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Abstract. Software model checkers are able to exhaustively explore dif-
ferent bounded program executions arising from various sources of non-
determinism. These tools provide statements to produce non-determinis-
tic values for certain variables, thus forcing the corresponding model
checker to consider all possible values for these during verification. While
these statements offer an effective way of verifying programs handling ba-
sic data types and simple structured types, they are inappropriate as a
mechanism for nondeterministic generation of pointers, favoring the use
of insertion routines to produce dynamic data structures when verifying,
via model checking, programs handling such data types.
We present a technique to improve model checking of programs han-
dling heap-allocated data types, by taming the explosion of candidate
structures that can be built when non-deterministically initializing heap
object fields. The technique exploits precomputed relational bounds, that
disregard values deemed invalid by the structure’s type invariant, thus
reducing the state space to be explored by the model checker. Precom-
puting the relational bounds is a challenging costly task too, for which
we also present an efficient algorithm, based on incremental SAT solving.
We implement our approach on top of the CBMC bounded model checker,
and show that, for a number of data structures implementations, we can
handle significantly larger input structures and detect faults that CBMC
is unable to detect.

1 Introduction

SAT-based bounded model checking [7] is an automated software analysis tech-
nique, consisting of appropriately encoding a program as a propositional formula
in such a way that its satisfying valuations correspond to program defects, such
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as violations of assertions, uncaught exceptions and memory leaks. Satisfying
valuations of the obtained propositional formulas can be automatically searched
for by resorting to SAT solving, exploiting the constant advances in this analysis
technology. SAT-based bounded model checking achieves full automation in pro-
gram verification at the cost of completeness: it limits the number of times that
loops are allowed to be executed to a user provided loop unwinding bound. This
in turn limits the data that the program can manipulate, which is constrained
to the program parameters, and what the program can allocate in its bounded
executions. Hence, although the approach is capable of exploring a huge num-
ber of execution traces, it cannot prove program correctness due to its bounded
nature. Nevertheless, it is very useful for bug finding, and is able to support
fully-fledged higher-level programming languages [8].

A tool based on bounded model checking over SAT is CBMC [20]. It supports
all of ANSI-C, including programs handling pointers and pointer arithmetic. The
tool is able to exhaustively explore many user-bounded program executions re-
sulting from various sources of non-determinism, including scheduling decisions
and the assignment of values to program variables. To achieve this, CBMC pro-
vides statements to produce non-deterministic values for certain variables, forc-
ing the model checker to consider all possible values for these variables during
verification. These statements enable program verification on all legal inputs, by
assigning these inputs values within their corresponding (legal) domains. While
this mechanism is effective for the verification of programs manipulating basic
data types and simple structured types, it is disabled as a feature for the gener-
ation of pointers. This issue forces the user to provide an ad-hoc environment to
verify programs handling dynamic data structures. In fact, a typical, convenient
mechanism to verify programs handling heap-allocated linked structures using
CBMC and similar tools, is to non-deterministically build such structures using
insertion routines [19, 22, 11].

The aforementioned approach, while effective, has its scalability tied to how
complex the insertion routines are, and how many of these are actually needed.
Indeed, there are many linked structures whose domain of valid structures can-
not be built only via insertion operations (e.g., red-black trees and node caching
linked lists require insertions as well as removals, in order to reach all bounded
valid structures). In this paper, we study an alternative technique for verifying,
using CBMC, programs handling heap-allocated linked structures. The approach
essentially consists of building a pool of objects with nondeterministically ini-
tialized fields, which are then used for nondeterministically building structures.
The rapid explosion in the number of generated linked structures is tamed by ex-
ploiting precomputed bounds for fields, that disregard values deemed invalid by
the structure’s assumed properties, such as datatype invariants and routine pre-
conditions. This leaves us the additional problem of precomputing these bounds,
a computationally costly task on its own. We then present a novel algorithm for
these precomputations, based on incremental SAT solving, making the whole
process fully automated.
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avl_init(t);
int size = nondet_int();
__CPROVER_assume(size>=0 && size<=MAX_SIZE);
for (int i = 0; i < size; i++) {

int value = nondet_int();
__CPROVER_assume(value >= MIN_VAL && value < MAX_VAL);
avl_insert(t, value);

}
int r_value = nondet_int();
__CPROVER_assume(r_value >= MIN_VAL && r_value < MAX_VAL);
avl_remove(t, r_value);
__CPROVER_assert(avl_repok(t));

Fig. 1: Verification of AVL remove, building structures by multiple insertions.

We perform an experimental evaluation on a benchmark of data structure
implementations, showing that the use of field bounds contributes significantly
to improve both memory consumption and verification running times (including
the precomputations), allowing CBMC to consider larger structures as well as to
detect faults that could not be detected without their use.

2 A Motivating Example

Let us start by describing a particular verification scenario, that will serve the
purpose of motivating our approach. Suppose that we have an implementation
of dictionaries, based on AVL trees; furthermore, we would like to verify that
the remove operation on this structure preserves the structure’s invariant, i.e.,
after a removal is performed, the resulting structure is still a valid AVL tree
(acyclic, with every node having at most one parent, sorted, and balanced).
Moreover, let us assume that, besides operation avl remove, we have AVL’s
avl init, avl insert and avl repok, the latter being a routine that checks
whether a given structure satisfies the AVL invariant, as described above. In
order to perform the desired verification, we can proceed by building the program
shown in Figure 1. Notice how this program:

– employs CBMC primitives to nondeterministically decide how many values,
and which values to insert in/remove from the tree (appropriately con-
strained by constants MAX SIZE, MIN VAL and MAX VAL),

– uses an AVL insertion routine to produce the insertions, and
– uses an avl repok routine, which checks the AVL invariant on the linked

structure rooted at t.

When running CBMC on this program, if loops are unwound enough and
no violation of the assertion is obtained, then we have verified that, within the
provided bounds, remove indeed preserves the invariant.

The above traditional approach to verifying linked structures using CBMC
and similar tools [19, 22, 11] has its efficiency tied to how complex the involved
routines are, in particular the insertion routine(s) (the avl remove routine, being
verified, cannot be avoided).
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t = nondet_avl(MAX_SIZE, MIN_VAL, MAX_VAL);
__CPROVER_assume(avl_repok(t));
int r_value = nondet_int();
__CPROVER_assume(r_value >= MIN_VAL

&& r_value < MAX_VAL);
avl_remove(t, r_value);
__CPROVER_assert(avl_repok(t));

avlnode* nondet_avl(int size,
int min_val,
int max_val) {

avlnode *n = malloc(sizeof(avlnode) * size);
avlnode *result = NULL;
if (nondet_bool())

// root is null
return result;

result = n[0]; // root is n0
n[0]->left = NULL;
if (nondet_bool())

n[0]->left = n[1];
n[0]->right = NULL;
if (nondet_bool())

n[0]->right = n[1];
else if (nondet_bool())

n[0]->right = n[2];
...
return result;

}

Fig. 2: Verification of AVL remove, nondeterministically building linked structs

An alternative approach, employed by some symbolic execution-based model
checkers, notably [3, 23], consists of creating a pool of nodes, whose fields are
nondeterministically set, and which are also nondeterministically used to build
data structures. The process is illustrated in Figure 2. The key is in the use of
a routine nondet avl(), which encapsulates the generation of the linked struc-
ture. A fragment of this routine is shown at the right of Figure 2. Notice how
this routine will generate invalid structures, e.g., cyclic ones. The avl repok(t)
assumption after the generation will take care of disregarding these invalid struc-
tures for verification. Notice how our manually written example generation rou-
tine is avoiding to use any node besides n[0] as the root, or any node but n[1] as
n[0]->left, thus avoiding some isomorphic structures and obvious cycles, but
it does not avoid nodes from having more than one parent, nor it seems to take
into account the tree’s balancedness. Of course, we have other alternatives when
writing the nondeterministic generation routine nondet avl. We may produce a
generation routine that, based solely on the fields of the nodes involved in the
structure and their types, produces all possible structures, leaving the work of
filtering out valid ones to the assume(avl repok(t)) part of the program. We
can also write a sophisticated generation routine specifically tailored for AVL
trees, that already takes into account (most) invalid values for each node field,
and thus mostly produces valid structures. The first option has as an advan-
tage that it is generic, and thus can be made part of an automated verification
technique, at the cost of being, intuitively, less efficient; the second (and our
example), on the other hand, has in principle to be manually produced, and is
more error prone, since we may be disregarding some valid values making the
verification bounded incomplete, but is intuitively more efficient.

The technique we present in this paper consists of automatically producing
the second kind of generation routines. We will start with the first kind of gen-
eration, and automatically decide which values for each field of each node can
be safely removed, when we can establish that they do not participate in valid
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structures (i.e., structures satisfying the corresponding structure invariant). This
additional problem of deciding when a value for a node field’s domain can be
safely removed is solved using a novel algorithm, presented in this paper, which
uses incremental SAT solving.

3 Tight Field Bounds

Tight field bounds are based on a relational semantics of structures’ fields in
program states. The relational semantics of structures is based on interpreting
a field f at a given program state as the set of pairs 〈id, v〉 relating the identifier
id (representing a unique reference to some data object o in the heap) with the
value v in the field f of o at that state (i.e., o->f = v in the state). Then,
each program state corresponds to a set of (functional) binary relations, one per
field of the structures involved in the program. For example, the program state
containing the binary tree depicted at the left of Fig. 3 are represented by the
following relations:

left = {〈N0, N1〉 〈N1, N3〉}, right = {〈N0, N2〉 〈N1, N4〉 , 〈N2, N5〉} (1)

For analysis techniques that must consider all possible state configurations
that satisfy some given property, we may reduce this relational semantics by
considering tight field bounds. Intuitively, for a field f and a property α, its
tight field bound on α is the union of f ’s representation across all program
states that satisfy α. Tight field bounds have been used to reduce the number
of variables and clauses in propositional representations of relational heap en-
codings for Java automated analyses [14, 13, 2], and in symbolic execution based
model checking to prune parts of the symbolic execution search tree constraining
nondeterministic options [15, 26] (see section 6 for a more detailed description
of these previous applications). Tight field bounds are computed from assumed
properties, and can be employed to restrict structures in states that are assumed
to satisfy such properties, i.e. precondition states. In our case, we will use the
invariant of the structure, as opposed to stronger preconditions, so that these
can be reused across several routines of the same structure.

Definition 1. Let f be a field of structure T1 with type T2. Let i and j be the
scopes for types T1 and T2, respectively. Let A = {a1, . . . , ai} be the identifiers for
data objects of type T1, and let B = {b1, . . . , bj} be the identifiers for data objects
of type T2. Given an identifier k, ok denotes the corresponding data object. The
tight field bound for field f is the smallest relation Uf ⊆ A×(B+Null) satisfying:
〈x, y〉 ∈ Uf iff there exists a valid heap instance I in which ox->f = oy.

By scope we mean the limit in the number of objects, ranges for numerical
types, and maximum depth in loop unwinding, as in [17, 12]. An important
assumption we make for analysis is that structure invariants do not refer to
the specific heap addresses of data objects, and in particular that these do not
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Fig. 3: Two valid binary trees.

use pointer arithmetic. Therefore, permuting data object identifiers on a valid
instance still yields a valid instance (i.e., permuting the actual locations of data
objects in the heap is irrelevant for invariant satisfaction). This is most times
the case, and is indeed the case in all the examples that we will present in
Section 5. This is an important assumption because it enables us to add an
additional implicit invariant: symmetry breaking. This has an important impact
in the size of tight field bounds, since they get greatly reduced when isomorphic
structures are removed. We use a symmetry breaking procedure that removes
all symmetries. For details, we refer the reader to [14, 13].

4 A Technique for Nondeterministic Generation of
Dynamic Structures

We are now ready to describe the technique for nondeterministic generation of
dynamic structures, used to verify programs handling such data using CBMC.
The technique requires:

– the program p(T x) to be analyzed;
– a description of the structure of type T, which in the dynamic case, typically

consists of a struct or set of structs (that are dynamically allocated);
– a boolean program repok(T x), that (operationally) decides whether a given

instance x is valid, i.e., satisfies the structure’s invariant, or not; and
– a tight field bound Bf for every field f in T and the scope n to use for

bounded model checking of p.

The first three are necessary information; for the last one we present later on in
the paper an algorithm to compute tight bounds, from the other three.

The technique starts by building a routine nondet T(), that produces and re-
turns structures of type T. The routine works as follows. First, for every (pointer)
type Tt involved (including T), we start by allocating n (the scope) data objects:

Tt *tt_nodes = malloc(sizeof(Tt) * n);

Then, for every structure pointer type Ts (for which we already allocated n
data objects) and field f of type Tt in Ts, we build the following nondeterministic
assignment:
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ts_nodes[0]->f = NULL;
if (nondet_bool()) ts_nodes[0]->f = tt_nodes[0];
else if (nondet_bool()) ts_nodes[0]->f = tt_nodes[1];
...
ts_nodes[1]->f = NULL;
if (nondet_bool()) ts_nodes[1]->f = tt_nodes[0];
else if (nondet_bool()) ts_nodes[1]->f = tt_nodes[1];
...

Finally, nondet T() ends by returning either NULL or t nodes[0] (no other
non-null node is necessary, due to symmetry breaking). Using nondet T(), we
build the following verification harness for p:

T x = nondet_T();
__CPROVER_assume(repok(x));
p(x);
__CPROVER_assert(repok(x));

Of course the last assertion can be replaced by any expected property of p.
We now turn our attention to the use of tight field bounds to reduce non-

determinism in nondet T(). For every structure Ts and field f with type Tt
declared in Ts, if 〈NTs

i NTt
j 〉 does not belong to the tight bound Bf , then we

remove from nondet T() the line:

if (nondet_bool()) ts_nodes[i]->f = tt_nodes[j];

To illustrate the benefits of using tight field bounds in this setting, compare
the two (semantically equivalent) nondet avl() methods in Figure 4 for build-
ing AVLs with size at most 4. At the left of Figure 4, we show the code for
the approach that considers all the feasible assignments to nodes’ fields within
the scope (many assignments not displayed due to the lack of space). With
precomputed tight field bounds we can discard a significant number of these
assignments, that are not allowed due to the bounds, as shown at the right of
Figure 4. Notice that, among many others, all self-loops in nodes are discarded
by the bounds.

4.1 Computing Tight Field Bounds

For the rest of this section we assume a fixed structure T, with fields f1, . . . , fm
and representation invariant repok, and a fixed scope k. Tight field bounds for
T can be automatically computed from assumed properties such as invariants
and preconditions. These properties must be expressed in a language amenable
to automated analysis, reducible to SAT-based analysis in our case. We employ
the automated translation of the definition of T and its repok to a propositional
formula implemented in the TACO tool [14, 13]. We also assume a symmetry
breaking predicate is created by this translation, forcing canonical orderings
of heap nodes in structures (see [14, 13] for a careful description of how these
symmetry-breaking predicates are automatically built). We discuss below the
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avlnode* nondet_avl() {
avlnode *n = malloc(sizeof(avlnode)*4);
if (nondet_bool())

return NULL;
avlnode *result = n[0];
// assignments to n[0]’s fields
n[0]->left = NULL;
if (nondet_bool())

n[0]->left = n[0];
else if (nondet_bool())

n[0]->left = n[1];
else if (nondet_bool())

n[0]->left = n[2];
else if (nondet_bool())

n[0]->left = n[3];
n[0]->right = NULL;
if (nondet_bool())

n[0]->right = n[0];
else if (nondet_bool())

n[0]->right = n[1];
else if (nondet_bool())

n[0]->right = n[2];
else if (nondet_bool())

n[0]->right = n[3];
n[0]->height = 0;
if (nondet_bool())

n[0]->height = 1;
else if (nondet_bool())

n[0]->height = 2;
else if (nondet_bool())

n[0]->height = 3;
// assignments to n[1], n[2] and n[3]’s
// fields follow a similar pattern to
// n[0]’s and are ommited
return result;

}

avlnode* nondet_avl() {
avlnode *n = malloc(sizeof(avlnode)*4);
if (nondet_bool()) return NULL;
avlnode *result = n[0];
// assignments to n[0]’s fields
n[0]->left = NULL;
if (nondet_bool())

n[0]->left = n[1];
n[0]->right = NULL;
if (nondet_bool())

n[0]->right = n[1];
else if (nondet_bool())

n[0]->right = n[2];
n[0]->height = 1;
if (nondet_bool())

n[0]->height = 2;
else if (nondet_bool())

n[0]->height = 3;
// assignments to n[1]’s fields
n[1]->left = NULL;
if (nondet_bool())

n[1]->left = n[3];
n[1]->right = NULL;
if (nondet_bool())

n[1]->right = n[3];
n[1]->height = 1;
if (nondet_bool())

n[1]->height = 2;
// assignments to n[2]’s fields
n[2]->left = NULL;
if (nondet_bool())

n[2]->left = n[3];
n[2]->right = NULL;
if (nondet_bool())

n[2]->right = n[3];
n[2]->height = 1;
if (nondet_bool())

n[2]->height = 2;
// assignments to n[3]’s fields
n[3]->left = NULL;
n[3]->right = NULL;
n[3]->height = 1;
return result; }

Fig. 4: Building AVLs with size at most 4. Left: all feasible assignments to node’s
fields. Right: only assignments deemed feasible by tight field bounds

parts of the translation that are important for the understanding of our approach,
and refer the reader to the literature for additional details [14, 13].

Let f be a field of T with type T’. Let A = a1, . . . , ak and B = b1, . . . , bk be
the identifiers for data objects of type T and T’ within scope k, respectively. This
bounded field is then a relation f ⊆ A× (B+ null). The propositional encoding
of f consists of boolean variables fi,j , 0 ≤ i, j < k, such that fi,j = True
in a instance I if and only if the value of f for object ai is equal to object
bj (i.e. ai->f = bj) in I (the original translation has variables representing
ai->f = null, we omit these here to simplify the presentation).

As an example, Figure 5 below shows the propositional variables representing
all the feasible values of binary trees’ left and right fields for scope 6, in tabular
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form. In the tables, object identifiers are named Ni (0 ≤ i < 6), variables li,j
(0 ≤ i, j < 6) denote Ni->left = Nj (similarly, ri,j denote Ni->right = Nj).

left N0 N1 . . . N5

N0 l0,0 l0,1 . . . l0,5
N1 l1,0 l1,1 . . . l1,5
.
.
.

.

.

.
.
.
.

. . .
.
.
.

N5 l5,0 l5,1 . . . l5,5

right N0 N1 . . . N5

N0 r0,0 r0,1 . . . r0,5
N1 r1,0 r1,1 . . . r1,5
.
.
.

.

.

.
.
.
.

. . .
.
.
.

N5 r5,0 r5,1 . . . r5,5

Fig. 5: Propositional encodings of binary trees’ left and right fields for a scope
of 6

In this way, the binary tree at the left of Figure 3, whose relational represen-
tation is given in equation 1, is defined exactly by setting the following variables
to true (and all the remaining variables to false):

left = {l0,1, l1,3}, right = {r0,2, r1,4, r2,5} (2)

As each propositional variable in the encoding of a field represents exactly
the fact that a single pair of objects belongs to the field, in the following we
will speak of these two notions (propositional variables and pairs of objects re-
lated by a field) interchangeably. In fact, as our approach operates with propo-
sitional formulas (needed for exploiting incremental SAT solving), the tight field
bounds will be represented and computed in terms of propositional variables. It
is straightforward to see that if variable fi,j belongs to the tight field bound for
field f , then 〈ai, bj〉 is a feasible pair in the relational semantics (and is infeasible
if fi,j does not belong to the tight field bound).

It is worth noticing that deciding if there exists a structure with a particular
field value, say ai->f = bj , can be accomplished by querying the solver about the
satisfiability of a formula consisting of a propositional encoding of the structure
and the invariant (prop repok), the propositional encoding of the symmetry
breaking predicate (prop sbpred), and the corresponding variable fi,j :

prop repok ∧ prop sbpred ∧ fi,j (3)

In case the satisfiability verdict is true, the valuation returned by the solver
corresponds to a valid (in the sense that it satisfies the invariant) memory heap,
containing pair 〈ai, bj〉 in the relational representation of f . Also, from the valu-
ation we can retrieve for each field f all the (true) variables that represent pairs
of objects related by f in that particular heap.

The formula above can be used to compute tight bounds, determining what
are the infeasible variables fi,j (and hence the corresponding pairs in the fields’
semantics), in states that satisfy the invariant. In [14], the infeasible variables
are determined using a top-down algorithm. In the algorithm therein, the field
semantics is initially set, for a field of type B declared in structure A, to A ×
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(B∪{null}). From this fully populated initial semantics, each pair is checked for
feasibility. Pairs found to be infeasible are removed from the bound. Adopting
this top-down approach for computing tight field bounds leads to feasibility
checks (a large number of these) that are independent from one another, thus
making it amenable to distributed processing. Moreover, a pair can be removed
from the bound as soon as it is deemed infeasible, which can be exploited to
compute tight field bounds “non-exhaustively”, e.g., dedicating a certain time
to the computation of tight field bounds, and taking the obtained tight field
bound for improving SAT analysis, regardless of whether the tight bound is the
tightest (it converged to removing all infeasible pairs) or not. The latter can be
achieved thanks to the fact that, in the top-down approach, intermediate bounds
are also tight bounds [14, 13]. As each SAT query in this top-down approach
is independent from the rest, the algorithm does not exploit the incremental
capabilities of modern SAT solvers.

Let us present our approach to compute tight field bounds. As opposed to
the technique in [14], our algorithm operates in a bottom-up fashion. In our
presentation below, we assume a propEncoding method that takes the repok,
a symmetry breaking predicate sbpred, and the scopes scope, and returns an
encoding object. Its getPropositionalFormula method creates and returns a
CNF propositional formula, encoding the repok and sbpred for the given scope.
Also, the encoding’s getVars(f) method returns all the propositional variables
in the encoding of field f (see Figure 5). The algorithm uses an incremental SAT
solver, represented by a module solver, with the following routines:

– load: receives as argument a propositional formula in CNF and loads it into
the solver.

– addClause: (incrementally) adds a clause to the current formula in the solver
for future solving invocations.

– solve: calls the SAT-solving procedure, deciding whether the formula cur-
rently loaded in the solver is satisfiable (SAT) or not.

– getModel: if the formula is satisfiable, it returns the valuation produced by
the SAT-solver. The truth value of a variable v in the model can be retrieved
by invoking getValue(v).

The pseudocode of our algorithm is shown in Figure 6. Line 3 builds a proposi-
tional encoding using the repok, the symmetry breaking predicate sbpred and
the scopes. The CNF propositional formula produced by the encoding object
is then loaded into the solver in Line 4. Lines 5-7 initialize sets vars f1, . . . ,
vars fm, each containing all the propositional variables in the encoding of the
corresponding fields f1, · · · , fm. As opposed to the top-down algorithm proposed
in [14], which initialized fields’ semantics as binary relations containing all pairs,
the bottom-up algorithm starts with empty sets feasible f1, . . . , feasible fm
(lines 8-10). feasible f1, . . . , feasible fm are used by the algorithm to store
partial bounds for the corresponding fields f1, · · · , fm, and will be iteratively
extended with the true variables in instances returned by the SAT solver.

A crucial step in our algorithm is performed at line 12, where the current
formula loaded in the SAT solver is extended, exploiting incremental SAT solv-
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ing [16], with a progress-ensuring constraint on heap fields. Here, we add a
clause that consists of the disjunction of all the variables in the encoding of
fields that have not been previously added to the feasible f1, . . . , feasible fm
sets. The purpose of is to ensure that instances returned by solver.solve()
in Line 13 contain at least one pair that does not belong to the sets already
held in feasible f1, . . . , feasible fm. Intuitively, by adding the clause in line
12, the call to solver.solve() in line 13 can be interpreted as “find a valid
heap instance of the data structure that can be used to extend at least one of
the current bounds in feasible f1, . . . , feasible fm”. If such an instance ex-
ists, it is returned by the solver.getModel() method, and stored in the model
variable in line 14. The variables that are true in model are then added to the
feasible f1, . . . , feasible fm sets in lines 15-19. The loop terminates when
feasible f1, . . . , feasible fm cannot be augmented any further (lines 20, 21),
in which case, as we prove below, these sets hold tight field bounds and are
returned by the algorithm (line 24).

As an example, assume we are computing tight field bounds for binary trees,
and that the invocation to solver.solve() returned the instance at the left of
Figure 3. Then, the variables in sets left and right shown in equation 2 will
be added to feasible left and feasible right, respectively, in lines 15-19.
Notice that this forces an instance with at least one variable not in the left or
right sets to be returned by solver.solve() in the next iteration.

It is worth noticing the importance of the progress-ensuring constraint in
line 12, being encoded as a clause. This is what enables the possibility of us-
ing incremental SAT solving [16] in our tight bounds computation. Essentially,
incremental SAT solvers allow one to append further constraints after each sat-
isfying valuation is found, as long as these are in CNF. These constraints are
conjoined with the main (CNF) formula, and used in computing the “next”
satisfying instance without having to restart the solving process (which is a
very time consuming process). Also, this allows the solver to exploit the learned
clauses (that summarize the conflicts found by the solver in the search of satis-
fying valuations) to help accelerate subsequent queries [10]. Notice that, if the
new constraints were not in CNF, the whole resulting formula would have to be
translated to CNF and the SAT process restarted from scratch.

Theorem 1 proves our algorithm terminates and computes tight field bounds.

Theorem 1. Algorithm 6 terminates and returns valid tight field bounds.

Proof. Termination easily follows from the following two facts: (i) for given
bounds on data domains of the structure under analysis and limited by scopes ,
the number of pairs that can be added to a field bound is a finite number; and
(ii) each while-loop iteration either adds at least an extra pair to the bounds,
or otherwise returns unsat, in which case the loop terminates.

To prove that the algorithm yields tight field bounds, we proceed as follows.
Notice that at each iteration, and for any field fi, the bound associated to field
fi (feasible fi) is a subset of the corresponding tight bound, i.e., contains
only feasible variables: the initial bound (∅) is obviously a subset of the tight
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1 procedure bottom−up( repok , sbpred , scopes )
2 begin
3 encoding = propEncoding ( repok , sbpred , scopes )
4 s o l v e r . load ( encoding . getPropos i t iona lFormula ( ) )
5 v a r s f 1 = enconding . getVars ( f 1 )
6 . . .
7 v a r s fm = enconding . getVars ( fm )
8 f e a s i b l e f 1 = {}
9 . . .

10 f e a s i b l e fm = {}
11 while True do
12 s o l v e r . addClause (

∨
j∈1,..,m,
v∈(vars fj\feasible fj)

v )

13 i f s o l v e r . s o l v e ( ) = SAT then
14 model = s o l v e r . getModel ( )
15 f e a s i b l e f 1 = f e a s i b l e f 1 ∪
16 {v | v <− v a r s f 1 and model . getValue (v ) = True}
17 . . .
18 f e a s i b l e fm = f e a s i b l e f n ∪
19 {v | v <− v a r s fm and model . getValue (v ) = True}
20 else \\ UNSAT
21 break
22 f i
23 done
24 return f e a s i b l e f 1 , . . . , f e a s i b l e fm
25 end

Fig. 6: Bottom-up algorithm for tight field bounds computation

bound, and bounds are extended only by adding variables extracted from valid
structures (i.e., each loop iteration produces a valid expansion). An inductive
argument allows us to conclude that, on termination, the bound associated to
field fi (feasible fi) is a subset of the tight bound. We will now show that
feasible fi is the tight field bound. Let us suppose that, once the algorithm
terminates, bound feasible fi is not tight, i.e., there exists a variable vw,z

that does not belong to feasible fi. Then, there must exist a canonical (i.e.,
satisfying symmetry breaking) instance I of repok within scopes, in which
ow->fi = oz. Therefore, I satisfies repok, sbpred, and vw,z = True, contradict-
ing the fact that the algorithm had terminated. Therefore, all variables excluded
from feasible fi are infeasible, making this bound tight.

As opposed to the top-down algorithm for tight bounds introduced in [14, 13]
Algorithm 6 only provides useful information once it terminates – intermediate
bounds cannot be used to improve analysis. Moreover, whereas the top-down
approach lends itself well to parallelization (as we mentioned before, it implies
a large number of independent SAT queries, that can be solved in a distributed
manner), it is not obvious how one would reasonably distribute our new bottom-
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up computation. Nevertheless, as we will show in Section 5, the sequential Al-
gorithm 6 and its optimizations (i.e. the usage of incremental SAT-solving) are
substantially faster than the parallel, distributed, top-down approach.

5 Evaluation

Our first experimental evaluation assesses the impact of tight field bounds in
verification of code handling linked structures using CBMC. The evaluation is
based on a benchmark of collection implementations, previously used for tight
field bounds computation in [14, 13], composed of data structures with increas-
ingly complex invariants:

– an implementation of sequences based on singly linked lists (LList);
– a List implementation (from Apache Commons.Collections), based on circu-

lar doubly-linked lists (AList);
– a List implementation (from Apache Commons Collections), based on node

caching linked lists (CList);
– a Set implementation (from java.util) based on red-black trees (TSet);
– an implementation of AVL trees obtained from the case study used in [4]

(AVL); and
– an implementation of binomial heaps used as part of a benchmark in [28]

(BHeap).

Experiments in this section were run on workstations with Intel Core i7
4790 processor, 8Mb Cache, 3.6Ghz (4 Turbo), and 16 Gb of RAM, running
GNU/Linux. The incremental SAT solver used was Minisat 2.2.0. We denote
by OOM that the 16GB of memory were exhausted, and by OOM+ that the
16GB where exhausted while CBMC was preprocessing; in this latter case no
numbers of clauses or variables were produced by CBMC. Timeout was set for
these experiments to 1 hour.

Table 1 reports, for the most relevant routines of each of the data structures in
our benchmark, the verification running times with the underlying decision pro-
cedure running times discriminated in seconds, as well as the number of clauses
and variables (expressed in thousands) in the CNF formulas corresponding to
each of the verification tasks, for several scopes (S). Since we checked whether
the routines preserved the corresponding structure’s invariant, we did not con-
sider for the experiments those routines that did not modify the structure (these
trivially preserve the invariant). We assessed three different approaches:

– Build*: use of verification harnesses based on insertion routines (see Fig. 1),
– Gen&Filter (generate and filter): non-deterministic generation of data struc-

tures without tight field bounds (as illustrated in Fig. 4), using a traditional
symmetry breaking algorithm to discard isomorphic structures [14] (we do
not discuss this here due to space reasons),

– TFB: our introduced approach, which incorporates tight field bounds into the
previous to discard irrelevant non-deterministic assignments of field values
(as illustrated in Fig. 4).
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Some remarks on the results are in order. Table 1 shows that in all analyzed
routines, the TFB approach allowed us to analyze larger scopes for which the
other input generation techniques exhausted the allotted time or memory. TFB
was able to analyze larger scopes than Gen&Filter in 7 out of 12 cases (remark-
ably, by at least 6 in AList, at least 3 in CList and at least 2 in AVL), and in
8 out of 12 cases with respect to Build* (by at least 4 in all 8 cases). Routine
extractMin in structure BHeap is particularly interesting: it contains a bug first
found in [14] that can only be exhibited by an input with at least 13 nodes.
Gray cells mark experiments in which the bug was detected by CBMC. Notice
in particular that Build* does not scale well enough to find this bug.

Our second evaluation is devoted to tight field bounds computation, in com-
parison with the top-down approach presented in [14]. We re-ran the TACO
experiments as reported in [13] on the same hardware we used for our own
experiments for a fair comparison. Original scripts and configurations were pre-
served. All distributed experiments were run on a cluster of 9 PCs (one being the
master) of the same characteristics as described above. Each distributed exper-
iment was run 3 times; the reported timing is the average thereof. All times are
given in wall-clock seconds. A timeout (TO) is set at 18,000 seconds (5 hours),
for tight bounds computation. Our bottom up tight field bounds technique is
non-parallel, and was run on a single workstation. Table 2 summarizes the re-
sults of our experiments regarding tight bounds computation. We compared the
running times of computing tight field bounds using the distributed technique
from [14] and our non-parallel presented algorithm, for scopes 10, 12, 15, 17 and
20, reporting the following:

– TACO(||): The parallel wall-clock time required to compute tight field bounds
with TACO, the tool subsuming the top-down tight bounds approach [14, 13].

– TACO(s): The TACO sequentialized time, i.e., the sum of times over all the
Minisat solvings performed by the TACO distributed algorithm.

– BU: The time the bottom-up algorithm (Alg. 6) requires to compute tight
field bounds.

– speedup(||): The speed-up achieved by BU when compared to the distributed
TACO time reported as TACO(||).

– Speedup(s): The speed-up achieved by BU when compared to the sequen-
tialized TACO time reported as TACO(s).

The speed-ups obtained by Alg. 6 are, in comparison with the distributed
approach in [14], in general very good. In particular, in all experiments but AVL
with scope 20, the running time of our sequential bottom-up approach (BU) is
already below the wall-clock time of (parallel) TACO. For AVL trees with scope
20, the only experiment where BU performed slower than TACO, the achieved
speed up is 0.6X. This means that running BU on a single workstation does not
even take twice as long as running TACO(||) on 32 processors (4 cores in 8 slave
machines used for distributed computation). Second, it is worth noticing that
structures with strong invariants (e.g., BHeap) intuitively lead to “small” tight
field bounds; a bottom-up approach then, as we explained earlier, is particularly
well suited for tight bounds computation for these structures, since the process
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Table 1: Dynamic data structure verification in CBMC: TFB versus Build* and
Gen&Filter. Verification and solving times in seconds, clauses and variables in
thousands

Routine S Build* Gen&Filter TFB
Time(Solv) Clauses Vars Time(Solv) Clauses Vars Time(Solv) Clauses Vars

S
L
is
t

insBack 18 10(5) 705 2,236 11(5) 248 1,157 10(4) 188 916
19 12(6) 797 2,524 13(6) 275 1,288 11(4) 206 1,015
20 14(7) 898 2,836 16(7) 303 1,428 13(5) 226 1,122

remove 18 10(6) 629 2,004 14(9) 247 1,154 11(6) 201 967
19 13(8) 715 2,274 23(16) 275 1,288 13(7) 221 1,075
20 14(9) 809 2,567 20(12) 303 1,431 15(8) 243 1,190

A
L
is
t

addLast 13 2(1) 146 628 9(7) 235 947 3(2) 184 738
14 2(1) 164 704 TO 267 1,082 3(2) 206 827
20 6(4) 292 1,285 – – – 8(6) 357 1,459

remInd 14 5(3) 255 1,099 1168(1166) 352 1,444 8(6) 307 1,270
15 6(5) 287 1,238 TO 400 1,645 10(8) 346 1,431
20 17(14) 471 2,058 – – – 27/24 568 2,387

C
L
is
t

addLast 6 407(402) 2,471 9,937 2(1) 109 430 1(1) 103 402
7 TO 3,754 15,158 2(1) 133 527 2(1) 122 482

17 – – – 1423(1419) 527 2,188 10(7) 411 1,692
18 – – – TO 583 2,425 10(7) 449 1,853
20 – – – – – – 14(10) 530 2,195

remove 6 490(486) 1,750 6,994 4(3) 258 1,002 4(3) 247 958
7 TO 2,755 11,066 8(3) 356 1,395 5(4) 332 1,298

15 – – – 2820(2812) 2,151 8,642 60(52) 1,768 7,103
16 – – – TO 2,537 10,202 102(93) 2,067 8,315
20 – – – – – – 219(201) 3,578 14,454

A
V
L

insert 1 114(105) 13,724 58,613 19(17) 2,232 9,593 7(5) 712 3,006
2 OoM+ – – 69(62) 7,011 30,138 21(15) 1,665 7,125
3 – – – 203(182) 19,230 82,602 57(38) 3,414 14,745
4 – – – OoM+ – – 169(114) 7,005 30,500
5 – – – – – – 411(266) 13,818 60,663
6 – – – – – – OoM 26,981 119,475

delete 2 94(87) 10,874 46,271 11(10) 1,227 5,257 4(3) 421 1,777
3 OoM+ 39(34) 3,844 16,491 11(8) 823 3,487
4 – – – 118(105) 10,522 45,120 40(29) 2,351 10,058
5 – – – OoM 26,768 114,697 108(81) 3,823 16,387
7 – – – – – – 1171/1011 14,365 62,154
8 – – – – – – OoM+ – –

T
S
et

add 1 158(104) 11,849 43,627 20(16) 2,093 8,076 10(7) 980 3,811
2 OoM+ – – 63(62) 5,609 21,908 37(27) 3,043 11,961
4 – – – 362(314) 23,538 93,122 206(160) 12,042 47,960
5 – – – OoM+ – – 386(305) 18,270 73,206
6 – – – – – – OoM+

remove 2 128(85) 9,708 34,998 10(7) 1,029 3,934 9(7) 1,000 3,825
3 OoM 28,268 107,255 23(19) 2,074 8,039 22(17) 2,016 7,818
9 – – – 828/761 22,881 91,143 760/699 22,698 90,434

10 – – – OoM 29,724 118,620 OoM 29,548 117,943

B
H
ea

p

insert 5 188(181) 17,620 75,858 35(32) 2,722 11,679 32(28) 2,627 11,297
6 OoM 27,217 117,396 56(50) 3,852 16,522 47(42) 3,717 15,972

13 – – – 640/603 18,480 78,795 523/487 17,827 76,142
14 – – – OoM 21,645 92,214 OoM 20,967 89,456

extrMin 5 157(152) 14,713 63,329 26(23) 2,015 8,603 24(21) 1,930 8,267
6 OoM 23,511 101,429 44(39) 3,022 12,905 40(35) 2,914 12,474

12 – – – 487(459) 14,254 60,615 441(414) 13,921 59,285
13 – – – 576 17,094 72,634 535 16,711 71,102

of computing bounds by discovering and adding new elements to a partial bound
until nothing new can be discovered, quickly converges to termination in these
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Table 2: Tight field bounds computation times and achieved speed-ups.
LList S10 S12 S15 S17 S20
TACO(||) 7.5 10.7 29.0 42.6 66.1
TACO(s) 122.0 231.8 777.4 1204.7 1932.5
BU 1.3 2.0 3.4 5.3 11.5
speedup(||) 5.7X 5.3X 8.3X 8.0X 5.7X
speedup(s) 91.7X 114.1X 224.6X 227.7X 166.8X
AList S10 S12 S15 S17 S20
TACO(||) 15.9 29.8 73.0 120.3 2174.8
TACO(s) 381.4 807.9 2153.8 3638.0 67936.0
BU 2.0 2.5 4.9 8.6 16.1
speedup(||) 7.6X 11.8X 14.7X 13.9X 134.9X
speedup(s) 184.2X 319.3X 435.9X 423.0X 4217.0X
CList S10 S12 S15 S17 S20
TACO(||) 35.6 64.2 110.7 176.3 4634.6
TACO(s) 981.1 1881.9 3331.1 5386.0 145106.0
BU 2.4 4.5 12.0 54.5 2831.2
speedup(||) 14.6X 14.0X 9.2X 3.2X 1.6X
speedup(s) 402.0X 410.8X 276.8X 98.7X 51.2X
AVL S10 S12 S15 S17 S20
TACO(||) 64.6 141.9 465.9 2437.7 5939.5
TACO(s) 1893.7 4323.3 14645.6 77536.6 187161.0
BU 8.1 23.0 111.4 1078.0 8562.2
speedup(||) 7.8X 6.1X 4.1X 2.2X 0.6X
speedup(s) 231.2X 187.3X 131.4X 71.9X 21.8X
TSet S10 S12 S15 S17 S20
TACO(||) 76.0 145.6 258.2 872.8 2335.4
TACO(s) 2434.9 4411.4 8005.7 27538.8 74134.6
BU 4.8 10.3 39.1 168.6 527.6
speedup(||) 15.6X 14.0X 6.5X 5.1X 4.4X
speedup(s) 458.9X 425.4X 204.4X 163.2X 140.4X
BHeap S10 S12 S15 S17 S20
TACO(||) 115.9 188.3 345.0 1119.7 3224.0
TACO(s) 3505.6 5747.1 10759.1 35409.9 102496.0
BU 4.4 9.1 23.8 80.7 243.9
speedup(||) 26.0X 20.4X 14.4X 13.8X 13.2X
speedup(s) 786.0X 625.3X 452.0X 438.6X 420.1X

cases. Third, some structures with relatively weak invariants also had good run-
ning times (AList, in particular), when compared to other case studies. Although
the invariants in these cases are weaker, which intuitively would lead to more
expensive tight bounds computations, these structures have fewer fields, so the
state space to be covered to compute tight bounds is significantly smaller than
that of more complex structures.

All the experiments in this section can be reproduced following the instruc-
tions available at [1].
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Threats to Validity. Our experimental evaluation is limited to data structures.
From the vast domain of data structures, we have selected a few ones that we
consider representative for several reasons: they are often used as case studies in
the evaluation of other software analysis tools [6, 9, 18, 28], their invariants have
varied complexity (which is a dimension that affects tight bounds’ size, and thus
their computation), some are acyclic and others are not (which shows that the
encoding we make in CBMC is quite general), etc. We consider this is a good
menu, representative of a wider class of data structures.

Our approach to capture both the Build* and Gen&Filter strategies might
have accidentally favored our technique. We tried different alternatives for cap-
turing Build* and Gen&Filter, in particular with different ways of writing the
repOK routines (which affected running times). We took the best alternative
found for each case, to perform the comparison. In the case of Build*, we took
the smallest number of builder routines that guaranteed producing all (bounded)
structures, since this is a factor that impacts running times. All structures with
the exception of CList and TSet required just the add routine, while these two
also needed a remove routine, to guarantee generation of all structures.

Regarding variance across cluster runs, different schedulings indeed yield
slightly different timings. Since the granularity of individual analyses is fine,
differences are typically small. However, they grow with the scope (e.g., usually
smaller than 5% for scope sizes below 10, but up to 15% for the largest sizes).
We used the average of 3 runs to reduce the effect of variance in the experiments.

Finally, we did not prove our implementations correct, so our results may
be affected by errors in our implementations. We checked consistency of the re-
sults across different techniques and tools to confirm that bounds were correctly
computed, and verification was bounded complete in all cases.

6 Related Work

Automated analysis of code handling dynamic data structures has been the fo-
cus of various lines of research, including separation logic based approaches [5],
approaches based on combinations of testing and static analysis [22], various
forms of model checking including explicit state model checking [27], symbolic
execution based model checking [23] and SAT-based verification [14, 13]. The
approach that we refer to as Build*, producing nondeterministic structures by
using insertion routines, has been used in some of these approaches, including
[22, 11]. The “generate & filter” mechanism, on the other hand, is more often
employed in modular (assume-guarantee) verification. In particular, the lazy ini-
tialization approach, whose symmetry breaking we borrowed for “generate & fil-
ter” in this paper is used in [19], among others. However, in SAT-based bounded
model checking, with tools such as [20], “generate & filter” is not reported as
an analysis option for dynamic data structures. The use of tight bounds to im-
prove analysis has been used previously to improve test generation and bounded
verification for JML-annotated Java programs [14, 13]. The setting is however
different from that of CBMC, due to the relational program (and heap state) se-
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mantics, which enabled them to exploit tight bounds directly at the propositional
encoding level. Tight bounds have also been used for improving symbolic exe-
cution based model checking [15, 26]. Again, the context is different, since these
approaches that essentially “walk” the code (either concretely or symbolically),
can exploit tight bounds more deeply [26], also obtaining greater profits.

We have also reported a novel technique to compute tight bounds. This al-
gorithm is inspired in the work of [24] about black-box test input generation
using SAT. Our work is also closely related to [14, 13]. The approach to com-
pute tight field bounds presented in [14, 13] as part of the TACO tool, performs
a very large number of independent SAT queries to compute bounds, and thus
requires a cluster of workstations to do so effectively (we compared with this
approach in the paper). Another alternative approach to compute tight field
bounds is presented in [25], but requires structure specifications to be provided
in a Separation Logic flavor [21] to compute field bounds.

7 Conclusions

We have investigated the use of tight field bounds in the context of SAT-based
bounded model checking, more concretely, in (assume-guarantee) verification of
C code, using CBMC. We showed that, in this context, and in particular in
the verification of programs dealing with linked structures, an approach based
on nondeterministically generating structures, and then “filtering out” ill-formed
ones, can be more efficient than the more traditional approach of repeatedly using
data structure builders, especially when tight bounds are exploited. We have
performed a number of experiments that confirm that this alternative approach
allows CBMC to consider larger input sizes as well as to detect bugs that could
not be detected without using bounds.

Since the approach depends on precomputing tight field bounds, we have also
studied this problem, providing a novel algorithm for tight field bound compu-
tation. Tight field bounds have proved useful for a number of different analyses,
but computing them is costly, and previous field bound computation approaches
that performed reasonably did so at the expense of relying on a cluster of work-
stations to perform the task, or were only applicable to a limited set of class
invariants, expressible in separation logic. Thus, while tight field bounds proved
to have a deep impact in the previously mentioned automated software analysis
techniques, their use has been severely undermined by the necessity of a cluster
of computers for their effective computation, or the availability of specifications
in separation logic. The algorithm presented in this article allows one to compute
tight field bounds on a single workstation more efficiently than the distributed
approach on a cluster of 8 quad-core, and therefore makes tight field bounds
computation both practical and worthwhile, as part of the above mentioned
analyses.
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