
C.B. Jones, Z. Liu, J. Woodcock (Eds.): Bjørner/Zhou Festschrift, LNCS 4700, pp. 435–466, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design in CommUnity with Extension Morphisms

Xiang Ling1, Tom Maibaum1, and Nazareno Aguirre2

1 Department of Computing and Software, McMaster University
1280 Main St West, Hamilton ON, Canada L8S 4K1

lingx@univmail.cis.mcmaster.ca, tom@maibaum.org
2 Departamento de Computaciόn, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36

Km. 601, Río Cuarto (5800), Cόrdoba, Argentina
naguirre@dc.exa.unrc.edu.ar

Abstract. We have been engaged over the past few years in studying and for-
malizing software architecture concepts such as hierarchical design, dynamic
reconfiguration and the application of the concept of aspects to software archi-
tecture descriptions. Our attention has focused on the language CommUnity,
developed by Fiadeiro and Maibaum, and an extension that we call DynaComm
that incorporates support for dynamic reconfiguration, hierarchical design, a
general notion of connector and other supporting mechanisms. In applying Dy-
naComm, we have found that the relationships normally used in CommUnity,
i.e., regulative superposition (used to regulate the behaviour of a component)
and refinement (used to instantiate a role in a higher order connector) are not
sufficient for dealing with some required changes to a software architecture or a
component that we would like to be able to affect. To this end, we have defined
the concept of extension morphism between two components. Such morphisms
do not preserve encapsulation of components, as do regulative superpositions
and refinements, but they do give us substitutability, in the sense of object-
oriented systems, and, hence, a basis of predictability about its application
to designs. In this paper, we describe the nature of extension morphisms and
illustrate their use by means of a non trivial example.

1 Introduction

1.1 Motivation and Background

Software architecture research is directed at addressing the high-level decomposition
and organization of systems, where component interactions are incorporated into the
notion of connectors and identified as first-class design entities. Architecture descrip-
tion languages (ADLs) have been proposed to provide formal modelling notations,
analysis and development tools to support architecture-based development, which
focuses on the system’s high-level structure rather than the implementation details of
any specific modules [33].

There has been some work in surveying ADLs providing broad comparisons. The
survey in [33] compared ADLs with respect to their ability to model components,
connectors and configurations, as well as their tool support for analysis and refine-
ment. The survey in [13] focused on the characteristics of different ADLs supporting

436 X. Ling, T. Maibaum, and N. Aguirre

self-managing architectures, which not only implement the concept of dynamic
change, but also initiate, select and assess the change itself without the assistance of
an external user. We are currently interested in ADLs with support for dynamic soft-
ware architectures and that also support the essential engineering concept of hierar-
chical design. Examples of ADLs, which support such a view, are Dynamic Wright
[11], Darwin [31] and Dynamic Acme [19][38]. An assessment of these languages
can be found in [13] and a more thorough review of their language constructs, associ-
ated styles of specification and mechanisms to achieve dynamic reconfiguration can
be found in [27]. However, these ADLs have important shortcomings in relation to
their support for hierarchical design and having a formal semantics that enable us to
perform useful analyses.

CommUnity [15, 29, 30] was designed to study the problem of the ‘magic step’
from specification to program, in the context of component based design using tempo-
ral and multi modal logics for component specification. It is always the case that the
languages used for specifications and programs are ontologically very different.
Specifications are about properties, whilst programs are about operational behaviour,
even if this behaviour is described abstractly. For one thing, a programming language
has no facility to express properties of programs; a meta language of properties is
required for this. So, programs and specifications occupy different conceptual worlds
and there is not a simple notion of homomorphism or refinement that relates them
directly: hence the reference to the ‘magic step’ above. What is the relationship be-
tween specifications and programs and how can one remove the magic? We cannot
talk about the program being a refinement of a specification, as refinement is an inter-
nal notion in the language of component specifications. We might introduce a notion
of realization, which relates a program to its specification by assigning to the program
a minimal (not unique and minimum) specification, which is a refinement of the
specification.

CommUnity explored this space and addressed the important issue of composition-
ality in this context: when can we say that a program constructed from parts, where
each part is a correct realization as a program of the corresponding specification part,
is correct with respect to the specification constructed from the component specifica-
tions in a way that mimics the construction of the program? Not too surprisingly,
compositionality in this sense is not an easy property to achieve. Given an arbitrary
specification language and some programming language, not every program con-
structed from parts is correct with respect to the corresponding specification. This is
not surprising, as the structural properties of the specification category may not mimic
that of the category of programs, or vice versa.

We have been extending CommUnity to encompass features we regard as essential
for architecture based design, namely hierarchical organization of subsystems and
dynamic reconfiguration [26]. However, in this paper the new features of DynaComm
are not essential for the presentation, so, for the sake of clarity, we avoid the presenta-
tion of its extra details and features.

Recently, we have been exploring the issue of ‘early aspects’ [39], attempting to
see if these ideas can be rationalized, based on traditional software engineering prin-
ciples of modularity and hierarchy, by analyzing them at the architectural level. After
numerous case studies, we have come to the conclusion that aspects are just the soft
goals or non functional requirements traditionally found in requirements engineering,

 Design in CommUnity with Extension Morphisms 437

and that they can be handled uniformly at the architectural level by formalizing a
specific aspect as an architectural pattern used to replace an existing pattern in the
underlying architecture (by means of, for example, a graph transformation). Then,
aspect weaving is achieved by the colimit construction used to obtain the semantics of
any architectural configuration, the latter being defined as a categorical diagram of
component objects and relationships between them. Aspect composition then be-
comes the sequential application of different transformations, corresponding to the
different aspects, to the underlying diagram depicting the original architecture. As
with features, there may be (unforeseen) interactions between different aspects and
the order of application is crucial to achieving the right system. Many aspects require
the replacement of a component in the original architecture by another, closely re-
lated, component that is a subtype of the original component, in the sense of object-
oriented design. This requires a formal relationship between components that involves
breaking encapsulation of the original component in the design. We have developed
the notion of extension as a realization of this controlled breaking of encapsulation.
The application of extension morphisms in the construction of software architectures
is the aim of this paper.

1.2 Introducing CommUnity

CommUnity was developed to explore the relationships between specifications and
programs in a component based development setting. José Fiadeiro and his (former)
students developed the language extensively in the interim [18,29,30], making of
CommUnity a (proto) ADL. A review of CommUnity and its semantics are given,
and, in particular, we rehearse the idea that the notion of superposition can be formal-
ized as a morphism between designs in CommUnity. The concept of superposition is
defined as a structure preserving transformation on designs through the extension of
their state space and control activity while preserving their properties [29,30]. So, a
regulative superposition morphism is proposed in CommUnity as a means of aug-
menting an existing component by superposing a regulator over it while preserving its
functionality, thus supporting a layered approach to system design. In addition, sev-
eral different kinds of morphisms (other than regulative superposition morphisms)
between designs as well as their relationships are also investigated to explain the
language’s well-founded support for compositionality, reusability, and enforcement of
design principles.

The syntax of a CommUnity design is:

design component P
out out(V)
in in(V)
prv prv(V)
init I
do
 [prv] g[D(g)] : L(g), U(g) -> R(g)
endofdesign

A fixed collection of data types (say S) is assumed to be given by a first-order alge-
braic specification and the design is defined over such data types. Because data types

438 X. Ling, T. Maibaum, and N. Aguirre

chosen in the design determine the nature of the elementary computations that can be
performed locally by the components, the emphasis in the language is put on the co-
ordination mechanisms between system components rather than data refinement,
which focuses on computational aspects. As a result, CommUnity does not support
polymorphism directly.

In the above example, V is the set of channels in the design P. Each channel v is
typed with a sort from S. in(V) represents input channels, which read data from the
environment of the component and the component has no control over them. out(V)
and prv(V) are output channels and private channels, respectively. They are controlled
locally by the component. Output channels allow the environment to read data pro-
duced by the component, while private channels support internal activity that does not
involve the environment. We use loc(V) to represent out(V) ∪ prv(V). The formula I
constrains potential initial states of the corresponding program. I is a formula in first-
order logic over the channels of the design.

For any action g, D(g) is a subset of loc(V) consisting of the local channels that can
be written to by action g (we call it the write frame of g). U(g) is a progress condition,
which establishes the upper bound for enabledness and L(g) indicates the lower
bound. In a program, L(g) = U(g), so the guards in a design define the “interval”
within which the guard of the action in a program implementing the design must lie.
R(g) is a condition on V and D(g)’, where by D(g)’ we mean the set of primed chan-
nels from D(g). Primed channels account for references to the values of channels after
the execution of an action. The condition is a first-order logic formula built from V
and D(g)’. Usually, we define it as a conjunction of implications of the form pre ⇒
post, which corresponds to a pre/post condition specification in the sense of Hoare
and where pre does not contain primed channels. Using this form, the number of con-
juncts in the formula will correspond to the number of channels in the write frame of
g, so that we can understand the meaning of the action fairly easily. Moreover, it will
be convenient for us to calculate the colimit of the diagram if we have put all the
designs in this form.

In order to study the relationship between designs, we need the formal definition
for designs as follows:

Definition 1. A design signature is a tuple (V, Γ, tv, ta, D) where:

• V is the set of channels, which is an S-indexed family of mutually disjoint
sets. The channel is typed with sorts in S, which is a fixed set of data types
specified as usual via a first-order specification.

• Γ is a finite set of actions.
• tv is a total function from V to {prv, in, out}, which partitions V into three

disjoint sets of channels, namely private, input and output channels, respec-
tively. Loc(V) represents the union of private and output channels.

• ta is a total function from Γ to {sh, prv}, which divides Γ into private and
shared actions. Only shared actions can serve as the synchronization points
with other designs.

• D is total function from Γ to 2loc(V). The write frame of action g is repre-
sented by D(g).

 Design in CommUnity with Extension Morphisms 439

All these sets of symbols are assumed to be finite and mutually disjoint. Channels are
used as atoms in the definition of terms:

Definition 2. Given a design signature θ=(V, Γ, tv, ta, D), the language of terms is
defined as follows: for every sort s ∈ S,

• ts ::= a , where a ∈ V and of type s
• ts ::= c, where c is a constant with sort s
• ts ::= f(t1,…,tn), where t1: s1,…, tn: sn and f:s1× … × sn → s

The language of propositions is defined as follows:

• φ :: = (t1s ps t2s) | φ1 ⇒ φ2 | φ1 ∧ φ2 | ¬φ

where ps is a binary predicate defined on sort s. The set of predicates defined on sort s
must contain = s.

Having defined the signature of designs and given the language of terms and
propositions, we can formalize the notion of designs as follows:

Definition 3. A design is a pair (θ, Λ), where θ = (V, Γ, tv, ta, D) and Λ is (I, R, L, U)
where:

• I is a proposition defined on θ, which constrains the values of the channels
when the program is initialized.

• R assigns to every action g ∈ Γ an expression R(g).
• For every action g ∈ Γ, L(g) assigns the enabling guard to it and U(g) as-

signs the progress guard.
• For every action g ∈ Γ, for any a ∈ D(g), tv(a) ∈ {prv, out}.

Recall that R(g) specifies the effect of action g on its write frame. For any channel a ∈
D(g), we will use R(g,a) to denote the expression that represents the effect of action g
on channel a.

Before we define the semantic structures for a design, a model for the abstract data
type specification (S) needs to be introduced. The model is given by a Σ-algebra U,
i.e., a set sU

 is assigned to each sort symbol s ∈� S, a value in sU(cU) is assigned to
each constant symbol c of sort s, a (total) function fU

 : s1
U

 × …×sn
U

 → sU
 is assigned to

each function symbol f in S, and a relation ps
U

 ⊆ s × s is assigned to each binary
predicate ps defined on sort s.

The semantic interpretation of designs is given in terms of transition systems:

Definition 4. A transition system (W, w0, E, →) consists of:

• a non-empty set W of states or possible worlds
• w0 ∈ W, the initial state
• a non-empty set E of events

• an E-indexed set of partial functions → on W, W → (E → W), defines the
state transition performed by each event.

Having transition systems to represent the state transitions of a design, we can inter-
pret the signature of a design with the following structure:

440 X. Ling, T. Maibaum, and N. Aguirre

Definition 5. A θ-interpretation structure for a signature θ=(V, Γ, tv, ta, D) is a triple
(T, A, G) where:

• T is a transition system (W, w0, E, →)
• A is an S-indexed family of maps As: Vs → (W → sU

).
• G: Γ → 2E.

That is to say, A interprets attribute symbols as functions that return the value that
each attribute takes in each state, and G interprets the action symbols as sets of events
-- the set of the events during which the action occurs.

It is possible that no action will take place during an event. Such events correspond
to environment steps, which means steps performed by the other components in the
system. Interpretation structures are intended to capture the behavior of a design in
the context of a system of which it is a component. Because environment steps are
taken into account, state encapsulation techniques can be formalized through particu-
lar classes of interpretation structures.

Definition 6. A θ-interpretation structure (T, A, G) for a signature θ=(V, Γ, tv, ta, D)
is called a locus iff, for every a ∈ loc(V) and w, w’� ∈ W, if (w, e, w’) is in →, and
for any g ∈ D(a), e ∉ G(g), then A(a)(w’) = A(a)(w).

This means a locus is an interpretation structure in which the values of the program
variables remain unchanged during events in which no action occurs that contains
them in their write frame.

Having defined the interpretation structures for designs and the model for the ab-
stract data type specification (S), we are able to give the semantics of the terms and
propositions in the language given by the design signature.

Definition 7. Given a signature θ = (V, Γ, tv, ta, D) and a θ-interpretation structure
S= (T, A, G), the semantics of terms (for every sort s, term t of sort s and w ∈ W,
[t]s(w) ∈ sU, the value taken by t in the world w, is defined as follows:

• if t is a ∈ As, [a]s(w) = A(a)(w)
• if t is a constant c, [c]s(w) = cU
• if t is fU

 : s1
U

 ×…× sn
U

 → sU, [f(t1,t2,…,tn)]
s(w) = fU([t1]

s(w), [t2]
s(w), …,

[tn]
s(w))

The semantics of propositions is defined as:

• (S,w) t (t1 =s t2) iff [t1]
s(w) = [t2]

s(w)
• (S,w) t (t1 ps t2) iff [t1]

s(w) ps
U [t2]

s(w)
• (S,w) t φ1 ⇒ φ2, iff (S,w) t φ1 implies (S,w) t φ2
• (S,w) t (¬φ) iff ¬((S,w) t φ)

Now on the semantic level, we can represent whether a proposition (in a signature)
is true or valid in the interpretation structure of the signature:

Definition 8. A θ-proposition φ is true in an θ-interpretation structure S, written S t
φ, iff (S,w) t φ at every state w. A proposition φ is valid, written t φ, iff it is true in
every interpretation structure.

Having introduced the above concepts, we can now define when an interpretation
structure is a model of a design.

 Design in CommUnity with Extension Morphisms 441

Definition 9. Given a design (θ, Λ), where θ = (V, Γ, tv, ta, D) and Λ is a triple (I, R,
L, U), a model of (θ, Λ) is an interpretation structure S=(T, A, G) for θ, such that:

• (S,w0) t I
• for every g ∈ Γ, a ∈ D(g), e ∈ G(g) , and (w, e, w’) ∈ →, then A(a)(w’)=

[R(g,a)]s(w)
• for every w ∈ W and g ∈ Γ, if e ∈ G(g) and for some w’ ∈ W , (w, e, w’) ∈

→, then (S,w) t L(g).

That is to say, a model of a design is an interpretation structure for its signature that
enforces the assignments, only permits actions to occur when their enabling guards
are true, and for which the initial state satisfies the initialization constraint.

A model is said to be a locus if it is a locus as an interpretation structure, which en-
forces the encapsulation of local attributes.

This classification of models reflects the existence of different levels of semantics
for the same design (taken as a set of models), depending on which subset of the set
of its models is considered. These different semantics are associated with different
notions of superposition (design morphism) that have been used in the literature,
namely regulative, invasive and spectative. This means that there is no absolute no-
tion of semantics for designs: it is always relative to the use one makes of designs.
This corresponds to the categorical way of capturing the “meaning” of objects
through the relationships (morphisms) that can be defined between them.

1.3 The Morphisms Between Designs

The concept of superposition has been proposed and used as a structuring mechanism
for the design of parallel programs and distributed systems. Structure preserving
transformations are usually formalized in terms of morphisms between the objects
concerned, thus justifying the formalization of superposition in terms of morphisms of
designs in CommUnity.

Having defined designs over signatures in the above section, we first introduce
signature morphisms as a means of relating the “syntax” of two designs.

Definition 10. A signature morphism σ from a signature θ
1
=(V

1
, Γ

1
, tv

1
, ta

1
, D

1
) to

θ
2
=(V

2
, Γ

2
, tv

2
, ta

2
, D

2
) consists of a total functions σα: V1 → V2, and a partial map-

ping σγ: Γ2 → Γ1 such that:

• For every v ∈ V1 , σα(v) has the same type as v.
• For every o ∈ out(V1), σα(o) ∈ out(V2).
• For every p ∈ prv(V1), σα(p) ∈ prv(V2).
• For every i ∈ in(V1), σα(i) ∈ out(V2) ∪ in(V2).

For every g ∈ Γ2 , such that σγ (g) is defined:

• g ∈ sh(Γ2), then σγ (g) ∈ sh(Γ1).
• g ∈ prv(Γ2), then σγ (g) ∈ prv(Γ1).

• σα(D1(σγ (g)) ⊆ D2(g).
A signature morphism maps attributes of a design to attributes of the system of which
it is a component, and the direction of the mapping is reversed for actions. The first

442 X. Ling, T. Maibaum, and N. Aguirre

condition enforces the preservation of the type of each attribute by the morphism.
Output and private attributes of the component should keep their classification in the
system, while input attributes may be turned into output attributes, when they are
synchronized with output channels of other components and thus represented as out-
put channels of the system. The restriction over action domains means that the type of
each action is preserved by the morphism. In other words, the images of the write
frame of an action in the source program must be contained in the write frame of the
corresponding action in the target program. Notice that more attributes may be in-
cluded in the domain of the target program’s action via a morphism. This is intuitive
because an action of a component may be shared with other components within a
system and, hence, has a larger domain.

Signature morphisms provide us with the means for relating a design with its su-
perpositions. However, superposition is more than just a relationship between signa-
tures on the level of syntax. To capture its semantics, we need a way of relating the
models of the two designs as well as the terms and propositions that are used to build
them.

Signature morphisms define translations between the languages associated with
each signature in the obvious way:

Definition 11. Given a signature morphism σ: θ1 → θ2, we can define translations
between the languages associated with each signature:

• if t is a term:
σ(t) ::= σ(a) if t is a variable a

 c if t is a constant c
 f(σ(t1),…, σ(tn)) if t= f(t1,…, tn)

• if φ is a proposition:
σ(φ) ::= σ(t1) = σ(t2) if φ is t1 = t2

 σ(t1) ps σ(t2) if φ is t1 ps t2

 σ(φ1) ⇒ σ(φ2) if φ is φ1 ⇒ φ2
 σ(φ1) ∧ σ(φ2) if φ is φ1 ∧ φ2
 ¬σ(φ’) if φ is ¬φ’

Definition 12. Given a signature morphism σ: θ1 → θ2 and a θ2–interpretation struc-
ture S = (T, A, G), its σ-reduct, S|σ, is the θ1–interpretation structure (T, A|σ ,G|σ),
where A|σ(a) = A(σ(a)), G|σ(g) = ∪ G(σ-1(g)).

That is, we take the same transition system of the target design and interpret attrib-
ute symbols of the source design in the same way as their images under σ, and action
symbols of the source design as the union of their images under σ-1. Reducts provide
us with the means for relating the behavior of a design with that of the superposed
one. The following proposition establishes that properties of reducts are characterized
by translation of properties.

Proposition 1. Given a θ1 proposition φ and a θ2–interpretation structure S=(T, A, G),
we have for every w ∈ W: (S, w) t σ(φ) iff (S|σ, w) t φ.

Superposition morphisms that preserve locality are called regulative superposition
morphisms and are defined as follows:

 Design in CommUnity with Extension Morphisms 443

Definition 13. A regulative superposition morphism σ from a design (θ1, Λ1) to an-
other design (θ2, Λ2) is a signature morphism σ: θ1 → θ2 such that:

0 t (I2 ⇒ σ(I1)).
1 If v ∈ loc(V1), g ∈ Γ2 and σα(v) ∈ D2(g), then g is mapped to an action

σγ(g) and v ∈ D1(σγ(g)).

For every g ∈ Γ2 for which σγ(g) is defined,

3 If v ∈ loc(V1) and g ∈ D2(σα (v)), then t (R2(g, σα (v)) ⇔ σα(R1(σγ (g),
v))).

4 t (L2(g) ⇒ σ(L1(σγ (g)))).
5 t (U2(g) ⇒ σ(U1(σγ (g)))).

Notice that we do not require σα to be injective, and two channels of the same
category (output/private/input) in the source design can be mapped to one channel of
the target design. Because we only consider the actions in the target design mapped to
the source design, σγ does not need to be surjective.

The second condition implies that actions of the system in which a component C is
not involved cannot have local channels of the component C in their write frame,
which corresponds to the locality condition: new actions cannot be added to the do-
mains of attributes of the source program. The justification is as follows: suppose
system action g has σα(v) in its write frame, v ∈ loc(V1), then σγ(g) must be defined,
and σγ(g) ∈ D1(v). Therefore, component C is involved in the system action.

Regulative superposition morphisms require that the functionality of the base de-
sign in terms of its variables be preserved (the underspecification cannot be reduced)
and allows for the enabling and progress conditions of its actions to be strengthened.
Strengthening of the lower bound reflects the fact that all the components that partici-
pate in the execution of a joint action have to give their permission for the action to
occur. On the other hand, the progress of a joint action can only be guaranteed when
the involved components can locally guarantee so. Regulative superpositions preserve
encapsulation and do not change the actions themselves, as far as they relate to the
basic variables.

Proposition 2. Let σ: (θ1, Λ1) → (θ2, Λ2) be a regulative superposition morphism.
Then the reduct of every model of (θ2, Λ2) is also a model of (θ1, Λ1).
We find that in the proof of proposition 2.2, we do not use condition 2 of regulative
superposition morphism, which means this proposition will hold without enforcing
the encapsulation principle. When we consider condition 2 and the definition of signa-
ture morphism, we will have the following assertion:

Proposition 3. If v ∈ loc(V1), then D1(v) = σγ(D2(σα(v))).
This result implies the following property:

Proposition 4. Let σ: (θ1, Λ1) → (θ2, Λ2) be a regulative superposition morphism;
then the reduct of every locus of (θ2, Λ2) is also a locus of (θ1, Λ1).
The reason is that through regulative superposition, the domains of the attributes
remain the same up to translation, as stated above. Therefore, it will prevent “old

444 X. Ling, T. Maibaum, and N. Aguirre

attributes” from being changed by “new actions”, i.e., actions of the target design not
mapped to the source design.

Now we will introduce the notion of extension morphism, related to ideas of
model-expansiveness. The motivation for extension morphisms originated from the
substitutability principle from object oriented program design, which says if a com-
ponent P2 extends another component P1, then we can replace P1 by P2 and the “cli-
ents” of P1 must not perceive the difference. This principle cannot be characterized by
regulative superpositions or refinement morphisms, as we may want to extend the
component by breaking encapsulation. This controlled breaking of encapsulation is
necessary when dealing with many aspects.

Definition 14.An extension morphism σ from a design (θ1, Λ1) to another design (θ2,
Λ2) is a signature morphism σ such that:

1 σγ is surjective.
2 σα is injective.
3 There exists a formula β, which contains only channels from (V2 − σα(V1)),

such that β is satisfiable and t I2 ⇔ σ(I1) ∧ β.

For every g ∈ Γ2 for which σγ (g) is defined,

4 If v ∈ loc(V1) and g ∈ D2(σα(v)), then there exists a formula β, which con-
tains only primed channels from (V2’ − σα(V1)’), and β is satisfiable and
such that t σ (L1(σγ(g))) ⇒ (R2(g, σα(v)) ⇔ σα(R1(σγ(g), v)) ∧ β).

5 If v ∈ loc(V1), g ∈ D2(σα(v)), then v ∈ D1(σγ(g)).
6 t (σ(L1(σγ(g))) ⇒ L2(g)).
7 t (σ(U1(σγ(g))) ⇒ U2(g)).

This definition of extension morphism was first given [8]. Because we expect that the
extended design can replace the original design in a system and the clients of the
original component should not perceive any difference, the first two conditions ensure
the preservation of its interface. The initialization condition of the original design can
be strengthened in its extended version, while respecting the initialization of the
channels of the original component, as required in the third condition. The fourth
condition indicates that the actions corresponding to those of the original design
should preserve the assignments to old channels and the assignments to new channels
must be realisable, when the safety guards of their image actions in the original design
are satisfied. The fifth condition establishes that for each action of the extended de-
sign that is mapped to an action of the original design, it can only modify old channels
that have been modified by the corresponding action of the original design. The last
two conditions indicate that both the enabling and progress guards can be weakened,
but not strengthened.

Because an extension morphism relaxes the enabling guard of the source design,
the reduct of a model of the target design may not be a model of the source design.
However, the model-expansive property holds for extension morphism [8], which
means the extended design can replace the source design and the clients of the origi-
nal design will not perceive the difference.

 Design in CommUnity with Extension Morphisms 445

Proposition 5. Let σ be an extension morphism from a design (θ1, Λ1) to another
design (θ2, Λ2). Then, every model of (θ1, Λ1) can be expanded to a corresponding
model of (θ2, Λ2).

The rationale behind the definition of extension morphisms is the characterization of
the substitutability principle (a property that can be shown to fail for invasive super-
position, a more general and less predictable way of breaking encapsulation, as de-
fined in [15]). The above result shows that, if there exists an extension morphism σ
between two designs (θ1, Λ1) and (θ2, Λ2) (and this extension is realisable), then all
behaviours exhibited by (θ1, Λ1) are also exhibited by (θ2, Λ2). Since superposition
morphisms, used as a representation of “clientship” (strictly, the existence of a super-
position morphism between two designs indicates that the first is part of the second,
as a component is part of a system when the first is used by the system), restrict the
behaviours of superposed components, it is guaranteed that all behaviours exhibited
by a component when this becomes part of a system will also be exhibited by an ex-
tension of this component, if replaced by the first one in the system. Of course, one
can also obtain more behaviours, and this is the intention behind the definition of
extension morphisms, resulting from the explicit use of new actions of the compo-
nent. But if none of the new actions are used, then the extended component behaves
exactly as the original one did.

Now we introduce the relationship of refinement between two components, which
we need to enable us to use the architectural concept of connector.

Definition 15. A refinement morphism σ from a design (θ1, Λ1) to another design (θ2,
Λ2) is a signature morphism σ: θ1 → θ2 such that:

1 For every i ∈ in(V1), σα(i) ∈ in(V2).
2 σα is injective on input and output channels.
3 σγ is surjective on shared actions in Γ1.
4 t (I2 ⇒ σ(I1)).
5 If v ∈ loc(V1), g ∈ Γ2 and σα(v) ∈ D2(g), then g is mapped to an action

σγ(g) and v ∈ D1(σγ(g)).

For every g ∈ Γ2 where σγ(g) is defined,

6 If v ∈ loc(V1) and g ∈ D2(σα(v)), then t (R2(g, σα(v)) ⇒ σα(R1(σγ(g), v))).
7 t (L2(g) ⇒ σ(L1(σγ(g)))).

For every shared action g ∈ Γ1,

8 t (σ(U1(g)) ⇒ ∧ U2(σγ
-1(g))).

A refinement morphism identifies a way in which design (θ1, Λ1) is refined by a more
concrete design (θ2, Λ2). The first three conditions must be established to ensure that
refinement does not change the interface between the system and its environment.
Notice that we do not require σγ to be injective because the set of actions in the target
design that are mapped to action g of the source design can be viewed as a menu of

446 X. Ling, T. Maibaum, and N. Aguirre

refinements that is made available for implementing g. Different choices can be made
at different states to take advantage of the structures available at the more concrete
level.

As for the “old actions”, the last two conditions in the refinement morphism defini-
tion require that the interval defined by their enabling and progress conditions must be
preserved or reduced. This is intuitive because refinement should reduce underspeci-
fication, so the enabling condition of any implementation must lie in the “old inter-
val”: the lower bound cannot be weakened and the upper bound cannot be strength-
ened. This is also the reason why the underspecification regarding the effects of the
actions of the more abstract design are intended to be reduced.

Proposition 6. The structure composed of CommUnity designs and superposi-
tion/refinement/extension morphisms constitutes a category SUP/REF/EXT, respec-
tively, where the composition of two morphisms σ1 and σ2 is defined in terms of the
composition of the corresponding channel and action mappings of σ1 and σ2.

So, we can build superpositions/refinements/extensions incrementally. Most im-
portantly, SUP has finite colimits, i.e., we can compute the system corresponding to a
configuration of CommUnity designs whose channels and actions are synchronized
via cables and superposition morphisms. So called higher order connectors [29] are
defined in CommUnity to enable designers to use complex connectors between com-
ponents, in the style of software architecture approaches. These higher order connec-
tors are just CommUnity designs in which some components play a designated role,
namely stating minimum requirements of actual components to be connected by the
connector in question. One can instantiate a role with a ‘real’ component by defining
a refinement from the role to the component. Thus, when designing a system using
components and connectors, we may end up with a configuration in which we see
both regulative superpositions and refinements. In order to calculate the intended
system form this configuration, we must eliminate the refinements and thus get a
configuration in SUP.

Luckily, we have the following crucial result about the joint use of refinement and
superposition morphisms. If we restrict the kinds of components used to interconnect
components to so called cables, we can combine superposition morphisms from such
a cable with a refinement. A cable is a design containing only input channels and its
actions having the following form g: true -> skip. We only expect input
channels in the cable, which can be used to interconnect designs, because output
channels cannot be used to connect the input channel of one design with the output
channel of another design, and it will make no sense to interconnect output channels
of different designs. Also we set the enabling guard and progress guard of each ac-
tion in the cable to true and set R(g) to skip (by skip we mean this action has no
effects on the local channels of the design), which is good enough to synchronize the
actions.

Proposition 7. Suppose m is a regulative superposition morphism from cable θ to
design Ci and n is a refinement morphism from design Ci to design Ei; there exists a
regulative superposition morphism n’ from cable θ to design Ei such that n’=n•m.

 Design in CommUnity with Extension Morphisms 447

Fig. 1. Combining regulative superposition and refinement morphisms

2 CommUnity and Extension Morophisms

It has been shown in [5] that higher-order connectors provide a very convenient basis
for enhancing the behavior of an architecture of component designs, by the superim-
position of aspects, such as fault tolerance, security, monitoring, compression, etc.
Owing to the coordination mechanism of CommUnity, which externalizes completely
the definition of interaction between components, the coupling between the compo-
nents has been reduced to a minimum so that we can superimpose aspects on existing
systems through replacement, superposition and refinement of components. However,
higher-order connectors are not powerful enough for defining various kinds of as-
pects, because some of them require extensions of the components and connectors [8],
which break encapsulation of the extended component, though in a controlled and
predictable way. (The usual relationships used in CommUnity, i.e., regulative super-
position and refinement, preserve encapsulation: channels (attributes) of the original
component are not modified by new actions of the new component and actions of the
original component can only have their enabling guards and effects strengthened in
the new component.) Hence, we defined an extension morphism as a mechanism for
modifying/adapting components, in a way that satisfies the notion of substitutability
arising in the context of object oriented design and programming [8], enables us to
predict properties of extended components in a safe manner and enables the design of
various aspects [8].

This means that in a well-formed configuration diagram we should be able to re-
place component C by its valid extension, component C’, and preserve the well form-
edness (our ability to compute the colimit) of the diagram. We prove this property in
the next section. To illustrate the application of this principle in designing systems
with the CommUnity language, a vending machine system example will be discussed
below to show how we can combine regulative superpositions with extension mor-
phims to derive an “augmented” version of the original system, where the modified
system is not simply a refinement of the original, nor is it a regulated version of the
original obtained by the use of regulative superpositions (the usual structuring rela-
tionship in CommUnity).

2.1 Combining Regulative Superpositions with Extension Morphisms

In this section we will consider the case where, in a well-formed configuration dia-
gram, one component is extended by a design through an extension morphism. Since

448 X. Ling, T. Maibaum, and N. Aguirre

we know that, in a well formed configuration diagram, all the components are inter-
connected by cables through regulative superposition morphisms, the component to
be replaced by the extended design is connected to a cable by the regulative superpo-
sition morphism, as shown in Figure 2. We will show that the regulative superposition
can be combined with the extension morphism to obtain a new regulative superposi-
tion from the cable to the extended component. This then allows us to apply the
mechanisms of CommUnity to obtain the semantics of the extended configuration
diagram, the colimit, which again consists of components connected through cables
and superposition morphisms. Again, it is crucial to have the notion of cables to inter-
connect the components, to ensure that the composition of regulative superposition
and extension morphism will give a new regulative superposition.

Fig. 2. Combining regulative superposition and extension morphisms

Proposition 8. Suppose m is a regulative superposition morphism from cable θ to
design Ci and n is an extension morphism from design Ci to design Ei; there exists a
regulative superposition morphism n’ from cable θ to design Ei such that n’=n•m.
Proof
The morphism n’ is defined as follows:

• n’α is a total function: for every channel v in θ , n’α (v) = nα (mα (v)).
• n’γ is a partial mapping: for every action g in Ei , if nγ(g) is defined and mγ(nγ

(g)) is also defined, n’γ (g) = mγ(nγ (g)); otherwise, it is undefined.

Since an extension morphism is also a signature morphism, we know n’ is a signature
morphism. To check if n’ is a regulative superposition morphism, we need to check
the following conditions:

• IEi ⇒ n’(Iθ).

Because n is an extension morphism, there exists a formula α, using only channels

contained in (∨Ei−nα(VCi)), and α is satisfiable, t IEi ⇔ n(I Ci)∧α.
We have IEi ⇒ n(ICi), ICi ⇒ m(Iθ), so n(ICi) ⇒ n(m(Iθ)) ⇔ n’(Iθ), and IEi ⇒ n’(Iθ).

• If v ∈ loc(θ), g ∈ ΓEi and n’α(v) ∈ DEi(g), then g is mapped to an action
n’γ(g) and v∈ Dθ(n’γ(g)).

• For every g ∈ ΓEi where n’γ(g) is defined, if v ∈ loc(θ) and g ∈ DEi(n’α(v)),
then REi(g, n’α(v)) ⇔ n’α(R θ(n’γ(g),v)).

Because θ only contains input channels, loc(θ) is empty, so these two conditions hold.

 Design in CommUnity with Extension Morphisms 449

• L Ei(g) ⇒ n’(Lθ(n’γ(g))).
• UEi(g) ⇒ n’(Uθ (n’γ(g))).

From our definition of “middle” design, Lθ(n’γ(g)) ⇔ true, Uθ(n’γ(g)) ⇔ true, so these
two conditions hold.

With this property, in a well-formed configuration diagram, we are able to replace
a component by its extension component, by combining the regulative superposition
from the cable to the old component with the extension morphism between the old
component and its extension, to obtain a new regulative superposition from the cable
to the extended component. If we build several extensions, each built on top of the
previous one, then the fact that extensions compose in the category of CommUnity
designs and extension morphisms guarantees that this composition is an extension.
Hence, the above result still applies when we build extensions incrementally. There-
fore, we reach the conclusion that in a well-formed configuration diagram of a
system, we can extend any subcomponents of the system (through extension mor-
phisms), and thus obtain an updated well-formed configuration diagram only con-
taining regulative superpositions, through which the semantics of the new system
can be derived from its colimit. Moreover, it can be shown that the colimit of the
new configuration diagram is an extension of the colimit of the old configuration
diagram [8].

By examining the proof of proposition 8, we can see that, if θi is not a cable, the
composition of a regulative superposition and an extension morphism may not give a
regulative superposition. Therefore, it is necessary to enforce designs to be intercon-
nected by cables in a well-formed configuration diagram, so that the colimit will exist
after extending any of the designs in the diagram through extension morphisms. (This
result mimics the properties of refinements in the context of cables and regulative
superpositions.)

3 An Example Vending Machine System

Now we want to model a system consisting of a customer and a vending machine with
the DynaComm language, to illustrate the use of hierarchical design and then to illus-
trate the use of extension morphisms to enable us to modify our design in a way not
allowed by refinements and regulative superpositions. The requirement of this system
is described as follows: The vending machine maintains a list of items, along with the
price and amount of each item. The customer can place an order by inputting the
name of the item and the payment to the vending machine. Initially, we only allow the
customer to order one item in a transaction; this will be extended later. The vending
machine will check the price of the item and decide if the order is accepted. If so, it
will deliver the item along with the change to the customer; otherwise, the payment is
returned to the customer. Initially, the vending machine will only accept payment
comprised of nickels, dimes, quarters and loonies (Canadian single dollars using the
image of a local bird), so it will refuse the order if the customer puts a one cent piece
in the payment slot. Meanwhile, if the vending machine is not able to make the
change, it will also refuse the order and return the payment.

450 X. Ling, T. Maibaum, and N. Aguirre

3.1 The Design of the Customer

We consider the machine’s interface, operated by the customer, as the simulation of
the customer’s behavior. To make the system simple and general at first, the interface
is divided into two parts: the buttons and the slot. The names of different items label
the corresponding item buttons, and after the customer presses one of them, other item
buttons will be disabled, so that he can only choose one item in an order. Then the
customer can choose the “confirm” button to continue the order, where the slot will
indicate to him to put the coins in and the complete order will be sent to the vending
machine. If the customer chooses the “cancel” button, all the item buttons will be
enabled and he can start another order.

The vending machine will check the price of this order and whether the ordered
item is still available in its storage. If so, it will ask the slot to make the change. Then
the vending machine will deliver the product to the slot and enable the item buttons, if
the change can be made. Otherwise, the order will be refused and the payment is re-
turned to the customer.

3.1.1 The Interface Controller
According to the above requirement, the customer places his order of an item through
the buttons (including the item buttons and the command buttons: confirm and cancel)
on the machine’s interface, so we design an interface controller to model these but-
tons, as well as the customer’s interaction with the interface of the machine. A finite
set of actions for the item buttons and “confirm”, “cancel” buttons are specified in the
following design. The slot_get and slot_ret actions are designed to interact with
the slot component to obtain the payment from the customer. Meanwhile, we use the
order action to send the complete order to the vending machine, and after the order
has been processed by the vending machine, the order_ret action will be called to
reset the controller.

design component controller
in // the customer’s payment in the slot

i_pay: int
prv b_item: array(int);

bt_g: bool; //guard for item buttons
bt_confirm: bool; //guard for confirm/cancel buttons
slot_g: bool; // guard for slot get action
s_req: bool;
ord_g: bool; // guard for order action
o_req: bool

out // order to vending machine
c_item: list (int);
c_pay: int

init ord_g = false ∧ o_req = false ∧ bt_g = true ∧ bt_confirm
= false ∧ slot_g = false ∧ s_req = false ∧ c_item = NULL

actions
button_select(id: int)[bt_g,c_item,bt_confirm]: bt_g,
false ->
bt_g’ = false ∧ c_item’ = c_item * b_item [id] ∧
bt_confirm’ = true

 Design in CommUnity with Extension Morphisms 451

[] button_confirm[bt_confirm,slot_g]: bt_confirm, false ->
bt_confirm’ = false ∧ slot_g’ = true

[] button_cancel[bt_confirm,bt_g,c_item]: bt_confirm, false
-> bt_g’ = true ∧ bt_confirm’ = false ∧ c_item’ = NULL

[] slot_get[slot_g,s_req]: slot_g, false ->
slot_g’ = false ∧ s_req’ = true

[] slot_ret[c_pay, s_req, ord_g]: s_req, false ->
c_pay’ = i_pay ∧ s_req’ = false ∧ ord_g’ = true

[] order[o_req,ord_g]: ¬o_req ∧ ord_g, false ->
o_req’ = true ∧ ord_g’ = false
// enable all the item buttons

[] order_ret[o_req, bt_g, c_item]: o_req, false ->
o_req’ = false ∧ bt_g’ = true ∧ c_item’ = NULL

endofdesign

The input channel i_pay indicates the payment received from the customer. A fi-

nite set of item button actions (button_select) are defined, which correspond to the
sequence of item buttons on the machine’s interface. These actions are examples of
schema actions indexed by the id (in the above sequence) of the item buttons. Such
schema actions may be used to describe succinctly a finite set of related actions, dis-
tinguishable by means of some index set. See [27] for a full explanation of such fami-
lies of actions and their precise semantics. We use a fixed size array b_item to store
the item’s index in the storage of the vending machine, and the index of array b_item
will correspond to the id of the item button, e.g., the second item button b_item[2]
may correspond to the item index 6 in the item list of the vending machine’s storage.

The workflow of the controller component is described as follows. After one item
button is selected, the guard bt_g is set to false to disable all the item buttons, so that
the customer can only choose buttons confirm or cancel (as the enabling guards of
other actions are disabled). If he chooses the confirm button, the guard slot_g is en-
abled and the slot_get action will be executed to request the customer’s payment in
the slot component. If the cancel option is selected, the controller will enable all the
item buttons and wait for the customer’s input of a new transaction. After the payment
is obtained from the slot, the order action will be called and it will send the order

Fig. 3. Graphical representation of the controller component

452 X. Ling, T. Maibaum, and N. Aguirre

(c_item, c_pay) to the vending machine, then wait for the result of the order. After the
vending machine processes the order and indicates the result to the order_ret action of
the controller, the order_ret action will reset the item buttons and the c_item list, to be
ready to accept another order. The graphical notation for the (syntax of the) controller
component is shown in Figure 3 (we suppress private channels and actions):

Notice that we use a number of guards to control the sequence of actions in the
controller, and the correctness of our design can be ensured by maintaining the right
workflow of the component through the appropriate use of these guards. We also use
the list data structure to record the ordered items, although currently only one item is
allowed in the order. The reason is that in the different kinds of design morphisms we
have discussed so far, the mapping of channels requires the types of channels to be
preserved. (Refinement morphisms do not support data refinement, so a refinement
solution to get around this problem is not available.) If we use one channel of integer
type to record the ordered item now and there is a new requirement to allow the cus-
tomer to select multiple items in an order, we have to add new channels to the com-
ponent and modify the corresponding actions as well, which seems awkward. There-
fore, we choose the list data structure for the ordered items and the corresponding
actions are designed to process the list of items.

We have also designed a pattern for a pair of actions of one component (e.g.
slot_get and slot_ret), which sends a request to another component and waits for its
response to proceed. The trick is to assign a guard (initialized to be false) to the call-
back action to make sure that it will not be called arbitrarily in an unexpected situa-
tion, and it will only be enabled in the request action.

3.1.2 The Slot
The slot component takes care of the acceptance of the customer’s payment and de-
cides if the correct change can be made depending on its current store of coins. When
the interface controller requests the payment from the customer, the slot will distin-
guish the various kinds of coins and it will refuse the payment and indicate this event
to the controller if there exists an illegal coin in the customer’s input. Otherwise, it
will store the coins and send the payment amount to the controller. Regarding the
function for making the change, the slot is able to compute the composition of coins
for the amount of change requested by the vending machine, based on its current
store. If the computation is not successful, the vending machine will refuse the order
and inform the slot to return the payment, which can certainly be made.

In the following design of component slot, a set of input channels such as i_dollar,
i_quarter, etc. represents the payment from the customer, a set of private channels is
included as the coin store of the slot, and we also use output channels o_nickel,
o_dime, o_quarter and o_dollar to represent the change made by the slot. The get_pay
action stores the coins in the payment and the send_pay action puts the amount of
payment in the output channel o_pay. According to the amount of change that should
be made in the input channel r_change, the comp_change action will compute the
composition of coins, and the send_change action will send the result of the computa-
tion (change_res) and update the storage of coins if needed. While the ordered item is
accepted by the action rec_item, and the rec_return action receives the returned pay-
ment amount and returns the coins to the customer.

 Design in CommUnity with Extension Morphisms 453

design component slot
in // input coins from customer

i_cent: int;
i_nickle: int;
i_dime: int;
i_quarter: int;
i_dollar: int;
// received change amount and items from vending machine
r_change : int;
r_item: list(ITEM)

prv // coins storage
s_nickle: int;
s_dime: int;
s_quarter: int;
s_dollar: int;
// guards for action sequence
get_g: bool;
change_g:bool;
item_g: bool

out // changes made by the slot
o_nickle: int;
o_dime: int;
o_quarter: int;
o_dollar: int;
s_item: list (ITEM); // items to slot
o_pay: int; // payment amount to the controller
change_res: bool

init get_g = true ∧ change_g = true ∧ change_res = false ∧
item_g = false

actions
get_pay[get_g, s_nickle, s_dime, s_quarter, s_dollar]:
get_g ∧ i_cent = 0, false ->
get_g’ = false ∧ s_nickle’ = s_nickle + i_nickle ∧
s_dime’ = s_dime + i_dime ∧ s_quarter’ = s_quarter +
i_quarter ∧ s_dollar’ = s_dollar + i_dollar

[] send_pay[get_g, o_pay]: ¬ get_g, false ->
get_g’ = true ∧ o_pay’ = 100*i_dollar + 25*i_quarter +
10*i_dime + 5*i_nickle

[] comp_change[change_g, change_res]: change_g, false ->
get_changed ∧ change_g’ = false

[] send_change[change_g]: ¬change_g, false ->
change_g’ = true ∧ (change_res = true ⇒ item_g’ = true ∧
s_nickle’ = s_nickle - o_nickle ∧ s_dime’ = s_dime -
o_dime ∧ s_quarter’ = s_quarter - o_quarter ∧ s_dollar’ =
s_dollar - o_dollar)

[] rec_item[s_item, item_g]: item_g, false ->
s_item’ = r_item ∧ item_g’ = false

[] rec_return[ret_g, s_item,]: true, false ->
s_item’ = NULL ∧ get_changed

endofdesign

454 X. Ling, T. Maibaum, and N. Aguirre

In the above design, we assume the function to compute the composition of
change, namely get_change, has already been defined, which takes r_change as input
and computes the number of nickels, dimes, quarters and dollars. If the computation is
successful, it will set change_res to be true and the output channels for the change.
Otherwise, change_res is set to false and this event is sent to the vending machine.
Actually, get_change solves a linear programming problem, which takes s_nickel,
s_dime, s_quarter, s_dollar and r_change as parameters. To simplify the specification
of the slot component, we do not describe the detailed procedure here.

The workflow of the slot component is described as below. When the interface
controller requests the payment from the customer, the get_pay and send_pay actions
will be executed to provide the payment amount to the controller. After the vending
machine receives the order and recognizes that the payment is enough, it will ask the
slot to compute the change. So, the comp_change action is called and the result of
computation (change_res) is sent to the vending machine by the send_change action.
If the result is successful, the change is given to the customer by the slot and the
vending machine will send the product to the slot by means of the rec_item action.
Otherwise, the rec_return action will get the amount of payment from the vending
machine and give it back to the customer by calling the get_change function. The
graphical notation for the slot component is as follows, where we again suppress the
private channels and actions.

Fig. 4. Graphical representation of the slot component

3.2 The Design of the Vending Machine

Based on the functional requirement of the vending machine, we will divide it into
two components: vender and inventory, where the vender is in charge of the interac-
tion with the customer interface (controller and slot), and the inventory serves as a

 Design in CommUnity with Extension Morphisms 455

database for storing the actual products (items) and maintaining the price and amount
of each item.

3.2.1 The Vender
The job of the vender is to accept the order from the customer (the accept action), ask
the inventory to check the price and amount of the ordered item(s) (actions check_inv
and check_ret), send the amount of change to the slot and ask if the change can be
made (actions change and change_ret), request the item(s) from the inventory (actions
req_item and req_return), deliver the item(s) to the customer (the delivery action) or
return the payment (the return_ord action), and inform the interface controller to be
reset to start a new order (the reset_controller action). The design of the vender com-
ponent is as follows, the meaning of the channels being explained in the comments.

design component vender
in // the ordered item(s) and payment from the controller

in_item: list(int);
in_pay: int;
// the price of the ordered item(s) from the inventory
inv_price: int;
inv_item: list(ITEM);
// the result of checking whether the change can be made
from the slot
chg_res: bool

prv // the set of guards to control the sequence of actions
ac: bool;
ck: bool;
cg: bool;
rt: bool;
rq:bool;
rc: bool;
dl:bool;
// stores the requested item(s) from the inventory
v_item: list(ITEM);
// stores the order and payment from the customer
ord_item: list(int);
ord_pay: int

out // the order and payment to be sent to the inventory
ck_item: list(int);
ck_pay: int;
// the amount of change to be sent to the slot
chg_amt: int;
// the ordered item(s) sent to the customer
out_item: list(ITEM);
// the returned amount of payment to be sent to the slot
ret_amt: int

init ac’ = false ∧ ck’ = false ∧ cg’ = false ∧ rt’ = false ∧
dl’ = false ∧ rq’ = false ∧ rc’ =false

actions
 [ac, ord_item, ord_pay, ck]: ¬ac, false ->

ac’ = true ∧ ord_item’ = in_item ∧ ord_pay’ = in_pay ∧ ck’
= true

456 X. Ling, T. Maibaum, and N. Aguirre

[] check_inv[ck, ck_item, ck_pay]: ck, false ->
ck_item’ = ord_item ∧ ck_pay’ = ord_pay ∧ ck’ = false

[] check_ret[cg, rt, v_item]: true, false ->
(inv_price >= 0 ⇒ cg’ = true) ∨(inv_price = 0 ⇒ rt’ =
true)

[] change[cg, chg_amt]: cg, false ->
chg_amt’ = ord_pay － inv_price ∧ cg’ = false

[] change_ret[rq, rt]: true, false ->
(chg_res = true ⇒ rq’ = true) ∨(chg_res = false ⇒ rt’
= true)

[] req_item[rq, ck_item]: rq, false ->
ck_item’ = ord_item ∧ rq’ = false

[] req_return[v_item, dl]:true, false ->
v_item’ = inv_item ∧ dl’ = true

[] return_ord[rt, ret_amt, out_item, ac, rc]: rt, false ->
rt’ = false ∧ ret_amt’ = ord_pay ∧ out_item’ = NULL ∧
rc’ = true

[] delivery[dl, ac, out_item]: dl, false ->
dl’ = false ∧ out_item’ = v_item ∧ rc’ = true

 // inform the controller to accept another order
[] reset_controller[rc]: rc, false ->

rc’ = false ∧ ac’ = false
endofdesign

According to the initialization condition of this design, only the accept action is

enabled and it is synchronized with the order action of controller to accept the order
of the customer. It also sets the guard ck to be true, so that the check_inv action will
be executed to ask the inventory to check the price and amount of the ordered item(s).
The check_ret action waits for the response from the inventory: if inv_price>=0, it
means that the transaction can continue and this action sets the guard cg to be true, to
call the slot to check if the change can be made; otherwise, it enables the guard rt to
call the return_ord action, if any item is not available or the payment is not enough.

If the order can continue, the change action is synchronized with the comp_change
action of the slot to make the appropriate change to the customer. Then the change_ret
action will wait for the response from the slot indicated by the input channel chg_res:
if the change can be made, the vender will request the item from the inventory using
the req_item action, which is synchronized with the rec_req action of the inventory;
otherwise, the return_ord action is called to return the payment. After the vender re-
ceives the requested item from the inventory using the req_return action, the delivery
action will be called, which is synchronized with the rec_item action of the slot to
deliver the item. Otherwise, the action return_ord will be executed and the slot’s ac-
tion rec_return will be synchronized to return the payment to the customer. Finally,
the vender will call the reset_controller action to synchronize with the order_ret
action of the controller to inform it that the next order can now be taken.

The graphical notation for the vender component is depicted in Figure 5 below (we
ignore private channels and actions).

 Design in CommUnity with Extension Morphisms 457

Fig. 5. Graphical representation of the vender component

Again, we use a set of guards to control the sequence of actions in the vender com-
ponent, and, in the above explanation of the component’s work mechanism, we are
able to control the right workflow of the design through the appropriate use of these
guards, so that the correctness of our design can be ensured.

3.2.2 The Inventory
The inventory component maintains a list of items along with their price and remain-
ing amount: (item_id:int, item:ITEM, price:int, amount:int), where item_id is the
item’s index in the storage and item represents the real item product. We use an array
db (with a fixed size) to store this list of items, and the index of this array corresponds
to item_id. Meanwhile, we assume functions first, second and third have been defined
to return the first, second and third member of db, respectively.

The private action count_item calculates the amount of each ordered item and
stores it in the channel s_item. It also computes the total price of the order. The
check_price action goes through the inventory database and compares the amount of
each ordered item with the amount of that item in the storage. If the storage is not
enough or the payment is less than the price of the order, the output channel will be
set to 0; otherwise, it will set to the value in p_price. The get_item action will retrieve
the items from the storage according to the order and update the db channel. The
specification of the inventory component is as follows:

design component inventory
in // the ordered item(s) and payment from the vender

i_item: list (int);
i_pay: int

458 X. Ling, T. Maibaum, and N. Aguirre

prv // stores the ordered item(s)
p_item: list (int);
r_item: list (int);
p_price: int;
// array index is item id
db: array (ITEM, int, int);
// stores the amount of each ordered item, all the en-
tries are initialized to be 0.
s_item: array (int);
j :int;
// the guards to control the sequence of actions
price_g: bool;
amt_g: bool;
ret_g: bool;
send_g : bool

out o_item: list (ITEM);
// the price of the order sent to the vender
o_price: int

init p_item = NULL ∧ price_g = false ∧ amt_g = false ∧ ret_g
= false ∧ o_price = 0 ∧ o_item = NULL ∧ r_item = NULL ∧
send_g = false

actions
check[]: true, false -> p_item’ = i_item

[] prv count_item[]: p_item != NULL, false ->

s_item[head(p_item)]’ = s_item[head(p_item)] + 1 ∧
p_price’ = p_price + second(db[head(p_item)]) ∧ p_item’ =
tail(p_item) ∧ (tail(p_item) = NULL ⇒ price_g’ = true)

[] prv check_price[: price_g, false ->
price_g’ = false ∧ ((i_pay >= p_price ⇒ amt_g’ = true ∧ j’
= 1) ∨(i_pay < p_price ⇒ ret_g’ = true ∧ o_price’ = 0))

[] prv check_amt[]: amt_g ∧ (j <= sizeof(db)) , false ->
((s_item[j] <= third(db[j]) ⇒ j’ = j + 1 ∧ (j =sizeof(db)
⇒ ret_g’ = true ∧ o_price’ = p_price)) ∨(s_item[j] >
third(db[j]) ⇒ amt_g’ = false ∧ o_price’ = 0 ∧ ret_g’ =
true))

[] inv_ret[]: ret_g, false -> ret_g’ = false
[] rec_req[]: true, false -> r_item’ = i_item
[] prv get_item[]: r_item != NULL, false -> o_item ’ =

o_item * first(db[head(r_item)]) ∧
third(db[head(r_item)])’ = third(db[head(r_item)])-1 ∧
r_item’ = tail(r_item) ∧ (tail(r_item) = NULL ⇒ send_g’
= true)

[] send_item[]: send_g, false -> send_g’ = false
endofdesign

The workflow of this component is as follows. First, the check action is called to
enable the guard of the count_item action. Then the action check_price is called to
decide if the total price is less than ck_pay. If so, the inv_ret action will be enabled to
return the result (inv_price) to the vender. Otherwise, the check_amt action is exe-
cuted to check if the amount of each ordered item in the inventory is greater than the

 Design in CommUnity with Extension Morphisms 459

number of this item requested in the order. If so, it will call action inv_ret to return
inv_price > 0 (the total price of the items in ck_item); otherwise, it will return
inv_price = 0 in the inv_ret action. After the vender verifies that the change can be
made, it will call the req_item action, which is synchronized with the rec_req action
of the inventory, to get the ordered items and update the storage, and the inventory
has the send_item action to send the ordered items back to the vender.

Notice that in the count_item action we use the guard p_item != NULL to iterate
through the list of ordered items. It can be generalized as a mechanism to implement
the loop structures in the DynaComm language. (See future work.)

3.2.3 The Vending Machine Subsystem
According to our design of the vender and inventory components and the discussion
of their interactions, we can put them together by interconnecting the vender and the
inventory through a cable. The CommUnity Workbench like notation of Figure 5
describes the configuration diagram of the vending machine subsystem. The solid
circles attached to a component description represent elements of the interface of that
component. A line connecting two such interface elements, say sync1 of cable and
chaeck_inv of Vender, indicate that in the categorical diagram corresponding to that
of Figure 5, the regulative superposition from cable to Vender maps the action sunc1
to the action check_inv. So, this configuration diagram corresponds exactly to a well
defined and well formed diagram in the category of CommUnity designs and regula-
tive superposition morphisms. The colimit of this categorical diagram is the intended
semantics of the configuration.

The specification of the vending machine subsystem can be obtained easily from
the above configuration diagram and we do not describe it in detail here. We can also
determine the interface of this subsystem by looking at the left part interface of the
vender component in the diagram, which will interact with the interface controller and
the slot.

Fig. 6. Configuration diagram of the vending machine subsystem

460 X. Ling, T. Maibaum, and N. Aguirre

Now we can put the vending machine subsystem together with the interface part
(the controller and slot) to obtain the required vending machine system, which satis-
fies the design requirements, and the morphims between them are described in the
configuration diagram depicted in Figure 6.

The interface of the vending machine system is shown in the left interface section
of the controller component and the right interface section of the slot component, in
which the controller provides the buttons for the customer to select his favorite item
and confirm or cancel the order, and the slot indicates to the customer to put the coins
in and to get his ordered item and change.

3.3 The Extended Vending Machine System

Now we want to add more behaviors to the vending machine system to improve the
quality of its service. There are two extensions to be made, one for allowing a cus-
tomer to order more than one item in a single transaction and the other to allow more
kinds of coins to be used in payments, and we will show that they can only be
achieved by the usage of extension morphisms.

3.3.1 The Extension Allowing Multiple Items in an Order
One extension we want to make is to allow the customer to select more than one item
in an order, which should be done in the controller component. We must modify the
actions of item buttons to achieve this effect. First, we will extend the controller com-
ponent and show there is an extension morphism from the old controller to this ex-
tended new component. Then a proof is given to justify that it is impossible to regu-
late or refine the controller to obtain the required functionality and the extension mor-
phism is necessary for our purpose.

We introduce a new channel ac: bool (initialized to be true) and weaken the guards
of item buttons actions by taking the disjunction of ac with bt_g. The modified actions
of the controller are as follows:

init ord_g = false ∧ o_req = false ∧ bt_g = true ∧ bt_confirm
= false ∧ slot_g = false ∧ s_req = false ∧ c_item = NULL
∧ ac = true

actions
button_select(id: int) [bt_g,c_item,bt_confirm] :
bt_g ∨ ac, false -> bt_g’ = false ∧ c_item’ = c_item *
b_item [id] ∧ bt_confirm’ = true

[} button_confirm[bt_confirm,slot_g,ac] : bt_confirm, false
-> bt_confirm’ = false ∧ slot_g’ = true ∧ ac’ = false

[] button_cancel[bt_confirm,ac,bt_g,c_item] : bt_confirm,
false -> bt_g’ = true ∧ ac’ = true ∧ bt_confirm’ = false ∧
c_item’ = NULL

[] order_ret[o_req,bt_g,c_item,ac]: o_req, false -> o_req’ =
false ∧ bt_g’ = true ∧ c_item’ = NULL ∧ ac’ = true

We call the extended version of the controller component controller’. It is easy to
determine that controller’ satisfies the new requirement. After the customer selects an
item button, the enabling guards of button_select actions will remain true because ac

 Design in CommUnity with Extension Morphisms 461

Fig. 7. Configuration diagram of the vending machine system

is true. They will not be disabled until the customer selects the confirm button, and
after the vending machine subsystem informs the controller that the order has been
processed by calling the order_ret action, all the item buttons will be reset.

We need to show that there exists an extension morphism from the old controller
component (say P1) to controller’ (say P2). The morphism σ is defined as follows: the
mapping of the channels σα will map each channels of P1 to the identical channel of
P2, and σγ defines the mapping of actions from each action in P2, to the identical ac-
tion in P1.

Lemma 1. σ is an extension morphism from P1 to P2.

Proof
First we will show that σ is a signature morphism. Since the mappings of channels
and actions are the identity, it is easy to see that all the conditions of a signature mor-
phism are satisfied, except possibly for the condition σα(D1(σγ(g)) ⊆ D2(g). Since the
actions in P2 keep the effect of assignment to the mapped channels of P1, this condi-
tion also holds. Therefore, σ is a signature morphism.

462 X. Ling, T. Maibaum, and N. Aguirre

Then we will check the conditions of extension morphisms according to definition 14:

• Obviously σγ is surjective and σα is injective.
• There exists a formula α, which contains only channels from (V2 − σα(V1)),

and α is satisfiable, t I2 ⇔ σ(I1) ∧ α. As α ⇔ ac = true, this condition
holds.

For every g ∈ Γ2 where σγ (g) is defined,

• If v ∈ loc(V1) and g ∈ D2(σα(v)), then there exists a formula α, which con-
tains only primed channels from (V2’ − σα(V1)’), and α is satisfiable, t σ
(L1(σγ (g))) ⇒ (R2(g, σα(v)) ⇔ σα(R1(σγ (g), v)) ∧ α) .

o For action button_confirm, α ⇔ ac’ = false, this condition holds.
o For action button_cancel, α ⇔ ac’ = true, this condition holds.
o For action order_ret, α ⇔ ac’ = true, this condition holds.

• If v ∈ loc(V1), g ∈ D2(σα(v)), then v ∈ D1(σγ(g)). Since the mappings of
channels and actions are the identity and the actions in P2 maintain the effect
of assignments to the mapped channels of P1, this condition will hold.

t (σ(L1(σγ (g))) ⇒ L2(g)). For each action button_select(id: int), bt_g ⇒ bt_g ∨ ac.
t (σ(U1(σγ (g))) ⇒ U2(g)). The progress guards of each mapped action are the same.

Lemma 2. The new functional requirement cannot be achieved by regulating or refin-
ing the controller component.

Proof
The enabling guards of these button_select actions cannot be strengthened because, in
that case, all the buttons will be disabled after the customer selects one item button.
The justification for this statement is as follows:

Suppose we have regulated or refined the controller component, then, in the target
component, the enabling guards of the button_select actions will be strengthened; say
one of the actions is g, its enabling guard is f and f ⇒ σ(bt_g) (bt_g must be trans-
lated). According to the definition of regulative superposition and refinement mor-
phism, we have R2(g, σ(bt_g)) ⇒ σ(R1(σγ(g), bt_g)). Since bt_g is set to false after
the button_select action is called in the old controller, we know that σ(bt_g) should
also be set to false after the execution of g in the extended controller. Because we
have f ⇒ σ(bt_g) and it should hold all the time, if σ(bt_g)’ is false, we know f’ must
be false. Therefore, after the button_select action is executed in the target component,
this action will be blocked, which means this item button is disabled.

3.3.2 The Extension of Payment Options
We expect that instead of only accepting payment consisting of nickels, dimes, quar-
ters and loonies, the vending machine system can also accept payment including one
cent pieces and make the correct change. It is clear that we cannot refine or regulate
component slot to achieve this goal, because we must modify its action get_pay and
relax its enabling guard, which is not allowed in regulative superpositions and refine-
ment morphisms. Therefore, we have to apply an extension morphism to the slot by
modifying the get_pay action as follows and obtain the extended slot component.

 Design in CommUnity with Extension Morphisms 463

get_pay [get_g, s_nickle, s_dime, s_quarter, s_dollar, s_cent]:
get_g, false -> get_g’ = false ∧ s_nickle’ = s_nickle + i_nickle
∧ s_dime’ = s_dime + i_dime ∧ s_quarter’ = s_quarter + i_quarter
∧ s_dollar’ = s_dollar + i_dollar ∧ s_cent’ = s_cent + i_cent
Notice that we need to add a new channel s_cent into the slot component to store

the cents and make the corresponding assignment to this channel. However, based on
the definition of extension morphism, there will exist an extension morphism from the
old component to this extended component (the proof is similar to the case above).
For the same reason, we can modify the following actions of the slot component as
well (and add the channel o_cent):

send_pay [get_g, o_pay]:
¬ get_g , false -> get_g’ = true ∧ o_pay’ = 100*i_dollar +
25*i_quarter + 10*i_dime + 5*i_nickel + i_cent

send_change [change_g]:
¬change_g, false -> change_g’ = true ∧ (change_res = true ⇒
item_g’ = true ∧ s_nickle’ = s_nickle - o_nickle ∧ s_dime’ =
s_dime - o_dime ∧ s_quarter’ = s_quarter - o_quarter ∧
s_dollar’ = s_dollar - o_dollar ∧ s_cent’ = s_cent – o_cent)

Since we have divided the functionality of the system in an appropriate way, we
can simply reuse the vending machine subsystem and the controller component.

4 Conclusions

Extension morphisms were originally motivated by their use in the application of
aspects [8]. The examples developed in [8] were related to the application of a moni-
toring and a performance aspect to an unreliable communication system. We would
like to impose behaviour on the existing architecture of an unreliable medium be-
tween a sender and receiver, to make the communication reliable by implementing a
reset in the communication when packets are lost. The mechanism we used was very
simple, and required a “reset” operation in the sender, which can be achieved by
component extension. In order to complete the enhanced architecture to implement
the reset acknowledgement mechanism, we need a monitor that, if it detects a missing
packet, issues a call for reset. The idea is that, if a message is not what the monitor
expected, then it will go to a “reset” cycle, and wait to see if the expected packet ar-
rives. If the expected packet arrives, then the component will start waiting for the next
packet. (Note that, since the superposed monitor is spectative, i.e., it has no effect on
the underlying component – simply “observing” it.) Because of the properties of ex-
tension, we can guarantee that, if the augmented system works without the need for
reset in the communication, i.e., no messages are lost, then its behaviour is exactly the
same as the one of the original architecture with unreliable communication.

As we hope to have demonstrated in this paper, extension morphisms have a life of
their own, independently of their usefulness in defining some aspects. They provide
an interesting and predictable mechanism for software architects interested in change
and evolution of their designs.

464 X. Ling, T. Maibaum, and N. Aguirre

We have said very little about the new features of DynaComm, as this was unnec-
essary to talk about extensions. However, many aspects cannot be dealt with without
hierarchical designs incorporating subsystem specific dynamic reconfigurability. This
is what DynaComm sets out to provide. It also offers mechanisms to make design of
architectures easier, such as the idea of indexed actions: a family of actions that “do
the same thing” but to different elements, which can be indexed via a finite set of
names. We are developing a DynaComm Workbench on the basis of experience with
the CommUnity Workbench [37]. We are also putting together a catalogue of aspects
and methods for developing formalizations of them. In particular, we are interested in
reasoning about the applications of aspects to architectures to provide analyses for
systems built in this way.

References

1. Aguirre, N., Maibaum, T.: A Temporal Logic Approach to the Specification of Recon-
figurable Component-Based Systems. In: ASE 2002, pp. 271–274 (2002)

2. Aguirre, N., Maibaum, T.: A Logical Basis for the Specification of Reconfigurable Com-
ponent-Based Systems. In: Pezzé, M. (ed.) ETAPS 2003 and FASE 2003. LNCS,
vol. 2621, pp. 37–51. Springer, Heidelberg (2003)

3. Aguirre, N., Maibaum, T.: Some Institutional Requirements for Temporal Reasoning on
Dynamic Reconfiguration of Component Based Systems, Verification: Theory and Prac-
tice 2003, 407–435 (2003)

4. Aguirre, N.: A Logical Basis For the Specification of Reconfigurable Component Based
Systems, Ph.D. Thesis, King’s College London, Department of Computer Science (2004)

5. Aguirre, N., Alencar, P., Maibaum, T.: Aspect Modularity in a High-level Program Design
Language. In: CASCON Workshop on Aspect Oriented Software Development, IBM
(2005)

6. Aguirre, N., Regis, G., Maibaum, T.: Verifying Temporal Properties of CommUnity De-
signs. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, Springer, Heidelberg
(2007)

7. Aguirre, N., Maibaum, T., Alencar, P.: Abstract Design with Aspects (submitted, 2007)
8. Aguirre, N., Maibaum, T., Alencar, P.: Extension Morphisms for CommUnity, Essays

Dedicated to Joseph A. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra,
Meaning, and Computation. LNCS, vol. 4060, pp. 173–193. Springer, Heidelberg (2006)

9. Allen, R., Garlan, D.: Formalizing Architectural Connections. In: ICSE’94, IEEE CS
Press, Los Alamitos (1994)

10. Allen, R.J.: A Formal Approach to Software Architecture, Ph.D. Thesis, Carnegie Mellon
University, School of Computer Science, available as TR# CMU-CS-97-144 (May 1997)

11. Allen, R., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic Software Archi-
tectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 21–
37. Springer, Heidelberg (1998)

12. Bicarregui, J.C., Lano, K.C., Maibaum, T.: Towards a Compositional Interpretation of Ob-
ject Diagrams, Algorithmic Languages and Calculi, pp. 187–207. Chapman & Hall, Syd-
ney, Australia (1997)

13. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-management in
dynamic software architecture specifications, Workshop on Self-Healing Systems, ACM
Digital Library (2004)

 Design in CommUnity with Extension Morphisms 465

14. Corradini, A., Hirsch, D.: An Operational Semantics of COMMUITY Based on Graph
Transformation Systems. Electr. Notes Theor. Comput. Sci. 109, 111–124 (2004)

15. Fiadeiro, J.L., Maibaum, T.: Categorical Semantics of Parallel Program Design, Technical
Report, FCUL and Imperial College (1995)

16. Fiadeiro, J.L., Maibaum, T.: Design Structures for Object Based System, Formal Methods
and Object Technology, pp. 183–204. Springer, Heidelberg (1996)

17. Fiadeiro, J.L., Maibaum, T.: Interconnecting Formalisms: Supporting Modularity, Reuse
and Incrementality. In: FSE, pp. 72–80 (1995)

18. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2005)
19. Garlan, D., Monroe, R., Wile, D.: ACME: An Architecture Description Interchange Lan-

guage. In: CASCON’97 (1997)
20. Garlan, D.: Software Architecture: A Roadmap, The Future of Software Engineering. In:

Filkenstein, A. (ed.), ACM Press, New York (2000)
21. Georgiadis, I.: Self-Organising Distributed Component Software Architectures, Ph.D.

Thesis, Imperial College of Science, Technology and Medicine, Department of Computing
(2002)

22. Goguen, J.: Mathematical Representation of Hierarchically Organised Systems. In: Attim-
ger, E. (ed.) Global Systems Dynamics, Krager, pp. 112–128 (1971)

23. Goguen, J., Ginali, S.: A Categorical Approach to General Systems Theory. In: Klir, G.
(ed.) Applied General Systems Research, pp. 257–270. Plenum, New York (1978)

24. Goguen, J.: Categorical Foundations for General Systems Theory. In: Pichler, F., Trappl,
R. (eds.) Advances in Cybernetics and Systems Research, Transcripta Books, pp. 121–130
(1973)

25. Kiczales, G.: An overview of Aspect J. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS,
vol. 2072, Springer, Heidelberg (2001)

26. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Com-
putation 94, 1–28 (1991)

27. Ling, X.: DynaComm: The Extension of CommUnity to Support Dynamic Reconfigura-
tion, MSc Thesis, McMaster University, available as SQRL Technical Report 40 (2007),
http://www.cas.mcmaster.ca/sqrl/sqrl_reports.html

28. Liskov, B., Wing, J.: A Behavioral Notion of Subtyping, ACM Transactions on Program-
ming Languages and Systems, vol. 16(6). ACM Press, New York (1994)

29. Lopes, A., Wermelinger, M., Fiadeiro, J.: Higher-Order Architectural Connectors. ACM
Transactions on Software Engineering and Methodology 12(1) (2003)

30. Lopes, A., Fiadeiro, J.: Superposition: Composition vs. Refinement of Non-Deterministic,
Action-Based Systems, Formal Aspects of Computing, vol. 16(1). Springer, Heidelberg
(2004)

31. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures. In: Gollmann, D.
(ed.) Fast Software Encryption. LNCS, vol. 1039, pp. 24–32. Springer, Heidelberg (1996)

32. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, Heidelberg (1991)

33. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Trans. on Software Engineering 26(1), 70–93
(2000)

34. Perry, D.E., Wolf, A.L.: Foundations for the study of software architectures. SIGSOFT
Software Eng. Notes 17(4), 40–52 (1992)

35. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, Englewood Cliffs (1996)

466 X. Ling, T. Maibaum, and N. Aguirre

36. Szyperski, C., Pfister, C.: Component–Oriented Programming: WCOP ’96 Workshop Re-
port, In: Cointe, P. (ed.) ECOOP 1996. LNCS, vol. 1098, pp. 127–130. Springer, Heidel-
berg (1996)

37. Wermelinger, M., Oliveira, C.: The CommUnity Workbench, ICSE. ACM Press, New
York (2002)

38. Wile, D.S.: Using Dynamic Acme, Working Conference on Complex and Dynamic Sys-
tems Architecture, Brisbane, Australia (2001)

39. Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design:
//www.early-aspects.net/

	Design in CommUnity with Extension Morphisms
	Introduction
	Motivation and Background
	Introducing CommUnity
	The Morphisms Between Designs

	CommUnity and Extension Morophisms
	Combining Regulative Superpositions with Extension Morphisms

	An Example Vending Machine System
	The Design of the Customer
	The Design of the Vending Machine
	The Extended Vending Machine System

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

