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Abstract. We present a modified semantics and an extension of the
Alloy specification language. The results presented in this paper are:
(a) We show how the modified semantics of Alloy allows us to avoid
the higher-order quantification currently used both in the composition
of operations and in specifications, keeping the language first-order.
(b) We show how the extended language, which includes features from
dynamic logic, enables a cleaner (with respect to previous papers) treat-
ment of properties of executions.
(c) We show that the automatic analysis currently available for Alloy
specifications can be fully applied in the analysis of specifications under
the new semantics.
(d) We present a calculus for the extended language that is complete
with respect to the extended semantics. This allows us to complement
the analysis currently provided in Alloy with theorem proving.
(e) Finally, we show how to use the theorem prover PVS in order to
verify Alloy specifications.

1 Introduction

The specification of software systems is an activity considered worthwhile in most
modern development processes. In non-formal settings, specification is usually
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referred to as modelling, since specifications allow us to build abstract models of
the intended systems. Since these models are used as a means of communication
with users and developers, as well as for analysis of the specified systems, it
is generally considered important for modelling languages to possess a precise
semantics.

Widely-used modelling languages, such as the UML [2] are being endowed
with a formal semantics [3, 4]. Other languages, such as VDM [13], Z [23] and
Alloy [12] were born formal, and their acceptance by software engineers greatly
depends on their simplicity and usability. Alloy has its roots in the Z formal
specification language. Its few constructs and simple semantics are the result
of including some valuable features of Z and some constructs that are ubiqui-
tous in less formal notations. This is done while avoiding to incorporate other
features that would increase Alloy ’s complexity more than necessary. Alloy is
defined on top of what is called relational logic, a logic with a clear semantics
based on relations. This logic provides a powerful yet simple formalism for inter-
preting Alloy modelling constructs. The simplicity of both the relational logic
and the language as a whole makes Alloy suitable for automatic analysis. This
automatic analysis is carried out using the Alloy Analyzer [11], a tool that in-
corporates state-of-the-art SAT solvers in order to search for counterexamples of
specifications. Alloy has been used to model and analyze a number of problems
of different domains, as for instance to simplify a model of the query interface
mechanism of Microsoft’s COM [10].

In this paper we present a modified version of Alloy that provides the fol-
lowing features:

1. The possibility of specifying functions that formally change the state, allow-
ing one to describe the action that composite functions perform on mod-
els. This is possible due to the dynamic logic extension of relational logic
that we will introduce. Note that, in the current version of Alloy, change of
state is represented through the convention that some variables (e.g., primed
variables) represent the final state (after execution) in function definitions.
Therefore, specifications in Alloy provide “pictures” of a model. That is why
we claim to be moving from static “pictures” to dynamic “movies”.

2. The need for the second-order quantifiers in Alloy (see for instance [8, Section
2.4.4]) is eliminated, while keeping the expressive power and simplicity of the
language. This is achieved by replacing Alloy ’s relational logic by a similar
but better-suited logic of binary relations. This logic can be automatically
analyzed using the tools already available for Alloy.

3. An alternative technique for proving properties of executions is proposed.
This technique does not make use of execution traces incorporated within
model specifications as proposed in [12, Section 2.6], which is, to our un-
derstanding, an ad-hoc solution that confuses two clearly separated levels of
description. Instead, our technique uses the fact that a first-order dynamic
logic extending the (alternative) relational logic can be defined. This allows
one to perform reasoning regarding execution traces in a simpler and more
elegant way, which leads to a cleaner separation of concerns.
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4. The modified version of Alloy ’s semantics has a complete (and relatively
small) proof calculus that we present here. This allows us to complement
the techniques for finding counterexamples available in current Alloy, with
theorem proving.

5. By encoding the newly defined semantics for Alloy in higher-order logic, we
show how to verify Alloy specifications using the theorem prover PVS.

2 The Alloy Specification Language

We introduce the Alloy specification language by means of an example extracted
from [12] that shows the standard features of the language. It will also help us
to illustrate the shortcomings we wish to overcome.

We want to specify a memory system with cache. We start by indicating the
existence of sets (of atoms) for data and addresses, which in Alloy are specified
using signatures:

sig Addr { } sig Data { }
These are basic signatures, for which we do not assume any property of their
structure. We can now say that a memory consists of set of addresses, and a
(total) mapping from these addresses to data values:

sig Memory {
addrs: set Addr
map: addrs ->! Data

}
The “!” sign indicates that “map” is functional and total (i.e., for each element
a of addrs, there exists exactly one element d in Data such that map(a) = d).
Signatures defined as subsets of the set denoted by certain “parent” signature can
be characterised using signature extension. The following signatures are defined
as extensions of Memory :

sig MainMemory extends Memory {}

sig Cache extends Memory {
dirty: set addrs

}
MainMemory and Cache are special kinds of memories. In caches, a subset of
addrs is recognized as dirty. We can express now that a system consists of a
main memory and a cache:

sig System {
cache: Cache
main: MainMemory

}
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problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
| !form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr − expr (difference)
| ∼ expr (transpose)
| expr.expr (navigation)
| +expr (closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom × · · · × atom) +

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F ]e = ¬M [F ]e
M [F&&G]e = M [F ]e ∧ M [G]e
M [F || G]e = M [F ]e ∨ M [G]e
M [all v : t/F ] =∧{M [F ](e ⊕ v	→{ x })/x ∈ e(t)}
M [some v : t/F ] =∨{M [F ](e ⊕ v	→{ x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪ X[b]e
X[a&b]e = X[a]e ∩ X[b]e
X[a − b]e = X[a]e \ X[b]e
X[∼ a]e = (X[a]e)̆
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =

{x ∈ e(t)/M [F ](e ⊕ v	→{ x })}
X[v]e = e(v)
X[a[v]]e = {〈unit, y〉 /

∃x. 〈x, y〉 ∈ e(a) ∧ 〈unit, x〉 ∈ e(v)}

Fig. 1. Grammar and semantics of Alloy

As can be seen from the previous definitions, signatures define data domains
and their structures. The attributes of a signature denote relations. For instance,
the attribute “addrs” in Memory represents a relation from memory atoms to
sets of atoms from Addr. Given a set (not necessarily a singleton) of Memory
atoms m, m.addrs denotes the relational image of m under the relation denoted
by addrs. This relational view of the dot notation leads to a simple and elegant
semantics for dot, coherent with its intuitive navigational reading. In Fig. 1 we
present the grammar and semantics of Alloy ’s kernel. Notice that as an important
difference with the previous version of Alloy presented in [9] where expressions
range over binary relations, expressions now range over relations of arbitrary
rank. Although composition of binary relations is well understood, we define
composition of relations of higher rank by:

R ;S = {〈a1, . . . , ai−1, b2, . . . , bj〉 :
∃b (〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj〉 ∈ S)} .

2.1 Operations in a Model

Following the style of Z specifications, operations can be defined as expressions
relating states from the state space described by the signature definitions. Primed
variables are used to denote the resulting values, although this is a convention
that is not reflected in the semantics. Consider, for instance, an operation that
specifies the writing of a value to an address in a memory:
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fun Write(m, m’: Memory, d: Data, a: Addr) {
m’.map = m.map ++ (a -> d) }

This definition can be easily understood, having in mind that m’ is meant to
denote the memory (or memory state) resulting of the function application, that
a -> d denotes the pair 〈a, d〉, and ++ denotes relational override.

Consider the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main }

There are two important points that this function definition illustrates. First,
function SysWrite is defined in terms of the more primitive Write. Second, the
use of Write takes advantage of the hierarchy defined by signature extension:
function Write was defined for memories, and in SysWrite it is being “applied”
to cache memories.

As explained in [12], an operation that flushes lines from a cache to the
corresponding memory is necessary, since usually caches are small. A nondeter-
ministic operation that flushes information from the cache to main memory is
specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map − { x->Data }
s’.cache.dirty = s.cache.dirty − x
s’.main.map = s.main.map ++
{a: x, d: Data | d = s.cache.map[a]} }

}
Function Flush will serve us in Section 4.2 to illustrate one of the main problems
that we try to solve. In the third line of the definition of function Flush, x->Data
denotes all the pairs whose domain falls in the set x, and that range on the
domain Data.

Functions can also be used to characterise special states. For instance, we
can characterise those states in which the cache lines not marked as dirty are
consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty | s.cache.map[a] = s.main.map[a] }

The “!” sign denotes negation, indicating in the above formula that “a” ranges
over atoms that are non-dirty addresses.

2.2 Properties of a Model

As the reader might expect, a model can be enhanced by adding properties to it.
These properties are written as logical formulae, much in the style of the Object
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Constraint Language [16]. Properties or constraints are defined as facts. To give
an idea of how constraints or properties are specified, we reproduce some here.
We need to say that the sets of main memories and cache memories are disjoint:

fact {no (MainMemory & Cache)}
The expression “no x” indicates that x has no elements, and & denotes inter-
section. Another constraint, inherent to our specific model, states that in every
system the addresses of its cache are a subset of the addresses of its main mem-
ory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the significant expressive power
of the relational logic.

2.3 Assertions

Assertions are the intended properties of a given model. Consider the following
simple assertion in Alloy :

assert {
all s: System | DirtyInv(s) && no s.cache.dirty

=> s.cache.map in s.main.map }
This assertion states that if “DirtyInv” holds in system “s”, and there are

no dirty addresses in the cache, then the cache agrees in all its addresses with
the main memory. Assertions are used to test specifications. Using the Alloy
analyzer it is possible to search for counterexamples of given assertions.

3 Features and Deficiencies of Alloy

Alloy is a formal specification language. What distinguishes Alloy from other
specification languages, such as Z [23] or VDM [13], is that it has been designed
with the goal of making specifications automatically analyzable. Some of its
current features are:

– Fulfilling the goal of an analyzable language kept Alloy a simple language
with an almost trivial semantics.

– Alloy incorporates some common idioms from object modelling. This makes
Alloy a suitable replacement for the Object Constraint Language (OCL) [16].
The well-defined and concise syntax of Alloy is much easier to understand
than the OCL grammar presented in [16]. A similar reasoning applies with
respect to the OCL semantics. The attempt to describe all the various con-
structs of object modelling led to a cumbersome, incomplete, and sometimes
even inconsistent semantics [1].
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– The syntax of Alloy, which includes both a textual and graphical notation, is
based on a small kernel with few constructs. Besides, the relational semantics
of the kernel allows one to refer with the same simplicity to relations, sets
and individual atoms.

Having described some of the features of Alloy, we will now describe the
perceived deficiencies that will be addressed in this paper.

– Sequencing of operations, or even specifications as the one for function Flush
(see Section 2.1), may require higher-order formulas. About this, Jackson
says [9, Section 6.2]:

“Sequencing of operations presents more of a language design
challenge than a tractability problem. Following Z, one could take
the formula op1;op2 to be short for

some s : state/op1(pre, s) and op2(s, post)

but this calls for a second-order quantifier.”
For composition of operations the problem was solved in [12] with the intro-
duction of signatures. Signatures allow them to objectify the state and view
objects containing relation attributes as atoms. However, higher-order quan-
tifiers are used also in specifications. For instance, the definition of function
Flush uses a higher-order quantifier over 1-ary relations (sets). In Section
4 we will endow the kernel of Alloy with a new semantics that will make
higher-order quantifiers unnecessary.

– In [12], Jackson et al. present a methodology for proving properties of execu-
tions. The method consists of the introduction of a new sort of finite traces.
Each element in a trace stands for a state in an execution. In this context,
proving that a given assertion is invariant under the execution of some oper-
ations is reduced to proving the validity of the assertion in the last element
of every finite trace. Even though from a formal point of view the tech-
nique is correct, from the modelling point of view it seems less appropriate.
When a software engineer writes an assertion, verifying the assertion should
not demand a modelling effort. In order to keep an adequate separation of
concerns between the modelling stage and the verification stage, verifying
the assertion should reduce to proving a property in a suitable logic. The
logic extending Alloy that we propose in Section 5 will enable us to verify
this kind of assertions (i.e., assertions regarding executions) in a simple and
elegant way.

– Alloy was designed with the goal of being automatically analyzable, and thus
theorem proving was not considered a critical issue. Nevertheless, having the
possibility of combining model checking with theorem proving as in the STeP
tool [15] is a definite improvement. Providing Alloy with theorem proving
is not trivial, since Alloy ’s relational logic does not admit a complete proof
calculus. Despite this fact, in Section 6 we present a complete deductive
system for an alternative logic extending Alloy ’s kernel.
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4 A New Semantics for Alloy

In most papers the semantics of Alloy ’s kernel is defined in terms of binary
relations. The current semantics [12] is given in terms of relations of arbitrary
finite arity. The modified semantics for Alloy that we will present goes back to
binary relations. This was our choice for the following three main reasons:

1. Alloy ’s kernel operations such as transposition or transitive closure are only
defined on binary relations.

2. There exists a complete calculus for reasoning about binary relations with
certain operations (to be presented next).

3. It is possible (and we will show how) to deal with relations of rank higher
than 2 within the framework of binary relations we will use.

4.1 Fork Algebras

Fork algebras [5] are described through few equational axioms. The intended
models of these axioms are structures called proper fork algebras, in which the
domain is a set of binary relations (on some base set, let us say B), closed under
the following operations for sets:

– union of two binary relations, denoted by ∪,
– intersection of two binary relations, denoted by ∩,
– complement of a binary relation, denoted, for a binary relation r, by r,
– the empty binary relation, which does not relate any pair of objects, and is

denoted by ∅,
– the universal binary relation, namely, B ×B, that will be denoted by 1.

Besides the previous operations for sets, the domain has to be closed under the
following operations for binary relations:

– transposition of a binary relation. This operation swaps elements in the pairs
of a binary relation. Given a binary relation r, its transposition is denoted
by r̆,

– composition of two binary relations, which, for binary relations r and s is
denoted by r ;s,

– reflexive–transitive closure, which, for a binary relation r, is denoted by r∗,
– the identity relation, denoted by Id.

Finally, a binary operation called fork is included, which requires the base set B
to be closed under an injective function �. This means that there are elements
x in B that are the result of applying the function � to elements y and z. Since
� is injective, x can be seen as an encoding of the pair 〈y, z〉. The application of
fork to binary relations R and S is denoted by R∇S, and its definition is given
by: R∇S = { 〈a, b � c〉 : 〈a, b〉 ∈ R and 〈a, c〉 ∈ S }.

Once the class of proper fork algebras has been presented, the class of fork
algebras is axiomatized with the following formulas:
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1. Your favorite set of equations axiomatizing Boolean algebras. These axioms
define the meaning of union, intersection, complement, the empty set and
the universal relation.

2. Formulas defining composition of binary relations, transposition, reflexive–
transitive closure and the identity relation:
x; (y ;z) = (x;y) ;z,
x;Id = Id;x = x,
(x;y) ∩ z = ∅ iff (z ; y̆) ∩ x = ∅ iff (x̆;z) ∩ y = ∅,
x∗ = Id ∪ (x;x∗) ,
x∗ ;y ;1 ≤ (y ;1) ∪ (

x∗ ;(y ;1 ∩ (x;y ;1))
)
.

3. Formulas defining the operator ∇ :
x∇y = (x; (Id∇1)) ∩ (y ; (1∇Id)) ,
(x∇y) ;(w∇z)̆ = (x;w̆) ∩ (y ; z̆) ,
(Id∇1)̆ ∇(1∇Id)̆ ≤ Id.

The axioms given above define a class of models. Proper fork algebras satisfy
the axioms [6], and therefore belong to this class. It could be the case that there
are models for the axioms that are not proper fork algebras. Fortunately, as was
proved in [6], [5, Thm. 4.2], if a model is not a proper fork algebra then it is
isomorphic to one. Notice also that binary relations are first-order citizens in
fork algebras, and therefore quantification over binary relations is first-order.

4.2 Fork-Algebraic Semantics of Alloy

In order to give semantics to Alloy, we will give semantics to Alloy ’s kernel.
We provide the modified (in comparison to [12]) denotational semantics in Fig.
2. This semantics is given through two meaning functions. Function N gives
meaning to formulas. It requires an environment in which types and variables
with free occurrences take values, and yields a boolean as a result indicating
wether the formula is true or not in the environment. Similarly, function Y
gives meaning to expressions. Since expressions can also contain variables, the
environment is again necessary. The general assumption is that variables in the
environment get as values relations in an arbitrary fork algebra A whose universe
we will denote by U .

Representing Objects and Sets. We will represent sets by binary relations
contained in the identity relation. Thus, for an arbitrary type t and an environ-
ment env , env(t) ⊆ Id must hold. That is, for a given type t, its meaning in an
environment env is a binary relation contained in the identity binary relation.
Similarly, for an arbitrary variable v of type t, env(v) must be a relation of the
form { 〈x, x〉 }, with 〈x, x〉 ∈ env(t). This is obtained by imposing the following
conditions on env(v)1:

env(v) ⊆ env(t),
env(v);1;env(v) = env(v),
env(v) �= ∅ .

1 The proof requires relation 1 to be of the form B × B for some nonempty set B.
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N : form → env → Boolean
Y : expr → env → U
env = (var + type) → U.

N [a in b]e = Y [a]e ⊆ Y [b]e
N [!F ]e = ¬N [F ]e
N [F&&G]e = N [F ]e ∧ N [G]e
N [F || G]e = N [F ]e ∨ N [G]e
N [all v : t/F ] =

∧{N [F ](e ⊕ v	→x)/x : e(t)}
N [some v : t/F ] =

∨{N [F ](e ⊕ v	→x)/x : e(t)}

Y [a + b]e = Y [a]e ∪ Y [b]e
Y [a&b]e = Y [a]e ∩ Y [b]e
Y [a − b]e = Y [a]e ∩ Y [b]e
Y [∼ a]e = (Y [a]e)̆
Y [a.b]e = Y [a]e • Y [b]e
Y [+a]e = Y [a]e ;(Y [a]e)∗

Y [{v : t/F}]e =
⋃{x : e(t)/N [F ](e ⊕ v	→x)}

Y [v]e = e(v)
Y [a[v]]e = e(v);e(a)

Fig. 2. The new semantics of Alloy

Actually, given binary relations x and y satisfying the properties:

y ⊆ Id, x ⊆ y, x;1;x = x, x �= ∅, (1)

it is easy to show that x must be of the form { 〈a, a〉 } for some object a. Thus,
given an object a, by a we will also denote the binary relation { 〈a, a〉 }. Since y
represents a set, by x : y we assert the fact that x is an object of type y, which
implies that x and y satisfy the formulas in (1).

Eliminating Higher-Order Quantification. We will show now that by giv-
ing semantics to Alloy in terms of fork algebras, higher-order quantifiers are
not necessary. Recalling the specification of function Flush in Section 2.1, the
specification has the shape

some x : set t / F . (2)

This is recognized within Alloy as a higher-order formula [8]. Let us analyze
what happens in the modified semantics. Since t is a type (set), it stands for
a subset of Id. Similarly, subsets of t are subsets of the identity, which are
contained in t. Thus, formula (2) is an abbreviation for

∃x (x ⊆ t ∧ F ) ,

which is a first-order formula when x ranges over binary relations in a fork
algebra.

Regarding the higher-order formulas that appear in the composition of op-
erations, discussed in Section 3, no higher-order formulas are required in our
setting. Formula

some s : state/op1(pre, s) and op2(s, post) (3)
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is first-order with the modified semantics. Operations op1 and op2 can be defined
as binary predicates in a first-order language for fork algebras, and thus formula
(3) is first-order.

Representing and Navigating Relations of Higher Rank in Fork Alge-
bras. In a proper fork algebra the relations π and ρ defined by

π = (Id∇1)̆ , ρ = (1∇Id)̆

behave as projections with respect to the encoding of pairs induced by the injec-
tive function �. Their semantics in a proper fork algebra A whose binary relations
range over a set B, is given by

π = { 〈a � b, a〉 : a, b ∈ B } , ρ = { 〈a � b, b〉 : a, b ∈ B } .

Given a n-ary relation R ⊆ A1 × · · · ×An, we will represent it by the binary
relation { 〈a1, a2 � · · · � an〉 : 〈a1, . . . , an〉 ∈ R }. This will be an invariant in the
representation of n-ary relations by binary ones.

Recalling signature Memory, attribute map stands in Alloy for a ternary
relation map ⊆ Memory × addrs×Data. In our framework it becomes a binary
relation map′ whose elements are pairs of the form 〈m, a � d〉 for m : Memory ,
a : Addr and d : Data. Given an object (in the relational sense — cf. 4.2)
m : Memory, the navigation of the relation map′ through m should result in a
binary relation contained in Addr × Data. Given a relational object a : t and
a binary relation R encoding a relation of rank higher than 2, we define the
navigation operation • by

a •R = π̆ ;Ran (a;R) ;ρ . (4)

Operation Ran in (4) returns the range of a relation as a subset of the identity
relation. It is defined by Ran (x) = (x;1) ∩ Id. Its semantics in terms of binary
relations is given by Ran (R) = { 〈a, a〉 : ∃b (〈b, a〉 ∈ R) }.

For a binary relation R representing a relation of rank 2, navigation is easier.
Given a relational object a : t, we define a •R = Ran (a;R).

Going back to our example about memories, it is easy to check that for a
relational object m′ : Memory such that m′ = { 〈m, m〉 },

m′ •map′ = {〈a, d〉 : a ∈ Addr , d ∈ Data and 〈m, a � d〉 ∈ map′} .

Analyzing the Modified Alloy. An essential feature of Alloy is its adequacy
for automatic analysis. Thus, an immediate question is what is the impact of
the modified semantics in the analysis of Alloy specifications. In the next para-
graphs, we will argue that the new semantics can fully profit from the current
analysis procedure. Notice that the Alloy tool is a refutation procedure. As such,
if we want to check if an assertion α holds in a specification S, we must search for
a model of S∪{¬α }. If such a model exists, then we have found a counterexam-
ple that refutes the assertion α. Of course, since first-order logic is undecidable,
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this cannot be a decision procedure. Therefore, the Alloy tool searches for coun-
terexamples of a bounded size, in which each set of atoms is bounded to a finite
size or “scope”.

A counterexample is an environment, and as such it provides sets for each
type of atom, and values (relations) for the constants and the variables. We will
show now that whenever a counterexample exists according to Alloy ’s standard
semantics, the same is true for the fork algebraic semantics.

For the next theorem we assume that whenever the transpose operation or
the transitive closure occur in a term, they affect a binary relation. Notice that
this is the assumption in [12]. We also assume that whenever the navigation
operation is applied, the argument on the left-hand side is a unary relation
(set). This is because our representation of relations of arity greater than two
makes defining the generalized composition more complicated than desirable. At
the same time, the use of navigation in object-oriented settings usually falls in
the situation modelled by us.

Given an environment e, we define the environment e′ (according to the new
semantics) by:

– Given a type T , e′(T ) = { 〈a, a〉 : a ∈ e(T ) }.
– Given a variable v such that e(v) is a n-ary relation,

e′(v) =

{
{ 〈a, a〉 : a ∈ e(v) } if n = 1,

{〈a1, a2 � · · · � an〉 : 〈a1, a2, . . . , an〉 ∈ e(V )} otherwise.

Theorem 1. Given a formula α, M [α]e = N [α]e′.

The proof of Thm. 1 is by induction on the structure of formulas. Theorem
1 shows that all the work that has been done so far in the analysis of Alloy
specifications can be fully profitted by the newly proposed semantics. The theo-
rem proposes a method for analyzing Alloy specification (according to the new
semantics), as follows:

1. Give the Alloy specification to the current Alloy analyzer.
2. Get a counterexample, if any exists within the given scopes.
3. Build a counterexample for the new semantics from the one provided by

the tool, The new counterexample is defined in the same way environment
e′ is defined from environment e above. Notice that Thm. 1 implies that a
counterexample exists with respect to the standard semantics if and only if
one exists for the newly provided semantics.

5 Adding Dynamic Features to Alloy

In this section we extend Alloy ’s kernel syntax and semantics in a way that
is fully consistent with the extension we performed in Section 4. The reason
for this extension is twofold. First, we want to provide a setting in which state
transformations are not just simulated by distinguishing between primed and
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non-primed variables, but rather are identifiable in the semantics. Second, the
framework allows one to reason about properties of executions in a simple and
clean way. The section is structured as follows. In Section 5.1 we introduce the
syntax and semantics of first-order dynamic logic. In Section 5.2 we present the
formalism of dynamic logic over fork algebras. Finally, in Section 5.3 we show
how to reason about executions.

5.1 Dynamic Logic

Dynamic logic is a formalism suitable for reasoning about programs. From a set
of atomic actions (usually assignments of terms to variables), and using adequate
combinators, it is possible to build complex actions. The logic then allows us to
state properties of these actions, which may hold or not in a given structure.
Actions can change (as usually programs do) the values of variables. We will
assume that each action reads and/or modifies the value of finitely many vari-
ables. When compared with classical first-order logic, the essential difference is
the dynamic content of dynamic logic, which is clear in the notion of satisfia-
bility. While satisfiability in classical first–order logic depends on the values of
variables in one valuation (state), in dynamic logic it may be necessary to con-
sider two valuations in order to reflect the change of values of program variables;
one valuation holds the values of variables before the action is performed, and
another holds the values of variables after the action is executed.

Along the paper we will assume a fixed (but arbitrary) finite signature Σ =
〈 s, A, F, P 〉, where s is a sort, A = { a1, . . . , ak } is the set of atomic action
symbols, F is the set of function symbols, and P is the set of atomic predicate
symbols. Atomic actions contain input and output formal parameters. These
parameters are later instantiated with actual variables when actions are used in
a specification.

The sets of programs and formulas on Σ are mutually defined in Fig. 3.
As is standard in dynamic logic, states are valuations of the program variables

(the actual parameters for actions). The environment env assigns a domain s to
sort s in which program variables take values. The set of states is denoted by
ST . For each action symbol a ∈ A, env yields a binary relation on the set of
states, that is, a subset of ST × ST . The environment maps function symbols
to concrete functions, and predicate symbols to relations of the corresponding
arity. The semantics of the logic is given in Fig. 3.

5.2 Dynamic Logic over Fork Algebras

In order to define first-order dynamic logic over fork algebras, we always include
in the set of function symbols of signature Σ the constants 0, 1, Id; the unary
symbols – and ;̆ and the binary symbols +, ·, ; and ∇ . Since these signa-
tures include all operation symbols from fork algebras, they will be called fork
signatures.

We will call theories containing the identities specifying the class of fork alge-
bras fork theories. By working with fork theories we intend to describe structures
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action ::= a1, . . . ak (atomic actions)
| skip
| action+action (nondeterministic choice)
| action;action (sequential composition)
| action∗ (finite iteration)
| dform? (test)

expr ::= var
| f(expr1, . . . , exprk) (f ∈ F with arity k)

dform ::= p(expr1, . . . , exprn) (p ∈ P )
| !dform (negation)
| dform && dform (conjunction)
| dform || dform (disjunction)
| all v : type/dform (universal)
| some v : type/dform (existential)
| [action]dform (box)

Q : form → ST → Boolean
P : action → P (ST × ST)
Z : expr → ST → s

Q[p(t1, . . . , tn)]µ = (Z[t1]µ, . . . , Z[tn]µ) ∈ env(p)
Q[!F ]µ = ¬Q[F ]µ
Q[F&&G]µ = Q[F ]µ ∧ Q[G]µ
Q[F || G]µ = Q[F ]µ ∨ Q[G]µ
Q[all v : t / F ]µ =

∧{Q[F ](µ ⊕ v	→x)/x ∈ env(t)}
Q[some v : t / F ]µ =

∨{Q[F ](µ ⊕ v	→x)/x ∈ env(t)}
Q[ [a]F ]µ =

∧{Q[F ]ν/ 〈µ, ν〉 ∈ P (a)}

P [a] = env(a) (atomic action)
P [skip] = { 〈µ, µ〉 : µ ∈ ST }
P [a + b] = P [a] ∪ P [b]
P [a ;b] = P [a]◦P [b]
P [a∗] = (P [a])∗

P [α?] = { 〈µ, µ〉 : Q[α]µ }

Z[v]µ = µ(v)
Z[f(t1, . . . , tk)]µ = env(f)(Z[t1]µ, . . . , Z[tk]µ)

Fig. 3. Syntax and semantics of dynamic logic

for dynamic logic whose domains are sets of binary relations. This is indeed the
case as shown in the following theorem whose proof will appear in an extended
paper due to space limitations.

Theorem 2. Let Σ be a fork signature, and Ψ be a fork theory. For each model
A for Ψ there exists a model B for Ψ , isomorphic to A, in which the domain s
is a set of binary relations.

The previous theorem is essential, and its proof (which uses [5, Thm. 4.2]),
heavily relies on the use of fork algebras rather than plain relation algebras [24].
A model for a fork theory Ψ is a structure satisfying all the formulas in Ψ . Such
a structure can, or cannot, have binary relations in its domain. Theorem 2 shows
that models whose domains are not a set of binary relations are isomorphic to
models in which the domain is a set of binary relations. This allows us to look at
specifications in first-order dynamic logic over fork algebras, and interpret them
as properties predicating about binary relations.

Notice that fork signatures contain action symbols, function symbols (includ-
ing at least the fork algebra operators), and predicate symbols. The relationship
to Alloy is established as follows. We use actions to model Alloy functions. This
is particularly adequate, since state modifications described by functions are
better viewed as the result of performing an action on an input state. Thus, a
definition of a function f of the form

fun f(s, s′){α(s, s′)} (5)

has as counterpart a definition of an action f of the form

[s f s′]α(s, s′) . (6)

Although it may be hard to find out what are the differences between (5)
and (6) just by looking at the formulas, the differences rely in the semantics,
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and in the fact that actions can be sequentially composed, iterated or nondeter-
ministically chosen, while Alloy functions cannot.

5.3 Specifying and Proving Properties of Executions

Suppose we want to show that a given property P is invariant under sequences
of applications of the operations “Flush”, and “SysWrite” from an initial state.
A technique useful for proving invariance of property P consists of proving P on
the initial states, and proving for every non initial state and every operation O
that P (s)∧O(s, s′) ⇒ P (s′) holds. This proof method is sound but incomplete,
since the invariance may be violated in non-reachable states. Of course it would
be desirable to have a proof method in which the considered states were exactly
the reachable ones. This motivated in [12] the introduction of traces in Alloy.

The following example, extracted from [12], shows signatures for clock ticks
and for traces of states.

sig Tick {}

sig SystemTrace {
ticks: set Tick,
first, last: Tick,
next: (ticks - last) ! → ! (ticks - first),
state: ticks → ! System }

The following “fact” states that all ticks in a trace are reachable from the
first tick, that a property called “Init” holds in the first state, and finally that
the passage from one state to the next is through the application of one of the
operations under consideration.

fact {
first.next∗ = ticks
Init(first.state)
all t: ticks - last |

some s = t.state, s’ = t.next.state |
Flush (s,s’)
|| some d : Data, a : Addr | SysWrite(s,s’,d,a) }

If we now want to prove that P is invariant, it suffices to show that P holds
in the final state of every trace. Notice that non reachable states are no longer a
burden because all the states in a trace are reachable from the states that occur
before.

Even though from a formal point of view the use of traces is correct, from a
modelling perspective it is less adequate. Traces are introduced in order to cope
with the lack of real state change of Alloy. They allow us to port the primed
variables used in single operations to sequences of applications of operations.

Dynamic logic [7], on the other hand, was created in the early 70s with the
intention of faithfully reflecting state change. In the following paragraphs we will
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show how it can be used to specify properties of executions of Alloy operations.
In order to increase the readability of formulas, rather than writing

α⇒ [a]β, (7)

we will use the alternative notation {α} a {β}. This notation is particularly ade-
quate because a formula like formula (7) indeed asserts that action a is partially
correct with respect to the pre-condition α and the post-condition β.

Going back to the example of cache systems, we will use an auxiliary predi-
cate “Write”, modelling the evolution of a memory state when main memory is
written:

Write(m0, m : Memory, d : Data, a : Addr)
⇐⇒ m.map = m0.map ++(a→ d) .

Then, specification of functions SysWrite and Flush is done as follows:

{ s = s0 }
SysWrite(s: System)

{ some d: Data, a: Addr |
Write(s0.cache, s.cache, d, a)
s.cache.dirty = s0.cache.dirty + a
s.main = s0.main }

{ s = s0 }
Flush(s: System)

{ some x: set s0.cache.addrs |
s.cache.map = s0.cache.map - x→Data
s.cache.dirty = s0.cache.dirty - x
s.main.map = s0.main.map ++
{a: x, d: Data | d = s0.cache.map[a]} }

Notice that the previous specifications are as understandable as the ones
given in Alloy. Moreover, using dynamic logic for the specification of functions
allows us to assert the invariance of a property P under finite applications of
functions SysWrite and Flush as follows:

Init(s) ∧ P (s) ⇒ [(SysWrite(s) + Flush(s))∗]P (s) .

More generally, suppose now that we want to show that property Q is invari-
ant under sequences of applications of arbitrary operations O1, . . . , Ok, starting
from states s described by a formula Init . Specification of the problem in our
setting is done through the formula Init ∧Q ⇒ [(O1 ∪ · · · ∪Ok)∗]Q.

As an instance of the properties of executions that can be proved in our
formalism, let us consider a system whose cache agrees with main memory in all
non-dirty addresses. A consistency criterion of the cache with main memory is
that after finitely many executions of SysWrite or Flush, the resulting system
must still satisfy invariant DirtyInv. In Section 7 we will prove this property,
which is specified in the extended Alloy by:

all s : System / DirtyInv(s) => [(SysWrite(s) + Flush(s))∗]DirtyInv(s) . (8)
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Notice also that if after finitely many executions of SysWrite and Flush we
flush all the dirty addresses in the cache to main memory, the resulting cache
should fully agree with main memory. We will specify the property in this section,
and leave its proof for Section 7. In order to specify this property we need to
specify the function that flushes all the dirty cache addresses. The specification
is as follows:

{ s = s0 }
DSFlush(s : System)

{ s.cache.dirty = ∅
s.cache.map = s0.cache.map − s0.cache.map[s0.cache.dirty]
s.main.map = s0.main.map ++ s0.cache.map[s0.cache.dirty] }

We specify the property establishing the agreement of the cache with main
memory by: FullyAgree(s : System) ⇐⇒ s.cache.map in s.main.map.

Once “DSFlush” and “FullyAgree” have been specified, the property is spec-
ified in the extended Alloy by:

all s : System / DirtyInv(s) =>

[(SysWrite(s) + Flush(s))∗ ;DSFlush(s)]FullyAgree(s). (9)

Notice that there is no need to mention traces in the specification of the
previous properties. This is because traces appear in the semantics of the Kleene
star and not in the syntax, which shows an adequate separation of concerns.

6 A Complete Calculus

The set of axioms for the extended Alloy is the set of axioms for classical first-
order logic, enriched with the axioms for fork algebras and the following formulas:

〈P 〉α ∧ [P ]β ⇒ 〈P 〉(α ∧ β), 〈P 〉(α ∨ β) ⇔ 〈P 〉α ∨ 〈P 〉β,

〈P0 + P1〉α ⇔ 〈P0〉α ∨ 〈P1〉α, 〈P0; P1〉α ⇔ 〈P0〉〈P1〉α,

〈α?〉β ⇔ α ∧ β, α ∨ 〈P 〉〈P ∗〉α ⇒ 〈P ∗〉α,

〈P ∗〉α ⇒ α ∨ 〈P ∗〉(¬α ∧ 〈P 〉α), 〈x← t〉α ⇔ α[x/t],
α ⇔ α̂,

where α̂ is α in which some occurrence of program P has been replaced by the
program z ← x; P ′; x ← z, for z not appearing in α, and P ′ is P with all the
occurrences of x replaced by z.

The inference rules are those for classical first-order logic plus generalization
rule for necessity, and the infinitary convergence rule:

α

[P ]α
(∀n : nat)(α⇒ [Pn]β)

α⇒ [P ∗]β
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A proof of the completeness of the calculus is presented in [7, Thm. 15.1.4].
Joining this theorem with the completeness of the axiomatization of fork algebras
[5, Thm. 4.3], it follows that the above described calculus is complete with respect
to the semantics of the extended Alloy.

7 Verifying Alloy Specifications with PVS

As has been shown in previous sections, the extended Alloy is a language suitable
for the description of systems behavior. There are different options in order to
reason about such descriptions. Techniques such as model checking, sat solving
and theorem proving give the possibility to detect systems flaws in early stages
of the design lifecycle.

Regarding the problem of theorem proving, there are several theorem provers
that can be used to carry out this task. PVS (Prototype Verification System),
is a powerful and widely used theorem prover that has shown very good results
when applied to the specification and verification of real systems [19]. Thus, we
will concentrate on the use of this particular theorem prover in order to prove
assertions from Alloy specifications.

As it has been described in the basic PVS bibliography [20–22], PVS is a
theorem prover built on classical higher-order logic. The main purpose of this
tool is to provide formal support during the design of systems, in a way in which
concepts are described in abstract terms to allow a better level of analysis. PVS
provides very useful mechanisms for system specification such as an advanced
data-type specification language [18], the notion of subtypes and dependent types
[22], the possibility to define parametric theories [22], and a collection of powerful
proof commands to carry out propositional, equality, and arithmetic reasoning
[20]. These proof commands can be combined to form proof strategies. The
last feature simplifies the process of developing, debugging, maintaining, and
presenting proofs.

Using PVS to reason about Alloy specifications is not trivial because Alloy
is not supported by the PVS tool. To bridge this gap, a proof checker was built
by encoding the new semantics for Alloy in PVS ’ language [14].

Taking as a case-study the memories with cache (systems) presented in Sec-
tion 5.3, in order to build the PVS specification we provided PVS with the
definition of the symbols for the language of fork algebras, the definition of the
semantics of the symbols of fork algebras, the definition of the atomic actions
required in the model, and the assertion to be verified in the model. In Figs. 4
and 5 we show, as examples, the PVS translation of formulas (8) and (9).

Preservation_of_DirtyInv: LEMMA
FORALL_(v(cs), DirtyInv(v(cs)) IMPLIES

[](*(SysWrite(v(cs))+Flush(v(cs))), DirtyInv(v(cs))))

Fig. 4. PVS translation of Formula (8).
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Consistency_criterion: THEOREM
FORALL_(v(cs), DirtyInv(v(cs)) IMPLIES

[](*(SysWrite(v(cs))+Flush(v(cs)))//DSFlush(v(cs)),

FullyAgree(v(cs))))

Fig. 5. PVS translation of Formula (9).

We have proved in PVS the properties stated in Figs. 4 and 5. This required
the implementation of new proof strategies in PVS.

8 Conclusions

We have presented an extension of Alloy that incorporates the following features:

1. Through the use of fork algebras in the semantics, quantifications that were
higher-order in Alloy are first-order in the extension.

2. Through the extension of Alloy with dynamic logic, static models in which
dynamic content was described using conventions such as primed variables,
now have a real dynamic content.

3. The use of dynamic logic provides a clean and simple mechanism for the
specification of properties of executions.

4. Combining the completeness of a calculus for dynamic logic and the complete
calculus for fork algebras gives us a complete calculus for the extended Alloy.
This enables theorem proving as an alternative to analysis by refutation.

5. Finally, we have also extended the theorem prover PVS in order to prove
properties specified in the extended Alloy.
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