
Efficient Bounded Exhaustive Input Generation
from Program APIs

Mariano Politano1,4( ), Valeria Bengolea1, Facundo Molina3, Nazareno
Aguirre1,4, Marcelo F. Frias2,4, and Pablo Ponzio1,4

1 Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
mpolitano@dc.exa.unrc.edu.ar

2 Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina
3 IMDEA Software Institute, Madrid, Spain

4 CONICET, Buenos Aires, Argentina

Abstract. Bounded exhaustive input generation (BEG) is an effective
approach to reveal software faults. However, existing BEG approaches
require a precise specification of the valid inputs, i.e., a repOK, that must
be provided by the user. Writing repOKs for BEG is challenging and time
consuming, and they are seldom available in software.
In this paper, we introduce BEAPI, an efficient approach that employs
routines from the API of the software under test to perform BEG. Like
API-based test generation approaches, BEAPI creates sequences of calls
to methods from the API, and executes them to generate inputs. As op-
posed to existing BEG approaches, BEAPI does not require a repOK to
be provided by the user. To make BEG from the API feasible, BEAPI
implements three key pruning techniques: (i) discarding test sequences
whose execution produces exceptions violating API usage rules, (ii) state
matching to discard test sequences that produce inputs already created
by previously explored test sequences, and (iii) the automated identifi-
cation and use of a subset of methods from the API, called builders, that
is sufficient to perform BEG.
Our experimental assessment shows that BEAPI’s efficiency and scalabil-
ity is competitive with existing BEG approaches, without the need for
repOKs. We also show that BEAPI can assist the user in finding flaws in
repOKs, by (automatically) comparing inputs generated by BEAPI with
those generated from a repOK. Using this approach, we revealed several
errors in repOKs taken from the assessment of related tools, demonstrat-
ing the difficulties of writing precise repOKs for BEG.

1 Introduction

Automated test generation approaches aim at assisting developers in crucial
software testing tasks [2,22], like automatically generating test cases or suites
[6,18,10], and automatically finding and reporting failures [23,19,12,20,4,13].
Many of these approaches involve random components, that avoid making a
systematic exploration of the space of behaviors, but improve test generation
efficiency [23,19,10]. While these approaches have been useful in finding a large

© The Author(s) 2023
L. Lambers and S. Uchitel (Eds.): FASE 2023, LNCS 13991, pp. 111–132, 2023.
https://doi.org/10.1007/978-3-031-30826-0_6



M. Politano et al.

number of bugs in software, they might miss exploring certain faulty software
behaviors due to their random nature. Alternative approaches aim at system-
atically exploring a very large number of executions of the software under test
(SUT), with the goal of providing stronger guarantees about the absence of
bugs [20,4,12,14,6,18]. Some of these approaches are based on bounded exhaus-
tive generation (BEG) [20,4], which consists of generating all feasible inputs that
can be constructed using bounded data domains. Common targets to BEG ap-
proaches have been implementations of complex, dynamic data structures with
rich structural constraints (e.g., linked lists, trees, etc). The most widely-used
and efficient BEG approaches for testing software [20,4] require the user to pro-
vide a formal specification of the constraints that the inputs must satisfy –often
a representation invariant of the input (repOK)–, and bounds on data domains
[20,4] –often called scopes. Thus, specification-based BEG approaches yield all
inputs within the provided scopes that satisfy repOK.

Writing appropriate formal specifications for BEG is a challenging and time
consuming task. The specifications must precisely capture the intended con-
straints of the inputs. Overconstrained specifications lead to missing the gen-
eration of valid inputs, which might make the subsequent testing stage miss
the exploration of faulty behaviors of the SUT. Underconstrained specifications
may lead to the generation of invalid inputs, which might produce false alarms
while testing the SUT. Furthermore, sometimes the user needs to take into ac-
count the way the generation approach operates, and write the specifications in
a very specific way for the approach to achieve good performance [4] (see Section
4). Finally, such precise formal specifications are seldom available in software,
hindering the usability of specification-based BEG approaches.

Several studies show that BEG approaches are effective in revealing software
failures [20,16,4,33]. Furthermore, the small scope hypothesis [3], which states
that most software faults can be revealed by executing the SUT on “small inputs”,
suggests that BEG approaches should discover most (if not all) faults in the
SUT, if large enough scopes are used. The challenge that BEG approaches face
is how to efficiently explore a huge search space, that often grows exponentially
with respect to the scope. The search space often includes a very large number
of invalid (not satisfying repOK) and isomorphic inputs [15,28]. Thus, pruning
parts of the search space involving invalid and redundant inputs is key to make
BEG approaches scale up in practice [4].

In this paper, we propose a new approach for BEG, called BEAPI, that works
by making calls to API methods of the SUT. Similarly to API-based test gener-
ation approaches [23,19,10], BEAPI generates sequences of calls to methods from
the API (i.e., test sequences). The execution of each test sequence yielded by
BEAPI generates an input in the resulting BEG set of objects. As usual in BEG,
BEAPI requires the user to provide scopes for generation, which for BEAPI in-
cludes a maximum test sequence length. Brute force BEG from a user-provided
scope would attempt to generate all feasible test sequences of methods form the
API with up to a maximum sequence length. This is an intrinsically combinato-
rial process, that exhausts computational resources before completion even for

112



Efficient Bounded Exhaustive Input Generation from Program APIs

very small scopes (see Section 4). We propose several pruning techniques that are
crucial for the efficiency of BEAPI, and allow it to scale up to significantly larger
scopes. First, BEAPI executes test sequences and discards those that correspond
to violations of API usage rules (e.g., throwing exceptions that indicate incorrect
API usage, such as IllegalArgumentException in Java [17,23]). Thus, as op-
posed to specification-based BEG approaches, BEAPI does not require a repOK
that precisely describes valid inputs. In contrast, BEAPI requires minimum spec-
ification effort in most cases (including most of our case studies in Section 4),
which consists of making API methods throw exceptions on invalid inputs (in
the “defensive programming” style popularized by Liskov [17]). Second, BEAPI
implements state matching [15,28,36] to discard test sequences that produce in-
puts already created by previously explored sequences. Third, BEAPI employs
only a subset of the API methods to create test sequences: a set of methods
automatically identified as builders [27]. Before test generation, BEAPI executes
an automated builders identification approach [27] to find a smaller subset of the
API that is sufficient to yield the resulting BEG set of inputs. Another advan-
tage of BEAPI with respect to specification-based approaches is that it produces
test sequences to create the corresponding inputs using methods from the API,
making it easier to create tests from BEAPI’s output [5].

We experimentally assess BEAPI, and show that its efficiency and scalability
are comparable to those of the fastest BEG approach (Korat), without the need
for repOKs. We also show that BEAPI can be of help in finding flaws in repOKs,
by comparing the sets of inputs generated by BEAPI using the API against the
sets of inputs generated by Korat from a repOK. Using this procedure, we found
several flaws in repOKs employed in the experimental assessment of related tools,
thus providing evidence on the difficulty of writing repOKs for BEG.

2 A Motivating Example

To illustrate the difficulties of writing formal specifications for BEG, consider
Apache’s NodeCachingLinkedList’s (NCL) representation invariant shown in
Figure 1 (taken from the ROOPS benchmark5). NCLs are composed of a main
circular, doubly-linked list, used for data storage, and a cache of previously used
nodes implemented as a singly linked list. Nodes removed from the main list
are moved to the cache, where they are saved for future usage. When a node is
required for an insertion operation, a cache node (if one exists) is reused (instead
of allocating a new node). As usual, repOK returns true iff the input structure
satisfies the intended NCL properties [17]. Lines 1 to 20 check that the main list
is a circular doubly-linked list with a dummy head; lines 21 to 33 check that the
cache is a null terminated singly linked list (and the consistency of size fields
is verified in the process). This repOK is written in the way recommended by
the authors of Korat [4]. It returns false as soon as it finds a violation of an
intended property in the current input. Otherwise, it returns true at the end.
This allows Korat to prune large portions of the search space, and improves its
5 https://code.google.com/p/roops/

113



M. Politano et al.

1 public boolean repOK() {
2 if (this.header == null) return false;
3 // Missing constraint: the value of the sentinel node must be null
4 // if (this.header.value != null) return false;
5 if (this.header.next == null) return false;
6 if (this.header.previous == null) return false;
7 if (this.cacheSize > this.maximumCacheSize) return false;
8 if (this.size < 0) return false;
9 int cyclicSize = 0;

10 LinkedListNode n = this.header;
11 do {
12 cyclicSize++;
13 if (n.previous == null) return false;
14 if (n.previous.next != n) return false;
15 if (n.next == null) return false;
16 if (n.next.previous != n) return false;
17 if (n != null) n = n.next;
18 } while (n != this.header && n != null);
19 if (n == null) return false;
20 if (this.size != cyclicSize - 1) return false;
21 int acyclicSize = 0;
22 LinkedListNode m = this.firstCachedNode;
23 Set visited = new HashSet();
24 visited.add(this.firstCachedNode);
25 while (m != null) {
26 acyclicSize++;
27 if (m.previous != null) return false;
28 // Missing constraint: the value of cache nodes must be null
29 // if (m.value != null) return false;
30 m = m.next;
31 if (!visited.add(m)) return false;
32 }
33 if (this.cacheSize != acyclicSize) return false;
34 return true;
35 }

Fig. 1. NodeCachingLinkedList’s repOK from ROOPS

performance [4]. repOK suffers from underspecification: it does not state that the
sentinel node and all cache nodes must have null values (lines 3-4 and 28-29,
respectively). Mistakes like these are very common when writing specifications
(see Section 4.3), and difficult to discover by manual inspection of repOK. These
errors can have serious consequences for BEG. Executing Korat with repOK and
a scope of up to 8 nodes produces 54.5 million NCL structures, while the actual
number of valid NCL instances is 2.8 million. Clearly, this is a problem for Ko-
rat’s performance, and for the subsequent testing of the SUT. In addition, the
invalid instances generated might trigger false alarms in the SUT in many cases.
We discovered these errors in repOK with the help of BEAPI: we automatically
contrasted the structures generated using BEAPI and the NCL’s API, with those
generated using Korat with repOK, for the same scope.

This example shows that writing sound and precise repOKs for BEG is difficult
and time consuming. Fine-tuning repOKs to improve the performance of BEG
(e.g., for Korat) is even harder. The main advantage of BEAPI is that it requires
minimal specification effort to perform BEG. If API methods used for generation
are correct, all generated structures are valid by construction. The programmer
only needs to make sure that API methods throw exceptions when API usage

114



Efficient Bounded Exhaustive Input Generation from Program APIs

1 max.objects=3
2 int.range=0:2
3 # strings=str1,str2,str3
4 # omit.fields=NodeCachingLinkedList.DEFAULT_MAXIMUM_CACHE_SIZE

Fig. 2. BEAPI’s scope definition for NCL (max. nodes 3)

rules are violated, in a defensive programming style [17]. In most cases, this
requires checking very simple conditions on the inputs. In our example, the
method to add an element to a NCL throws an IllegalArgumentException
when is called with the null element (the implementation of the method takes
care that the remaining NCL properties hold).

3 Bounded Exhaustive Generation from Program APIs

We now describe BEAPI’s approach. We start with the definition of scope, then
present BEAPI’s optimizations, and we finally describe BEAPI’s algorithm.

3.1 Scope Definition

The definition of scope in Korat involves providing bounded data domains for
classes and fields of the SUT, since Korat explores the state space of feasible in-
put candidates, and yields the set of inputs satisfying repOK as a result. Instead,
BEAPI explores the search space of (bounded) test sequences that can be formed
by making calls to the SUT’s API. Thus, we have to provide data domains for
the primitive types employed to make such calls, and a bound on the maximum
size of the structures we want to keep, from those generated by such API calls.
An example configuration file defining BEAPI’s scope for the NCL case study is
shown in Figure 2. The max.objects parameter specifies the maximum number
of different objects (reachable from the root) that a structure is allowed to have.
Test sequences that create a structure with a larger number of different objects
(of any class) than max.objects will be discarded (and the structure too). In
our example, this implies that BEAPI will not create NCLs with more than 3
nodes. Next, one has to specify the values that will be employed by BEAPI to
invoke API routines that take primitive type parameters (e.g., elements to in-
sert into the list). The int.range parameter allows one to specify a range of
integers, which goes from 0 to 2 in Figure 2. One may also specify domains for
other primitive types like floats, doubles and strings, by describing their values
by extension. For example, line 3 shows how to define str1, str2 and str3
as the feasible values for String-typed parameters. Also, we can instruct BEAPI
which fields to take into account for structure canonicalization, or which fields to
omit (omit.fields). This allows the user to control the state matching process
(see Section 3.2). For example, uncommenting line 4 would make BEAPI omit
the DEFAULT_MAXIMUM_CACHE_SIZE in state matching, which in our example is
a constant initialized to 20 in the class constructor. In this case, omitting the
field does not change anything in terms of the different structures generated by

115



M. Politano et al.

BEAPI, but in other cases omitting fields may have an impact. The configura-
tion in Figure 2 is enough for BEAPI to generate NCLs with a maximum of 3
nodes, containing integers from 0 to 2 as values, which allowed us to mimic the
structures generated by Korat for the same scope.

3.2 State Matching

In test generation with BEAPI, multiple test sequences often produce the same
structure, e.g., inserting an element into a list and removing the element after-
wards. BEAPI assumes that method executions are deterministic: any execution
of a method with the same inputs yields the same results. For the generation
of a bounded exhaustive set of structures, for each distinct structure s in the
set, BEAPI only needs to save the first test sequence that generates s. All test
sequences generated subsequently that also create s can be discarded. As BEAPI
works by extending previously generated test sequences (Section 3.4), if we save
many test sequences for the same structure, all these sequences would have to
be extended with new routines in subsequent iterations of BEAPI, resulting in
unnecessary computations. Hence, we implement state matching on BEAPI as fol-
lows. We store all the structures produced so far by BEAPI in a canonical form
(see below). After executing the last routine r(p1,..,pk) of a newly generated
test sequence T, we check whether any of r’s parameters hold a structure not
seen before (not stored). If T does not create any new structure, it is discarded.
Otherwise, T and the new structures it generates are stored by BEAPI.

We represent heap-allocated structures as labeled graphs. After the execution
of a method, a (non-primitive typed) parameter p holds a reference to the root
object r of a rooted heap (i.e. p = r), defined below.

Definition 1. Let O be a set of objects, and P a set of primitive values (includ-
ing null). Let F be the fields of all objects in O.

– A heap is a labeled graph H = 〈O,E〉 with E = {(o, f, v)|o ∈ O, f ∈ F, v ∈
O ∪ P}.

– A rooted heap is a pair RH = 〈r,H〉 where r ∈ O, H = 〈O,E〉 is a heap,
and for each v′ ∈ O ∪ P , v′ is reachable from r through fields in F .

The special case p = null can be represented by a rooted heap with a dummy
node and a dummy field pointing to null. In languages without explicit memory
management (like Java), each object is identified by the memory address where
is allocated. But changing the memory addresses of objects (while keeping the
same graph structure) has no effect in the execution of a program. Heaps ob-
tained by permutations of the memory addresses of their component objects are
called isomorphic heaps. We avoid the generation of isomorphic heaps by employ-
ing a canonical representation for heaps [15,4]. Rooted heaps can be efficiently
canonicalized by an approach called linearization [15,36], which transforms a
rooted heap into a unique sequence of values.

Figure 3 shows the linearization algorithm used by BEAPI, a customized
version that reports when objects exceed the scopes and supports ignoring object

116



Efficient Bounded Exhaustive Input Generation from Program APIs

1 int[] linearize(O root, Heap<O, E> heap, int scope, Regex omitFields) {
2 Map ids = new Map(); // maps nodes into their unique ids
3 return lin(root, heap, scope, ids, omitFields);
4 }
5 int[] lin(O root, Heap<O, E> heap, int scope, Map ids, Regex omitFields) {
6 if (ids.containsKey(root))
7 return singletonSequence(ids.get(root));
8 if (ids.size() == scope)
9 throw new ScopeExceededException();

10 int id = ids.size() + 1;
11 ids.put(root, id);
12 int[] seq = singletonSequence(id);
13 Edge[] fields = sortByField({ <root, f, o> in E }, omitFields);
14 foreach (<root, f, o> in fields) {
15 if (isPrimitive(o))
16 seq.add(uniqueRepresentation(o));
17 else
18 seq.append(lin(o, heap, scope, ids, omitFields));
19 }
20 return seq;
21 }

Fig. 3. Linearization algorithm

fields (for the original version see [36]). linearize starts a depth-first traversal
of the heap from the root, by invoking lin in line 3. To canonicalize the heap,
lin assigns different identifiers to the different objects it visits. Map ids stores
the mapping between objects and unique object identifiers. When an object is
visited for the first time, it is assigned a new unique identifier (lines 10-11), and
a singleton sequence with the identifier is created to represent the object (line
12). Then, the object’s fields, sorted in a predefined order (e.g., by name), are
traversed and the linearization of each field value is constructed, and the result
is appended to the sequence representing the current object (lines 13-19). A field
storing a primitive value is represented by a singleton sequence with the primitive
value (line 15-16). If a field references an object, a recursive call to lin converts
the object into a sequence, which will be appended to the result (line 18). At the
end of the loop, seq contains the canonical representation of the whole rooted
heap starting at root, and is returned by lin (line 20). When an already visited
object is traversed by a recursive call, the object must have an identifier already
assigned in ids (line 6), and lin returns the singleton sequence with the object’s
unique identifier (lines 7). When more than scope objects are reachable from the
rooted heap, lin returns an exception to report that the scope has been exceeded
(lines 9-10). The exception will be employed later on by BEAPI to discard test
sequences that create objects larger than allowed by the scope. linearize also
takes as a parameter a regular expression omitFields, that matches the names of
the fields that must be omitted during canonicalization (see Section 3.1). To omit
such fields, we implemented sortByField (line 13) in such a way that it does
not return the edges corresponding to fields whose names match omitFields.
This in turn avoids saving the values of omitted fields in the sequence yielded by
linearize. Finally, notice that linearization allows for efficient comparison of
objects (rooted heaps): two objects are equal if and only if their corresponding
sequences yielded by linearize are equal.

117



M. Politano et al.

3.3 Builders Identification Approach

As the feasible combinations of methods grow exponentially with the number of
methods, it is crucial to reduce the number of methods that BEAPI uses to pro-
duce test sequences. We employ an automated builders identification approach
[27] to find a subset of API methods that are sufficient for the generation of the
bounded exhaustive structure sets. We call such routines builders. The previous
approach to identify a subset of sufficient builders from an API is based on a
genetic algorithm, but is computationally expensive [27]. Here, we consider a
simpler hill climbing approach (HC), that achieves better performance. HC may
of course be less precise, as it may include some methods in the resulting set
of builders that might not be needed to produce a bounded exhaustive set of
structures. However, HC worked very well and consistently computed minimal
sets of builders in our experiments (we checked that the set of builders computed
by HC matched the set of builders we manually identified for each case study).
Our goal here is to assess the impact of using builders for BEG from an API.
Comparing the HC approach against existing techniques is left for future work.

Let API=m1,m2, . . . ,mn be the set of API methods. HC explores the search
space of all subsets of methods from API. HC requires the user to provide a scope
s (in the same way as in BEAPI). The fitness f(sm) of a given set sm of methods is
the number of distinct structures (after canonicalization) that BEAPI generates
using the set, for the given scope s. We also give priority in the fitness to sets of
methods with less and simpler parameter types (see [27] for further details). The
successors succs(sm) for a candidate sm are the sets sm∪{mi}, for eachmi ∈ API.
HC starts by computing the fitness of all singletons {c} of constructor methods.
The best of the singletons is set as the current candidate curr, and HC starts a
typical iterative hill climbing process. At each iteration HC computes f(succ)
for each succ ∈ succs(curr). Let best be the successor with the highest fitness
value. Notice that best has exactly one more method than the best candidate
of the previous iteration, curr. If f(best) > f(curr), methods in best can be
used to create a larger set of structures than those in curr. Thus, HC assigns
best to curr, and continues with the next iteration. Otherwise, f(best) <=
f(curr), and curr already generates the largest possible set of structures (no
method could be added that increases the number of generated structures from
curr). At this point, curr is returned as the set of identified builders.

Notice that HC performs many invocations to BEAPI for builders identifi-
cation. The key insight that makes builders identification feasible is that often
builders identified for a relatively small scope are the same set of methods that
are needed to create structures of any size. In other words, once the scope for
builders computation is large enough, increasing the scope will yield the same set
of builders as a result. This result resembles the small scope hypothesis for bug
detection [3] (and transcoping [31]). A scope of 5 was enough for builders compu-
tation in all our case studies (we manually checked that the computed builders
were the right ones in all cases). After builders are identified efficiently using a
small scope, we can run BEAPI with the identified builders using a larger scope,
for example, to generate bigger objects to exercise the SUT. In most of our case

118



Efficient Bounded Exhaustive Input Generation from Program APIs

1 BEAPI(List methods, int scope, Map<Type, List<Seq>> primitives, Regex omitFields) {
2 Map<Type, List<Seq>> currSeqs = new Map();
3 currSeqs.addAll({ T->L | T->L in primitives });
4 Set canonicalStrs = new Set();
5 for (int it=0; true; it++) {
6 Map<Type, List<Seq>> newSeqs = new Map();
7 boolean newStrs = false;
8 for (m(T1,. . .,Tn):Tr: methods) {
9 Map<Type, List<Seq>> seqsT1 = currSeqs.getSequencesForType(T1);

10 . . .
11 Map<Type, List<Seq>> seqsTn = currSeqs.getSequencesForType(Tn);
12 for ((s1,. . .,sn): seqsT1 × . . .×seqsTn) {
13 Seq newSeq = createNewSeq(s1,. . .,sn,m);
14 o1,. . .,on,or,failure,exception = execute(newSeq);
15 if (failure) throw new ExecutionFailedException(newSeq);
16 if (exception) continue;
17 c1,. . .,cn,cr,outOfScope = makeCanonical(o1,. . .,on,or,scope,omitFields);
18 if (outOfScope) continue;
19 if (isReferenceType(T1) and !canonicalStrs.contains(c1)) {
20 canonicalStrs.add(c1);
21 newSeqs.addSeqForType(T1, newSeq);
22 newStrs = true;
23 }
24 . . .
25 if (isReferenceType(Tr) and !canonicalStrs.contains(cr)) {
26 canonicalStrs.add(cr);
27 newSeqs.addSeqForType(Tr, newSeq);
28 newStrs = true;
29 }
30 }
31 }
32 if (!newStrs) break;
33 currSeqs.addAll(newSeqs);
34 }
35 return currSeqs.getAllSeqsAsList();
36 }

Fig. 4. BEAPI algorithm

studies, builders comprise a constructor and a single method to add elements to
the structure. However, our automated builder identification approach showed
that, for Red-Black Trees, a remove method was also required (for scopes greater
than 3), since there are trees with a particular balance configuration (red and
black coloring for the nodes) that cannot be constructed by just adding elements
to the tree. In contrast, AVL trees, which are also balanced, do not require the
remove method as a builder, and the class constructor and an add routine suf-
fice. This shows that builders identification is non-trivial to perform manually,
as it requires a very careful exploration of a very large number of structures and
method combinations. Other structures that require more than two builders are
binomial and Fibonacci heaps.

3.4 The BEAPI Approach

A pseudocode of BEAPI is shown in Figure 4. BEAPI takes as inputs a list
of methods from an API, methods (the whole API, or previously identified
builders); the scope for generation, scope; a list of test sequences to create values
for each primitive type provided in the scope description, primitives (automat-

119



M. Politano et al.

ically created from configuration options int.range, strings, etc., see Fig. 2);
and a regular expression matching fields to be omitted in the canonicalization
of structures, omitFields. Notice that methods from more than one class could
be passed in methods if one wants to generate objects for several classes in the
same execution of BEAPI, e.g., when methods from one class take objects from
another class as parameters. BEAPI’s map currSeqs stores, for each type, the
list of test sequences that are known to generate structures of the type. currSeqs
starts with all the primitive typed sequences in primitives (lines 2-3). At each
iteration of the main loop (lines 5-34), BEAPI creates new sequences for each
available method m (line 8), by exhaustively exploring all the possibilities for
creating test sequences using m and inputs generated in previous iterations and
stored in currSeqs (lines 9-30). The newly created test sequences that generate
new structures in the current iteration are saved in map newSeqs (initialized
empty in line 6); all the generated sequences are then added to currSeqs at the
end of the iteration (line 33). If no new structures are produced at the current
iteration (newStrs is false in line 32), BEAPI’s main loop terminates and the list
of all sequences in currSeqs is returned (line 35).

Let us now discuss the details of the for loop in lines 9-30. First, all sequences
that can be used to construct inputs for m are retrieved in seqsT1,...,seqsTn.
BEAPI explores each tuple (s1,...,sn) of feasible inputs for m. Then, it executes
createNewSeq (line 13), which constructs a new test sequence newSeq by per-
forming the sequential composition of test sequences s1,...,sn and routine m, and
replacing m’s formal parameters by the variables that create the required objects
in s1,...,sn. newSeq is then executed (line 14) and it either produces a failure
(failure is set to true), raises an exception that represents an invalid usage of
the API (exception is set to true), or its execution is successful and it creates
new objects o1,. . .,on,or. In case of a failure, an exception is thrown and newSeq
is presented to the user as a witness of the failure (line 15). If a different kind of
exception is thrown, BEAPI assumes it corresponds to an API misuse (see below),
discards the test sequence (line 16) and continues with the next candidate se-
quence. Otherwise, the execution of newSeq builds new objects o1,. . .,on,or (or
values of primitive types) that are canonicalized by makeCanonical (line 17) –by
executing linearize from Figure 3 on each structure. If any of the structures
produced by newSeq exceeds the scope, makeCanonical sets outOfScope to true,
BEAPI discards newSeq and continues with the next one (line 18). If none of the
above happens, makeCanonical returns canonical versions of o1,. . .,on,or in
variables c1,. . .,cn,cr, respectively. Afterwards, BEAPI performs state match-
ing by checking that the canonical structure c1 is of reference type and that
it has not been created by any previous test sequence (line 19). Notice that
canonicalStrs stores all of the already visited structures. If c1 is a new struc-
ture, it is added to canonicalStrs (line 27), and the sequence that creates c1,
newSeq, is added to the set of test sequences producing structures of type T1
(newSeqs in line 27). Also, newStrs is set to true to indicate that at least a
new object has been created in the current iteration (line 22). This process is
repeated for canonical objects c2,. . .,cn,cr (lines 24-29).

120



Efficient Bounded Exhaustive Input Generation from Program APIs

BEAPI distinguishes failures from bad API usage based on the type of the ex-
ception (similarly to previous API based test generation techniques [23]). For ex-
ample, IllegalArgumentException and IllegalStateException correspond
to API misuses, and the remaining exceptions are considered failures by default.
BEAPI’s implementation allows the user to select the exceptions that correspond
to failures and those that do not, by setting the corresponding configuration pa-
rameters. As mentioned in Section 2, BEAPI assumes that API methods throw
exceptions when they fail to execute on invalid inputs. We argue that this is a
common practice, called defensive programming [17], that should be followed by
all programmers, as it results in more robust code and improves software testing
in general [2] (besides helping automated test generation tools). We also argued
in Section 2 that the specification effort required for defensive programming is
much less than writing precise (and efficient) repOKs for BEG, and that this was
true after manually inspecting the source code of our case studies. On the other
hand, note that BEAPI can employ formal specifications to reveal bugs in the
API, e.g., by executing repOK and check that it returns true on every generated
object of the corresponding type (as in Randoop [23]). However, the specifica-
tions used for bug finding do not need to be very precise (e.g., the underspecified
NCL repOK from Section 2 is fine for bug finding), or written in a particular way
(as required by Korat). Other kinds of specifications that are weaker and simpler
to write can also be used by BEAPI to reveal bugs, like violations of language
specific contracts (e.g., equals is an equivalence relation in Java), metamorphic
properties [7], user-provided assertions (assert), etc.

Another advantage of BEAPI is that, for each generated object, it yields
a test sequence that can be executed to create the object. This is in contrast
with specification based approaches (that generate a set of objects from repOK).
Finding a sequence of invocations to API methods that create a specific structure
is a difficult problem on its own, that can be rather costly computationally [5], or
require significant effort to perform manually. Thus, often objects generated by
specification based approaches are “hardwired” when used for testing a SUT (e.g.,
by using Java reflection), making tests very hard to understand and maintain,
as they depend on the low-level implementation details of the structures [5].

4 Evaluation

In this section, we experimentally assess BEAPI against related approaches. The
evaluation is organized around the following research questions:

RQ1 Can BEG be performed efficiently using API routines?
RQ2 How much do the proposed optimizations impact the performance of BEG

from the API?
RQ3 Can BEAPI help in finding discrepancies between repOK specifications and

the API’s object generation ability?

As case studies, we employ data structures implementations from four bench-
marks: three employed in the assessment of existing testing tools (Korat [4],

121



M. Politano et al.

Kiasan [9], FAJITA [1]), and ROOPS. These benchmarks cover diverse implemen-
tations of complex data structures, which are a good target for BEG. We choose
these as case studies because the implementations come equipped with repOKs,
written by the authors of the benchmarks. The experiments were run on a work-
station with an Intel Core i7-8700 CPU (3.2 Ghz) and 16Gb of RAM. We set a
timeout of 60 minutes for each individual run. To replicate the experiments, we
refer the reader to the paper’s artifact [25].

4.1 RQ1: Efficiency of Bounded Exhaustive Generation from APIs

For RQ1 we assess whether or not BEAPI is fast enough to be a useful BEG
approach, by comparing it to the fastest BEG approach, Korat [32]. The results
of the comparison are summarized in Table 1. For each technique, we report
generation times (in seconds), number of generated and explored structures, for
increasingly large scopes. Due to space reasons, we show a representative sample
of the results (we try to maintain the same proportion of good and bad cases for
each technique in the data we report). We include the largest successful scope for
each technique; the execution times for the largest scopes are in boldface in the
table. In this way, should scalability issues arise, they can be easily identified. For
the complete report of the results visit the paper’s website [26]. To obtain proper
performance results for BEAPI, we extensively tested the API methods of the
classes to ensure they were correct for this experiment. We did not try to change
the repOKs in any way because that would change the performance of Korat, and
one of our goals here is evaluating the performance of Korat using repOKs writ-
ten by different programmers. Differences in explored structures are expected,
since the corresponding search spaces for Korat and BEAPI are different. How-
ever, for the same case study and scope, one would expect both approaches to
generate the same number of valid structures. This is indeed the case in most
experiments, with notable exceptions of two different kinds. Firstly, there are
cases where repOK has errors; these cases are grayed out in the tables. Secondly,
the slightly different notion of scope in each technique can cause discrepancies.
This only happens for Red-Black Trees (RBT) and Fibonacci heaps (FibHeap),
which are shown in boldface. In these cases certain structures of size n can only
be generated from larger structures, with insertions followed by removals and
then insertions again to trigger specific balance rearrangements. BEAPI discards
generated sequences as soon as they exceed the maximum structure size, hence
it cannot generate these structures.

In terms of performance, we have mixed results. In the Korat benchmark,
Korat shows better performance in 4 out of 6 cases. In the FAJITA benchmark,
BEAPI is better in 3 out of 4 cases. In the ROOPS benchmark, BEAPI is bet-
ter in 5 out of 7 cases. In the Kiasan benchmark, Korat is faster in 6 of the 7
cases. We observe that BEAPI shows a better performance in structures with
more restrictive constraints such as RBT and Binary Search Trees (BST); often
these cases have a smaller number of valid structures. Cases where the number
of valid structures grows faster with respect to the scope, such as doubly-linked
lists (DLList), are better suited for Korat. More structures means BEAPI has

122



Efficient Bounded Exhaustive Input Generation from Program APIs

Table 1. Efficiency assessment of BEAPI against Korat

Class S Time Generated Explored
Korat BEAPI Korat BEAPI Korat BEAPI

K
O

R
A
T

DLList 6 0.24 7.11 55987 55987 521904 335930
7 2.31 108.08 960800 960800 9875550 6725609
9 1333.88 TO 435848050 5325611829

FibHeap 6 1.26 5.95 573223 54159 1641562 379125
7 32.87 115.44 17858246 898394 54268866 7187167
8 1415.77 TO 654214491 2105008180

BinHeap 7 0.26 25.32 107416 107416 261788 859337
8 0.85 163.39 603744 603744 1323194 5433706

11 2558.32 TO 2835325296 2985116257

BST 10 131.18 49.10 223191 223191 216680909 2231922
11 1137.17 199.46 974427 974427 1679669258 10718710
12 TO 1341.86 4302645 51631754

SLList 7 5.76 17.87 137257 137257 2055596 960807
8 8.16 256.49 2396745 2396745 40701876 19173969
9 190.45 TO 48427561 919451065

RBT 11 40.54 33.42 51242 39942 53141999 878743
12 220.77 79.45 146073 112237 276868584 2693710
13 1277.67 689.06 428381 314852 1454153331 8186175

BinTree 10 73.73 51.34 223191 223191 218675679 2231922
11 634.114 265.57 974427 974427 1689480455 10718710
12 TO 1578.72 4302645 51631754

AVL 10 163.50 1.92 7393 7393 349178307 73942
11 1271.23 5.80 20267 20267 2504382415 222950

F
A

J
IT

A

13 TO 45.45 145206 1887693

RBT 11 58.74 19.72 51242 39942 75814869 878743
12 318.57 63.16 146073 112237 385422689 2693710
13 1779.83 206.66 428381 314852 1957228527 8186175

BinHeap 7 .77 44.452 107416 107416 1447594 859337
8 5.96 97.08 603744 603744 13329584 5433706

10 1174.91 TO 117157172 2064639445

AVL 5 3.54 0.05 1107 62 12277946 317
6 213.63 .009 3969 157 701862289 950

13 TO 46.71 145206 1887693

NCL 6 0.65 2.27 800667 11196 805921 134364
7 8.797 33.89 2739128 160132 16443824 2241862
8 205.596 769.63 381367044 2739136 381381493 43826192

BinTree 3 0.173 0.02 65376 15 65596 50
4 37.546 0.05 121853251 51 121855507 210

12 TO 966.41 4302645 51631754

LList 7 0.51 12.62 137257 137257 1410799 960807
8 7.64 295.94 2396745 2396745 26952027 19173969
9 176.69 TO 48427561 591734656

RBT 11 69.87 31.02 51242 39942 75814869 878743
12 361.88 81.03 146073 112237 385422689 2693710
13 2007.29 697.06 428381 314852 1957228527 8186175

FibHeap 4 1.851 0.13 131444 335 5681553 1683
5 346.275 0.70 21629930 4381 1295961583 26297

R
O

O
P

S

7 TO 129.01 898394 7187167

BinHeap 6 1.04 1.31 7602 7602 3202245 53222
7 17.47 13.06 107416 107416 64592184 859337
8 448.48 96.94 603744 603744 1483194820 5433706

BST 11 12.184 204.83 974427 974427 62669069 10718710
12 65.305 1235.67 4302645 4302645 308229505 51631754
14 1751.4 TO 86211885 7438853941

DLL 7 0.614 18.09 137257 137257 2326622 960807
8 9.824 257.42 2396745 2396745 45449534 19173969
9 245.787 TO 48427561 1015587001

RBT 7 10.76 0.78 911 561 44832139 7866
8 283.33 1.57 2489 1657 1044561963 26526

12 TO 84.51 112237 2693710

DisjSetFast 6 0.198 0.89 52165 544 117456 22890
7 1.209 8.26 1545157 4397 3398383 246288

K
IA

S
A

N

9 1402.376 TO 2201735557 4715569321

StackList 6 0.128 4.35 55987 55987 56008 335930
7 0.517 83.06 960800 960800 960828 6725609
9 212.919 TO 435848050 435848095

BHeap 7 0.654 53.78 3206861 458123 3221407 3665089
8 8.98 1221.59 64014472 8001809 64124432 72016409
9 202.804 TO 1447959627 1449279657

TreeMap 5 .55 24.95 40526 34276 162375 1028287
6 2.85 866.71 1207261 1098397 3381725 46132686
8 1980.70 TO 1626500673 2671020961

123



M. Politano et al.

to create more test sequences in each successive iteration, which makes its per-
formance suffer more in such cases. As expected, the way repOKs are written
has a significant impact in Korat’s performance. For example, for binomial heaps
(BinHeap) Korat reaches scope 8 with Roops’ repOK, scope 10 with FAJITA’s
repOK, and scope 11 with Korat’s repOK (all equivalent in terms of generated
structures). In most cases, repOKs from the Korat benchmark result in better
performance, as these are fine-tuned for usage with Korat. Case studies with er-
rors in repOKs are grayed out in the table, and discussed further in Section 4.3.
Notice that errors in repOKs can severely affect Korat’s performance.

4.2 RQ2: Impact of BEAPI’s Optimizations

Table 2. Execution times (sec) of BEAPI under different configurations.

ROOPS

Class S SM/BLD SM BLD NoOPT

AVL 3 .02 .04 .34 -
4 .03 .07 102.16 -
5 .05 .11 - -

13 46.71 657.17 - -

NCL 3 .04 1.31 1.37 7.96
4 .10 9.59 52.17 -
5 .34 40.54 - -
8 769.63 - - -

BinTree 3 .02 .04 .23 33.84
4 .05 .08 85.32 -
5 .11 .16 - -

12 966.41 2281.42 - -

LList 3 .03 .09 .26 -
4 .07 .48 115.27 -
5 .18 118.75 - -
8 295.94 - - -

RBT 3 .04 .04 39.11 -
4 .11 .09 - -
5 .22 .14 - -

12 81.03 2379.44 - -

FibHeap 3 .04 .09 .94 -
4 .13 .20 -
5 .70 1.13 -
7 129.01 243.36 - -

BinHeap 3 .05 .11 2.03 18.38
4 .09 .34 - -
5 .26 .96 - -
8 96.94 220.18 - -

Real World

Class S SM/BLD SM BLD NoOPT

NCL 3 .10 .47 - -
4 .41 3.48 - -
5 3.33 - - -
6 73.78 - - -

TSet 3 .03 .07 56.82 -
11 21.52 86.06 - -
12 69.98 276.85 - -
13 226.66 887.83 - -

TMap 3 .11 .25 - -
4 .75 2.36 - -
5 15.97 57.64 - -
6 839.87 2901.37 - -

LList 3 .02 .13 .64 -
6 .96 258.85 - -
7 12.98 - - -
8 286.21 - - -

HMap 3 .10 11.49 - -
4 .55 - - -
5 5.33 - - -
6 119.87 - - -

In RQ2 we assess the impact each of BEAPI’s proposed optimizations has
in BEG. For this, we assess the performance of four different BEAPI configura-
tions: SM/BLD is BEAPI with state matching (SM) and builder identification
(BLD) enabled; SM is BEAPI with only state matching (SM) enabled; BLD is
BEAPI with only builders (BLD) identification enabled; NoOPT has both op-
timizations disabled. The left part of Table 2 summarizes the results of this
experiment for the ROOPS benchmark; the right part reports preliminary results
on five “real world” implementations of data structures: LinkedList (21 API
methods), TreeSet (22 API methods), TreeMap (32 methods) and HashMap (29

124



Efficient Bounded Exhaustive Input Generation from Program APIs

methods) from java.util, and NCL from Apache Collections (20 methods). As
most real world implementations, these data structures do not come equipped
with repOKs, hence we only employed them in this RQ.

The brute force approach (NoOPT) performs poorly even for the easiest case
studies and very small scopes. These scopes are too small and often not enough
if one wants to generate high quality test suites. State matching is the most im-
pactful optimization, greatly improving by itself the performance and scalability
all around (compare NoOPT and SM results). As expected, builders identifica-
tion is much more relevant in cases where the number of methods in the API
is large (more than 10), and remarkably in the real world data structures (with
20 or more API methods). SM/BLD is more than an order of magnitude faster
than SM in AVL and RBT, and it reaches one more scope in NCL and LList. The
remaining classes of ROOPS have just a few methods, and the impact of using
builders is relatively small. The conclusions drawn from ROOPS apply to the other
three benchmarks (we omit their results here for space reasons, visit the paper’s
website for a complete report [26]). In the real world data structures, using pre-
computed builders allowed SM/BLD to scale to significantly larger scopes in all
cases but TreeMap and TreeSet, where it significantly improves running times.
Overall, the proposed optimizations have a crucial impact in BEAPI’s perfor-
mance and scalability, and both should be enabled to obtain good results.

On the cost of builders identification. Due to space reasons we report builders
identification times in the paper’s website [26]. For the conclusions of this sec-
tion, it is sufficient to say that scope 5 was employed for builders identification
in all cases, and that the maximum runtime of the approach was 65 seconds
in the four benchmarks (ROOPS’ SLL, 11 methods), and 132 seconds in the real
world data structures (TreeMap, 32 methods). We manually checked that the
identified methods included a set of sufficient builders in all cases. Notice that
BEG is often performed for increasingly larger scopes, and the identified builders
can be reused across executions. Thus, builder identification times are amor-
tized across different executions, which makes it difficult to calculate how much
builder identification times add to BEAPI running times in each case. So we did
not include builder identification times in BEAPI running times in any of the
experiments. Notice that, for the larger scopes, which arguably are the most im-
portant, builders identification time is negligible in relation to generation times.

4.3 RQ3: Analysis of Specifications using BEAPI

RQ3 addresses whether BEAPI can be useful in assisting the user in finding
flaws in repOKs, by comparing the set of objects that can be generated using the
API and the set of objects generated from the repOK. We devised the following
automated procedure. First, we run BEAPI to generate a set SA of structures from
the API, and Korat to generate a set SR from repOK, using the same scope for both
tools. Second, we canonicalize the structures in both SA and SR using linearization
(Section 3.2). Third, we compare sets SA and SR for equality. Differences in
this comparison point out a mismatch between repOK and the API. There are
three possible outputs for this automated procedure. If SA ⊂ SR, it is possible

125



M. Politano et al.

Table 3. Summary of flaws found in repOKs using BEAPI

Bench. Class Error Description Type

Korat RBTree Color of root should not be red under

Roops

NCL Key values in the cache should be set to null under
Key value of the dummy node in the main list should be null under

BinTree Parent of root node should be null under
RBT Color of root should not be red under

AVL Height computation is wrong (leaves are assigned the wrong value) error
Repeated key values should not be allowed under

FibHeap

Left and right fields of nodes should not be null under
Min node should always contain the minimum value in the heap under
If a node has no child its degree should be zero under
Child nodes should have smaller keys than their parents under
Parent fields of all nodes are forced to be null over
Heap with min node set to null is rejected over

Kiasan DisjSetFast The rank of the root can be invalid under
BinaryHeap The first position of an array (dummy) may contain an element under

Fajita AVL Height computation is wrong (leaves are assigned the wrong value) error

that the API generates a subset of the valid structures, that repOK suffers from
underspecification (missing constraints), or both. In this case, the structures in
SR that do not belong to SA are witnesses of the problem, and the user has
to manually analyze them to find out where the error is. Here, we report the
(manually confirmed) underspecification errors in repOKs that are witnessed by
the aforementioned structures. In contrast, when SR ⊂ SA, it can be the case
that the API generates a superset of the valid structures, that repOK suffers
from overspecification (repOK is too strong), or both. The structures in SA that
do not belong to SR might point out to the root of the error, and again they
have to be manually analyzed by the user. We report the (manually confirmed)
overspecification errors in repOKs that are witnessed by these structures. Finally,
it can be the case that there are structures in SR that do not belong to SA, and
there are structures (distinct than the former ones) in SA that do not belong
to SR. These might be due to faults in the API, flaws in the repOK, or both.
We report the manually confirmed flaws in repOKs witnessed by such structures
simply as errors (repOK describes a different set of structures than the one it
should). Notice that differences in the scope definitions for the approaches might
make sets SA and SR differ. This was only the case in the RBT and FibHeap
structures, where BEAPI generated a smaller set of structures for the same scope
than Korat due to balance constraints (as explained in Section 4.1). However,
these “false positives” can be easily revealed, since all the structures generated
by Korat were always included in the structures generated by BEAPI if a larger
scope was used for the latter approach. Using this insight we manually discarded
the “false positives” due to scope differences in RBT and FibHeap.

The results of this experiment are summarized in Table 3. We found out flaws
in 9 out of 26 repOKs using the approach described above. The high number of

126



Efficient Bounded Exhaustive Input Generation from Program APIs

flaws discovered evidences that problems in repOKs are hard to find manually,
and that BEAPI can be of great help for this task.

5 Related Work

BEG approaches have been shown effective in achieving high code coverage and
finding faults, as reported in various research papers [20,16,4,33]. Our goal here
is not to assess yet again the effectiveness of BEG suites, but to introduce an
approach that is straightforward to use in today’s software because it does not
require the manual work of writing formal specifications of the properties of the
inputs (e.g., repOKs). Different languages have been proposed to formally de-
scribe structural constraints for BEG, including Alloy’s relational logic (in the
so-called declarative style), employed by the TestEra tool [20]; and source code
in an imperative programming language (in the so-called operational style), as
used by Korat [4]. The declarative style has the advantage of being more concise
and simpler for people familiar with it, however this knowledge is not common
among developers. The operational style can be more verbose, but as specifi-
cations and source code are written in the same language this style is most of
the time preferred by developers. UDITA [11] and HyTeK [29] propose to employ
a mix of the operational and the declarative styles to write the specifications,
as parts of the constraints are often easier to write in one style or the other.
With precise specifications both approaches can be used for BEG. Still, to use
these approaches developers have to be familiar with both specification styles,
and take the time and effort required to write the specifications. Model checkers
like Java Pathfinder [34] (JPF) can also perform BEG, but the user has to manu-
ally provide a “driver” for the generation: a program that the model checker can
use to generate the structures that will be fed to the SUT afterwards. Writing
a BEG driver often involves invoking API routines in combination with JPF’s
nondeterministic operators, hence the developer must familiarize with such op-
erators and put in some manual effort to use this approach. Furthermore, JPF
runs over a customized virtual machine in place of Java’s standard JVM, so there
is a significant overhead in running JPF compared to the use of the standard
JVM (employed by BEAPI). The results of a previous study [32] show that JPF
is significantly slower than Korat for BEG. Therein, Korat has been shown to
be the fastest and most scalable BEG approach at the time of publication [32].
This in part can be explained by its smart pruning of the search space of invalid
structures and the elimination of isomorphic structures. In contrast, BEAPI does
not require a repOK and works by making calls to the API.

An alternative kind of BEG consists of generating all inputs to cover all feasi-
ble (bounded) program paths, instead of generating all feasible bounded inputs.
This is the approach of systematic dynamic test generation, a variant of symbolic
execution [14]. This approach is implemented by many tools [13,12,24,8], and has
been successfully used to produce test suites with high code coverage, reveal real
program faults, and for proving memory safety of programs. Kiasan [9] and FA-

127



M. Politano et al.

JITA [1] are also white-box test case generation approaches that require formal
specifications and aim for coverage of the SUT.

Linearization has been employed to eliminate isomorphic structures in tradi-
tional model checkers [15,28], and also in software model checkers [35]. A previous
study experimented with state matching in JPF and proposed several approaches
for pruning the search space for program inputs using linearization, for both con-
crete and symbolic execution [35]. As stated before, concrete execution in JPF
requires the user to provide a driver. The symbolic approach attempts to find
inputs to cover paths of the SUT; we perform BEG instead. Linearization has
also been employed for test suite minimization [36].

6 Conclusions

Software quality assurance can be greatly improved thanks to modern software
analysis techniques, among which automated test generation techniques play
an outstanding role [6,18,10,23,19,12,20,4,13]. Random and search-based ap-
proaches have shown great success in automatically generating test suites with
very good coverage and mutation metrics, but their random nature does now
allow these techniques to precisely characterize the families of software behav-
iors that the generated tests cover. Systematic techniques such as those based
on model checking, symbolic execution or bounded exhaustive generation, cover
a precise set of behaviors, and thus can provide specific correctness guarantees.

In this paper, we presented BEAPI, a technique that aims at facilitating
the application of a systematic technique, bounded exhaustive input genera-
tion, by producing structures solely from a component’s API, without the need
for a formal specification of the properties of the structures. BEAPI can generate
bounded exhaustive suites from components with implicit invariants, and reduces
the burden of providing formal specifications, and tailoring the specifications for
improved generation. Thanks to a number of optimizations, including an auto-
mated identification of builder routines and a canonicalization/state matching
mechanism, BEAPI can generate bounded exhaustive suites with a performance
comparable to that of the fastest specification-based technique Korat [4]. We
have also identified the characteristics of a component that may make it more
suitable for a specification-based generation, or an API-based generation.

Finally, we have shown how specification based approaches and BEAPI can
complement each other, depicting how BEAPI can be used to assess repOK imple-
mentations. Using this approach, we found a number of subtle errors in repOK
specifications taken from the literature. Thus, techniques that require repOK
specifications (e.g, [30]), as well as techniques that require bounded-exhaustive
suites (e.g., [21]) can benefit from our presented generation technique.

Acknowledgements This work was partially supported by ANPCyT PICTs
2017-2622, 2019-2050, 2020-2896, an Amazon Research Award, and by EU’s
Marie Sklodowska-Curie grant No. 101008233 (MISSION). Facundo Molina’s
work is also supported by Microsoft Research, through a LA PhD Award.

128



Efficient Bounded Exhaustive Input Generation from Program APIs

References

1. Abad, P., Aguirre, N., Bengolea, V.S., Ciolek, D.A., Frias, M.F., Galeotti, J.P.,
Maibaum, T., Moscato, M.M., Rosner, N., Vissani, I.: Improving test generation
under rich contracts by tight bounds and incremental SAT solving. In: Sixth IEEE
International Conference on Software Testing, Verification and Validation, ICST
2013, Luxembourg, Luxembourg, March 18-22, 2013. pp. 21–30. IEEE Computer
Society (2013)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2016)

3. Andoni, A., Daniliuc, D., Khurshid, S., Marinov, D.: Evaluating the "small scope
hypothesis". Tech. rep., MIT CSAIL (10 2002)

4. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java
predicates. In: Frankl, P.G. (ed.) Proceedings of the International Symposium on
Software Testing and Analysis, ISSTA 2002, Roma, Italy, July 22-24, 2002. pp.
123–133. ACM (2002)

5. Braione, P., Denaro, G., Mattavelli, A., Pezzè, M.: Combining symbolic execution
and search-based testing for programs with complex heap inputs. In: Bultan, T.,
Sen, K. (eds.) Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017.
pp. 90–101. ACM (2017)

6. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings.
pp. 209–224. USENIX Association (2008)

7. Chen, T.Y., Kuo, F.C., Liu, H., Poon, P.L., Towey, D., Tse, T.H., Zhou, Z.Q.:
Metamorphic testing: A review of challenges and opportunities. ACM Comput.
Surv. 51(1) (jan 2018)

8. Christakis, M., Godefroid, P.: Proving memory safety of the ANI windows image
parser using compositional exhaustive testing. In: D’Souza, D., Lal, A., Larsen,
K.G. (eds.) Verification, Model Checking, and Abstract Interpretation - 16th In-
ternational Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Pro-
ceedings. Lecture Notes in Computer Science, vol. 8931, pp. 373–392. Springer
(2015)

9. Deng, X., Robby, Hatcliff, J.: Kiasan: A verification and test-case generation frame-
work for java based on symbolic execution. In: Leveraging Applications of Formal
Methods, Second International Symposium, ISoLA 2006, Paphos, Cyprus, 15-19
November 2006. p. 137. IEEE Computer Society (2006)

10. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: Gyimóthy, T., Zeller, A. (eds.) SIGSOFT/FSE’11 19th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (FSE-19) and
ESEC’11: 13th European Software Engineering Conference (ESEC-13), Szeged,
Hungary, September 5-9, 2011. pp. 416–419. ACM (2011)

11. Gligoric, M., Gvero, T., Jagannath, V., Khurshid, S., Kuncak, V., Marinov, D.:
Test generation through programming in UDITA. In: Kramer, J., Bishop, J., De-
vanbu, P.T., Uchitel, S. (eds.) Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010. pp. 225–234. ACM (2010)

129



M. Politano et al.

12. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Sarkar, V., Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN 2005 Confer-
ence on Programming Language Design and Implementation, Chicago, IL, USA,
June 12-15, 2005. pp. 213–223. ACM (2005)

13. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox fuzzing for security
testing. Commun. ACM 55(3), 40–44 (2012)

14. Godefroid, P., Sen, K.: Combining model checking and testing. In: Clarke, E.M.,
Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp.
613–649. Springer (2018)

15. Iosif, R.: Symmetry reduction criteria for software model checking. In: Bosnacki,
D., Leue, S. (eds.) Model Checking of Software, 9th International SPIN Workshop,
Grenoble, France, April 11-13, 2002, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 2318, pp. 22–41. Springer (2002)

16. Khurshid, S., Marinov, D.: Checking java implementation of a naming architecture
using testera. Electron. Notes Theor. Comput. Sci. 55(3), 322–342 (2001)

17. Liskov, B., Guttag, J.: Program Development in Java: Abstraction, Specification,
and Object-Oriented Design. Addison-Wesley Longman Publishing Co., Inc., USA,
1st edn. (2000)

18. Luckow, K.S., Pasareanu, C.S.: Symbolic pathfinder v7. ACM SIGSOFT Softw.
Eng. Notes 39(1), 1–5 (2014)

19. Ma, L., Artho, C., Zhang, C., Sato, H., Gmeiner, J., Ramler, R.: GRT: an au-
tomated test generator using orchestrated program analysis. In: Cohen, M.B.,
Grunske, L., Whalen, M. (eds.) 30th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015.
pp. 842–847. IEEE Computer Society (2015)

20. Marinov, D., Khurshid, S.: Testera: A novel framework for automated testing of
java programs. In: 16th IEEE International Conference on Automated Software
Engineering (ASE 2001), 26-29 November 2001, Coronado Island, San Diego, CA,
USA. p. 22. IEEE Computer Society (2001)

21. Molina, F., Ponzio, P., Aguirre, N., Frias, M.: EvoSpex: An evolutionary algorithm
for learning postconditions. In: Proceedings of the 43rd ACM/IEEE International
Conference on Software Engineering ICSE 2021, Virtual (originally Madrid, Spain),
23-29 May 2021 (2021)

22. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley Pub-
lishing, 3rd edn. (2011)

23. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: 29th International Conference on Software Engineering (ICSE
2007), Minneapolis, MN, USA, May 20-26, 2007. pp. 75–84. IEEE Computer So-
ciety (2007)

24. Pham, L.H., Le, Q.L., Phan, Q., Sun, J.: Concolic testing heap-manipulating pro-
grams. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) Formal Methods - The
Next 30 Years - Third World Congress, FM 2019, Porto, Portugal, October 7-11,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11800, pp. 442–461.
Springer (2019)

25. Politano, M., Bengolea, V., Molina, F., Aguirre, N., Frias, M.F., Ponzio, P.: Effi-
cient Bounded Exhaustive Input Generation from Program APIs paper’s artifact.
https://doi.org/10.5281/zenodo.7574758

26. Politano, M., Bengolea, V., Molina, F., Aguirre, N., Frias, M.F., Ponzio, P.: Effi-
cient Bounded Exhaustive Input Generation from Program APIs paper’s website.
https://sites.google.com/view/bounded-exhaustive-api

130



Efficient Bounded Exhaustive Input Generation from Program APIs

27. Ponzio, P., Bengolea, V.S., Politano, M., Aguirre, N., Frias, M.F.: Automatically
identifying sufficient object builders from module apis. In: Hähnle, R., van der
Aalst, W.M.P. (eds.) Fundamental Approaches to Software Engineering - 22nd
International Conference, FASE 2019, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic,
April 6-11, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11424, pp.
427–444. Springer (2019)

28. Robby, Dwyer, M.B., Hatcliff, J., Iosif, R.: Space-reduction strategies for model
checking dynamic software. Electron. Notes Theor. Comput. Sci. 89(3), 499–517
(2003)

29. Rosner, N., Bengolea, V., Ponzio, P., Khalek, S.A., Aguirre, N., Frias, M.F., Khur-
shid, S.: Bounded exhaustive test input generation from hybrid invariants. SIG-
PLAN Not. 49(10), 655–674 (oct 2014)

30. Rosner, N., Geldenhuys, J., Aguirre, N., Visser, W., Frias, M.F.: BLISS: improved
symbolic execution by bounded lazy initialization with SAT support. IEEE Trans.
Software Eng. 41(7), 639–660 (2015)

31. Rosner, N., Pombo, C.G.L., Aguirre, N., Jaoua, A., Mili, A., Frias, M.F.: Parallel
bounded verification of alloy models by transcoping. In: Cohen, E., Rybalchenko,
A. (eds.) Verified Software: Theories, Tools, Experiments - 5th International Con-
ference, VSTTE 2013, Menlo Park, CA, USA, May 17-19, 2013, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 8164, pp. 88–107. Springer (2013)

32. Siddiqui, J.H., Khurshid, S.: An empirical study of structural constraint solving
techniques. In: Breitman, K.K., Cavalcanti, A. (eds.) Formal Methods and Soft-
ware Engineering, 11th International Conference on Formal Engineering Methods,
ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings. Lecture
Notes in Computer Science, vol. 5885, pp. 88–106. Springer (2009)

33. Sullivan, K.J., Yang, J., Coppit, D., Khurshid, S., Jackson, D.: Software assurance
by bounded exhaustive testing. In: Avrunin, G.S., Rothermel, G. (eds.) Proceedings
of the ACM/SIGSOFT International Symposium on Software Testing and Analy-
sis, ISSTA 2004, Boston, Massachusetts, USA, July 11-14, 2004. pp. 133–142. ACM
(2004)

34. Visser, W., Mehlitz, P.C.: Model checking programs with java pathfinder. In: Gode-
froid, P. (ed.) Model Checking Software, 12th International SPIN Workshop, San
Francisco, CA, USA, August 22-24, 2005, Proceedings. Lecture Notes in Computer
Science, vol. 3639, p. 27. Springer (2005)

35. Visser, W., Pasareanu, C.S., Pelánek, R.: Test input generation for java contain-
ers using state matching. In: Pollock, L.L., Pezzè, M. (eds.) Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis, IS-
STA 2006, Portland, Maine, USA, July 17-20, 2006. pp. 37–48. ACM (2006)

36. Xie, T., Marinov, D., Notkin, D.: Rostra: A framework for detecting redundant
object-oriented unit tests. In: 19th IEEE International Conference on Automated
Software Engineering (ASE 2004), 20-25 September 2004, Linz, Austria. pp. 196–
205. IEEE Computer Society (2004)

131



M. Politano et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

132


