
Field-Exhaustive Testing

Pablo Ponzio∗‡ Nazareno Aguirre∗‡ Marcelo F. Frias†‡ Willem Visser§
∗Departamento de Computación, Universidad Nacional de Río Cuarto, Argentina

{pponzio, naguirre}@dc.exa.unrc.edu.ar
†Departamento de Ingeniería de Software, Instituto Tecnológico de Buenos Aires, Argentina

mfrias@itba.edu.ar
‡Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

§Department of Computer Science, University of Stellenbosch, South Africa
wvisser@cs.sun.ac.za

ABSTRACT
We present a testing approach for object oriented programs,
which encompasses a testing criterion and an automated
test generation technique. The criterion, that we call field-
exhaustive testing, requires a user-provided limit n on the
size of data domains, and is based on the idea of considering
enough inputs so as to exhaustively cover the extension of
class fields, within the limit n. Intuitively, the extension of
a field f is the binary relation established between objects
and their corresponding values for field f , in valid instances.
Thus, a suite S is field-exhaustive if whenever a field f re-
lates an object o with a value v (i.e., o.f = v) within a valid
instance I of size bounded by n, then S contains at least
one input I ′ covering such relationship, i.e., o must also be
part of I ′, and o.f = v must hold in I ′. Our test generation
technique uses incremental SAT solving to produce small
field-exhaustive suites: field-exhaustiveness can be achieved
with a suite containing at most #F × n2 inputs, where #F
is the number of fields in the class under test.

We perform an experimental evaluation on two different
testing domains drawn from the literature: implementations
of data structures, and of a refactoring engine. The exper-
iments show that field-exhaustive suites can be computed
efficiently, and retain similar levels of code coverage and mu-
tation killing as significantly larger bounded exhaustive and
random suites, thus consuming a fraction of the cost of test
execution compared to these automated testing approaches.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Software Testing, Automated Test Generation, SAT Solving

1. INTRODUCTION
Testing is a powerful and widely used technique for soft-

ware quality assurance [20, 2]. It essentially consists of as-
sessing the quality of a piece of code by executing it under a
number of particular inputs, which are a defining part of test
cases. For a set of test cases to be adequate, these generally
need to exercise the software under varying situations. This
of course increases the chances to detect bugs, since the soft-
ware being assessed is more thoroughly examined. Software
testing criteria define concrete mechanisms to decide when
a set of tests, or suite, is adequate, or sufficiently thorough
in the examination of the software under evaluation [36, 2].

Most testing criteria have been defined under the assump-
tion that tests, including test inputs, are manually written.
Thus, even for sophisticated criteria, such as some white-box
criteria like condition coverage and MC/DC (Modified Con-
dition/Decision Coverage), suites with very good levels of
coverage can be achieved while keeping the size of the suite
small, which of course requires in many cases significant ef-
forts from the testing engineers. With the advent of auto-
mated test generation techniques, testing approaches that
are impractical with manual testing though feasible through
automated testing, are emerging. Relevant cases of this are
bounded exhaustive testing [32], a black box criterion which
proposes to test programs on all valid inputs bounded by a
user provided bound, and random testing, a well known test-
ing approach proposing to test programs on randomly gen-
erated inputs [7, 27]. These approaches have proved to be
effective in various testing domains [27, 5, 9, 30]. However,
bounded exhaustive test suites are inherently combinatorial
in size, and randomly generated suites typically have to be
composed of large test sets to achieve good coverage levels.
This fact makes the execution of such suites prohibitively
expensive in many situations, especially when they need to
be repeateadly used, e.g., in regression testing contexts.

In this paper we present a testing criterion for object ori-
ented programs, that we call field-exhaustive testing, which
requires a user-provided limit n on the size of data domains.
This criterion is based on the idea of considering enough in-
puts so as to exhaustively cover the extension of class fields,
within the provided limit n. Intuitively, the extension of
a field f is the binary relation established between objects
and their corresponding values for field f , in valid instances
bounded by n. Thus, a suite S is field-exhaustive if when-
ever a field f relates an object o with a value v (i.e., o.f = v)
within a valid instance I of size bounded by n, then S con-

tains at least one input I ′ covering such relationship, i.e., o
must also be part of I ′, and o.f = v must hold in I ′. We
also present a technique that automatically generates field-
exhaustive suites, using incremental SAT solving [23]. We
perform an experimental evaluation on two different test-
ing domains drawn from the literature, the implementations
of data structures and of a refactoring engine, that show
that field exhaustive suites can be efficiently produced, and
if symmetry breaking is imposed, our automatically gener-
ated field-exhaustive suites are small, while retaining similar
levels of code coverage and mutation killing as significantly
larger bounded exhaustive and random suites. Moreover,
we prove that field-exhaustive suites can be achieved with
at most #F×n2 inputs, where #F is the number of fields in
the class under test, and n the user-provided bound on the
size of data domains. This implies that, in many cases, field-
exhaustive suites can be executed at a fraction of the cost
of test execution of bounded exhaustive or random suites,
to achieve comparable coverage or mutation score.

2. BACKGROUND
Given a program and a test suite for it, a testing crite-

rion enables one to assess how well the suite exercises the
program. There exist two broad testing criteria categories,
white-box and black-box [36, 26]. White-box criteria take
into account the structure of the program under test, while
black-box criteria deal with the program as a black box and
may only examine its specification. An example of a white-
box criterion is statement coverage, which requires each pro-
gram statement to be executed by some test. An example
of a black-box criterion is equivalence partitioning, which di-
vides the state space of inputs of the software under test
into equivalence classes, and requires each equivalence class
to be covered by some test in the suite.

Most prevailing testing criteria have been devised under
the assumption that test suites are produced manually and
thus can be satisfied with a (relatively) small number of test
cases. Advances in automated testing are enabling novel
criteria whose applicability strongly depends on testing au-
tomation both at generation time and at execution time. An
example of such a testing technique is random testing, a well-
known testing approach proposing to test programs on ran-
domly generated inputs [7, 27]. While random testing orig-
inally applied to programs with inputs of basic datatypes,
and simply resorted to random number generators for input
generation, more recently the approach has been success-
fully extended to complex inputs, e.g, by randomly produc-
ing sequences of methods that construct the inputs (and
exploiting feedback of previously generated cases to avoid
redundancies) [27], or employing user-provided input gener-
ators to randomly create test cases [7]. Random testing can
generate very good test suites (e.g., suites with high cover-
age or good mutation-killing scores) very efficiently, but at
the expense of producing large suites with large tests (com-
posed of large sequences of methods); usually, constraints
have to be imposed during generation, e.g., maximum test
length, maximum generation time or maximum size of test
suite, to limit the size of the produced suites and therefore
the time for testing, and a compromise has to be established
between the test suite sizes and quality of the suites.

Another important testing technique, that can be effec-
tively applied thanks to automation and is strongly related
to the technique we present in this paper, is bounded exhaus-

tive testing [32]. Bounded exhaustive testing produces, for a
given program and a user-provided bound n on the size of in-
puts (called the scope), all valid inputs whose size is bounded
by n, and then tests the program using the produced test
suite. For instance, bounded exhaustively testing a routine
manipulating binary search trees defined by the classes in
Fig. 1, for a scope of up to 4 nodes and key and size val-
ues from 0 to 4, consists of checking the routine on all valid
search trees that can be built using at most 4 nodes, with
values of keys and size within 0–4. This testing technique
has proved useful in some testing contexts, in particular, for
testing code that manipulates complex data structures, or
programs that deal with source code, such as compilers and
refactoring engines. The rationale behind the approach is
based on the small scope hypothesis [18]: many bugs in pro-
grams manipulating complex data can be reproduced using
small instances of such data. Thus, by testing the program
on all possible inputs bounded in size by some relatively
small scope one would be able to exhibit most bugs.

The scope establishes a maximum number of objects in
the heap (e.g., 1 binary search tree object T0, 4 node ob-
jects N0, N1, N2, N3), and a domain for each field of each of
these objects (e.g., for a node N0, according to its type, field
N0.left can be assigned either null or one element from
{N0, N1, N2, N3}, the 4 nodes available in the heap). A specifi-
cation of the valid structures, e.g., a representation invariant
for search trees such as the one in Fig. 2, distinguishes be-
tween well-formed bounded structures and ill-formed ones,
that can be disregarded for testing. A crucial mechanism
that tools for bounded exhaustive testing base their effi-
ciency on is the ability to remove, disregard and avoid vis-
iting a particular kind of redundant instances during gen-
eration. These are the so called isomorphic instances, i.e.,
instances which only differ in the object identifiers assigned
to their composing nodes. Consider for instance the two bi-
nary search trees in Fig. 3. These two trees are exactly the
same, hold the same information, but their nodes identifiers
differ. In fact, one is a permutation of the other. Intuitively,
these identifiers correspond to memory locations, and there-
fore these trees differ in where their nodes are located in the
heap. Such difference is irrelevant in most applications, and
thus one may want to avoid generating both cases, since one
represents the other. Symmetry-breaking approaches allow
us to deal with this issue, by enforcing a canonical order
in nodes and thus allowing for only one (canonical) repre-
sentative for all isomorphic instances. For example, Korat’s
symmetry-breaking approach is based on a rule enforcing
that while repOK() (the operational implementation of the
representation invariant) is generating a candidate structure
during the search for valid structures, when attribute f is de-
fined for node Ni, its value Ni.f must be either null , or must
be within the set {N0, N1, . . . , Nm}, where m is the small-
est identifier not already used. Notice that for the repOK()

routine in Fig. 2, the first tree in Fig. 3 is accepted, while
the second is not. A similar symmetry breaking approach,
employed by some tools based on declarative (logical) lan-
guages for invariant specification such as TACO [15, 16] and
FAJITA [1], is based on the addition of further (logical) re-
strictions, imposing that, when a structure is traversed in
breadth-first order, node identifiers are sequentially labeled.

3. MOTIVATING EXAMPLE
Let us consider again binary search trees, already em-

public class BinaryTree {
private Node root;
private int size;
...

}

public class Node {
private int key;
private Node left;
private Node right;
...
// setters and getters of the
// above fields
...

}

Figure 1: Java classes defining binary search trees.

ployed for illustration in the previous section. The repre-
sentation invariant for this structure states that the linked
structure formed from the root node following the left and
right fields must be acyclic, that each node in it except the
root (which must have no parent) must have exactly one
parent, and that the tree must be ordered. This invariant
can be captured operationally, as in the repOK() Java pred-
icate shown in Fig. 2, or logically (declaratively), as shown
in Fig. 4, in this case expressed using Alloy’s relational logic
[18] (other logical formalisms, such as JML [6], can be also
employed to declaratively capture the invariant). A user-
provided scope defines a finite set of possible structures, but
only a portion of these are valid, i.e., satisfy the represen-
tation invariant. For instance, for up to 4 nodes, sizes and
keys within ranges [0, 4] and [0, 3], respectively, a total of
2,500,000,000 structures can be built, but only 977 satisfy
the invariant. Notice that the stronger the representation
invariant, the smaller the set of valid structures. Symmetry-
breaking also has a significant impact on the number of valid
structures: out of the 997 valid structures for the above
scope, only 51 are non-isomorphic. Moreover, symmetry
breaking also impacts test input generation’s efficiency; for
instance, the bounded exhaustive testing tool Korat [5] takes
a third of the time to produce the 51 non-isomorphic struc-
tures, compared to the time it takes to produce the 997
structures, when symmetry breaking is disabled.

Despite the improvements in suite’s size and generation
time that symmetry-breaking provides, bounded exhaustive
suites inherently grow combinatorially as the scope increases,
even for strong representation invariants. This fact makes
it costly to compute bounded exhaustive suites for larger
scopes, and the corresponding large testing times makes it
often prohibitive to use bounded exhaustive testing, espe-
cially when these suites are incorporated into processes that
require their repetitive use along the development process,
as in regression testing. A similar case can be made for
other automated generation techniques, random testing in
particular. For our running example, for instance, Randoop
[27] can achieve a similar mutation killing score and branch
coverage as the bounded exhaustive suite of scope 4 only af-
ter producing 5,000 tests (see section on validation). Again,
such test suite sizes make the use of the produced test suites
impractical in many situations.

Our proposal is related to bounded exhaustive testing in
the sense that it requires a user-provided scope. But as op-
posed to bounded exhaustive testing, our approach is based
on the observation that while the scope determines a set of

public boolean repOK() {
if (root == null) return true;
if (!isAcyclic()) return false;
if (!isOrdered(root, -1, -1)) return false;
return true;

}

private boolean isAcyclic() {
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node) workList.removeFirst();
if (current.getLeft() != null) {

if (!visited.add(current.getLeft())) return false;
workList.add(current.getLeft());

}
if (current.getRight() != null) {

if (!visited.add(current.getRight())) return false;
workList.add(current.getRight());

}
}
return true;

}

private boolean isOrdered(Node n, int min, int max) {
if (n.info == -1) return false;
if ((min != -1 && n.getKey() <= (min)) ||

(max != -1 && n.getKey() >= (max))) return false;
if (n.left != null)

if (!isOrdered(n.getLeft(), min, n.getKey())) return false;
if (n.right != null)

if (!isOrdered(n.getRight(), n.getKey(), max)) return false;
return true;

}

Figure 2: Operational version of the representation
invariant for binary search trees.

2

left right

1 3

N0

root

N1 N2

2

left right

1 3

N1

root

N2 N0

Figure 3: Two isomorphic binary search trees.

possible target values for each field of each heap object, this
target domain may be restricted to a smaller set of feasible
values both by the representation invariant and symmetry-
breaking predicates, and a smaller set of valid instances may
be needed to cover these feasible values. As an example,
let us consider again the previously mentioned scope, and
let us concentrate for the moment on the values of field
left for node N0. This field’s type and the scope define
{N0, N1, N2, N3, null} as the range set of the field, but we
know that there are only two possible values for N0.left,
namely, null and N1. Any other value is forbidden either
by the representation invariant, or by symmetry-breaking.
Let us call then {null, N1} the extension of N0.left. Fol-
lowing a similar reasoning, the extension of field N0.right

is {N1, N2, null}, and so on. Field-exhaustive testing, as op-
posed to bounded exhaustive testing, requires considering
enough inputs so that the extension of every field, within a
given scope, is covered. For instance, for the above scope,

(all n : Node | n in thiz.root.*(left + right) implies
(
no (((n.left).*(left+right) & (n.right).*(left+right)) - null) -- no node can be reached along two different paths
and
(n !in n.^(left + right)) -- the structure is acyclic
and
(all m : Node | m in n.left.*(left + right) implies gt[n.key, m.key]) -- left-sorted
and
(all m : Node | m in n.right.*(left + right) implies gt[m.key, n.key]) -- right-sorted

)
) and
thiz.size = #thiz.root.*(left + right) -- field size is well-defined

Figure 4: Logical invariant for binary search trees.

left

right

N0

root

N1

N2

left

N3

right

N0

N2

right

N1

root

right

N0

N3
right

N1

root

left
N2

N2
right

N0

left
N1

root
right

N0

N2

right

N1

root

N3

right

N2
right

N0

left
N1

root

left
N3

root

Figure 5: Field-exhaustive suite for binary search
trees, with scope 4 (keys ignored).

17 inputs suffice to achieve field exhaustiveness, whose 7
shapes are shown in Fig. 5 (we ignore key values for pre-
sentation purposes), as opposed to the 51 non-isomorphic
instances that constitute the bounded exhaustive suite for
the same scope. This difference is more pronounced as the
scope increases; for instance, for scope 10 (10 nodes, size
within 0-10, keys within 0-9), field exhaustiveness can be
achieved with 86 instances, while 223,191 non-isomorphic
instances constitute the bounded exhaustive suite for the
same scope. Randoop still needs to produce more than 5,000
tests to achieve the same mutation killing and coverage as
the field-exhaustive suite composed of 86 structures.

In the next section we formally introduce field-exhaustive
testing, while in Section 5 we concentrate on a technique to
automatically build field-exhaustive suites.

4. FIELD-EXHAUSTIVE TESTING
In this section we formally define field-exhaustive testing,

as a testing criterion. Let us assume, without loss of gen-
erality, that the testing subject is a collection C1, . . . , Cn of
classes, where C1 is the main class. Each class Ci defines a
set fCi

1 , . . . fCi
l(Ci)

of fields, whose types are among C1, . . . , Cn

and primitive datatypes. The scope characterizes finite sets
of objects for each of the involved classes, and finite ranges

for basic datatypes. We often simplify the scope as a num-
ber k, typically referring to the number of “node” objects,
and define ranges for primitive types as a function of k. The
set of possible structures or instances is composed of all pos-
sible assignments of values within the scope, for fields of the
scope’s objects, respecting the fields’ types. We also assume
that a predicate inv(o), defined on instances of the main
class C1, is provided. This specification defines the valid in-
stances of C1, and for a given scope k, identifies a subset of
the possible structures, the valid structures. Given a valid
instance c of C1, we say that c involves an object o, if o is
reachable from c in the memory heap.

Definition 1. Let Ci and Cj be classes involved in a test-
ing subject, k a scope definition, and ci, cj objects of classes
Ci, Cj , respectively, within scope k. Given a field f of type
Cj in class Ci, we say that 〈ci, cj〉 is feasible for f within
scope k iff there exists a valid structure o of C1 (i.e., inv(o)
holds) that involves ci, and such that ci.f = cj . We refer to
the set of all feasible tuples for field f within scope k as the
extension of f (for scope k).

As an example clarifying the above definition, let us con-
sider again binary search trees, with a scope of 1 binary
search tree object, 4 nodes, size ranging within 0-4 and keys
ranging within 0-3. Assuming that inv is in this case the
representation invariant of binary search trees supplemented
with symmetry breaking, as previously described, 〈N0, N1〉
is feasible for left within the scope (the first tree in Fig. 5
witnesses this feasibility), and

{〈N0, null〉, 〈N0, N1〉, 〈N1, null〉, 〈N1, N2〉, 〈N1, N3〉,
〈N2, null〉, 〈N2, N3〉, 〈N3, null〉}

is the extension of field left, for the given scope. Notice
how the breadth-first ordering on node identifiers imposed
by symmetry-breaking prevents pair 〈N0, N2〉 from being
part of the extension of field left.

Definition 2. Given a testing subject C1, . . . , Cn, a scope
k, and a set S = {o1, . . . , ox} of objects of class C1 within
scope k, we say that S achieves field-exhaustive coverage
for scope k iff for every feasible tuple 〈ci, cj〉 of every field f ,
there exists an object o in S that involves object ci and such
that ci.f = cj . That is, a set S of objects is said to achieve
field-exhaustive coverage for a given scope iff the extension
of each field if covered by S.

Two examples of field-exhaustive suites for the previously
mentioned scope are the suite composed of objects in Fig. 5
(with respect to left and right, keys are ignored), and the

bounded exhaustive suite for the same scope (it contains
all valid instances, therefore it satisfies field-exhaustiveness).
Although we do not do so in this paper, quantitative variants
of this criterion’s satisfaction are straightforward to define.
For instance, we may say that a suite S satisfies field exhaus-
tiveness by a N% for a given scope k if N% of the feasible
tuples for scope k are covered by S.

It is worth noticing that symmetry-breaking plays an im-
portant role on the size of suites that achieve field exhaus-
tiveness. For instance, if symmetry-breaking is disregarded,
we then need at least 27 test inputs to achieve field exhaus-
tiveness for scope 4 on binary search trees (as opposed to
the 17 that suffice with symmetry breaking).

5. AUTOMATED GENERATION OF FIELD-
EXHAUSTIVE SUITES

We now turn our attention to automatically producing
field-exhaustive suites. While any mechanism capable of
building bounded exhaustive suites achieves by definition
field-exhaustiveness, our motivation is to avoid the large
size of such suites, and the associated limitations such sizes
bring into the testing process. Therefore, we aim at produc-
ing small field-exhaustive suites. In this section we present
a technique that in practice produces field-exhaustive test
suites that are significantly smaller than bounded exhaustive
suites for the same scope, and randomly generated suites of
similar quality (coverage, mutation score). This technique
is based on the use of incremental SAT solving.

Our procedure to compute field-exhaustive suites requires
inv, the specification of valid instances, to be expressed in
a language amenable to satisfiability analysis, in our case
via SAT solving. While we use invariants expressed in Al-
loy’s relational logic, other languages may be employed; for
instance, invariants specified in JML [6] can be automati-
cally translated into SAT as described in [15], and opera-
tional invariants such as those used in Korat [5] can also be
automatically translated into propositional formulas (for a
given scope), following translations such as those embedded
in tools like CBMC [22] and DynAlloy [14]. Let us then as-
sume that inv is expressed as (or can be translated into) a
propositional formula. Moreover, let us further assume that
inv subsumes a symmetry-breaking predicate forcing canon-
ical orderings of heap nodes in structures (this is without
any loss of generality, since as described in [15, 16], such
symmetry-breaking predicates can be automatically built).

Intuitively, the propositional encoding of heap structures
captures values for object fields through propositional vari-
ables. That is, given a field f : C → C′, an object a of class
C having value b of class C′ in a.f in a heap structure is
characterized through the validity of a variable varf (〈a, b〉)
in a satisfying valuation of the propositional encoding of
heap structures. Then, in order to produce new test inputs
that contribute to field-exhaustively covering f we may feed
the SAT solver with a clause:∨

a:C,b:C′

(varf (〈a, b〉)). (1)

Notice then that the satisfiability of (1) implies that there
exist a : C and b : C′ such that variable varf (〈a, b〉) eval-
uates to true in a satisfying valuation, or in other words,
such as a.f = b in a corresponding heap structure. To
guarantee that such structure indeed contributes to field-

exhaustively covering f , we need to ensure: (i) that some
satisfied varf (〈a, b〉) corresponds to a pair 〈a, b〉 not yet cov-
ered, and (ii) that varf (〈a, b〉) indeed characterizes a feasible
value for field f , in a valid heap structure of class C1 (the
main class of the testing subject). The first property can be
guaranteed by keeping track of those pairs that have already
been covered, and restricting the above disjunction (1) only
to pairs not previously covered. The second requirement is
achieved by enforcing the validity of varf (〈a, b〉) only in valid
heap structures that involve a and b, captured by formula:

varf (〈a, b〉)⇐⇒∨
o:C1

(inv(o) ∧ a reachable from o ∧ 〈a, b〉 ∈ f) . (2)

Notice that since instances are bounded by the scope k,
reachability is expressible in propositional logic (see for in-
stance the translation of transitive and reflexive-transitive
closure operators into propositional logic employed by the
Alloy Analyzer tool [18]). Formula (2) states that variable
varf (〈a, b〉) encodes the feasibility of 〈a, b〉 as part of the
extension of f in valid canonical structures. Thus, by con-
sidering Formula (2), in case the satisfiability verdict for
a variable varf (〈a, b〉) is true, the returned valuation cor-
responds to a valid instance, containing that tuple. Fur-
thermore, since the valuation encodes a valid instance, we
can retrieve for each field f the pairs of object identifiers
in f in that particular instance. For example, if we require
var left(〈N0, N1〉) to hold, the first binary search tree in Fig. 5
fulfills the requirement. As a side-effect of selecting this in-
stance, we may conclude that, besides pair 〈N0, N1〉, also
pair 〈N2, N3〉 belongs to the extension of field left.

We use the above introduced variables to automatically
produce field-exhaustive suites by incrementally calculating
field extensions within a provided scope, and collecting the
instances obtained in this process. Suppose that f1, . . . , fm
is the sequence of all fields in the testing subject. Our algo-
rithm to produce field-exhaustive suites will maintain partial
extensions for fields f1, . . . , fm in a vector whose i-th posi-
tion, for 1 ≤ i ≤ m, stores a partial extension for fi. In this
way, our algorithm works on a vector curr_sets consisting
of m sets (the current partial field extensions for f1, . . . , fm).
The algorithm makes use of an incremental SAT solver, rep-
resented by a module solver , with the following routines:

• load : receives as arguments a formula φ (capturing the
invariant and other constraints), and a scopes defini-
tion for the domains involved in the specification. It
generates a propositional formula (in conjunctive nor-
mal form) representing the satisfiability of formula φ
within the provided scopes, and loads it into the solver.

• addClause: (incrementally) adds a clause to the cur-
rent formula in the solver for future solving invoca-
tions.

• solve: calls the SAT-solving procedure, which decides
whether the formula currently loaded in the solver is
satisfiable or not.

• getInstance: if the formula is satisfiable, it retrieves a
satisfying instance from the valuation produced by the
SAT-solver.

Finally, vectors of partial field extensions support a rou-
tine extend , which receives as a parameter a heap instance,

Algorithm 1 Field exhaustive suite computation algorithm

1: function compute-suite(inv, scopes)
2: solver = new Solver()
3: solver.load(inv, scopes)
4: curr sets = [∅, . . . , ∅]
5: suite = ∅
6: while True do

7: solver.addClause

(∨
j∈1,..,m,
〈a,b〉∈dom(fj)\curr sets[j]

varfj (〈a, b〉)
)

8: if solver.solve() then
9: curr sets.extend(solver.getInstance())

10: suite.add(solver.getInstance())
11: else
12: break
13: end if
14: end while
15: return suite
16: end function

and augments the current field extensions with the field tu-
ples contributed by the provided instance (that are not yet
present in the current field extensions).

Our algorithm initializes curr_sets as a vector of empty
sets, which are iteratively augmented according to heap in-
stances computed via calls to the SAT-solver, collecting the
instances obtained in the process. The execution terminates
when curr_sets cannot be augmented any further, in which
case, as we will prove below, the collected instances form
a field-exhaustive suite. Pseudocode for the algorithm is
shown in Algorithm 1. It takes as inputs the invariant of
the testing subject (assumed to include symmetry-breaking
predicates), and the scopes for which the field-exhaustive
suite is to be computed. The algorithm begins by creating a
solver and loading it with the invariant, translated, for the
given scopes, as a propositional formula (lines 2–3). It then
initializes the (partial) field extensions with empty sets for
each of the heap fields (line 4), and the suite as the empty
set (line 5). The while-loop in lines 6–14 augments the field
extensions while collecting instances, until they cannot be
further increased. At this point, the vector holds full field
extensions, the suite achieves field-exhaustiveness and it is
returned by the algorithm as its result (line 15).

A crucial step in our algorithm is performed at line 7,
where the formula currently loaded into the SAT solver is
extended, exploiting incremental SAT solving [23], with a
progress-ensuring constraint on heap field extensions. Vari-
able varfj (〈a, b〉) in this line (see Formula (2)), denotes the
propositional variable that, after translation to a SAT prob-
lem, models the membership of pair 〈a, b〉 to field fi. The
purpose of this constraint is then to ensure that instances re-
turned by solver .solve() contain at least one pair that does
not belong to the partial field extensions already held in
curr_sets. Intuitively, by adding the clause in line 7, the
call to solver .solve() in line 8 can be interpreted as “find a
valid instance of the structure that can be used to augment
at least one of the current field extensions in curr_sets”. If
such an instance exists, curr_sets is augmented (line 9).

The extending clause at line 7 is a crucial element in the
design of our algorithm to compute field-exhaustive suites.
More precisely, by encoding the new constraint as a clause,
we enable the possibility of using incremental SAT solving
[23], a feature supported by many modern SAT solvers, in-
cluding MiniSat [11], the one we use in our experimental eval-

uation for field-exhaustive suite computation. Essentially,
incremental SAT solvers allow one to append further con-
straints written in conjunctive normal form, after each sat-
isfying valuation is found. These constraints are conjuncted
to the main formula, and used in computing the“next” satis-
fying instance incrementally from a currently computed one,
without having to restart the solving process, and therefore
exploiting already learnt clauses (a critical part of SAT solv-
ing based on conflict analysis and clause recording). Notice
that, if the new constraints are not in the right format, the
whole resulting formula has to be translated to conjunctive
normal form and the SAT process restarted from scratch.
The formula added in line 7 is indeed a clause (and thus it
is written in conjunctive normal form), allowing us to em-
ploy incremental SAT solving.

Theorem 1 proves that our algorithm terminates and re-
turns a field-exhaustive test suite.

Theorem 1. Algorithm 1 terminates and returns a field
exhaustive suite.

Proof. Termination easily follows from the following two
facts: (i) for given partial field extensions of the testing sub-
ject whose sizes are limited by a scope, the number of pairs
that can be added to a field’s extension is finite; and (ii)
each while-loop iteration either adds at least an extra pair
to the partial field extensions, or otherwise returns unsat, in
which case the loop terminates.

To prove that the algorithm yields a field-exhaustive suite,
we must prove that the computed suite covers the extension
of all the fields. Let us assume this is not the case and
arrive to a contradiction. Assume Algorithm 1 terminates
and there is a field f and a pair 〈a, b〉 in the extension of f
that was not covered. Let us focus on the last iteration of the
loop prior to termination of the algorithm. Since pair 〈a, b〉
was not yet covered, propositional variable varf (〈a, b〉) must
be one of the disjuncts in the clause fed to the solver in line
7. Since this is the last loop iteration, the solver call in line
8 must return an UNSAT verdict, which contradicts the fact
〈a, b〉 is in the extension of field f . The contradiction arises
from assuming field-exhaustiveness was not achieved.

While our algorithm produces field-exhaustive suites that
are significantly smaller than bounded exhaustive suites (see
the evaluation in Section 6), this algorithm does not neces-
sarily compute minimal field exhaustive suites. As an ex-
ample, consider again the binary search tree case, and the
suite for scope 4 in Fig. 5. Suppose that structures are pro-
duced in the order shown in the figure. Then, the second
and fourth structures do not contribute new tuples to the
extensions of fields left and right, if the remaining struc-
tures are included in the suite. Since we are concerned with
producing small test suites, this negative result stating that
field-exhaustive suites computed by our algorithm may not
be minimal needs to be further examined. As we will prove
in Theorem 2, field-exhaustive suites computed by our algo-
rithm are bounded by the size of field extensions.

Theorem 2. Let us consider a testing subject C1, . . . , Cn.
Let F =

⋃
1≤i≤n{f

Ci
1 , . . . fCi

l(Ci)
} be the set of class fields in

the testing subject. Given a scope k, for each f ∈ F let E(f)
be the extension of field f in scope k. Let #E(f) be the num-
ber of pairs in E(f). Then, the size of the field-exhaustive
test suite produced by Algorithm 1 is at most

∑
f∈F #E(f).

Proof. Each iteration of the loop in lines 6–14 covers at
least one new pair in the extension of some field f ∈ F .
Therefore, in at most

∑
f∈F #E(f) iterations the loop must

terminate. Since each iteration adds one new valid instance
to the suite, the size of the resulting field-exhaustive test
suite must be at most

∑
f∈F #E(f).

Notice that, for every field f : C → C′, its extension in
scope k is a subset of the set of all (binary) tuples formed
with objects of type C and objects/values of type C′, in
scope k. Since both these sets are bounded by k, the ex-
tension of f is bounded by k2, and therefore, according to
Theorem 2, field-exhaustive suites computed by Compute-

Suite can have at most #F × k2, for scope k.

6. EVALUATION
In this section we perform an experimental assessment of

field-exhaustive testing, and the algorithm for automatically
computing field-exhaustive suites. All experiments were run
on a workstation with Intel Core i5 4460 processor, 6Mb
Cache, 3.2Ghz (3.4 Turbo), and 16 Gb of RAM. The first
part of the evaluation compares field-exhaustive test gener-
ation with bounded exhaustive test generation and random
test generation, in various aspects such as size of suites,
generation and testing times, as well as the quality of the
obtained suites in terms of mutation score and branch cover-
age (a mutant is considered killed if, when run on an input,
violates the corresponding method postcondition, which in-
cludes the structure’s invariant). We do so on a number
of data structure implementations with increasingly com-
plex invariants. These are: (i) an implementation of sorted
singly linked lists taken from Korat’s benchmarks (we test
routines get, add and remove); (ii) an implementation of
binary search trees (we test routines add, find and remove);
(iii) an implementation of red-black trees (we test routines
add, remove and contains); and (iv) an implementation of
binomial heaps (we test routines extractMin, delete and
insert). In these analyses, we impose as a restriction a
maximum of 1 hour for generation time and 1 hour for test-
ing time, and 1 million structures for suite size. Notice that
the 1 million limit is on structures, not inputs; inputs are,
in most cases, composed of the structure where the method
is executed, combined with the additional parameters re-
ceived by the corresponding routine (e.g., find in binary
search trees receives the key to be searched for). Since in
tables we report inputs, we have cases that exceed 1 mil-
lion, although these are always built with at most 1 million
structures. Inputs corresponding to the additional method
parameters are also generated using the corresponding ap-
proach (i.e., bounded exhaustively for bounded exhaustive
testing experiments, field-exhaustively for field-exhaustive
testing experiments, etc.). When generation or testing times
are exceeded, we mark so in the table with TO (timeout).
When the limit on the number of structures is exceeded, we
mark so in the table with IL (input limit). The results com-
paring field-exhaustive (FE) testing with bounded exhaus-
tive (BE) testing are summarized in Table 1. The results
for random testing are shown in a separate table, Table 3,
since random testing does not depend on a scope, as the
other two techniques. In both tables, size reports number
of test cases (test suite size). Generation and testing times
are in seconds (testing time is the sum of testing all routines
for each case study). Mutation score and branch coverage

report the percentage of killed mutants and branches cov-
ered, respectively, again as a whole for all routines of each
case study. Mutants were computed using muJava [25]. We
used Korat [5] for bounded exhaustive suite generation, and
Randoop [27] for random test suite generation, in these sets
of experiments. For the case of random testing, we ran the
tool setting a maximum number of test inputs (column size
in Table 3), three times for each limit with different seeds,
and report the maximum coverage/mutation score obtained.

The second part of the evaluation measures the ability of
our computed field-exhaustive suites in finding real bugs, on
the refactoring engine that ships with Eclipse 3.3. We com-
pare with ASTGen [9], a tool for testing programs manipu-
lating abstract syntax trees that bounded exhaustively com-
bines input parts produced by user-written generators, and
QuickCheck [7], a tool for the generation of random suites
(in this case our testing subject does not admit the use of
Randoop, since we do not have Java classes capturing the
generators). We chose as case studies the 3 ASTGen gener-
ators that produced fewer inputs, and the 3 ASTGen gener-
ators the produced more inputs, among all cases in [9]. So,
we compare our approach with ASTGen and random testing
on six different testing cases, corresponding to three refac-
toring operations, namely EncapsulateField, pullUpField
and pullUpMethod. Since this comparison is black-box, we
report only time for test generation and text execution in
each of the approaches, size of the corresponding suites, and
bugs found. Since ASTGen does not discriminate genera-
tion time from testing time, we report these as a whole.
For running ASTGen, we used the generators provided in
[3]. For running QuickCheck, we translated ASTGen gener-
ators as grammars in Haskell, and used QuickCheck on the
resulting Haskell programs to produce the inputs; we pro-
duced randomly generated suites of various sizes, covering
the sizes of our field-exhaustive suites, and of those pro-
duced with ASTGen. For random testing, for each size, we
generated 3 suites and took the average testing time, and
maximum found bugs across runs. In order to apply our
field-exhaustive approach, we manually wrote correspond-
ing Alloy specifications that capture ASTGen generators, and
used these specifications to produce field-exhaustive suites
using incremental SAT (intuitively, our Alloy specifications
captured the elements of Java programs as Alloy signatures,
and their relationships, e.g., a field belonging to a class, as
Alloy fields). Table 2 compares ASTGen, our field-exhaustive
approach, and random testing. The first two produce fixed
numbers of tests (basically, the scopes in this case are es-
tablished by the alternatives for basic program elements in
ASTGen, which are fixed). In the case of random testing,
we produced increasingly larger sets of tests until the maxi-
mum number of bugs were found (known from the results in
[9]). Table 2 also reports the sum of test generation and ex-
ecution times (test generation is negligible both in ASTGen
and random testing, so time in these cases are essentially
just test execution), and the number of bugs found in each
case. The latter are computed examining the refactorings
outputs, helped by ASTGen’s oracles.

6.1 Assessment
Our first set of experiments evaluates various aspects at

the same time. First, it measures how efficiently our algo-
rithm can compute field-exhaustive suites, on data struc-
ture case studies. Table 1 shows that, for the evaluated

Table 1: Bounded exhaustive vs field exhaustive on data structures
Sorted Singly Linked List

Scope Size Gen. time Test. time Mut. score Branch cov.
BE FE BE FE BE FE BE FE BE FE

3 90 45 0.12 0.45 0.03 0.02 92.58 88.76 100 100
4 420 96 0.13 0.54 0.04 0.02 92.81 92.13 100 100
5 1890 168 0.13 0.61 0.07 0.03 92.81 92.81 100 100
6 8316 264 0.15 0.70 0.15 0.03 92.81 92.81 100 100
7 36036 384 0.18 0.84 0.29 0.04 92.81 92.58 100 100
8 154440 720 0.25 1.12 0.50 0.04 93.03 91.69 100 100
9 656370 870 0.44 1.36 1.29 0.05 93.03 91.69 100 100

10 2771340 1125 0.89 1.60 4.49 0.05 93.03 91.69 100 100
11 11639628 1335 2.72 1.91 19.03 0.06 93.03 91.69 100 100
12 IL 1665 IL 2.68 IL 0.06 IL 91.69 IL 100
20 6300 8.87 0.10 91.69 100
30 14364 60.76 0.18 93.03 100
64 77637 3078.10 0.91 91.69 100
65 TO TO TO TO TO

Binary Search Tree
Scope Size Gen. time Test. time Mut. score Branch cov.

BE FE BE FE BE FE BE FE BE FE
3 135 99 0.19 0.47 0.03 0.02 89.69 88.70 98 98
4 612 216 0.18 0.55 0.04 0.03 91.36 90.77 100 98
5 2820 336 0.23 0.72 0.10 0.04 91.36 91.36 100 100
6 13158 456 0.31 0.85 0.20 0.05 91.36 91.36 100 100
7 61950 612 0.62 1.14 0.36 0.05 91.36 91.36 100 100
8 293640 810 2.14 1.33 0.73 0.06 91.36 91.36 100 100
9 1399194 1365 14.85 1.89 2.40 0.07 91.36 91.36 100 100

10 6695730 1290 123.02 2.06 10.71 0.08 91.36 91.36 100 100
11 32156091 1905 1024.21 2.87 51.56 0.08 91.36 91.36 100 100
12 TO 2145 TO 4.32 TO 0.09 TO 91.36 TO 100
15 3015 17.55 0.11 91.36 100
20 6624 982.50 0.16 91.36 100
21 7704 2022.15 0.17 91.36 100
22 TO TO TO TO TO

TreeSet
Scope Size Gen. time Test. time Mut. score Branch cov.

BE FE BE FE BE FE BE FE BE FE
3 144 90 0.59 0.63 0.05 0.03 60.39 53.53 74 67
4 492 216 0.22 0.81 0.04 0.03 75.65 72.68 86 84
5 1725 324 0.28 1.00 0.08 0.04 82.50 81.04 90 89
6 5886 492 0.39 1.21 0.15 0.05 83.22 82.92 90 90
7 19131 684 0.55 1.55 0.27 0.06 83.53 79.26 90 86
8 59736 1035 0.99 1.97 0.40 0.08 85.24 81.93 90 88
9 182331 1230 2.93 2.50 0.69 0.08 85.42 84.34 90 90

10 553170 1575 10.52 4.12 1.39 0.09 85.49 85.31 90 90
11 1690986 1800 52.00 5.31 3.72 0.11 85.56 84.27 90 87
12 5258628 2685 283.42 7.82 10.78 0.14 85.56 84.67 90 88
13 16706859 2730 1531.76 10.83 35.00 0.13 85.56 85.38 90 90
14 TO 2730 TO 14.13 TO 0.13 TO 85.44 TO 90
15 3195 21.24 0.15 84.30 87
20 7326 197.29 0.20 84.69 89
25 10332 1022.75 0.27 84.70 88
30 14346 2894.94 0.34 83.81 87
31 TO TO TO TO TO

Binomial Heap
Scope Size Gen. time Test. time Mut. score Branch cov.

BE FE BE FE BE FE BE FE BE FE
3 197 63 0.22 0.68 0.03 0.03 77.28 76.36 82 82
4 1081 126 0.23 0.85 0.07 0.03 78.40 78.13 84 84
5 10297 216 0.34 1.42 0.24 0.03 80.09 78.39 84 84
6 98827 315 0.41 2.55 0.57 0.05 85.28 83.52 89 89
7 1611241 423 0.90 2.91 4.65 0.05 85.85 85.25 90 90
8 10263649 671 3.11 2.82 27.37 0.07 86.00 83.01 90 87
9 IL 847 IL 3.67 IL 0.07 IL 78.70 IL 84

10 1078 5.13 0.09 85.12 89
11 1298 6.55 0.09 82.37 89
15 2453 27.42 0.14 90.22 90
20 5109 325.55 0.19 94.01 93
25 8099 1174.16 0.24 94.74 93
26 TO TO TO TO TO

case studies, field-exhaustive generation generally scales to
more than twice the scope of bounded exhaustive gener-
ation, measured as the maximum scope that can be cov-
ered within 1 hour. It is worth observing that the size of

our computed field-exhaustive suites grows linearly as the
scope is increased, as opposed to the known exponential
growth of bounded exhaustive suites. Regarding the quality
of the computed suites, Table 1 show that for scopes that

Table 2: ASTGen vs random vs field exhaustive
ASTGen Random Field-Exhaustive

Refactor Inputs Time Bugs found Inputs Time Bugs found Inputs Time Bugs found
EncapsulateField.SingleClassFieldRef 5,280 4,218 4 10 9.13 0 107 113.4 4

100 80.36 1
200 160.32 3
300 240.81 3
400 321.85 2
500 401.00 3
600 482.79 3
700 553.80 4

pullUpMthd.TripleClassMethodChild 1,152 1,091.53 2 10 10.75 1 16 18.57 2
20 18.65 2

EncapsulateFld.DoubleClassFieldRef 23,760 16,480 4 100 76.81 0 167 176.69 3
1,000 769.40 3

10,000 7,689.75 4
EncapsulateField.ClassArrayField 72 75 1 10 10.97 1 16 18.25 1

EncapsulateFld.SingleClassTwoFields 60 57 1 10 10.53 1 10 12.05 1
pullUpField.DoubleClassChildField 72 68 1 10 9.97 1 10 12.15 1

Table 3: Random Testing on data structs.
Sorted S. Linked List

Size Gen. time Test. time Mut. score Branch cov.
1000 0 0.12 92.81 100
5000 1 0.41 93.03 100

Binary Search Tree
Size Gen. time Test. time Mut. score Branch cov.
1000 0 0.10 88.90 98
5000 1 0.38 90.96 100

10000 1 0.71 91.36 100

TreeSet
Size Gen. time Test. time Mut. score Branch cov.
1000 0 0.11 62.53 75
5000 1 0.51 78.55 88

10000 1 0.83 82.64 89
50000 4 3.39 85.17 90

100000 9 6.95 85.19 90
300000 34 20.68 85.21 90

1000000 118 48.67 85.35 90

Binomial Heap
Size Gen. time Test. time Mut. score Branch cov.
1000 0 0.10 78.62 84
5000 1 0.43 85.06 89

10000 1 0.86 85.70 90
50000 6 3.05 85.78 90

100000 13 6.38 86.12 90
300000 42 18.44 86.14 90
700000 110 43.07 94.74 93

are reached both by field-exhaustive and bounded exhaus-
tive suites, the mutation score and branch coverage obtained
are very similar, with less that 2% difference from scope 6.
Considering the largest produced suites in each case, field-
exhaustive suites generally outperform bounded exhaustive
suites both in branch coverage and mutation score, in a
case in more that 8% of its mutation score, with signifi-
cantly smaller suites and corresponding testing times. Re-
garding the comparison with random testing, Randoop pro-
duces suites very efficiently, outperforming in test genera-
tion both the bounded-exhaustive and field-exhaustive ap-
proaches. However, the sizes of test suites required to reach
similar mutation scores and coverage as bounded-exhaustive
and field-exhaustive suites are in most cases significantly
larger. This can be observed in all cases except linked lists.
For instance, it takes 700,000 tests for Randoop to achieve
93% branch coverage for binomial heaps, while field-exhaustive
testing achieves the same coverage with 5109 tests.

The second part of the experiments concentrates on the

ability of field-exhaustive suites to catch real bugs. We com-
pared with ASTGen, a tool particularly tailored to testing
source code manipulating programs, which has been used to
find real bugs in refactoring engines [9], and QuickCheck [7],
a random test input generation tool. Out of the 13 bugs
found by ASTGen with a total of 30,396 test inputs, our
field-exhaustive approach was able to catch 12, with a to-
tal of 326 test inputs. Random testing, on the other hand,
had to make the test set grow up to 10,750 to catch the
13 bugs. It is however important to notice that random
testing performed very well on most case studies; it outper-
formed ASTGen in number of tests to catch all bugs. Still,
field-exhaustive testing showed in this case the best ratio in
number of inputs per bugs found.

All the presented experiments can be reproduced following
the instructions available in [12].

6.2 Threats to Validity
Our experimental evaluation is limited to data structures

and a refactoring engine. Both are good representatives of
data characterized by complex constraints, which are chal-
lenging for automated testing techniques. From the vast
domain of data structures, we have selected a few that we
consider representative for several reasons, because they are
often used as case studies in the evaluation of other anal-
ysis tools [5, 10, 19, 35], and their invariants have varied
complexity (which is a dimension that affects field exten-
sions’ size, and thus also affects the computation of field-
exhaustive suites). One might argue that restricting the
analysis to these case studies might favor our results. While
an exhaustive evaluation of data with complex constraints is
infeasible, we identified that invariant complexity is a dimen-
sion that affects field extensions’ size, and thus their compu-
tation, and designed the experiments to take this problem
into account. We selected structures with a broad range of
complexity, going from those with simple invariants to some
with rather complex constraints.

The selection of tools for comparison might have acciden-
tally favored our techniques. We selected Korat based on the
evaluation of several alternatives, and the analysis in [31];
despite being older than other tools, it is the most efficient
choice for our data structure case studies. Also for this tool,
the implementation of imperative representation invariants
affects its efficiency. We used the imperative invariants pro-
vided with the tool’s examples, which are tailored to Korat’s

bounded exhaustive suites’ computation approach.
Regarding our comparison with ASTGen and random test-

ing on bug finding, we manually produced representations
of ASTGen generators both for QuickCheck and Alloy, to
enable our field-exhaustive approach. We did not formally
verify the equivalence with the generators, but we manually
corroborated that the inputs produced by the three alterna-
tives were consistent across tools, to discard the possibility
of improved efficiency due to errors in the translations. Also,
the selection of the six cases for refactoring was done taking
into account the corresponding numbers of inputs generated
by ASTGen, and we included the three with fewer cases,
where ASTGen shows better ratio between tests and num-
ber of bugs catched. More recent tools such as UDITA [17]
may be used instead of ASTGen. However UDITA improves
only test generation time, not the tests produced (which are
the same as ASTGen’s) nor the test execution time; thus,
UDITA would not produce noticeable improvements in our
experiments. In [12], we provide some additional experi-
ments using UDITA, confirming this observation.

7. RELATED WORK
Automated test case generation is currently a very active

area of research, and many tools and techniques have been
developed in recent years. Among these approaches, the
most effective and successful are either based on random
generation [27, 24, 7], evolutionary computation [13], model
checking [35], constraint solving (including SMT [33] and
SAT solving [1]) or some forms of exhaustive search [5].

Test suites generated by tools based on random gener-
ation and evolutionary computation such as Randoop [27],
AutoTest [24], QuickCheck [7] and EvoSuite [13], tend to gen-
erate large test sets, which has as a consequence an increased
testing time, a problem we try to avoid with field-exhaustive
testing. Our approach corresponds to systematic test gen-
eration, in the terminology of [30], which makes it closer
to tools like Pex [33], FAJITA [1], Symbolic PathFinder [34]
and Korat [5]. These tools are also specification based, i.e.,
they produce tests from input specifications, as opposed to
tools like EvoSuite or Randoop, that use routines/methods
of the testing subject to produce tests. With respect to Ko-
rat, field-exhaustive testing is already extensively compared
to bounded exhaustive testing in the paper, in particular
against this tool. Tools that produce small test sets, gen-
erally driven by some testing criterion (e.g., Pex, FAJITA,
Symbolic PathFinder), usually concentrate on white box cov-
erage, as opposed to our automated testing approach.

In [30] a set of experiments compare random testing and
systematic testing for container classes, arriving to the con-
clusion that random testing produces suites that are compa-
rable in quality (coverage, mutation score) to systematically
produced suites (using shape abstraction), while consum-
ing less computational resources (less generation time). We
compared our approach with random testing, in the first set
of examples against Randoop (because the testing subject
admits such comparison), and in the second case against
QuickCheck. Our results show that, while we still consume
more computation resources, the produced suites are com-
parable in quality with those produced with random testing,
but achieve such quality with significantly fewer test cases.

Incremental SAT has been used by other tools, in par-
ticular in FAJITA [1] for automated test input generation,
and in [8] for generating combinatorial interaction tests for

product families. Other tools use SAT/SMT solving as part
of the test generation process. TestEra [21] uses incremen-
tal SAT-solving for exhaustive bounded generation of input
data. It is then very close to Korat, while Korat shows bet-
ter performance. Whispec [29] builds on specification-based
testing and focuses on maximizing code coverage by itera-
tively running a conjunction of method preconditions and
path conditions. Pex uses SMT solving to produce minimal
suites maximizing branch coverage.

In our approach, computing field-exhaustive suites pro-
duces field extensions. These extensions are equivalent to
(upper) tight field bounds, and thus our work is related to ap-
proaches to compute such bounds, e.g., [15, 28, 4]. However,
none of these related approaches focuses on test generation;
[15] does not collect instances in the tight bound computa-
tion process (and even if it did so, it would be significantly
more inefficient than our approach, since it requires a cluster
for tight bound computation); [28, 4] follow a bounded ex-
haustive enumeration of instances to compute tight bounds,
as opposed to our field-exhaustive mechanism.

8. CONCLUSION AND FUTURE WORK
Thanks to advances in automated testing technologies,

new testing criteria, infeasible in manual testing contexts,
are now emerging. Among the many tools that produce test
suites automatically from code, some produce large suites
that make their use difficult in settings that demand repet-
itive use, like regression testing, while others produce small
suites, typically driven by traditional (most often white box)
testing criteria. We proposed a new black box testing cri-
terion, that we called field-exhaustive testing, whose sat-
isfaction is associated with the coverage of feasible values
for object fields. In effect, the criterion requires a bound
(or scope) to be provided, so the space of valid object in-
stances is finite and limited, and demands enough inputs to
be produced so that every feasible value for every field is cov-
ered. Besides formally defining the criterion, we developed
an algorithm that automatically produces field-exhaustive
suites, and showed that suites can be generated efficiently,
are composed of relatively small numbers of tests, and are of
very good quality, measured in terms of mutation score and
branch coverage. Moreover, the produced suites are com-
parable in coverage and mutation score to suites produced
using bounded exhaustive testing and random testing tools,
with significantly fewer tests.

Our testing criterion and test generation algorithm lead to
various new research problems, that we plan to study. The
test generation algorithm produces field extensions, which
correspond to tight bounds [15, 4], and can be used to im-
prove SAT-based analysis. While in this paper we concen-
trated in testing, this algorithm can be used to compute
tight field bounds, and exploit these for other analyses. We
plan to study this further in the future. Also, while in this
paper we produced field-exhaustive suites for all fields in the
corresponding testing subjects, one may select an appropri-
ate subset of fields, and generate field-exhaustive suites just
for this set. The right set of fields to select will generally de-
pend on characteristics of the testing subject, and the kind
of bugs one is searching for. For instance, choosing only ref-
erence fields in heap allocated data structures would imply
concentrating on structures’ shapes, not the data, and thus
would target bugs related to (re)linking structures’ objects.

9. REFERENCES
[1] P. Abad, N. Aguirre, V. Bengolea, D. Ciolek,

M. F. Frias, J. P. Galeotti, T. Maibaum, M. Moscato,
N. Rosner and I. Vissani, Improving Test Generation
under Rich Contracts by Tight Bounds and
Incremental SAT Solving, in Proceedings of Sixth
IEEE International Conference on Software Testing,
Verification and Validation, ICST 2013, Luxembourg,
Luxembourg, March 18-22, IEEE, 2013.

[2] P. Ammann and J. Offutt, Introduction to Software
Testing, Cambridge University Press, 2008.

[3] ASTGen project site:
http://mir.cs.illinois.edu/astgen/

[4] H. Bagheri and S. Malek, Titanium: Efficient Analysis
of Evolving Alloy Specifications, in Proceedings of
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering FSE 2016, ACM,
2016.

[5] C. Boyapati, S. Khurshid and D. Marinov, Korat:
Automated Testing based on Java Predicates, in
Proceedings of International Symposium on Software
Testing and Analysis ISSTA 2002, ACM, 2002.

[6] P. Chalin, J. Kiniry, G. Leavens and E. Poll, Beyond
Assertions: Advanced Specification and Verification
with JML and ESC/Java2, in Proceedings of the 4th
International Conference on Formal Methods for
Components and Objects FMCO 2005, 2005.

[7] K. Claessen and J. Hughes, QuickCheck: a lightweight
tool for random testing of Haskell programs, in
Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming ICFP 2000,
ACM, 2000.

[8] M. Cohen, M. Dwyer and J. Shi, Constructing
Interaction Test Suites for Highly-Configurable
Systems in the Presence of Constraints: A Greedy
Approach, Trans. Software Eng. 34(5), IEEE, 2008.

[9] B. Daniel, D. Dig, K. Garcia and D. Marinov,
Automated Testing of Refactoring Engines, in
Proceedings of 6th joint meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering ESEC/FSE 2007, ACM, 2007.

[10] G. Dennis, F. Chang and D. Jackson, Modular
Verification of Code with SAT, in Proceedings of the
2006 International Symposium on Software Testing
and Analysis ISSTA 2006, ACM, 2006.

[11] N. Eén and N. Sörensson, An Extensible SAT-Solver,
in Proceedings of the 6th International Conference on
the Theory and Applications of Satisfiability Testing,
SAT 2003, Santa Margherita Ligure, Italy, May 5-8,
Selected Revised Papers, Lecture Notes in Computer
Science, Springer, 2004.

[12] Field-Exhaustive Testing, experiments site:
https://sites.google.com/site/fieldexhaustivetesting/

[13] G. Fraser and A. Arcuri, EvoSuite: automatic test
suite generation for object-oriented software, in
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering ESEC/FSE 2011, ACM, 2011.

[14] M. Frias, J. Galeotti, C. López Pombo and
N. Aguirre, DynAlloy: Upgrading Alloy with Actions,
in Proceedings of the 27th International Conference on

Software Engineering, ICSE 2005, 15-21 May 2005, St.
Louis, Missouri, USA, ACM, 2005.

[15] J. P. Galeotti, N. Rosner, C. López Pombo and
M. F. Frias, Analysis of invariants for efficient
bounded verification, in Proceedings of the 19th
International Symposium on Software Testing and
Analysis ISSTA 2010, ACM, 2010.

[16] J. P. Galeotti, N. Rosner, C. López Pombo and
M. Frias, TACO: Efficient SAT-Based Bounded
Verification Using Symmetry Breaking and Tight
Bounds, IEEE Transactions on Software Engineering
39(9), IEEE, 2013.

[17] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid,
V. Kuncak and D. Marinov, Test Generation through
Programming in UDITA, in Proceedings of
International Conference on Software Engineering
ICSE 2010, ACM, 2010.

[18] D. Jackson, Software Abstractions: Logic, Language,
and Analysis, The MIT Press, 2006.

[19] D. Jackson and M. Vaziri, Finding Bugs with a
Constraint Solver, in Proceedings of the ACM
SIGSOFT International Symposium on Software
Testing and Analysis ISSTA 2000, ACM, 2000.

[20] C. Kaner, J. Bach and B. Pettichord, Lessons Learned
in Software Testing, Wiley, 2001.

[21] S. Khurshid and D. Marinov, TestEra:
Specification-Based Testing of Java Programs Using
SAT, Autom. Soft. Eng. 11(4), Kluwer Academic,
2004.

[22] D. Kroening and M. Tautschnig, CBMC – C Bounded
Model Checker, in Proceedings of the 20th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS
2014, LNCS 8413, Springer, 2014.

[23] J. N. Hooker, Solving the incremental satisfiability
problem, Journal of Logic Programming 15(1),
Elsevier, 1993.

[24] L. Liu , B. Meyer and B. Schoeller, Using contracts
and boolean queries to improve the quality of
automatic test generation, in Proceedings of the 1st
International Conference on Tests and Proofs TAP
2007, LNCS 4454, Springer, 2007.

[25] Y.-S. Ma, J. Offutt and Y.-R. Kwon, MuJava : An
Automated Class Mutation System, Journal of
Software Testing, Verification and Reliability, 15(2),
Wiley, 2005.

[26] G. Myers and C. Sandler, The Art of Software
Testing, John Wiley & Sons, 2004.

[27] C. Pacheco, S. K. Lahiri, M. D. Ernst and T. Ball,
Feedback-Directed Random Test Generation, in
Proceedings of the 29th international conference on
Software Engineering ICSE 2007, IEEE, 2007.

[28] P. Ponzio, N. Rosner, N. Aguirre and M. Frias,
Efficient Tight Field Bounds Computation based on
Shape Predicates, in Proceedings of the 19th
International Symposium on Formal Methods FM
2014, May 12-16, Singapore, Lecture Notes in
Computer Science, Springer, 2014.

[29] D. Shao, S. Khurshid and D. Perry, Whispec: white-box
testing of libraries using declarative specifications, in
Proceedings of the Symposium on Library-Centric
Software Design LCSD 2007, ACM, 2007.

[30] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser and
D. Marinov, Testing container classes: random or
systematic?, in Proceedings of the 14th International
Conference on Fundamental Approaches to Software
Engineering FASE 2011, LNCS 6603, Springer, 2011.

[31] J. Siddiqui and S. Khurshid, An Empirical Study of
Structural Constraint Solving Techniques, in
Proceedings of 11th International Conference on
Formal Engineering Methods ICFEM 2009, LNCS
5885, Springer, 2009.

[32] K. Sullivan, J. Yang, D. Coppit, S. Khurshid and
D. Jackson, Software assurance by bounded exhaustive
testing, in Proceedings of International Symposium on
Software Testing and Analysis ISSTA 2004, ACM,
2004.

[33] N. Tillmann, J. de Halleux, Pex: White Box Test

Generation for .NET, in Proceedings of the 2nd
International Conference on Tests and Proofs TAP
2008, LNCS 4966, Springer, 2008.

[34] W. Visser, C. S. Pasareanu and S. Khurshid, Test
Input Generation with Java PathFinder, in
Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis ISSTA
2004, ACM, 2004.

[35] W. Visser, C. S. Pasareanu and R. Pelánek, Test Input
Generation for Java Containers using State Matching,
in Proceedings of the International Symposium on
Software Testing and Analysis ISSTA 2006, ACM,
2006.

[36] H. Zhu, P. Hall and J. May, Software Unit Test
Coverage and Adequacy, Computing Surveys 29(4),
ACM, 1997.

