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ABSTRACT

We describe DynAlloy Analyzer, a tool that extends Alloy
Analyzer with support for dynamic elements in Alloy models.
The tool builds upon Alloy Analyzer in a way that makes it
fully compatible with Alloy models, and extends their syntax
with a particular idiom, inspired in dynamic logic, for the de-
scription of dynamic behaviours, understood as sequences of
states over standard Alloy models, in terms of programs. The
syntax is broad enough to accommodate abstract dynamic
behaviours, e.g., using nondeterministic choice and finite
unbounded iteration, as well as more concrete ones, using
standard sequential programming constructions. The analysis
of DynAlloy models resorts to the analysis of Alloy models,
through an optimized translation that often makes the anal-
ysis more efficient than that of typical ad-hoc constructions
to capture dynamism in Alloy.

Tool screencast, binaries and further details available in:
http://dc.exa.unrc.edu.ar/tools/dynalloy
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1 INTRODUCTION

Software models are an important part of most software devel-
opment approaches. They come in many forms and concern
different stages of software development, from requirements,
where problem domain concepts relevant to the system as well
as its goals need to be explicitly described [33], to design and
implementation, where design concepts and implementation
details, conveying decisions made during software construc-
tion, need to be (abstractly) captured [17]. Since models often
concentrate on a particular aspect of the problem or system
being described, they are easier for developers to grasp and
more useful to communicate ideas, as well as for anticipating
properties or concerns that arise, for instance, from design
decisions or problem domain facts.

Formal models, i.e., models in a language with a formal
syntax and precise semantics, are better suited for rigorous
analysis than their informal counterparts, thanks to the fact
that they have a precise meaning from which one can logi-
cally obtain conclusions [30]. Moreover, if a formal language
is appropriately designed, its specifications can also be auto-
matically analyzed, thus relieving their users from having to
manually perform logical reasoning from specifications [34].

Alloy [21] is a popular formal specification language, that
has been carefully designed to support automated analysis.
Alloy features a simple syntax, with a few constructs with
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intuitive meaning, and a simple formal semantics, based on
relations. Both the syntax and semantics are based on con-
cepts that many developers are familiar with. This simplicity
plays an important role in making the language’s specifica-
tions automatically analyzable. Indeed, Alloy is supported by
the Alloy Analyzer, a powerful analysis tool that allows one
to search for instances of specifications as well as to check
intended properties of models by resorting to SAT solving.

Alloy is a very expressive language, suitable for specifying a
wide variety of static properties of systems, through formulas
in relational logic, the logical formalism underlying Alloy, used
to capture the intention of operations, assumed and intended
properties of systems [20]. Alloy’s expressiveness makes the
analysis of specifications based on SAT solving necessarily
incomplete: one may find counterexamples of intended prop-
erties and instances of specified models in bounded scenarios,
but the absence of such counterexamples or instances does
not imply their nonexistence [20]. While Alloy is expressive
enough so that one may encode dynamic properties of sys-
tems, i.e., properties that predicate over system executions or
successive state changes of some sort, models involving such
kind of properties often become intricate by the inclusion
of ad-hoc constructions to capture dynamism (cf. [21, 22]).
This kind of ad-hoc characterizations of state change and
dynamic behaviour is not standardized, so models requiring
such kind of construction may significantly differ from one
another, reducing model understandability. Moreover, char-
acterizations of dynamic behaviour over Alloy specifications
have a significant impact in analyzability, in many cases
causing serious scalability issues that call for sophisticated
optimizations that reduce readability even further [10–12].

The DynAlloy language, originally introduced in [11] and
further developed in [10, 12, 13], deals precisely with the
above described issue. DynAlloy extends Alloy’s syntax with
a particular idiom, inspired in dynamic logic [18], for the de-
scription of dynamic behaviours, understood as sequences of
states over standard Alloy models, in terms of programs. The
DynAlloy syntax is broad enough to accommodate abstract
dynamic behaviours, e.g., using nondeterministic choice and
finite unbounded iteration, as well as more concrete ones,
using standard sequential programming constructions. The
analysis of DynAlloy models resorts to an analysis of Alloy
models, through a optimized translation that often makes
the analysis more efficient than that of typical ad-hoc con-
structions to capture dynamism in Alloy [10, 12].

In this tool demonstration paper we describe DynAlloy
Analyzer, a tool that extends the highly regarded Alloy An-
alyzer with support for dynamic elements in Alloy models.
The tool builds upon Alloy Analyzer in a way that makes it
fully compatible with Alloy models, and extends the model’s
syntax with elements for describing actions (atomic state
changes), abstract programs over these actions, and correct-
ness assertions. Programs can be run and partial correctness
assertions involving programs can be checked in DynAlloy
Analyzer, in the same way that predicates can be run and
assertions can be checked in Alloy Analyzer. DynAlloy Analyzer

is a complete redevelopment of the original DynAlloy tool;
while the original tool was implemented as a separate com-
piler that translated DynAlloy specifications into Alloy ones,
and did not include commands for analysis in the notation,
the new tool is integrated into Alloy Analyzer, enabling a
fully transparent usage for Alloy users, and providing anal-
ysis commands that better reflect the style found in Alloy
specifications.

2 ALLOY MODELS WITH STATE
CHANGE

Alloy is a model-oriented specification language, similar to
other formal languages such as Z [31], VDM [23] and B [2].
As for these other languages, specifications (or models, as
these are more often called) are written by defining data
domains, properties and operations between these domains.
Data domains are defined in Alloy via signatures. Signatures
represent sets of atoms, and can be extended, with signa-
ture extension representing set containment. A signature is
called abstract if it does not have proper elements, but all
its elements are those of its extending signatures. Alloy does
not allow one to define atoms in its models; these can be
captured instead through singleton signatures. Consider the
following signature definitions taken from the Farmer model
(a model of the well-known puzzle that asks whether it is
possible for a farmer to cross a river with a chicken, a sack of
grain and a fox, with a boat that can hold the farmer and at
most one element, and avoiding that the fox eats the chicken
or the chicken the grain, if they become unsupervised):

abstract sig Object {

eats: set Object

}

one sig Farmer, Fox, Chicken, Grain extends Object { }

fact { eats = Fox->Chicken + Chicken->Grain }

Data domain Object is composed of exactly four “elements”
(singletons), Farmer, Fox, Chicken and Grain (signatures
that extend a same signature are disjoint). As the definition
of Object shows, signatures can have fields, that represent
relations; in the case of field eats, it denotes a relation
between objects, indicating what objects each object eats.

We would like to refer to a state changing situation, that
maintains two sets of objects, those on the near and far sides
of the river, respectively. The usual Alloy way of capturing
this situation is via an additional signature for states, and
using total orders (from a library specification) of states to
capture executions, as follows:

open util/ordering[State]

sig State {

near, far: set Object

}

We then need to impose restrictions, via Alloy facts (assumed
properties of the model), to capture that in the initial state all
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objects are in the near side of the river, and how transitions
are governed (unsupervised objects eat other objects, farmer
can only take one other item with him, etc.).

fact { first.near = Object && no first.far }

pred crossRiver[from, from’, to, to’: set Object] {

one x: from | {

from’ = from - x - Farmer - from’.eats

to’ = to + x + Farmer

}

}

fact {

all s: State, s’: s.next | {

Farmer in s.near =>

crossRiver[s.near, s’.near, s.far, s’.far]

else crossRiver[s.far, s’.far, s.near, s’.near] }

}

Finally, the puzzle is attempted to be solved by trying to get
a trace in which, in its last state, all objects reached the far
side of the river:

run { last.far = Object } for exactly 8 State

3 STATE CHANGE: THE DYNALLOY
APPROACH

Let us describe how the Farmer model would be modeled
in DynAlloy. DynAlloy is an extension of Alloy for better
describing state change; the part of the model that does not
deal with state change is done exactly as in the case of Alloy:
we will maintain the definition of Object and composing
signatures, and the facts constraining them. But, we will
not use signature State, nor linear orderings. Instead, we
will use actions to describe state change. We will first use
atomic actions, to indicate basic state change steps, and then
programs to get the same traces got in the Alloy approach.

Atomic Actions. Atomic actions are the basic building
block for describing state change. An atomic action is specified
by indicating what it applies to (the parameters, what the
action changes), the required conditions to execute the action
(the enabling condition, that we call precondition), and the
effect of the action (the postcondition). As a first example of
an atomic action, consider the following:

act crossRiver[from, to: set Object] {

pre { Farmer in from }

post { one x: from |

from’ = from - (x + Farmer) - from’.eats &&

to’ = to + (x + Farmer)

}

}

In a DynAlloy action, the parameters define the state the
action changes, in this case, the formal parameters from and
to. There is no need to define a special signature to represent
the state, since the state is implicitly defined as the parame-
ters of the action. Moreover, it is indicated explicitly what
is expected for the action to be applicable, namely that the

farmer must be in from; it is important to remark that action
preconditions are enabling conditions: when they are not
satisfied, the action cannot be executed. Finally, the primed
versions of the parameters of the action are not parameters
themselves: they refer to the state of these parameters after
the action has been executed.

Composite Actions (programs). While in Alloy character-
izations of state change, executions are described via facts
that explicitly indicate how state changes, in DynAlloy these
are more conveniently defined by the construction of actions.
Atomic actions are the base case for describing more complex
behaviours, in composite actions or programs. The DynAl-
loy version of what is captured via orderings in the Alloy
approach, is shown below. It features various program con-
structs: assumptions, test actions, nondeterministic choice,
sequential composition, and iteration:

program solvePuzzle[near, far: set Object] {

assume (Object in near && no far);

(crossRiver[near, far] + crossRiver[far, near])*;

[Object in far]?

}

Again, it is important to remark that this program’s state is
given by its formal parameters, the sets of object near and
far (no need for a special signature representing the state).
The program is composed of the sequential composition of
three parts. The first is an assumption of what is expected
at the beginning (i.e., an enabling condition given as part
of the code). It indicates that it is assumed that initially all
objects are on the near side of the river. The second is a finite
iteration of a nondeterministic choice of two actions; these
actions correspond to the two possibilities: either the river
is crossed from near to far or is crossed from far to near.
And these are iterated (in each iteration, any of the enabled
actions might be taken, although for this case we know that
exactly one of them will be enabled) a finite number of times.
Finally, the execution is allowed to continue only if, after the
iteration, all the objects got to the far side of the river.

DynAlloy features other mechanisms for building com-
posite actions, although these can all be reduced to atomic
actions, sequential composition, tests/assumptions and itera-
tion. They are however very useful for more conveniently cap-
turing some state changing behaviours. For example, atomic
action crossRiver can be redefined in terms of a more con-
crete program, as follows:

act choose[x: univ, s: set univ] {

pre { some s }

post{ x’ in s }

}

prog refCrossRiver[from, to: set Object] var [x: Object] {

assume (Farmer in from);

choose[x, from];

from := from - (Farmer + x);

from := from - from.eats;

to := to + (Farmer + x)

}
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This program has the same effect as the atomic action
crossRiver, although not in a single, atomic step. It per-
forms the river crossing by nondeterministically choosing an
object in the from side, and then updating the state of from
and to via atomic assignments. Program solvePuzzle can
simply call program refCrossRiver instead of the atomic
action crossRiver.

3.1 Analysis of DynAlloy Models

Alloy provides two ways of analyzing a specification: via runs,
which search for satisfying models of a given predicate, and
via asserts, which search for counterexamples of intended
properties of a specification. DynAlloy provides similar fea-
tures, but targeting the analysis of dynamic properties. These
are program runs, and partial correctness assertions. A pro-
gram run is very much like a run of a predicate. A run of
a program will search for satisfying models of the program,
i.e., executions of the program. A partial correctness asser-
tion is, as in the context of program verification [8, 19], an
expression of the form: { pre } prog { post }, where prog is a
program, and pre and post are formulas over the state of the
program (the precondition and postcondition, respectively).
Such an assertion is true if and only if, for every execution
of the program prog, if the execution starts in a state sat-
isfying pre, then if the execution terminates it must do so
in a state satisfying post. As examples of partial correctness
assertions, consider the following. The first states that ob-
jects cannot be on both sides of the river at the same time
(noQuantumObjects, an assertion also present in the original
Alloy model); the second is an assertion that states that, once
an object is lost in an execution, it cannot be resurrected.

assert NoQuantumObjects [near, far: set Object] {

pre { no (near & far) }

prog { (crossRiver[near, far] + crossRiver[far, near])* }

post { no (near’ & far’) }

}

assert noResurrection[near, far: set Object, x: Object] {

pre { Object in near && no far }

prog { (crossRiver[near, far] + crossRiver[far, near])*;

[x !in (near+far)]? ;

(crossRiver[near, far] + crossRiver[far, near])*

}

post { x !in (near’+far’) }

}

The analysis mechanism behind Alloy Analyzer is SAT
based bounded verification (or SAT based bounded model
finding). Alloy Analyzer employs user provided bounds, the
scope, in order to exhaustively search for counterexamples of
intended properties, within the provided bounds. DynAlloy’s
main analysis mechanism resorts to Alloy’s analysis: DynAlloy
Analyzer will use Alloy Analyzer “behind the scenes”, in order
to check a partial correctness assertion, or run a program.
But DynAlloy models have an additional source of potential
unboundedness: program iteration. So, the user will have to
provide an extra bound, to indicate the maximum number

of iterations to be considered in programs (also called loop
unrolls). This is done as part of the commands for program
runs and partial correctness assertions, as in the following
examples (lurs stands for loop unrolls):

run solvePuzzle for 4 lurs 7

check noResurrection for 4 lurs 8

To automatically analyze DynAlloy specifications using
Alloy Analyzer, we translate annotated DynAlloy programs
into Alloy specifications. This is realized through a bounded
version of weakest liberal precondition [8], as described in [10].
This predicate transformer allows us, given a bound 𝑛 in the
number of loop unrolls, to transform a program into an Alloy
predicate. This translation often leads to better performance
compared to the traditional Alloy approach to state change,
as shown in [10] and with further examples in the DynAl-
loy website. For atomic actions, it is straightforward; more
complex programs are translated as follows:

bwlp[𝑔?, 𝑓 ] = 𝑔 =⇒ 𝑓
bwlp[𝑝1 + 𝑝2, 𝑓 ] = bwlp[𝑝1, 𝑓 ] ∧ bwlp[𝑝2, 𝑓 ]
bwlp[𝑝1; 𝑝2, 𝑓 ] = bwlp[𝑝1, bwlp[𝑝2, 𝑓 ]]
bwlp[𝑝*, 𝑓 ] =

⋀︀𝑛
𝑖=0 bwlp[𝑝

𝑖, 𝑓 ] .

4 RELATED WORK

The need to capture dynamic behavioural properties over Al-
loy specifications is present in a wide number of applications.
Various tools capture program semantics in Alloy, notably
Forge [6, 7] and TACO [14, 15]. The latter uses DynAlloy as
an intermediate language for reducing program verification
to SAT solving, as well as some related tools do [1, 28, 29].
These tools also significantly exploit relational bounds as
introduced through KodKod [32], and have seen a dramatical
increase in performance thanks to KodKod being current
Alloy’s model finding engine. There have also been proposals
to extend Alloy with dynamic behaviour constructs for more
abstract modeling. Besides DynAlloy [10], other extensions
such as Imperative Alloy [27] and Electrum [26], have been
used to complement Alloy with rich logical languages for
dynamic behaviour, e.g., linear temporal logic as realized in
TLA+ [25], and use these to specify and check properties in a
bounded manner. Applications of Alloy models with dynamic
behaviour appear in the context of dynamic software archi-
tecture [4, 5], dynamic access control policies [9], and the
analysis of specifications originating in informal languages
such as the UML. Many direct uses of Alloy also require
dynamic behaviours, as is shown, e.g., in examples and case
studies in [3, 7, 21, 22].

5 CONCLUSIONS

The importance of powerful and efficient automated analysis
to accompany formal specification languages is widely ac-
knowledged, and the success of Alloy has been in great part
due to its emphasis in automated analysis. The significant
advances in SAT solving, as well as in improved encodings
of analysis problems from different contexts into SAT (indi-
rectly) through Alloy and similar languages, maintains the
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language being relevant in various areas of software engi-
neering (cf., e.g., [3, 7, 15, 16, 24]). The need for dynamic
elements in Alloy models arises naturally in many of these
contexts, which is evidenced by the various approaches that
have emerged, to conveniently capture dynamic behaviours.
This tool demonstration paper presented a full redevelop-
ment of DynAlloy Analyzer, a tool that incorporates one of
these approaches into Alloy Analyzer. This implementation is
faithful to the style of the Alloy tool, e.g., in the way com-
mands are issued, and how programs and partial correctness
assertions are introduced. The tool is fully compatible with
standard Alloy, produces detailed compile-time error reports,
and features a mature encoding of dynamic behaviour into
Alloy [13] that has proved to be more efficient than many
similar ad-hoc Alloy constructions for capturing dynamism.
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Nazareno Aguirre, and T. S. E. Maibaum. Reasoning about
static and dynamic properties in alloy: A purely relational ap-
proach. ACM Trans. Softw. Eng. Methodol., 14(4):478–526,
2005.

[13] Marcelo F. Frias, Carlos López Pombo, Juan P. Galeotti, and
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