6] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Mod-
ular verification of code with sat. In Proceedings of the 2006
International Symposium on Software Testing and Analysis,
ISSTA ’06, pages 109–120, New York, NY, USA, 2006. ACM.

[7] Greg Dennis, Kuat Yessenov, and Daniel Jackson. Bounded
verification of voting software. In Natarajan Shankar and Jim
Woodcock, editors, Verified Software: Theories, Tools, Experi-
ments, Second International Conference, VSTTE 2008, Toronto,
Canada, October 6-9, 2008. Proceedings, volume 5295 of Lecture
Notes in Computer Science, pages 130–145. Springer, 2008.

[8] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus
and Program Semantics. Springer-Verlag New York, Inc., New
York, NY, USA, 1990.

[9] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
Specifying and reasoning about dynamic access-control policies.
In Ulrich Furbach and Natarajan Shankar, editors, Automated
Reasoning, Third International Joint Conference, IJCAR 2006,
Seattle, WA, USA, August 17-20, 2006, Proceedings, volume
4130 of Lecture Notes in Computer Science, pages 632–646.
Springer, 2006.

[10] Marcelo F. Frias, Juan P. Galeotti, Carlos G. López Pombo, and
Nazareno M. Aguirre. Dynalloy: Upgrading alloy with actions. In
Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 442–451, New York, NY, USA, 2005.
ACM.

[11] Marcelo F. Frias, Carlos López Pombo, Gabriel Baum, Nazareno
Aguirre, and T. S. E. Maibaum. Taking Alloy to the movies. In
Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME
2003: Formal Methods, International Symposium of Formal
Methods Europe, Pisa, Italy, September 8-14, 2003, Proceedings,
volume 2805 of Lecture Notes in Computer Science, pages 678–
697. Springer, 2003.

[12] Marcelo F. Frias, Carlos López Pombo, Gabriel A. Baum,
Nazareno Aguirre, and T. S. E. Maibaum. Reasoning about
static and dynamic properties in alloy: A purely relational ap-
proach. ACM Trans. Softw. Eng. Methodol., 14(4):478–526,
2005.

[13] Marcelo F. Frias, Carlos López Pombo, Juan P. Galeotti, and
Nazareno Aguirre. Efficient analysis of dynalloy specifications.
ACM Trans. Softw. Eng. Methodol., 17(1):4:1–4:34, 2007.

[14] Juan P. Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo,
and Marcelo F. Frias. TACO: efficient sat-based bounded verifi-
cation using symmetry breaking and tight bounds. IEEE Trans.
Software Eng., 39(9):1283–1307, 2013.

[15] Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and
Marcelo F. Frias. Analysis of invariants for efficient bounded
verification. In Paolo Tonella and Alessandro Orso, editors, Pro-
ceedings of the Nineteenth International Symposium on Software
Testing and Analysis, ISSTA 2010, Trento, Italy, July 12-16,
2010, pages 25–36. ACM, 2010.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Regis et al.

[16] Jaco Geldenhuys, Nazareno Aguirre, Marcelo F. Frias, and Willem
Visser. Bounded lazy initialization. In Guillaume Brat, Neha
Rungta, and Arnaud Venet, editors, NASA Formal Methods, 5th
International Symposium, NFM 2013, Moffett Field, CA, USA,
May 14-16, 2013. Proceedings, volume 7871 of Lecture Notes in
Computer Science, pages 229–243. Springer, 2013.

[17] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals
of Software Engineering. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2nd edition, 2002.

[18] David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic.
MIT Press, Cambridge, MA, USA, 2000.

[19] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969.

[20] Daniel Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[21] Daniel Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

[22] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A mi-
cromodularity mechanism. In A. Min Tjoa and Volker Gruhn,
editors, Proceedings of the 8th European Software Engineering
Conference held jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering 2001, Vi-
enna, Austria, September 10-14, 2001, pages 62–73. ACM, 2001.

[23] Cliff B. Jones. Systematic Software Development Using VDM
(2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1990.

[24] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Mari-
nov, and Sarfraz Khurshid. Testera: A tool for testing java
programs using alloy specifications. In Perry Alexander, Corina S.
Pasareanu, and John G. Hosking, editors, 26th IEEE/ACM In-
ternational Conference on Automated Software Engineering
(ASE 2011), Lawrence, KS, USA, November 6-10, 2011, pages
608–611. IEEE Computer Society, 2011.

[25] Leslie Lamport. Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[26] Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha,
and Denis Kuperberg. Lightweight specification and analysis of
dynamic systems with rich configurations. In Proceedings of

the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, pages 373–383,
New York, NY, USA, 2016. ACM.

[27] Joseph P. Near and Daniel Jackson. An imperative extension to
alloy. In Marc Frappier, Uwe Glässer, Sarfraz Khurshid, Régine
Laleau, and Steve Reeves, editors, Abstract State Machines,
Alloy, B and Z, Second International Conference, ABZ 2010,
Orford, QC, Canada, February 22-25, 2010. Proceedings, volume
5977 of Lecture Notes in Computer Science, pages 118–131.
Springer, 2010.

[28] Bruno Cuervo Parrino, Juan Pablo Galeotti, Diego Garbervetsky,
and Marcelo F. Frias. Tacoflow: optimizing SAT program verifi-
cation using dataflow analysis. Software and System Modeling,
14(1):45–63, 2015.

[29] Nicolás Rosner, Jaco Geldenhuys, Nazareno Aguirre, Willem
Visser, and Marcelo F. Frias. BLISS: improved symbolic execution
by bounded lazy initialization with SAT support. IEEE Trans.
Software Eng., 41(7):639–660, 2015.

[30] Hossein Saiedian. An invitation to formal methods. Computer,
29(4):16–17, April 1996.

[31] J. Michael Spivey. Z Notation - a reference manual (2. ed.).
Prentice Hall International Series in Computer Science. Prentice
Hall, 1992.

[32] Emina Torlak and Daniel Jackson. Kodkod: A relational model
finder. In Orna Grumberg and Michael Huth, editors, Tools
and Algorithms for the Construction and Analysis of Systems,
13th International Conference, TACAS 2007, Held as Part of
the Joint European Conferences on Theory and Practice of
Software, ETAPS 2007 Braga, Portugal, March 24 - April 1,
2007, Proceedings, volume 4424 of Lecture Notes in Computer
Science, pages 632–647. Springer, 2007.

[33] Axel van Lamsweerde. Requirements Engineering: From Sys-
tem Goals to UML Models to Software Specifications. Wiley
Publishing, 1st edition, 2009.

[34] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John
Fitzgerald. Formal methods: Practice and experience. ACM
Comput. Surv., 41(4):19:1–19:36, October 2009.

	Abstract
	1 Introduction
	2 Alloy Models with State Change
	3 State Change: The DynAlloy Approach
	3.1 Analysis of DynAlloy Models

	4 Related Work
	5 Conclusions
	References

