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Abstract. We have been engaged over the past few years in studying and for-
malizing software architecture concepts such as hierarchical design, dynamic 
reconfiguration and the application of the concept of aspects to software archi-
tecture descriptions. Our attention has focused on the language CommUnity, 
developed by Fiadeiro and Maibaum, and an extension that we call DynaComm 
that incorporates support for dynamic reconfiguration, hierarchical design, a 
general notion of connector and other supporting mechanisms. In applying Dy-
naComm, we have found that the relationships normally used in CommUnity, 
i.e., regulative superposition (used to regulate the behaviour of a component) 
and refinement (used to instantiate a role in a higher order connector) are not 
sufficient for dealing with some required changes to a software architecture or a 
component that we would like to be able to affect. To this end, we have defined 
the concept of extension morphism between two components. Such morphisms 
do not preserve encapsulation of components, as do regulative superpositions 
and refinements, but they do give us substitutability, in the sense of object-
oriented systems, and, hence, a basis of predictability about its application  
to designs. In this paper, we describe the nature of extension morphisms and  
illustrate their use by means of a non trivial example. 

1   Introduction 

1.1   Motivation and Background 

Software architecture research is directed at addressing the high-level decomposition 
and organization of systems, where component interactions are incorporated into the 
notion of connectors and identified as first-class design entities. Architecture descrip-
tion languages (ADLs) have been proposed to provide formal modelling notations, 
analysis and development tools to support architecture-based development, which 
focuses on the system’s high-level structure rather than the implementation details of 
any specific modules [33].  

There has been some work in surveying ADLs providing broad comparisons. The 
survey in [33] compared ADLs with respect to their ability to model components, 
connectors and configurations, as well as their tool support for analysis and refine-
ment. The survey in [13] focused on the characteristics of different ADLs supporting 
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self-managing architectures, which not only implement the concept of dynamic 
change, but also initiate, select and assess the change itself without the assistance of 
an external user. We are currently interested in ADLs with support for dynamic soft-
ware architectures and that also support the essential engineering concept of hierar-
chical design. Examples of ADLs, which support such a view, are Dynamic Wright 
[11], Darwin [31] and Dynamic Acme [19][38]. An assessment of these languages 
can be found in [13] and a more thorough review of their language constructs, associ-
ated styles of specification and mechanisms to achieve dynamic reconfiguration can 
be found in [27]. However, these ADLs have important shortcomings in relation to 
their support for hierarchical design and having a formal semantics that enable us to 
perform useful analyses. 

CommUnity [15, 29, 30] was designed to study the problem of the ‘magic step’ 
from specification to program, in the context of component based design using tempo-
ral and multi modal logics for component specification. It is always the case that the 
languages used for specifications and programs are ontologically very different. 
Specifications are about properties, whilst programs are about operational behaviour, 
even if this behaviour is described abstractly. For one thing, a programming language 
has no facility to express properties of programs; a meta language of properties is 
required for this. So, programs and specifications occupy different conceptual worlds 
and there is not a simple notion of homomorphism or refinement that relates them 
directly: hence the reference to the ‘magic step’ above. What is the relationship be-
tween specifications and programs and how can one remove the magic? We cannot 
talk about the program being a refinement of a specification, as refinement is an inter-
nal notion in the language of component specifications. We might introduce a notion 
of realization, which relates a program to its specification by assigning to the program 
a minimal (not unique and minimum) specification, which is a refinement of the 
specification.  

CommUnity explored this space and addressed the important issue of composition-
ality in this context: when can we say that a program constructed from parts, where 
each part is a correct realization as a program of the corresponding specification part, 
is correct with respect to the specification constructed from the component specifica-
tions in a way that mimics the construction of the program? Not too surprisingly, 
compositionality in this sense is not an easy property to achieve. Given an arbitrary 
specification language and some programming language, not every program con-
structed from parts is correct with respect to the corresponding specification. This is 
not surprising, as the structural properties of the specification category may not mimic 
that of the category of programs, or vice versa.  

We have been extending CommUnity to encompass features we regard as essential 
for architecture based design, namely hierarchical organization of subsystems and 
dynamic reconfiguration [26]. However, in this paper the new features of DynaComm 
are not essential for the presentation, so, for the sake of clarity, we avoid the presenta-
tion of its extra details and features. 

Recently, we have been exploring the issue of ‘early aspects’ [39], attempting to 
see if these ideas can be rationalized, based on traditional software engineering prin-
ciples of modularity and hierarchy, by analyzing them at the architectural level. After 
numerous case studies, we have come to the conclusion that aspects are just the soft 
goals or non functional requirements traditionally found in requirements engineering, 
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and that they can be handled uniformly at the architectural level by formalizing a 
specific aspect as an architectural pattern used to replace an existing pattern in the 
underlying architecture (by means of, for example, a graph transformation). Then, 
aspect weaving is achieved by the colimit construction used to obtain the semantics of 
any architectural configuration, the latter being defined as a categorical diagram of 
component objects and relationships between them. Aspect composition then be-
comes the sequential application of different transformations, corresponding to the 
different aspects, to the underlying diagram depicting the original architecture. As 
with features, there may be (unforeseen) interactions between different aspects and 
the order of application is crucial to achieving the right system. Many aspects require 
the replacement of a component in the original architecture by another, closely re-
lated, component that is a subtype of the original component, in the sense of object-
oriented design. This requires a formal relationship between components that involves 
breaking encapsulation of the original component in the design. We have developed 
the notion of extension as a realization of this controlled breaking of encapsulation. 
The application of extension morphisms in the construction of software architectures 
is the aim of this paper. 

1.2   Introducing CommUnity 

CommUnity was developed to explore the relationships between specifications and 
programs in a component based development setting. José Fiadeiro and his (former) 
students developed the language extensively in the interim [18,29,30], making of 
CommUnity a (proto) ADL. A review of CommUnity and its semantics are given, 
and, in particular, we rehearse the idea that the notion of superposition can be formal-
ized as a morphism between designs in CommUnity. The concept of superposition is 
defined as a structure preserving transformation on designs through the extension of 
their state space and control activity while preserving their properties [29,30]. So, a 
regulative superposition morphism is proposed in CommUnity as a means of aug-
menting an existing component by superposing a regulator over it while preserving its 
functionality, thus supporting a layered approach to system design. In addition, sev-
eral different kinds of morphisms (other than regulative superposition morphisms) 
between designs as well as their relationships are also investigated to explain the 
language’s well-founded support for compositionality, reusability, and enforcement of 
design principles. 

The syntax of a CommUnity design is: 
 

design component P 
out out(V) 
in in(V) 
prv prv(V) 
init I 
do 
 [prv] g[D(g)] : L(g), U(g) -> R(g) 
endofdesign 
 

A fixed collection of data types (say S) is assumed to be given by a first-order alge-
braic specification and the design is defined over such data types. Because data types 
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chosen in the design determine the nature of the elementary computations that can be 
performed locally by the components, the emphasis in the language is put on the co-
ordination mechanisms between system components rather than data refinement, 
which focuses on computational aspects. As a result, CommUnity does not support 
polymorphism directly.  

In the above example, V is the set of channels in the design P. Each channel v is 
typed with a sort from S. in(V) represents input channels, which read data from the 
environment of the component and the component has no control over them. out(V) 
and prv(V) are output channels and private channels, respectively. They are controlled 
locally by the component. Output channels allow the environment to read data pro-
duced by the component, while private channels support internal activity that does not 
involve the environment. We use loc(V) to represent out(V) ∪ prv(V). The formula I 
constrains potential initial states of the corresponding program. I is a formula in first-
order logic over the channels of the design. 

For any action g, D(g) is a subset of loc(V) consisting of the local channels that can 
be written to by action g (we call it the write frame of g). U(g) is a progress condition, 
which establishes the upper bound for enabledness and L(g) indicates the lower 
bound. In a program, L(g) = U(g), so the guards in a design define the “interval” 
within which the guard of the action in a program implementing the design must lie. 
R(g) is a condition on V and D(g)’, where by D(g)’ we mean the set of primed chan-
nels from D(g). Primed channels account for references to the values of channels after 
the execution of an action. The condition is a first-order logic formula built from V 
and D(g)’. Usually, we define it as a conjunction of implications of the form pre ⇒ 
post, which corresponds to a pre/post condition specification in the sense of Hoare 
and where pre does not contain primed channels. Using this form, the number of con-
juncts in the formula will correspond to the number of channels in the write frame of 
g, so that we can understand the meaning of the action fairly easily. Moreover, it will 
be convenient for us to calculate the colimit of the diagram if we have put all the 
designs in this form. 

In order to study the relationship between designs, we need the formal definition 
for designs as follows: 

Definition 1. A design signature is a tuple (V, Γ, tv, ta, D) where:  

• V is the set of channels, which is an S-indexed family of mutually disjoint 
sets. The channel is typed with sorts in S, which is a fixed set of data types 
specified as usual via a first-order specification. 

• Γ is a finite set of actions.  
• tv is a total function from V to {prv, in, out}, which partitions V into three 

disjoint sets of channels, namely private, input and output channels, respec-
tively. Loc(V) represents the union of private and output channels. 

• ta is a total function from Γ to {sh, prv}, which divides Γ into private and 
shared actions. Only shared actions can serve as the synchronization points 
with other designs. 

• D is total function from Γ to 2loc(V). The write frame of action g is repre-
sented by D(g). 
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All these sets of symbols are assumed to be finite and mutually disjoint. Channels are 
used as atoms in the definition of terms: 

Definition 2. Given a design signature θ=(V, Γ, tv, ta, D), the language of terms is 
defined as follows: for every sort s ∈ S, 

• ts ::= a , where a ∈ V and of type s 
• ts ::= c, where c is a constant with sort s 
• ts ::= f(t1,…,tn), where t1: s1,…, tn: sn and f:s1× … × sn → s 

The language of propositions is defined as follows: 

• φ :: = (t1s ps t2s) | φ1 ⇒ φ2 | φ1 ∧ φ2 | ¬φ 

where ps is a binary predicate defined on sort s. The set of predicates defined on sort s 
must contain = s. 

Having defined the signature of designs and given the language of terms and 
propositions, we can formalize the notion of designs as follows: 

Definition 3. A design is a pair (θ, Λ), where θ = (V, Γ, tv, ta, D) and Λ is (I, R, L, U) 
where: 

• I is a proposition defined on θ, which constrains the values of the channels 
when the program is initialized. 

• R assigns to every action g ∈ Γ an expression R(g). 
• For every action g ∈ Γ, L(g) assigns the enabling guard to it and U(g) as-

signs the progress guard. 
• For every action g ∈ Γ, for any a ∈ D(g), tv(a) ∈ {prv, out}. 

Recall that R(g) specifies the effect of action g on its write frame. For any channel a ∈ 
D(g), we will use R(g,a) to denote the expression that represents the effect of action g 
on channel a. 

Before we define the semantic structures for a design, a model for the abstract data 
type specification (S) needs to be introduced. The model is given by a Σ-algebra U, 
i.e., a set sU

 is assigned to each sort symbol s ∈� S, a value in sU(cU) is assigned to 
each constant symbol c of sort s, a (total) function fU

 : s1
U

 × …×sn
U 

 → sU
 is assigned to 

each function symbol f in S, and a relation ps
U

 ⊆ s × s is assigned to each binary 
predicate ps defined on sort s. 

The semantic interpretation of designs is given in terms of transition systems: 

Definition 4. A transition system (W, w0, E, →) consists of: 

• a non-empty set W of states or possible worlds 
• w0 ∈ W, the initial state 
• a non-empty set E of events 

• an E-indexed set of partial functions → on W, W → (E → W), defines the 
state transition performed by each event. 

Having transition systems to represent the state transitions of a design, we can inter-
pret the signature of a design with the following structure: 
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Definition 5. A θ-interpretation structure for a signature θ=(V, Γ, tv, ta, D) is a triple 
(T, A, G) where: 

 

• T is a transition system (W, w0, E, →) 
• A is an S-indexed family of maps As: Vs → (W → sU

 ). 
• G: Γ → 2E. 

That is to say, A interprets attribute symbols as functions that return the value that 
each attribute takes in each state, and G interprets the action symbols as sets of events 
-- the set of the events during which the action occurs. 

It is possible that no action will take place during an event. Such events correspond 
to environment steps, which means steps performed by the other components in the 
system. Interpretation structures are intended to capture the behavior of a design in 
the context of a system of which it is a component. Because environment steps are 
taken into account, state encapsulation techniques can be formalized through particu-
lar classes of interpretation structures. 

Definition 6. A θ-interpretation structure (T, A, G) for a signature θ=(V, Γ, tv, ta, D) 
is called a locus iff, for every a ∈ loc(V) and w, w’� ∈ W, if (w, e, w’) is in →, and 
for any g ∈ D(a), e ∉ G(g), then A(a)(w’) = A(a)(w).  

This means a locus is an interpretation structure in which the values of the program 
variables remain unchanged during events in which no action occurs that contains 
them in their write frame.  

Having defined the interpretation structures for designs and the model for the ab-
stract data type specification (S), we are able to give the semantics of the terms and 
propositions in the language given by the design signature. 

Definition 7. Given a signature θ = (V, Γ, tv, ta, D) and a θ-interpretation structure 
S= (T, A, G), the semantics of terms (for every sort s, term t of sort s and w ∈ W, 
[t]s(w) ∈ sU, the value taken by t in the world w, is defined as follows: 

• if t is a ∈ As, [a]s(w) = A(a)(w) 
• if t is a constant c, [c]s(w) = cU 
• if t is fU

 : s1
U

 ×…× sn
U 

 → sU, [f(t1,t2,…,tn)]
s(w) = fU([t1]

s(w), [t2]
s(w), …, 

[tn]
s(w)) 

The semantics of propositions is defined as: 

• (S,w) t (t1 =s t2) iff [t1]
s(w) = [t2]

s(w) 
• (S,w) t (t1 ps t2) iff [t1]

s(w) ps
U [t2]

s(w) 
• (S,w) t φ1 ⇒ φ2, iff (S,w) t φ1 implies (S,w) t φ2 
• (S,w) t (¬φ) iff ¬((S,w) t φ) 

Now on the semantic level, we can represent whether a proposition (in a signature) 
is true or valid in the interpretation structure of the signature: 

Definition 8. A θ-proposition φ is true in an θ-interpretation structure S, written S t 
φ, iff (S,w) t φ at every state w. A proposition φ is valid, written t φ, iff it is true in 
every interpretation structure. 

Having introduced the above concepts, we can now define when an interpretation 
structure is a model of a design. 
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Definition 9. Given a design (θ, Λ), where θ = (V, Γ, tv, ta, D) and Λ is a triple (I, R, 
L, U), a model of (θ, Λ) is an interpretation structure S=(T, A, G) for θ, such that: 

• (S,w0) t I 
• for every g ∈ Γ, a ∈ D(g), e ∈ G(g) , and (w, e, w’) ∈ →, then A(a)(w’)= 

[R(g,a)]s(w)  
• for every w ∈ W and g ∈ Γ, if e ∈ G(g) and for some w’ ∈ W , (w, e, w’) ∈ 

→, then (S,w) t L(g). 

That is to say, a model of a design is an interpretation structure for its signature that 
enforces the assignments, only permits actions to occur when their enabling guards 
are true, and for which the initial state satisfies the initialization constraint.  

A model is said to be a locus if it is a locus as an interpretation structure, which en-
forces the encapsulation of local attributes.  

This classification of models reflects the existence of different levels of semantics 
for the same design (taken as a set of models), depending on which subset of the set 
of its models is considered. These different semantics are associated with different 
notions of superposition (design morphism) that have been used in the literature, 
namely regulative, invasive and spectative. This means that there is no absolute no-
tion of semantics for designs: it is always relative to the use one makes of designs. 
This corresponds to the categorical way of capturing the “meaning” of objects 
through the relationships (morphisms) that can be defined between them. 

1.3   The Morphisms Between Designs 

The concept of superposition has been proposed and used as a structuring mechanism 
for the design of parallel programs and distributed systems. Structure preserving 
transformations are usually formalized in terms of morphisms between the objects 
concerned, thus justifying the formalization of superposition in terms of morphisms of 
designs in CommUnity. 

Having defined designs over signatures in the above section, we first introduce 
signature morphisms as a means of relating the “syntax” of two designs.  

Definition 10. A signature morphism σ from a signature θ
1
=(V

1
, Γ

1
, tv

1
, ta

1
, D

1
) to 

θ
2
=(V

2
, Γ

2
, tv

2
, ta

2
, D

2
) consists of a total functions σα: V1 → V2, and a partial map-

ping σγ: Γ2 → Γ1 such that: 

• For every v ∈ V1 , σα(v) has the same type as v. 
• For every o ∈ out(V1), σα(o) ∈ out(V2). 
• For every p ∈ prv(V1), σα(p) ∈ prv(V2). 
• For every i ∈ in(V1), σα(i) ∈ out(V2) ∪ in(V2). 

For every g ∈ Γ2 , such that σγ (g) is defined: 

• g ∈ sh(Γ2), then σγ (g) ∈ sh(Γ1). 
• g ∈ prv(Γ2), then σγ (g) ∈ prv(Γ1). 

• σα(D1(σγ (g)) ⊆ D2(g). 
A signature morphism maps attributes of a design to attributes of the system of which 
it is a component, and the direction of the mapping is reversed for actions. The first 
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condition enforces the preservation of the type of each attribute by the morphism. 
Output and private attributes of the component should keep their classification in the 
system, while input attributes may be turned into output attributes, when they are 
synchronized with output channels of other components and thus represented as out-
put channels of the system. The restriction over action domains means that the type of 
each action is preserved by the morphism. In other words, the images of the write 
frame of an action in the source program must be contained in the write frame of the 
corresponding action in the target program. Notice that more attributes may be in-
cluded in the domain of the target program’s action via a morphism. This is intuitive 
because an action of a component may be shared with other components within a 
system and, hence, has a larger domain.  

Signature morphisms provide us with the means for relating a design with its su-
perpositions. However, superposition is more than just a relationship between signa-
tures on the level of syntax. To capture its semantics, we need a way of relating the 
models of the two designs as well as the terms and propositions that are used to build 
them. 

Signature morphisms define translations between the languages associated with 
each signature in the obvious way: 

Definition 11. Given a signature morphism σ: θ1 → θ2, we can define translations 
between the languages associated with each signature: 

• if t is a term: 
σ(t) ::=  σ(a) if t is a variable a    

 c if t is a constant c   
 f(σ(t1),…, σ(tn )) if t= f(t1,…, tn) 

• if φ is a proposition: 
σ(φ) ::=  σ(t1) = σ(t2) if φ is t1 = t2 

 σ(t1) ps σ(t2) if φ is t1 ps t2 

 σ(φ1) ⇒ σ(φ2) if φ is φ1 ⇒ φ2 
 σ(φ1) ∧ σ(φ2) if φ is φ1 ∧ φ2  
 ¬σ(φ’) if φ is ¬φ’ 

Definition 12. Given a signature morphism σ: θ1 → θ2 and a θ2–interpretation struc-
ture S = (T, A, G), its σ-reduct, S|σ, is the θ1–interpretation structure (T, A|σ ,G|σ), 
where A|σ(a) = A(σ(a)), G|σ(g) = ∪ G(σ-1(g)). 

That is, we take the same transition system of the target design and interpret attrib-
ute symbols of the source design in the same way as their images under σ, and action 
symbols of the source design as the union of their images under σ-1. Reducts provide 
us with the means for relating the behavior of a design with that of the superposed 
one. The following proposition establishes that properties of reducts are characterized 
by translation of properties. 

Proposition 1. Given a θ1 proposition φ and a θ2–interpretation structure S=(T, A, G), 
we have for every w ∈ W: (S, w) t σ(φ) iff (S|σ, w) t φ. 

Superposition morphisms that preserve locality are called regulative superposition 
morphisms and are defined as follows: 
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Definition 13. A regulative superposition morphism σ from a design (θ1, Λ1) to an-
other design (θ2, Λ2) is a signature morphism σ: θ1 → θ2 such that: 

0 t (I2 ⇒ σ( I1) ). 
1 If v ∈ loc(V1), g ∈ Γ2 and σα(v) ∈ D2(g), then g is mapped to an action 

σγ(g) and v ∈ D1(σγ(g)).  

For every g ∈ Γ2 for which σγ(g) is defined,  

3 If v ∈ loc(V1) and g ∈ D2(σα (v)), then t (R2(g, σα (v)) ⇔ σα(R1(σγ (g), 
v))).   

4 t (L2(g) ⇒ σ(L1(σγ (g)))). 
5 t (U2(g) ⇒ σ(U1(σγ (g)))). 

Notice that we do not require σα to be injective, and two channels of the same 
category (output/private/input) in the source design can be mapped to one channel of 
the target design. Because we only consider the actions in the target design mapped to 
the source design, σγ does not need to be surjective. 

The second condition implies that actions of the system in which a component C is 
not involved cannot have local channels of the component C in their write frame, 
which corresponds to the locality condition: new actions cannot be added to the do-
mains of attributes of the source program. The justification is as follows: suppose 
system action g has σα(v) in its write frame, v ∈ loc(V1), then σγ(g) must be defined, 
and σγ(g) ∈ D1(v). Therefore, component C is involved in the system action. 

Regulative superposition morphisms require that the functionality of the base de-
sign in terms of its variables be preserved (the underspecification cannot be reduced) 
and allows for the enabling and progress conditions of its actions to be strengthened. 
Strengthening of the lower bound reflects the fact that all the components that partici-
pate in the execution of a joint action have to give their permission for the action to 
occur. On the other hand, the progress of a joint action can only be guaranteed when 
the involved components can locally guarantee so. Regulative superpositions preserve 
encapsulation and do not change the actions themselves, as far as they relate to the 
basic variables. 

Proposition 2. Let σ: (θ1, Λ1) → (θ2, Λ2) be a regulative superposition morphism. 
Then the reduct of every model of (θ2, Λ2) is also a model of (θ1, Λ1). 
We find that in the proof of proposition 2.2, we do not use condition 2 of regulative 
superposition morphism, which means this proposition will hold without enforcing 
the encapsulation principle. When we consider condition 2 and the definition of signa-
ture morphism, we will have the following assertion: 

Proposition 3. If v ∈ loc(V1), then D1(v) = σγ(D2(σα(v))). 
This result implies the following property: 

Proposition 4. Let σ: (θ1, Λ1) → (θ2, Λ2) be a regulative superposition morphism; 
then the reduct of every locus of (θ2, Λ2) is also a locus of (θ1, Λ1). 
The reason is that through regulative superposition, the domains of the attributes  
remain the same up to translation, as stated above. Therefore, it will prevent “old 
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attributes” from being changed by “new actions”, i.e., actions of the target design not 
mapped to the source design. 

Now we will introduce the notion of extension morphism, related to ideas of 
model-expansiveness. The motivation for extension morphisms originated from the 
substitutability principle from object oriented program design, which says if a com-
ponent P2 extends another component P1, then we can replace P1 by P2 and the “cli-
ents” of P1 must not perceive the difference. This principle cannot be characterized by 
regulative superpositions or refinement morphisms, as we may want to extend the 
component by breaking encapsulation. This controlled breaking of encapsulation is 
necessary when dealing with many aspects. 

Definition 14.An extension morphism σ from a design (θ1, Λ1) to another design (θ2, 
Λ2) is a signature morphism σ such that: 

1 σγ is surjective. 
2 σα is injective. 
3 There exists a formula β, which contains only channels from (V2 − σα(V1)), 

such that β is satisfiable and t I2 ⇔ σ(I1) ∧ β.  

For every g ∈ Γ2 for which σγ (g) is defined,  

4 If v ∈ loc(V1) and g ∈ D2(σα(v)), then there exists a formula β, which con-
tains only primed channels from (V2’ − σα(V1)’), and β is satisfiable and 
such that t σ (L1(σγ(g))) ⇒ (R2(g, σα(v)) ⇔ σα(R1(σγ(g), v)) ∧ β). 

5 If v ∈ loc(V1), g ∈ D2(σα(v)), then v ∈ D1(σγ(g)).  
6 t (σ(L1(σγ(g))) ⇒ L2(g)). 
7 t (σ(U1(σγ(g))) ⇒ U2(g)). 

This definition of extension morphism was first given [8]. Because we expect that the 
extended design can replace the original design in a system and the clients of the 
original component should not perceive any difference, the first two conditions ensure 
the preservation of its interface. The initialization condition of the original design can 
be strengthened in its extended version, while respecting the initialization of the 
channels of the original component, as required in the third condition. The fourth 
condition indicates that the actions corresponding to those of the original design 
should preserve the assignments to old channels and the assignments to new channels 
must be realisable, when the safety guards of their image actions in the original design 
are satisfied. The fifth condition establishes that for each action of the extended de-
sign that is mapped to an action of the original design, it can only modify old channels 
that have been modified by the corresponding action of the original design. The last 
two conditions indicate that both the enabling and progress guards can be weakened, 
but not strengthened. 

Because an extension morphism relaxes the enabling guard of the source design, 
the reduct of a model of the target design may not be a model of the source design. 
However, the model-expansive property holds for extension morphism [8], which 
means the extended design can replace the source design and the clients of the origi-
nal design will not perceive the difference. 
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Proposition 5. Let σ be an extension morphism from a design (θ1, Λ1) to another 
design (θ2, Λ2). Then, every model of (θ1, Λ1) can be expanded to a corresponding 
model of (θ2, Λ2). 

The rationale behind the definition of extension morphisms is the characterization of 
the substitutability principle (a property that can be shown to fail for invasive super-
position, a more general and less predictable way of breaking encapsulation, as de-
fined in [15]). The above result shows that, if there exists an extension morphism σ 
between two designs (θ1, Λ1) and (θ2, Λ2) (and this extension is realisable), then all 
behaviours exhibited by (θ1, Λ1) are also exhibited by (θ2, Λ2). Since superposition 
morphisms, used as a representation of “clientship” (strictly, the existence of a super-
position morphism between two designs indicates that the first is part of the second, 
as a component is part of a system when the first is used by the system), restrict the 
behaviours of superposed components, it is guaranteed that all behaviours exhibited 
by a component when this becomes part of a system will also be exhibited by an ex-
tension of this component, if replaced by the first one in the system. Of course, one 
can also obtain more behaviours, and this is the intention behind the definition of 
extension morphisms,  resulting from the explicit use of new actions of the compo-
nent. But if none of the new actions are used, then the extended component behaves 
exactly as the original one did. 

Now we introduce the relationship of refinement between two components, which 
we need to enable us to use the architectural concept of connector. 

Definition 15. A refinement morphism σ from a design (θ1, Λ1) to another design (θ2, 
Λ2) is a signature morphism σ: θ1 → θ2 such that: 

1 For every i ∈ in(V1), σα(i) ∈ in(V2). 
2 σα is injective on input and output channels. 
3 σγ is surjective on shared actions in Γ1. 
4 t (I2 ⇒ σ(I1)). 
5 If v ∈ loc(V1), g ∈ Γ2 and σα(v) ∈ D2(g), then g is mapped to an action 

σγ(g) and v ∈ D1(σγ(g)).  

For every g ∈ Γ2 where σγ(g) is defined,  

6 If v ∈ loc(V1) and g ∈ D2(σα(v)), then t (R2(g, σα(v)) ⇒ σα(R1(σγ(g), v))).  
7 t (L2(g) ⇒ σ(L1(σγ(g)))). 

For every shared action g ∈ Γ1,  

8 t (σ(U1(g)) ⇒ ∧ U2(σγ 
-1(g))). 

A refinement morphism identifies a way in which design (θ1, Λ1) is refined by a more 
concrete design (θ2, Λ2). The first three conditions must be established to ensure that 
refinement does not change the interface between the system and its environment. 
Notice that we do not require σγ to be injective because the set of actions in the target 
design that are mapped to action g of the source design can be viewed as a menu of  
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refinements that is made available for implementing g. Different choices can be made 
at different states to take advantage of the structures available at the more concrete 
level.  

As for the “old actions”, the last two conditions in the refinement morphism defini-
tion require that the interval defined by their enabling and progress conditions must be 
preserved or reduced. This is intuitive because refinement should reduce underspeci-
fication, so the enabling condition of any implementation must lie in the “old inter-
val”: the lower bound cannot be weakened and the upper bound cannot be strength-
ened. This is also the reason why the underspecification regarding the effects of the 
actions of the more abstract design are intended to be reduced. 

Proposition 6. The structure composed of CommUnity designs and superposi-
tion/refinement/extension morphisms constitutes a category SUP/REF/EXT, respec-
tively, where the composition of two morphisms σ1 and σ2 is defined in terms of the 
composition of the corresponding channel and action mappings of σ1 and σ2. 

So, we can build superpositions/refinements/extensions incrementally. Most im-
portantly, SUP has finite colimits, i.e., we can compute the system corresponding to a 
configuration of CommUnity designs whose channels and actions are synchronized 
via cables and superposition morphisms. So called higher order connectors [29] are 
defined in CommUnity to enable designers to use complex connectors between com-
ponents, in the style of software architecture approaches. These higher order connec-
tors are just CommUnity designs in which some components play a designated role, 
namely stating minimum requirements of actual components to be connected by the 
connector in question. One can instantiate a role with a ‘real’ component by defining 
a refinement from the role to the component. Thus, when designing a system using 
components and connectors, we may end up with a configuration in which we see 
both regulative superpositions and refinements. In order to calculate the intended 
system form this configuration, we must eliminate the refinements and thus get a 
configuration in SUP.  

Luckily, we have the following crucial result about the joint use of refinement and 
superposition morphisms. If we restrict the kinds of components used to interconnect 
components to so called cables, we can combine superposition morphisms from such 
a cable with a refinement. A cable is a design containing only input channels and its 
actions having the following form g: true -> skip. We only expect input 
channels in the cable, which can be used to interconnect designs, because output 
channels cannot be used to connect the input channel of one design with the output 
channel of another design, and it will make no sense to interconnect output channels 
of different designs. Also we set the enabling guard and progress guard of each ac-
tion in the cable to true and set R(g) to skip (by skip we mean this action has no 
effects on the local channels of the design), which is good enough to synchronize the 
actions. 

Proposition 7. Suppose m is a regulative superposition morphism from cable θ to 
design Ci and n is a refinement morphism from design Ci to design Ei; there exists a 
regulative superposition morphism n’ from cable θ to design Ei such that n’=n•m. 
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Fig. 1. Combining regulative superposition and refinement morphisms 

2   CommUnity and Extension Morophisms 

It has been shown in [5] that higher-order connectors provide a very convenient basis 
for enhancing the behavior of an architecture of component designs, by the superim-
position of aspects, such as fault tolerance, security, monitoring, compression, etc. 
Owing to the coordination mechanism of CommUnity, which externalizes completely 
the definition of interaction between components, the coupling between the compo-
nents has been reduced to a minimum so that we can superimpose aspects on existing 
systems through replacement, superposition and refinement of components. However, 
higher-order connectors are not powerful enough for defining various kinds of as-
pects, because some of them require extensions of the components and connectors [8], 
which break encapsulation of the extended component, though in a controlled and 
predictable way. (The usual relationships used in CommUnity, i.e., regulative super-
position and refinement, preserve encapsulation: channels (attributes) of the original 
component are not modified by new actions of the new component and actions of the 
original component can only have their enabling guards and effects strengthened in 
the new component.) Hence, we defined an extension morphism as a mechanism for 
modifying/adapting components, in a way that satisfies the notion of substitutability 
arising in the context of object oriented design and programming [8], enables us to 
predict properties of extended components in a safe manner and enables the design of 
various aspects [8].  

This means that in a well-formed configuration diagram we should be able to re-
place component C by its valid extension, component C’, and preserve the well form-
edness (our ability to compute the colimit) of the diagram. We prove this property in 
the next section. To illustrate the application of this principle in designing systems 
with the CommUnity language, a vending machine system example will be discussed 
below to show how we can combine regulative superpositions with extension mor-
phims to derive an “augmented” version of the original system, where the modified 
system is not simply a refinement of the original, nor is it a regulated version of the 
original obtained by the use of regulative superpositions (the usual structuring rela-
tionship in CommUnity). 

2.1   Combining Regulative Superpositions with Extension Morphisms 

In this section we will consider the case where, in a well-formed configuration dia-
gram, one component is extended by a design through an extension morphism. Since 
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we know that, in a well formed configuration diagram, all the components are inter-
connected by cables through regulative superposition morphisms, the component to 
be replaced by the extended design is connected to a cable by the regulative superpo-
sition morphism, as shown in Figure 2. We will show that the regulative superposition 
can be combined with the extension morphism to obtain a new regulative superposi-
tion from the cable to the extended component. This then allows us to apply the 
mechanisms of CommUnity to obtain the semantics of the extended configuration 
diagram, the colimit, which again consists of components connected through cables 
and superposition morphisms. Again, it is crucial to have the notion of cables to inter-
connect the components, to ensure that the composition of regulative superposition 
and extension morphism will give a new regulative superposition. 

 

Fig. 2. Combining regulative superposition and extension morphisms 

Proposition 8. Suppose m is a regulative superposition morphism from cable θ to 
design Ci and n is an extension morphism from design Ci to design Ei; there exists a 
regulative superposition morphism n’ from cable θ to design Ei such that n’=n•m. 
Proof 
The morphism n’ is defined as follows: 

• n’α is a total function: for every channel v in θ , n’α (v) = nα (mα (v)). 
• n’γ is a partial mapping: for every action g in Ei , if nγ(g) is defined and mγ(nγ 

(g)) is also defined, n’γ (g) = mγ(nγ (g)); otherwise, it is undefined.  

Since an extension morphism is also a signature morphism, we know n’ is a signature 
morphism. To check if n’ is a regulative superposition morphism, we need to check 
the following conditions: 

• IEi ⇒ n’(Iθ ). 

Because n is an extension morphism, there exists a formula α, using only channels 

contained in (∨Ei−nα(VCi )), and α is satisfiable, t IEi ⇔ n(I Ci )∧α. 
We have IEi ⇒ n(ICi ), ICi ⇒ m(Iθ ), so n(ICi ) ⇒ n(m(Iθ )) ⇔ n’(Iθ ), and IEi ⇒ n’(Iθ ). 

• If v ∈ loc(θ), g ∈ ΓEi and n’α(v) ∈ DEi(g), then g is mapped to an action 
n’γ(g) and v∈ Dθ(n’γ(g)). 

• For every g ∈ ΓEi where n’γ(g) is defined, if v ∈ loc(θ) and g ∈ DEi(n’α(v)), 
then REi(g, n’α(v)) ⇔ n’α(R θ(n’γ(g),v)). 

Because θ only contains input channels, loc(θ) is empty, so these two conditions hold. 
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• L Ei(g) ⇒ n’(Lθ(n’γ(g))). 
• UEi(g) ⇒ n’(Uθ (n’γ(g))). 

From our definition of “middle” design, Lθ(n’γ(g)) ⇔ true, Uθ(n’γ(g)) ⇔ true, so these 
two conditions hold. 

With this property, in a well-formed configuration diagram, we are able to replace 
a component by its extension component, by combining the regulative superposition 
from the cable to the old component with the extension morphism between the old 
component and its extension, to obtain a new regulative superposition from the cable 
to the extended component. If we build several extensions, each built on top of the 
previous one, then the fact that extensions compose in the category of CommUnity 
designs and extension morphisms guarantees that this composition is an extension. 
Hence, the above result still applies when we build extensions incrementally. There-
fore, we reach the conclusion that in a well-formed configuration diagram of a  
system, we can extend any subcomponents of the system (through extension mor-
phisms), and thus obtain an updated well-formed configuration diagram only con-
taining regulative superpositions, through which the semantics of the new system  
can be derived from its colimit. Moreover, it can be shown that the colimit of the 
new configuration diagram is an extension of the colimit of the old configuration  
diagram [8]. 

By examining the proof of proposition 8, we can see that, if θi is not a cable, the 
composition of a regulative superposition and an extension morphism may not give a 
regulative superposition. Therefore, it is necessary to enforce designs to be intercon-
nected by cables in a well-formed configuration diagram, so that the colimit will exist 
after extending any of the designs in the diagram through extension morphisms. (This 
result mimics the properties of refinements in the context of cables and regulative 
superpositions.) 

3   An Example Vending Machine System 

Now we want to model a system consisting of a customer and a vending machine with 
the DynaComm language, to illustrate the use of hierarchical design and then to illus-
trate the use of extension morphisms to enable us to modify our design in a way not 
allowed by refinements and regulative superpositions. The requirement of this system 
is described as follows: The vending machine maintains a list of items, along with the 
price and amount of each item. The customer can place an order by inputting the 
name of the item and the payment to the vending machine. Initially, we only allow the 
customer to order one item in a transaction; this will be extended later. The vending 
machine will check the price of the item and decide if the order is accepted. If so, it 
will deliver the item along with the change to the customer; otherwise, the payment is 
returned to the customer. Initially, the vending machine will only accept payment 
comprised of nickels, dimes, quarters and loonies (Canadian single dollars using the 
image of a local bird), so it will refuse the order if the customer puts a one cent piece 
in the payment slot. Meanwhile, if the vending machine is not able to make the 
change, it will also refuse the order and return the payment. 
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3.1   The Design of the Customer 

We consider the machine’s interface, operated by the customer, as the simulation of 
the customer’s behavior. To make the system simple and general at first, the interface 
is divided into two parts: the buttons and the slot. The names of different items label 
the corresponding item buttons, and after the customer presses one of them, other item 
buttons will be disabled, so that he can only choose one item in an order. Then the 
customer can choose the “confirm” button to continue the order, where the slot will 
indicate to him to put the coins in and the complete order will be sent to the vending 
machine. If the customer chooses the “cancel” button, all the item buttons will be 
enabled and he can start another order.   

The vending machine will check the price of this order and whether the ordered 
item is still available in its storage. If so, it will ask the slot to make the change. Then 
the vending machine will deliver the product to the slot and enable the item buttons, if 
the change can be made. Otherwise, the order will be refused and the payment is re-
turned to the customer. 

3.1.1   The Interface Controller  
According to the above requirement, the customer places his order of an item through 
the buttons (including the item buttons and the command buttons: confirm and cancel) 
on the machine’s interface, so we design an interface controller to model these but-
tons, as well as the customer’s interaction with the interface of the machine. A finite 
set of actions for the item buttons and “confirm”, “cancel” buttons are specified in the 
following design. The slot_get and slot_ret actions are designed to interact with  
the slot component to obtain the payment from the customer. Meanwhile, we use the 
order action to send the complete order to the vending machine, and after the order 
has been processed by the vending machine, the order_ret action will be called to 
reset the controller. 

 
design component controller 
in // the customer’s payment in the slot 

i_pay: int 
prv b_item: array(int); 

bt_g: bool;  //guard for item buttons 
bt_confirm: bool;  //guard for confirm/cancel buttons 
slot_g: bool;  // guard for slot get action 
s_req: bool; 
ord_g: bool;  // guard for order action 
o_req: bool 

out // order to vending machine 
c_item: list (int); 
c_pay: int 

init ord_g = false ∧ o_req = false ∧ bt_g = true ∧ bt_confirm 
= false ∧ slot_g = false ∧ s_req = false ∧ c_item = NULL 

actions 
button_select(id: int)[bt_g,c_item,bt_confirm]: bt_g, 
false ->  
bt_g’ = false ∧ c_item’ = c_item * b_item [id] ∧ 
bt_confirm’ = true 
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[] button_confirm[bt_confirm,slot_g]: bt_confirm, false ->  
bt_confirm’ = false ∧ slot_g’ = true 

[] button_cancel[bt_confirm,bt_g,c_item]: bt_confirm, false 
-> bt_g’ = true ∧ bt_confirm’ = false ∧ c_item’ = NULL 

[] slot_get[slot_g,s_req]: slot_g, false ->  
slot_g’ = false ∧ s_req’ = true 

[] slot_ret[c_pay, s_req, ord_g]: s_req, false ->  
c_pay’ = i_pay ∧ s_req’ = false ∧ ord_g’ = true 

[] order[o_req,ord_g]: ¬o_req ∧ ord_g, false ->  
o_req’ = true ∧ ord_g’ = false 
// enable all the item buttons 

[] order_ret[o_req, bt_g, c_item]: o_req, false ->  
o_req’ = false ∧ bt_g’ = true ∧ c_item’ = NULL 

endofdesign 

 
The input channel i_pay indicates the payment received from the customer. A fi-

nite set of item button actions (button_select) are defined, which correspond to the 
sequence of item buttons on the machine’s interface. These actions are examples of 
schema actions indexed by the id (in the above sequence) of the item buttons. Such 
schema actions may be used to describe succinctly a finite set of related actions, dis-
tinguishable by means of some index set. See [27] for a full explanation of such fami-
lies of actions and their precise semantics. We use a fixed size array b_item to store 
the item’s index in the storage of the vending machine, and the index of array b_item 
will correspond to the id of the item button, e.g., the second item button b_item[2] 
may correspond to the item index 6 in the item list of the vending machine’s storage.  

The workflow of the controller component is described as follows. After one item 
button is selected, the guard bt_g is set to false to disable all the item buttons, so that 
the customer can only choose buttons confirm or cancel (as the enabling guards of 
other actions are disabled). If he chooses the confirm button, the guard slot_g is en-
abled and the slot_get action will be executed to request the customer’s payment in 
the slot component. If the cancel option is selected, the controller will enable all the 
item buttons and wait for the customer’s input of a new transaction. After the payment 
is obtained from the slot, the order action will be called and it will send the order  
 

 
Fig. 3. Graphical representation of the controller component 
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(c_item, c_pay) to the vending machine, then wait for the result of the order. After the 
vending machine processes the order and indicates the result to the order_ret action of 
the controller, the order_ret action will reset the item buttons and the c_item list, to be 
ready to accept another order. The graphical notation for the (syntax of the) controller 
component is shown in Figure 3 (we suppress private channels and actions): 

Notice that we use a number of guards to control the sequence of actions in the 
controller, and the correctness of our design can be ensured by maintaining the right 
workflow of the component through the appropriate use of these guards. We also use 
the list data structure to record the ordered items, although currently only one item is 
allowed in the order. The reason is that in the different kinds of design morphisms we 
have discussed so far, the mapping of channels requires the types of channels to be 
preserved. (Refinement morphisms do not support data refinement, so a refinement 
solution to get around this problem is not available.) If we use one channel of integer 
type to record the ordered item now and there is a new requirement to allow the cus-
tomer to select multiple items in an order, we have to add new channels to the com-
ponent and modify the corresponding actions as well, which seems awkward. There-
fore, we choose the list data structure for the ordered items and the corresponding 
actions are designed to process the list of items. 

We have also designed a pattern for a pair of actions of one component (e.g. 
slot_get and slot_ret), which sends a request to another component and waits for its 
response to proceed. The trick is to assign a guard (initialized to be false) to the call-
back action to make sure that it will not be called arbitrarily in an unexpected situa-
tion, and it will only be enabled in the request action.  

3.1.2   The Slot 
The slot component takes care of the acceptance of the customer’s payment and de-
cides if the correct change can be made depending on its current store of coins. When 
the interface controller requests the payment from the customer, the slot will distin-
guish the various kinds of coins and it will refuse the payment and indicate this event 
to the controller if there exists an illegal coin in the customer’s input. Otherwise, it 
will store the coins and send the payment amount to the controller. Regarding the 
function for making the change, the slot is able to compute the composition of coins 
for the amount of change requested by the vending machine, based on its current 
store. If the computation is not successful, the vending machine will refuse the order 
and inform the slot to return the payment, which can certainly be made. 

In the following design of component slot, a set of input channels such as i_dollar, 
i_quarter, etc. represents the payment from the customer, a set of private channels is 
included as the coin store of the slot, and we also use output channels o_nickel, 
o_dime, o_quarter and o_dollar to represent the change made by the slot. The get_pay 
action stores the coins in the payment and the send_pay action puts the amount of 
payment in the output channel o_pay. According to the amount of change that should 
be made in the input channel r_change, the comp_change action will compute the 
composition of coins, and the send_change action will send the result of the computa-
tion (change_res) and update the storage of coins if needed. While the ordered item is 
accepted by the action rec_item, and the rec_return action receives the returned pay-
ment amount and returns the coins to the customer. 
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design component slot 
in  // input coins from customer 

i_cent: int; 
i_nickle: int; 
i_dime: int; 
i_quarter: int; 
i_dollar: int; 
// received change amount and items from vending machine 
r_change : int;  
r_item: list(ITEM) 

prv // coins storage 
s_nickle: int; 
s_dime: int; 
s_quarter: int; 
s_dollar: int; 
// guards for action sequence 
get_g: bool;   
change_g:bool; 
item_g: bool 

out // changes made by the slot 
o_nickle: int; 
o_dime: int; 
o_quarter: int; 
o_dollar: int; 
s_item: list (ITEM);  // items to slot 
o_pay: int; // payment amount to the controller 
change_res: bool 

init get_g = true ∧ change_g = true ∧ change_res = false ∧ 
item_g = false  

actions 
get_pay[get_g, s_nickle, s_dime, s_quarter, s_dollar]: 
get_g ∧ i_cent = 0, false ->  
get_g’ = false ∧ s_nickle’ = s_nickle + i_nickle ∧ 
s_dime’ = s_dime + i_dime ∧ s_quarter’ = s_quarter + 
i_quarter ∧ s_dollar’ = s_dollar + i_dollar 

[] send_pay[get_g, o_pay]: ¬ get_g, false ->  
get_g’ = true ∧ o_pay’ = 100*i_dollar + 25*i_quarter + 
10*i_dime + 5*i_nickle 

[] comp_change[change_g, change_res]: change_g, false ->  
get_changed ∧ change_g’ = false 

[] send_change[change_g]: ¬change_g, false ->  
change_g’ = true ∧ (change_res = true ⇒  item_g’ = true ∧ 
s_nickle’ = s_nickle - o_nickle ∧ s_dime’ = s_dime -  
o_dime ∧ s_quarter’ = s_quarter - o_quarter ∧ s_dollar’ = 
s_dollar - o_dollar) 

[] rec_item[s_item, item_g]: item_g, false ->  
s_item’ = r_item ∧ item_g’ = false 

[] rec_return[ret_g, s_item,]: true, false ->  
s_item’ = NULL ∧ get_changed 

endofdesign 
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In the above design, we assume the function to compute the composition of 
change, namely get_change, has already been defined, which takes r_change as input 
and computes the number of nickels, dimes, quarters and dollars. If the computation is 
successful, it will set change_res to be true and the output channels for the change. 
Otherwise, change_res is set to false and this event is sent to the vending machine. 
Actually, get_change solves a linear programming problem, which takes s_nickel, 
s_dime, s_quarter, s_dollar and r_change as parameters. To simplify the specification 
of the slot component, we do not describe the detailed procedure here.  

The workflow of the slot component is described as below. When the interface 
controller requests the payment from the customer, the get_pay and send_pay actions 
will be executed to provide the payment amount to the controller. After the vending 
machine receives the order and recognizes that the payment is enough, it will ask the 
slot to compute the change. So, the comp_change action is called and the result of 
computation (change_res) is sent to the vending machine by the send_change action. 
If the result is successful, the change is given to the customer by the slot and the 
vending machine will send the product to the slot by means of the rec_item action. 
Otherwise, the rec_return action will get the amount of payment from the vending 
machine and give it back to the customer by calling the get_change function. The 
graphical notation for the slot component is as follows, where we again suppress the 
private channels and actions. 

 
Fig. 4. Graphical representation of the slot component 

3.2   The Design of the Vending Machine 

Based on the functional requirement of the vending machine, we will divide it into 
two components: vender and inventory, where the vender is in charge of the interac-
tion with the customer interface (controller and slot), and the inventory serves as a 
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database for storing the actual products (items) and maintaining the price and amount 
of each item. 

3.2.1   The Vender 
The job of the vender is to accept the order from the customer (the accept action), ask 
the inventory to check the price and amount of the ordered item(s) (actions check_inv 
and check_ret), send the amount of change to the slot and ask if the change can be 
made (actions change and change_ret), request the item(s) from the inventory (actions 
req_item and req_return), deliver the item(s) to the customer (the delivery action) or 
return the payment (the return_ord action), and inform the interface controller to be 
reset to start a new order (the reset_controller action). The design of the vender com-
ponent is as follows, the meaning of the channels being explained in the comments. 
 
design component vender 
in // the ordered item(s) and payment from the controller 

in_item: list(int); 
in_pay: int; 
// the price of the ordered item(s) from the inventory 
inv_price: int;  
inv_item: list(ITEM); 
// the result of checking whether the change can be made 
from the slot 
chg_res: bool 

prv // the set of guards to control the sequence of actions 
ac: bool; 
ck: bool; 
cg: bool; 
rt: bool; 
rq:bool; 
rc: bool; 
dl:bool; 
// stores the requested item(s) from the inventory 
v_item: list(ITEM); 
// stores the order and payment from the customer 
ord_item: list(int); 
ord_pay: int 

out // the order and payment to be sent to the inventory 
ck_item: list(int); 
ck_pay: int; 
// the amount of change to be sent to the slot 
chg_amt: int; 
// the ordered item(s) sent to the customer 
out_item: list(ITEM); 
// the returned amount of payment to be sent to the slot 
ret_amt: int 

init ac’ = false ∧ ck’ = false ∧ cg’ = false ∧ rt’ = false ∧ 
dl’ = false ∧ rq’ = false ∧ rc’ =false 

actions 
       [ac, ord_item, ord_pay, ck]: ¬ac, false ->  

ac’ = true ∧ ord_item’ = in_item ∧ ord_pay’ = in_pay ∧ ck’ 
= true 
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[]  check_inv[ck, ck_item, ck_pay]: ck, false ->  
ck_item’ = ord_item ∧ ck_pay’ = ord_pay ∧ ck’ = false 

[]  check_ret[cg, rt, v_item]: true, false ->  
(inv_price >= 0 ⇒ cg’ = true) ∨(inv_price = 0 ⇒ rt’ = 
true) 

[]  change[cg, chg_amt]: cg, false ->  
chg_amt’ = ord_pay － inv_price ∧ cg’ = false 

[]  change_ret[rq, rt ]: true, false ->  
(chg_res = true ⇒ rq’ = true) ∨(chg_res = false ⇒ rt’ 
= true) 

[]  req_item[rq, ck_item]: rq, false ->  
ck_item’ = ord_item ∧ rq’ = false 

[]  req_return[v_item, dl]:true, false ->  
v_item’ = inv_item ∧ dl’ = true 

[]  return_ord[rt, ret_amt, out_item, ac, rc]: rt, false ->  
rt’ = false ∧ ret_amt’ = ord_pay ∧ out_item’ = NULL ∧ 
rc’ = true 

[]  delivery[dl, ac, out_item]: dl, false ->  
dl’ = false ∧ out_item’ = v_item ∧ rc’ = true 

    // inform the controller to accept another order 
[]  reset_controller[rc]: rc, false ->  

rc’ = false ∧ ac’ = false 
endofdesign 

 
According to the initialization condition of this design, only the accept action is 

enabled and it is synchronized with the order action of controller to accept the order 
of the customer. It also sets the guard ck to be true, so that the check_inv action will 
be executed to ask the inventory to check the price and amount of the ordered item(s). 
The check_ret action waits for the response from the inventory: if inv_price>=0, it 
means that the transaction can continue and this action sets the guard cg to be true, to 
call the slot to check if the change can be made; otherwise, it enables the guard rt to 
call the return_ord action, if any item is not available or the payment is not enough.  

If the order can continue, the change action is synchronized with the comp_change 
action of the slot to make the appropriate change to the customer. Then the change_ret 
action will wait for the response from the slot indicated by the input channel chg_res: 
if the change can be made, the vender will request the item from the inventory using 
the req_item action, which is synchronized with the rec_req action of the inventory; 
otherwise, the return_ord action is called to return the payment. After the vender re-
ceives the requested item from the inventory using the req_return action, the delivery 
action will be called, which is synchronized with the rec_item action of the slot to 
deliver the item. Otherwise, the action return_ord will be executed and the slot’s ac-
tion rec_return will be synchronized to return the payment to the customer. Finally, 
the vender will call the reset_controller action to synchronize with the order_ret  
action of the controller to inform it that the next order can now be taken. 

The graphical notation for the vender component is depicted in Figure 5 below (we 
ignore private channels and actions). 
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Fig. 5. Graphical representation of the vender component 

Again, we use a set of guards to control the sequence of actions in the vender com-
ponent, and, in the above explanation of the component’s work mechanism, we are 
able to control the right workflow of the design through the appropriate use of these 
guards, so that the correctness of our design can be ensured. 

3.2.2   The Inventory 
The inventory component maintains a list of items along with their price and remain-
ing amount: (item_id:int, item:ITEM, price:int, amount:int), where item_id is the 
item’s index in the storage and item represents the real item product. We use an array 
db (with a fixed size) to store this list of items, and the index of this array corresponds 
to item_id. Meanwhile, we assume functions first, second and third have been defined 
to return the first, second and third member of db, respectively. 

The private action count_item calculates the amount of each ordered item and 
stores it in the channel s_item. It also computes the total price of the order. The 
check_price action goes through the inventory database and compares the amount of 
each ordered item with the amount of that item in the storage. If the storage is not 
enough or the payment is less than the price of the order, the output channel will be 
set to 0; otherwise, it will set to the value in p_price. The get_item action will retrieve 
the items from the storage according to the order and update the db channel. The 
specification of the inventory component is as follows: 
 
design component inventory 
in // the ordered item(s) and payment from the vender 

i_item: list (int); 
i_pay: int 
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prv // stores the ordered item(s) 
p_item: list (int); 
r_item: list (int); 
p_price: int; 
// array index is item id 
db: array (ITEM, int, int); 
// stores the amount of each ordered item, all the en-
tries are initialized to be 0. 
s_item: array (int);  
j :int; 
// the guards to control the sequence of actions 
price_g: bool; 
amt_g: bool; 
ret_g: bool; 
send_g : bool 

out o_item: list (ITEM); 
// the price of the order sent to the vender 
o_price: int 

init p_item = NULL ∧  price_g = false ∧ amt_g = false ∧ ret_g 
= false ∧ o_price = 0 ∧ o_item = NULL ∧ r_item = NULL ∧ 
send_g = false 

actions 
check[]: true, false -> p_item’ = i_item 

[] prv count_item[]: p_item != NULL, false ->  

s_item[head(p_item)]’ = s_item[head(p_item)] + 1 ∧ 
p_price’ = p_price + second(db[head(p_item)]) ∧ p_item’ = 
tail(p_item) ∧ (tail(p_item) = NULL ⇒ price_g’ = true) 

[] prv check_price[: price_g, false ->  
price_g’ = false ∧ ((i_pay >= p_price ⇒ amt_g’ = true ∧ j’ 
= 1) ∨(i_pay < p_price ⇒ ret_g’ = true ∧ o_price’ = 0)) 

[] prv check_amt[]: amt_g ∧ (j <= sizeof(db)) , false -> 
((s_item[j] <= third(db[j]) ⇒ j’ = j + 1 ∧ (j =sizeof(db) 
⇒ ret_g’ = true ∧ o_price’ = p_price)) ∨(s_item[j] > 
third(db[j]) ⇒ amt_g’ = false ∧ o_price’ = 0 ∧ ret_g’ = 
true)) 

[] inv_ret[]: ret_g, false -> ret_g’ = false 
[] rec_req[]: true, false -> r_item’ = i_item 
[] prv get_item[]: r_item != NULL, false -> o_item ’ = 

o_item * first(db[head(r_item)]) ∧ 
third(db[head(r_item)])’ = third(db[head(r_item)])-1 ∧ 
r_item’ = tail(r_item) ∧ (tail(r_item) = NULL ⇒ send_g’ 
= true) 

[] send_item[]: send_g, false -> send_g’ = false 
endofdesign 
 

The workflow of this component is as follows. First, the check action is called to 
enable the guard of the count_item action. Then the action check_price is called to 
decide if the total price is less than ck_pay. If so, the inv_ret action will be enabled to 
return the result (inv_price) to the vender. Otherwise, the check_amt action is exe-
cuted to check if the amount of each ordered item in the inventory is greater than the 
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number of this item requested in the order. If so, it will call action inv_ret to return 
inv_price > 0 (the total price of the items in ck_item); otherwise, it will return 
inv_price = 0 in the inv_ret action. After the vender verifies that the change can be 
made, it will call the req_item action, which is synchronized with the rec_req action 
of the inventory, to get the ordered items and update the storage, and the inventory 
has the send_item action to send the ordered items back to the vender. 

Notice that in the count_item action we use the guard p_item != NULL to iterate 
through the list of ordered items. It can be generalized as a mechanism to implement 
the loop structures in the DynaComm language. (See future work.)   

3.2.3   The Vending Machine Subsystem 
According to our design of the vender and inventory components and the discussion 
of their interactions, we can put them together by interconnecting the vender and the 
inventory through a cable. The CommUnity Workbench like notation of Figure 5 
describes the configuration diagram of the vending machine subsystem. The solid 
circles attached to a component description represent elements of the interface of that 
component. A line connecting two such interface elements, say sync1 of cable and 
chaeck_inv of Vender, indicate that in the categorical diagram corresponding to that 
of Figure 5, the regulative superposition from cable to Vender maps the action sunc1 
to the action check_inv. So, this configuration diagram corresponds exactly to a well 
defined and well formed diagram in the category of CommUnity designs and regula-
tive superposition morphisms. The colimit of this categorical diagram is the intended 
semantics of the configuration. 

The specification of the vending machine subsystem can be obtained easily from 
the above configuration diagram and we do not describe it in detail here. We can also 
determine the interface of this subsystem by looking at the left part interface of the 
vender component in the diagram, which will interact with the interface controller and 
the slot.  

 

 

Fig. 6. Configuration diagram of the vending machine subsystem 
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Now we can put the vending machine subsystem together with the interface part 
(the controller and slot) to obtain the required vending machine system, which satis-
fies the design requirements, and the morphims between them are described in the 
configuration diagram depicted in Figure 6. 

The interface of the vending machine system is shown in the left interface section 
of the controller component and the right interface section of the slot component, in 
which the controller provides the buttons for the customer to select his favorite item 
and confirm or cancel the order, and the slot indicates to the customer to put the coins 
in and to get his ordered item and change. 

3.3   The Extended Vending Machine System 

Now we want to add more behaviors to the vending machine system to improve the 
quality of its service. There are two extensions to be made, one for allowing a cus-
tomer to order more than one item in a single transaction and the other to allow more 
kinds of coins to be used in payments, and we will show that they can only be 
achieved by the usage of extension morphisms. 

3.3.1   The Extension Allowing Multiple Items in an Order 
One extension we want to make is to allow the customer to select more than one item 
in an order, which should be done in the controller component. We must modify the 
actions of item buttons to achieve this effect. First, we will extend the controller com-
ponent and show there is an extension morphism from the old controller to this ex-
tended new component. Then a proof is given to justify that it is impossible to regu-
late or refine the controller to obtain the required functionality and the extension mor-
phism is necessary for our purpose.   

We introduce a new channel ac: bool (initialized to be true) and weaken the guards 
of item buttons actions by taking the disjunction of ac with bt_g. The modified actions 
of the controller are as follows: 

 

init ord_g = false ∧ o_req = false ∧ bt_g = true ∧ bt_confirm 
= false ∧ slot_g = false ∧ s_req = false ∧ c_item = NULL 
∧ ac = true 

actions 
button_select(id: int) [bt_g,c_item,bt_confirm] :  
bt_g ∨ ac, false -> bt_g’ = false ∧ c_item’ = c_item * 
b_item [id] ∧ bt_confirm’ = true 

[} button_confirm[bt_confirm,slot_g,ac] : bt_confirm, false 
-> bt_confirm’ = false ∧ slot_g’ = true ∧ ac’ = false 

[] button_cancel[bt_confirm,ac,bt_g,c_item] : bt_confirm, 
false -> bt_g’ = true ∧ ac’ = true ∧ bt_confirm’ = false ∧ 
c_item’ = NULL 

[] order_ret[o_req,bt_g,c_item,ac]: o_req, false -> o_req’ = 
false ∧ bt_g’ = true ∧ c_item’ = NULL ∧ ac’ = true 

 

We call the extended version of the controller component controller’. It is easy to 
determine that controller’ satisfies the new requirement. After the customer selects an 
item button, the enabling guards of button_select actions will remain true because ac  
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Fig. 7. Configuration diagram of the vending machine system 

is true. They will not be disabled until the customer selects the confirm button, and 
after the vending machine subsystem informs the controller that the order has been 
processed by calling the order_ret action, all the item buttons will be reset. 

We need to show that there exists an extension morphism from the old controller 
component (say P1) to controller’ (say P2). The morphism σ is defined as follows: the 
mapping of the channels σα will map each channels of P1 to the identical channel of 
P2, and σγ defines the mapping of actions from each action in P2, to the identical ac-
tion in P1.  

Lemma 1. σ is an extension morphism from P1 to P2.  

Proof  
First we will show that σ is a signature morphism. Since the mappings of channels 
and actions are the identity, it is easy to see that all the conditions of a signature mor-
phism are satisfied, except possibly for the condition σα(D1(σγ(g)) ⊆ D2(g). Since the 
actions in P2 keep the effect of assignment to the mapped channels of P1, this condi-
tion also holds. Therefore, σ is a signature morphism. 
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Then we will check the conditions of extension morphisms according to definition 14: 

• Obviously σγ  is surjective and σα is injective. 
• There exists a formula α, which contains only channels from (V2  − σα(V1)), 

and α is satisfiable, t I2 ⇔ σ(I1) ∧ α.  As α ⇔ ac = true, this condition 
holds.  

For every g ∈ Γ2 where σγ (g) is defined,  

• If v ∈ loc(V1) and g ∈ D2(σα(v)), then there exists a formula α, which con-
tains only primed channels from (V2’ − σα(V1)’), and α is satisfiable, t σ 
(L1(σγ (g))) ⇒ (R2(g, σα(v)) ⇔ σα(R1(σγ (g), v)) ∧ α) . 

o For action button_confirm, α ⇔ ac’ = false, this condition holds. 
o For action button_cancel, α ⇔ ac’ = true, this condition holds. 
o For action order_ret, α ⇔ ac’ = true, this condition holds. 

• If v ∈ loc(V1), g ∈ D2(σα(v)), then v ∈ D1(σγ(g)). Since the mappings of 
channels and actions are the identity and the actions in P2 maintain the effect 
of assignments to the mapped channels of P1, this condition will hold. 

t (σ(L1(σγ (g))) ⇒ L2(g)). For each action button_select(id: int), bt_g ⇒ bt_g ∨ ac. 
t (σ(U1(σγ (g))) ⇒ U2(g)). The progress guards of each mapped action are the same. 

Lemma 2. The new functional requirement cannot be achieved by regulating or refin-
ing the controller component. 

Proof  
The enabling guards of these button_select actions cannot be strengthened because, in 
that case, all the buttons will be disabled after the customer selects one item button. 
The justification for this statement is as follows: 

Suppose we have regulated or refined the controller component, then, in the target 
component, the enabling guards of the button_select actions will be strengthened; say 
one of the actions is g, its enabling guard is f and f ⇒ σ(bt_g) (bt_g must be trans-
lated). According to the definition of regulative superposition and refinement mor-
phism, we have R2(g, σ(bt_g)) ⇒ σ(R1(σγ(g), bt_g)). Since bt_g is set to false after 
the button_select action is called in the old controller, we know that σ(bt_g) should 
also be set to false after the execution of g in the extended controller. Because we 
have f ⇒ σ(bt_g) and it should hold all the time, if σ(bt_g)’ is false, we know f’ must 
be false. Therefore, after the button_select action is executed in the target component, 
this action will be blocked, which means this item button is disabled. 

3.3.2   The Extension of Payment Options 
We expect that instead of only accepting payment consisting of nickels, dimes, quar-
ters and loonies, the vending machine system can also accept payment including one 
cent pieces and make the correct change. It is clear that we cannot refine or regulate 
component slot to achieve this goal, because we must modify its action get_pay and 
relax its enabling guard, which is not allowed in regulative superpositions and refine-
ment morphisms. Therefore, we have to apply an extension morphism to the slot by 
modifying the get_pay action as follows and obtain the extended slot component. 
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get_pay [get_g, s_nickle, s_dime, s_quarter, s_dollar, s_cent]:  
get_g, false -> get_g’ = false ∧ s_nickle’ = s_nickle + i_nickle 
∧ s_dime’ = s_dime + i_dime ∧ s_quarter’ = s_quarter + i_quarter 
∧ s_dollar’ = s_dollar + i_dollar ∧ s_cent’ = s_cent + i_cent 
Notice that we need to add a new channel s_cent into the slot component to store 

the cents and make the corresponding assignment to this channel. However, based on 
the definition of extension morphism, there will exist an extension morphism from the 
old component to this extended component (the proof is similar to the case above). 
For the same reason, we can modify the following actions of the slot component as 
well (and add the channel o_cent): 

 

send_pay [get_g, o_pay]:  
¬ get_g , false -> get_g’ = true ∧ o_pay’ = 100*i_dollar + 
25*i_quarter + 10*i_dime + 5*i_nickel + i_cent 
 
send_change [change_g]:  
¬change_g, false -> change_g’ = true ∧ ( change_res = true ⇒  
item_g’ = true ∧ s_nickle’ = s_nickle - o_nickle ∧ s_dime’ = 
s_dime - o_dime ∧ s_quarter’ = s_quarter - o_quarter ∧ 
s_dollar’ = s_dollar - o_dollar ∧ s_cent’ = s_cent – o_cent)  

Since we have divided the functionality of the system in an appropriate way, we 
can simply reuse the vending machine subsystem and the controller component. 

4   Conclusions 

Extension morphisms were originally motivated by their use in the application of 
aspects [8]. The examples developed in [8] were related to the application of a moni-
toring and a performance aspect to an unreliable communication system. We would 
like to impose behaviour on the existing architecture of an unreliable medium be-
tween a sender and receiver, to make the communication reliable by implementing a 
reset in the communication when packets are lost. The mechanism we used was very 
simple, and required a “reset” operation in the sender, which can be achieved by 
component extension. In order to complete the enhanced architecture to implement 
the reset acknowledgement mechanism, we need a monitor that, if it detects a missing 
packet, issues a call for reset. The idea is that, if a message is not what the monitor 
expected, then it will go to a “reset” cycle, and wait to see if the expected packet ar-
rives. If the expected packet arrives, then the component will start waiting for the next 
packet. (Note that, since the superposed monitor is spectative, i.e., it has no effect on 
the underlying component – simply “observing” it.) Because of the properties of ex-
tension, we can guarantee that, if the augmented system works without the need for 
reset in the communication, i.e., no messages are lost, then its behaviour is exactly the 
same as the one of the original architecture with unreliable communication. 

As we hope to have demonstrated in this paper, extension morphisms have a life of 
their own, independently of their usefulness in defining some aspects. They provide 
an interesting and predictable mechanism for software architects interested in change 
and evolution of their designs. 
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We have said very little about the new features of DynaComm, as this was unnec-
essary to talk about extensions. However, many aspects cannot be dealt with without 
hierarchical designs incorporating subsystem specific dynamic reconfigurability. This 
is what DynaComm sets out to provide. It also offers mechanisms to make design of 
architectures easier, such as the idea of indexed actions: a family of actions that “do 
the same thing” but to different elements, which can be indexed via a finite set of 
names. We are developing a DynaComm Workbench on the basis of experience with 
the CommUnity Workbench [37]. We are also putting together a catalogue of aspects 
and methods for developing formalizations of them. In particular, we are interested in 
reasoning about the applications of aspects to architectures to provide analyses for 
systems built in this way. 
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