
Under consideration for publication in Formal Aspects of Computing

Simulation Relations for
Fault-Tolerance
Ramiro Demasi1, Pablo F. Castro2, Thomas S.E. Maibaum3, and Nazareno Aguirre2

1 Fondazione Bruno Kessler, Trento, Italy

e-mail: demasi@fbk.eu
2 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Córdoba, Argentina

Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

e-mail: {pcastro,naguirre}@dc.exa.unrc.edu.ar
3 Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada,

e-mail: tom@maibaum.org

Abstract.
We present a formal characterization of fault-tolerant behaviors of computing systems via simulation

relations. This formalization makes use of variations of standard simulation relations in order to compare
the executions of a system that exhibits faults with executions where no faults occur; intuitively, the latter
can be understood as a specification of the system and the former as a fault-tolerant implementation. By
employing variations of standard simulation algorithms, our characterization enables us to algorithmically
check fault-tolerance in polynomial time, i.e., to verify that a system behaves in an acceptable way even
subject to the occurrence of faults. Furthermore, the use of simulation relations in this setting allows us to
distinguish between the different levels of fault-tolerance exhibited by systems during their execution. We
prove that each kind of simulation relation preserves a corresponding class of temporal properties expressed
in CTL; more precisely, masking fault-tolerance preserves liveness and safety properties, nonmasking fault-
tolerance preserves liveness properties, while failsafe fault-tolerance guarantees the preservation of safety
properties. We illustrate the suitability of this formal framework through its application to standard examples
of fault-tolerance.

Keywords: Formal Specification, Simulation Relations, Fault-Tolerance, Program Verification

1. Introduction

The increasing demand for highly dependable and constantly available systems has focused attention on pro-
viding strong guarantees for software robustness, understood as the ability of software to continue behaving
in an acceptable way despite erroneous behavior during its execution or the existence of an uncooperative
environment; this is particularly true for critical systems. Some examples of such critical systems include
software for medical devices and software controllers in the avionics and automotive industries. In this con-
text, a problem that requires attention is that of reasoning about faults, that is, those unexpected events that

Correspondence and offprint requests to: Pablo F. Castro, Universidad Nacional de Ŕıo Cuarto, Ruta Nac. No. 36 Km. 601,
Ŕıo Cuarto (5800), Córdoba, Argentina. e-mail: pcastro@dc.exa.unrc.edu.ar

2 R. Demasi et al.

could affect a system and may corrupt or degrade its performance. A related problem is that of expressing
the properties of systems in the presence of such faults and providing rigorous, or mathematical, proofs of
the truth of these properties.

The field of fault-tolerance is concerned with providing techniques that can be used to increase the
robustness characteristics of software, or computer systems in general. This includes specific mechanisms for
achieving fault-tolerance, as well as for appropriately modeling fault-tolerant systems, and expressing and
reasoning about fault-tolerant behaviors. Some examples of traditional techniques employed to deal with the
occurrence of faults are: component replication, N-version programming, exception mechanisms, transactions,
etc. All of these techniques can add confidence to critical systems about their capability for dealing with
faults; standard references to the field of fault-tolerance are [Avi95, LA90, PS05, SS98, TP00].

Several approaches have been proposed to deal with fault-tolerance in formal settings, with the main
aim of mathematically proving that a given system effectively tolerates faults. For example, in [Cri85],
an approach to design and verify programs that tolerate faults, where faults are formalized as operations
performed at random time intervals, is proposed. Another example of a formal approach to fault-tolerance is
that presented in [AG93, AK98a, AK98b], where Unity programs are complemented with fault steps, and the
logic underlying Unity is used to prove properties of programs. More recently, formal approaches involving
model checking, applied to fault-tolerance, have been proposed (e.g., see [BFG02, SECH98, YTK01]). In
these approaches, temporal logics are employed to capture fault-tolerance properties of reactive systems,
and then model checking algorithms are used to automatically verify that these properties hold for a given
system. Since model checking provides fully automated analysis (for finite systems), and counterexamples are
generated when a property does not hold (which is extremely helpful in finding the source of the problem in
the system), model checking-based approaches to fault-tolerance provide significant benefits over other semi-
automated or manual formal approaches. However, the languages employed for the description of systems
and system properties in model checking do not provide a built-in way of distinguishing between normal and
abnormal behaviors. Thus, when capturing fault-tolerant systems, and expressing fault-tolerance properties,
the specifier needs to encode in some suitable way the faults and their consequences. This makes formulas
longer and more difficult to understand, which has an obvious negative impact on the analysis, since the
performance of model checking algorithms depends on the length of the formula being analyzed and the
counterexamples generated may be harder to follow. It also has an impact on comprehension: the complexity
of formulae increases and the understanding of the intention is more difficult to discern.

In this paper, we propose an alternative formal approach for dealing with the analysis of fault-tolerance,
which allows for a fully automated analysis, and appropriately distinguishes faulty behaviors from normal
ones. This approach provides a formalism for modeling fault-tolerant systems that features a built-in notion of
abnormal transition, to capture faults. In this setting, fault-tolerance is characterized by defining simulation
relations, between the desired “fault-free” or “ideal” program, and that which tolerates or deals in some way
or another with faults. Since, as it is well known, a system may tolerate faults exhibiting different degrees of
so called fault-tolerance, different simulation relations are provided for different kinds of fault-tolerance. More
precisely, the kinds of fault-tolerance that we capture in our setting are masking, nonmasking and failsafe
as defined in [Gär99]. Masking fault-tolerance corresponds to the case in which the system may completely
tolerate the faults, not allowing these to have any observable consequences for the users; nonmasking fault-
tolerance corresponds to the case in which, after a fault occurs, the system may undergo some process to
eventually take the system back to a “good” behavior, but the occurrence of faulty behavior is observable
by users; finally, failsafe fault-tolerance corresponds to the case in which the system may react to a fault by
switching to a behavior that is safe, but in which the system is restricted in its capacity, again a situation
observable by a user. Since in this approach fault-tolerance is captured via simulation relations, one is able
to check that a system tolerates faults to some degree (masking, nonmasking, failsafe), without the need
for user intervention, by employing variations of standard simulation algorithms, which are known to be
efficient. In this paper, we follow the main ideas put forward in [Gär99], where the author characterizes each
level of fault tolerance according to the class of properties preserved by the system. More precisely, masking
fault-tolerance is defined as the preservation of liveness and safety properties under the occurrence of faults,
while nonmasking fault-tolerance is said to occur when the program guarantees the liveness properties of the
specification, even when exhibiting faults; and finally, failsafe fault-tolerance is defined as the preservation
of safety properties in faulty scenarios. We show that our definition of masking/nonmasking/failsafe fault-
tolerance by means of simulation relations satisfies the definition of masking/nonmasking/failsafe fault-
tolerance given by Gärtner in the aforementioned paper, by proving that each class of simulation relations
preserves the corresponding set of temporal properties (see Theorems 3.3, 3.5 and 3.9, below).

Simulation Relations for Fault-Tolerance 3

We have presented the basic ideas in [DCMA13a]; in this paper we revisit the relations defined in that
paper and investigate the properties of the simulation relations defined; we demonstrate that these relations
guarantee the preservation of important properties of programs when some basic assumptions, such as fair-
ness, about the way in which faults occur are made. As discussed above, this shows that our characterization
of (masking, nonmasking and failsafe) fault-tolerance fulfills the basic definitions given in [Gär99], this is a
contribution of this paper. Furthermore, we present the algorithms for computing these simulation relations
and we prove that these algorithms are correct and have polynomial runtime in the worst case. Le us remark
that in this paper we present the theoretical foundations of our framework, we leave as future work the
construction of software tools implementing these ideas.

The paper is structured as follows. In Section 2 we introduce the basic concepts needed to understand
the rest of the paper. Section 3 presents the definitions of the simulation relations proposed to capture the
fault-tolerant behavior, then some basic properties of these relations are proven. The algorithms for checking
the existence of these simulation relations are introduced in Section 4, and their complexity is discussed. In
Section 5, we introduce four examples to illustrate the applicability of these concepts in practice. Related
work is discussed in Section 6. Finally, we discuss some further work and conclusions in Section 7.

2. Background

Let us introduce some concepts that will be necessary throughout the paper. For the sake of brevity, we
assume some basic knowledge about model checking; the interested reader may consult [BK08]. We model
fault-tolerant systems by means of colored Kripke structures, as introduced in [CKAA11]. Given a set of
propositional letters AP = {p, q, s, . . . }, a colored Kripke structure is a 5-tuple 〈S, I,R, L,N〉, where S is
a (non-empty) finite set of states, I ⊆ S is a (non-empty) set of initial states, R ⊆ S × S is a transition
relation, L : S → ℘(AP) is a labeling function indicating which propositions are true in each state, and
N ⊆ S is a set of normal, or “green” states. Without loss of generality, we assume that R is left-total, that
is: for every s ∈ S, there is a s′ ∈ S such that s R s′. The complement of N is the set of “red”, abnormal or
faulty, states. Arcs leading to abnormal states (i.e., states not in N) can be thought of as faulty transitions,
or simply faults.

Note that, in this paper, we focus on finite state systems, that is, we consider that our systems can be
described by a finite set of states; as argued in [Cla99], many classes of interesting systems can be captured in
this way, and this restriction provides the main benefit of enabling automatic verification of systems; indeed
this is one of the main assumptions when performing model checking, a successful technique that has been
employed to verify important case studies. Infinite state systems can be dealt with using diverse techniques
(e.g., abstraction); we do not investigate this here, referring the interested reader to [Cla99, BK08].

As is usual in the definition of temporal operators, we employ the notion of trace. Given a colored Kripke
structure M = 〈S, I,R, L,N〉, a trace is a maximal sequence of states, whose consecutive pairs are in R.
That is, a sequence:

s0s1s2s3 . . .

is said to be a trace of M when si ∈ S and siRsi+1 for every i. When a trace of M starts in an initial
state, it is called an execution of M , and the set of executions of a structure M is denoted by T R(M).
Normal executions are those transiting only through green states; the set of normal executions is denoted
by NT (M).

Given a trace σ = s0s1s2s3 . . . , the ith state of σ is denoted by σ[i], the final segment of σ starting
in position i is denoted by σ[i..]; and the subsegment si . . . sj (with 0 ≤ i ≤ j) is denoted by σ[i..j].
Moreover, we distinguish among the different kinds of outgoing transitions from a state. We denote by 99K
the restriction of R to faulty transitions, and → the restriction of R to non-faulty transitions. We define
PostN (s) = {s′ ∈ S | s → s′} as the set of successors of s reachable via non-faulty (or good) transitions;
similarly, PostF (s) = {s′ ∈ S | s 99K s′} represents the set of successors of s reachable via faulty arcs, and
Post(s) = PostN (s) ∪ PostF (s). Analogously, we define PreN (s′) and PreF (s′) as the set of predecessors
of s′ via normal and faulty transitions, respectively; and similarly for Pre(s). We also define the set of
predecessors over a set S as Pre(S) =

⋃
s∈S Pre(s). In the same manner, for the set of predecessors over a

set S via normal transitions as PreN (S) =
⋃

s∈S PreN (s). Moreover, Post∗(s) denotes the states which are
reachable from s. As explained above, we assume that every state has a successor, thus: ∀s ∈ S : Post(s) 6= ∅
[BK08], note that this simplifies the semantics of the logic, since under this assumption all the executions

4 R. Demasi et al.

are infinite sequences, the case of a state without successor can be modeled using a trap state (as explained
in [BK08]). We also assume that, in every colored Kripke structure, for every normal (green) state there
exists at least one successor state that is also normal (green); formally: ∀s ∈ N : PostN (s) 6= ∅, and that at
least one initial state is green (i.e. N ∩ I 6= ∅). This guarantees that every system has at least one normal
execution, i.e., NT (M) 6= ∅, for any M . We denote by ⇒∗ the transitive closure of 99K ∪ →.

In order to state properties of systems, we use Computation Tree Logic [EC80, EH86] (or CTL), a
well-known branching time temporal logic. We briefly introduce this logic below; the interested reader is
referred to [BK08]. The syntax of CTL is defined as follows. Let AP = {p0, p1, . . . } be an enumerable set of
propositions. The sets Φ and Ψ of state formulas and path formulas, respectively, are mutually recursively
defined as follows:

Φ ::= > | pi | ¬Φ | Φ→ Φ | A(Ψ) | E(Ψ)
Ψ ::= XΦ | Φ U Φ | ΦW Φ

Intuitively, these operators have the following interpretation: A (for all paths or computations), E (for
some paths or computations), Xφ (in the next moment in time φ is true), φ U ψ (ψ is true at some moment
in the future, and until ψ becomes true, φ is true) and φ W ψ (either ψ becomes true in the future and φ
holds until ψ holds, or φ is always true).

Moreover, A(φ U ψ) (on all future paths, φ is true until ψ becomes true), EXφ (on some future path
φ is true at the next moment), are examples of combinations of path quantifiers and temporal operators.
Other boolean connectives (here, state operators), such as ∧, ∨, etc., are defined as usual. Also, traditional
temporal operators Gφ (always in the future φ is true) and Fφ (eventually φ is true) can be expressed, as
G(φ) ≡ φ W ⊥ (here ⊥ is the constant false), and F(φ) ≡ > U φ. When useful, we use these temporal
operators that improve the readability of formulas. Furthermore, it can be proved that any CTL formula can
be expressed by using the operators E U , EG and EX; this fact will be useful when performing inductive
proofs on CTL formulas.

Now, we formally state the semantics of the logic. The standard boolean operators have the usual se-
mantics. We first define the relation � for state formulas as follows:

• M, s � A(ψ)⇔ for every σ ∈ T R(M), we have that σ � ψ,

• M, s � E(ψ)⇔ for some σ ∈ T R(M), we have that σ � ψ,

The relation � for executions is defined by:

• M,σ � ψ U ψ′ ⇔ ∃i ≥ 0 : M,σ[i] � ψ′ and ∀j : 0 ≤ j < i : M,σ[j] � ψ.

• M,σ � ψ W ψ′ ⇔ either ∃i ≥ 0 : M,σ[i] � ψ′ and ∀j : 0 ≤ j < i : M,σ[j] � ψ, or ∀i ≥ 0 : M,σ[i] � ψ,

• M,σ � Xψ ⇔M,σ[1] � ψ.

We denote by M � ϕ the fact that M, s � ϕ holds for every initial state s of M , and by � ϕ the fact that
M � ϕ holds for every colored Kripke structure M . CTL-X is the fragment of CTL without the next operator
(X), let us note that most of the temporal formulas in this text belong to this sub logic. A CTL formula is
in Positive Normal Form (or PNF) [BK08] if the negation operator is only applied to proposition letters. A
standard result is that any CTL formula can be written in PNF, this is achieved by applying the dualities of
the temporal operators, the interested reader is referred to [BK08] for the details.

We should note some points about our model of computation. Several works [AG93, AAE04, Dij76, Gär99]
describe programs in a guarded command style. A guarded command is composed of a boolean condition
over the actual state of the system and an assignment, written as Guard → Command. These syntactical
constructions are called actions, and a program consists of a collection of actions. Moreover, some actions
are used to represent faults (as done in [AG93, AAE04, Gär99]). Furthermore, distributed systems can
be devised, where we may have several programs interacting concurrently by means of shared memory or
channels of communications; the interested reader is referred to [Abr10, BK88, CM89, Lam94] for a detailed
introduction to this style of programming. The important point here is that we can map these programs to
colored Kripke structures (as explained, for instance, in [BK08]), mapping variable valuations to states and
actions to transitions; here green transitions represent non-faulty actions and red ones capture faulty actions.
An example of this is shown in Figure 2. This is a simple example called Never 7, introduced in [Bra06] and
also used in [Bon08]. The program has eight states and the system specification requires that state 7 is not
reached in the future, and the invariant predicate of the program is the set {0, 1, 2}. The behavior of this
small system can be expressed by the program shown in Figure 1.

Simulation Relations for Fault-Tolerance 5

Normal Actions:
(state = 0)→ (state := 1)
(state = 1)→ (state := 2)
(state = 2)→ (state := 0)

Faulty Actions:
(state = 3)→ (state := 4)
(state = 6)→ (state := 7)
(state = 1)→ (state := 3)
(state = 1)→ (state := 6)
(state = 4)→ (state := 5)
(state = 5)→ (state := 7)
(state = 7)→ (state := 7)

Fig. 1. A simple program “Never 7”.

0 1 2 3 4 5 6 7

Fig. 2. Never 7 program.

For the sake of simplicity, we assume that we only have boolean variables in our programs; it is straight-
forward to extend this programming language with other programming types. Note that, in the kinds of
programs described below, we may have two actions enabled at the same time; if this happens infinitely
often during the execution of a system, we may have scenarios where some actions are neglected infinitely
often. To avoid such scenarios, we must introduce the notion of fair executions. In order to express this
fairness assumption, we follow the ideas introduced in [ABK04], where Kripke structures are augmented
with fairness conditions. The authors consider a transition fairness defined as follow: “A path π is fair with
respect to the transition fairness condition iff all the transitions that are enabled along π infinitely often are
also taken along π infinitely often”.

Definition 2.1 (Set of Fair Executions). Given a colored Kripke structure M = 〈S, I,R, L,N〉, we de-
fine the set of fair executions of M as follows:

FT (M) = {σ | σ ∈ T R(M) and ∀w, t ∈ S : ∀i : ∃j > i : (t ∈ Post(σ[j]) ∧ σ[j] = w)

⇒ ∀i : ∃j > i : σ[j] = t∧ σ[j− 1] = w}

We say that a transition w → t is enabled in position i in σ, if σ[i] = w. Definition 2.1 says that actions that
are enabled infinitely often are executed infinitely often. In practice, fair programs can be implemented by
using schedulers, and it is a standard assumption in concurrency. It is worth noting that in our definition of
fair executions we also consider faulty actions, that is, the faulty actions that are enabled infinitely often in
an execution, will occur infinitely often. We can also introduce fair normative executions which do not take
into account faults, as follows:

Definition 2.2 (Set of Fair Normative Executions). Given a colored Kripke structureM = 〈S, I,R, L,N〉,
we define the set of fair normative executions of M as follows:

FNT (M) = {σ | σ ∈ T R(M) and ∀w, t ∈ S : ∀i : ∃j > i : (t ∈ PostN (σ[j]) ∧ σ[j] = w)

⇒ ∀i : ∃j > i : σ[j] = t∧ σ[j− 1] = w}

When useful, we denote the set of fair (resp. fair normative) executions starting in state s by FT (M)(s)
(resp. FNT (M)(s)). It is worth remarking that our definition of fair (normative) executions is the same as

6 R. Demasi et al.

that given in [ABK04] when the sets of (normative) states is considered as the fairness condition (a set that
indicate those states that must be taken into account during the execution.)

The following properties will be useful in the next sections and can be proven by resorting to the properties
of fair executions given in [ABK04].

Property 2.1. Given a colored Kripke structure M = 〈S, I,R, L,N〉 we have FT (M)(s) 6= ∅, for any s ∈ S.

Proof. The proof lies in the observation that M can be considered as a fair structure (as defined in [ABK04])
with α = S (the fairness condition). Let s ∈ S be any state, by Lemma 2 given in [ABK04] (page 7) we have
that any finite path s0s1 . . . sk can be extended to a fair path, since s is a finite path of length 1 it can be
extended to a fair path and so FT (M)(s) 6= ∅.

A similar property is true for normative fairness.

Property 2.2. Given a colored Kripke structure M = 〈〈S, I,R, L,N〉 we have FNT (M)(s) 6= ∅, for any
s ∈ N .

Proof. The proof is similar to above. Let M ′ be the structure obtained by removing all the states not
belonging to N from M (and the corresponding arcs), and s ∈ N note that FNT (M) = FNT (M ′), now
we can consider M ′ as a fair structure with α = N and so any finite path can be extended to a fair path
(Lemma 2 in [ABK04]), and since s is a finite path we have FNT (M ′)(s) 6= ∅ and then FNT (M)(s) 6= ∅.

Note that the restriction to fair executions is reasonable when one inspects the way in which faults are
distributed in practice. If a fault has a positive probability of occurring (if it has probability 0, it can be
deleted from the model), then during an infinite execution it will occur infinitely often. However, in the
case that one wants to restrict the number of occurrences of any fault, the program and the specification of
the faults can be modified straightforwardly to do so. The restriction of � to fair (normative) executions is
denoted by �f (�nf).

A brief discussion about safety and liveness properties is necessary to cope with the rest of the paper.
We define CTL safety formulas as those that only contain A (or E) and W temporal operators, ∨ and
∧ operators and propositional variables or their negation. These subset of formulas are described by the
following BNF:

Φsafe ::= A(∗pi W ∗qi) | E(∗pi W ∗qi) | Φsafe ∧ Φsafe | Φsafe ∨ Φsafe

and ∗pi is pi or ¬pi. These formulas define (a subset of) safety properties as introduced for branching time
in [MT01], where branching time properties are captured as sets of trees. Let us note that, in particular,
these formulas define stuttering insensitive safety properties, as defined originally by Lamport in [Lam85].
We show that failsafe simulation (see Section 3) preserves CTL safety properties. An interesting subset
of safety formulas are invariants which are safety formulas of the form AGϕ (being ϕ a formula without
temporal operators). Roughly speaking, invariants capture state properties that hold in every instant during
the execution of the system.

On the other hand, we will also define existential eventuality formulas as those that only contain the EF
temporal operator, ∨ and ∧ boolean operators, and propositional variables or their negation. These subset
of formulas are described by the following BNF:

Φlive ::= EF(∗pi) | Φlive ∧ Φlive | Φlive ∨ Φlive

Note that these formulas define (a subset of) liveness properties (as formally defined in [MT01]). In Section 3,
we show that non masking simulation preserves existential eventuality formulas; and, furthermore, we show
that, if the number of faults observed in the execution of a program is finite, then we can eventually establish
any property of the specification, that is, EFϕ becomes true, where ϕ is a property of the specification; this
agrees with the standard definition of nonmasking in the related literature [AG93, AAE04, Gär99].

3. Simulations and Fault-Tolerance

In this section we present a number of simulation relations that allow us to capture various levels of fault-
tolerance that are common in practice, namely masking, nonmasking, and failsafe. In order to define these

Simulation Relations for Fault-Tolerance 7

relations, we follow the basic definitions regarding simulation and bisimulation relations given, for instance,
in [BK08]. It is worth remarking that the relations presented below, though having similar characteristics
to standard simulation and bisimulation relations, are different to these kinds of relations, for instance,
masking/nonmasking/failsafe relations are not (necessarily) symmetric, a standard property of bisimulation
relations; but they become symmetric when the fault-tolerant version of the system does not exhibit faulty
behavior, in contrast to simulation relations which are not symmetric. We discuss this below.

We assume that the system properties we are interested on can be captured by means of a set of safety
and liveness properties (as defined in Section 2). Basically, in order to check fault-tolerance, we consider two
colored Kripke structures for a system, the first one acting as a specification of the intended behavior and
the second as the fault-tolerant implementation. A system will be fault-tolerant if it is able to preserve, to
some degree, the safety and liveness properties corresponding to its specification, even in the presence of
faults. Our main goal is to capture, via appropriate simulation relations between the system specification
and the fault-tolerant implementation, different kinds of fault-tolerance, with different levels of property
preservation.

In the following definitions, given a colored Kripke structure with a labeling L, we consider the notion
of a sub-labeling: we say that L0 is a sub-labeling of L (denoted by L0 ⊆ L), if L0(s) = L(s) ∩ AP ′, for all
states s and some AP ′ ⊆ AP . We also say that L0 is obtained by restricting AP to AP ′. The concept of
sub-labeling allows us to focus on certain properties of models.

3.1. Masking Fault-Tolerance

Recall that a program is said to be masking tolerant when it continues satisfying its specification even under
the occurrence of faults [Gär99]. A minor observation about this definition is useful. Usually, when verifying
a component, a piece of software or a module, one is interested in the behavior that is observable through its
interface (as understood usually in software engineering [GJM03]); thus, when defining masking tolerance we
restrict ourselves to the interface (that is, the visible part) of the component, captured formally by means
of the notion of sub-labeling. Let us introduce the notion of masking tolerance simulation.

Definition 3.1. (Masking fault-tolerance) Given two colored Kripke structures M = 〈S, I,R, L,N〉 and
M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relationship M ⊆ S × S′ is masking fault-tolerant for sub-labelings
L0 ⊆ L and L′0 ⊆ L′ iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 M s2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 M s2).

(B) for all s1 M s2 the following holds:

(1) L0(s1) = L′0(s2);

(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ Post(s2) with s′1 M s′2;

(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s′1 M s′2;

(4) if s′2 ∈ PostF (s2), then either there exists s′1 ∈ PostN (s1) with s′1 M s′2 or s1 M s′2.

When sub-labelings L0 and L′0 are obtained by restricting L and L′ to a vocabulary AP ′ we just say that
M is defined over AP ′.

We say that state s2 is masking fault-tolerant for s1 when s1 M s2. Intuitively, the intention in the
definition is that, starting in s2, faults can be masked in such a way that the behavior exhibited is the same
as that observed when starting from s1 and executing transitions without faults. Let us explain the above
definition. First, note that conditions A, B.1, B.2 and B.3 imply that we have a bisimulation when M and
M ′ do not exhibit faulty behavior. Condition B.2 says that the normal execution of M can be masked by an
execution of M ′; note that here we include the possibility of masking normative behavior of the specification
with faulty behavior of the implementation; roughly speaking, the main idea here is that the implementation
may use some technique (such as redundancy) to mask faults, in such a way that they are not visible to
the user. On the other hand, condition B.3 says that the implementation does not add normal (non-faulty)
behavior, while condition B.4 states that every outgoing faulty transition from s2 either must be matched
to an outgoing normal transition from s1, or s′2 is masking tolerant for s1; this expresses the idea that faulty
transitions from the second structure mimic a normal behavior of the first structure. Finally, it is worth

8 R. Demasi et al.

remarking that the condition symmetric to (B.4) is not required, since we are only interested in the masking
properties of M ′.

Using the notion of masking simulations we can define a relation ≺Masking between colored Kripke
structures.

Definition 3.2. Given two colored Kripke structures M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉:

M ≺Masking M
′ ⇔ there is a masking simulation M ⊆ S × S′

If M ≺Masking M
′ we say that M ′ is a masking fault-tolerant implementation of M .

Notice that, if there exists a self-loop at state s′2, then we can stay forever satisfying s1 Ms′2. In this case,
fairness is an important assumption which allows us to ensure system progress. Another important remark
is that an execution could be fair, but after a while all its transitions become faulty; in this case we say that
the execution diverges by faults. To deal with these executions, we will require that from every state it has
to be possible to reach another state where non-faulty transitions are enabled, that is, we always have the
possibility in the future of executing a correct action.

Definition 3.3 (Fault divergence). We say that a model M does not diverge by faults when for
every s ∈ S there exists s′ ∈ S such that s ⇒∗ s′ and PostN (s′) 6= ∅. In this case we say that M is a NDF
(non-divergent by faults) structure.

That is, a model diverges by faults when it can reach a state where all the actions that can be executed
in the future are faulty. The assumption that a model does not diverge by faults is natural in fault-tolerance,
where assumptions about the way that faults occur are needed to prove properties about systems. In the
case of masking tolerance, which is one of the most benign forms of fault-tolerance, the hypothesis that
normal actions are not always neglected by the model being analyzed is required, in particular, to ensure the
preservation of liveness properties. Note that this condition can be checked with a depth-first search over the
model. Other authors, for instance [AG93, AK98a, AK98b], require that only a finite number of faults should
occur in any execution of the system in order to provide masking tolerance; note that this requirement is
stronger than the absence of fault divergence.

Example 3.1. Let us consider a memory cell that stores a bit of information and supports reading and
writing operations. A state in this system maintains the current value of the memory cell (m = i, for i = 0, 1),
writing allows one to change this value, and reading returns the stored value. Obviously, in this system the
result of a reading depends on the value stored in the cell. Thus, a property that one might associate with
this model is that the value read from the cell coincides with that of the last writing performed in the
system. A potential fault in this scenario occurs when a cell unexpectedly loses its charge, and its stored
value turns into another one (e.g., it changes from 1 to 0 due to charge loss). A typical technique to deal
with this situation is redundancy : use three memory bits instead of one. Writing operations are performed
simultaneously on the three bits. Reading, on the other hand, returns the value that is repeated at least
twice in the memory bits; this is known as voting, and the value read is written back to the three bits.

We take the following approach to model this system: each state is described by variables m and w, which
record the value stored in the system (taking voting into account) and the last writing operation performed,
respectively. First, note that variable w is only used to enable the verification of properties of the model,
thus this variable will not be present in any implementation of the memory.

The state also maintains the values of the three bits that constitute the system, captured by boolean
variables c0, c1 and c2. For instance, in Figure 3, state s0 contains the information 11/111, representing the
state: w = 1, m = 1, c0 = 1, c1 = 1, and c2 = 1.

Consider the colored Kripke structures M (left) and M ′ (right) depicted in Figure 3. M only contains
normal transitions describing the expected ideal behavior (without taking into account faults). M ′ includes
a model of a fault: a bit may suffer a discharge and then it changes its value from 1 to 0.

We can show that in this simple case there exists a relation of masking fault-tolerance between M and
M ′ with the sub-labelings L0 and L′0 obtained by restricting L and L′ to variables m and w, respectively.
The relation

M = {〈s0, t0〉, 〈s1, t1〉, 〈s0, t2〉}

is masking fault-tolerant for 〈M,M ′〉 and the sub-labelings L0 and L′0, obtained by restricting L and L′ to
variables m and w, respectively. Notice that each pair of M satisfies each condition of Definition 3.1:

Simulation Relations for Fault-Tolerance 9

s
0

11/111

s
1

00/000

t
0

11/111

t
1

00/000

t
2

11/101

Fig. 3. Two masking fault-tolerance colored Kripke structures.

• 〈s0, t0〉 satisfies condition B.1 because L0(s0) = L′0(t0). Conditions B.2 and B.3 are satisfied because the
transition s0 → s0 is masked by t0 → t0 and vice versa with 〈s0, t0〉 ∈M, and transition t0 → t1 masks
s0 → s1 and vice versa with 〈s1, t1〉 ∈M. Finally, condition B.4 is satisfied because the faulty transition
t0 99K t2 masks the normal transition s0 → s0 with 〈s0, t2〉 ∈M.

• 〈s1, t1〉 satisfies condition B.1 because L0(s1) = L′0(t1). Conditions B.2 and B.3 are satisfied because
the normal transition t1 → t0 is masked by s1 → s0 and vice versa with 〈s0, t0〉 ∈ M, and the normal
transition t1 → t1 masks s1 → s1 and vice versa with 〈s1, t1〉 ∈M.

• 〈s0, t2〉 satisfies condition B.1 since L0(s0) = L′0(t2) (taking into account that reading operations return
the value that is repeated at least twice in the memory bits). Conditions B.2 and B.3 are satisfied because
the normal transition t2 → t0 masks s0 → s0 and vice versa with 〈s0, t0〉 ∈M, and the normal transition
t2 → t1 masks s0 → s1 and vice versa with 〈s1, t1〉 ∈M.

Now, we provide some results that allow us to apply the definition of masking fault-tolerance to paths.

Lemma 3.1. Let M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored Kripke structures, M ⊆ S×S′
a masking relation over a vocabulary AP ′, and s ∈ S, s′ ∈ S′ states such that sMs′. If M ′ is a NDF structure,
then for any path σ′ ∈ FT (M ′)(s′), there exists a function f : N→ N and a normative path σ ∈ FNT (M)(s)
such that:

• σ[f(i)] M σ′[i],

• f preserves initial segments in N, that is, f({i | 0 ≤ i ≤ k}) = {i | 0 ≤ i ≤ f(k)}1.

Proof. Note that a path in S is just a function σ : N→ S that respects the transitions in the structure. Let
us introduce some auxiliary notions. Given a state s′ in S′, we define match(s, s′) = {w | w ∈ PostN (s) ∧
w M s′}, that is, the set of normative successors of s that are in relation M with state s′. Note that this set
could be empty or could contain many states. Moreover, given a finite sequence of states t0 . . . tn we denote
by num(t0 . . . tn, si) the number of occurrences of state si in t0 . . . tn.

Given σ′ ∈ FT (M ′), let us define a trace σ∗ : N→ S ∪ {∗} where ∗ is a new state, as follows:

σ∗[i] =

s if i = 0,
w for some w ∈ match(σ∗JiK, σ′[i]) and
∀w′ ∈ match(σ∗JiK, σ′[i]) : num(σ∗[0, i− 1], w) ≤ num(σ∗[0, i− 1], w′),

∗ otherwise,

1Note that, given a function f : A→ B and subset S ⊆ A, we use f(S) to denote the image of S under f , i.e.: f(S) = {y ∈
B | ∃x ∈ S : f(x) = y}.

10 R. Demasi et al.

where σ∗JiK = σ∗[last(i, σ∗)], and last(i, σ∗) = max{j | 0 ≤ j < i : σ∗(j) 6= ∗}, that is, the last position in
σ∗ that is less than i and contains an element different from ∗.

Intuitively, each state in σ∗ different from ∗ simulates a state in S′, while ∗ states denote stuttering steps.
Moreover, note in the definition of σ∗ when choosing some wM σ′[i]; we select the state with the minimum
number of occurrences in σ∗[0..i− 1]. This ensures the fairness of the execution, since no state w satisfying
that condition will be neglected forever.

An interesting property about σ∗ is the following:

∀i ≥ 0 : ∃j > i : σ∗[j] 6= ∗ (1)

That is, σ∗ does no contain the infinite string: ∗ ∗ ∗ ∗ Another interesting property of σ∗ is the following:

∀i : σ∗Ji+ 1K M σ′[i] (2)

A detailed proof of both properties can be found in the appendix.
Now, we define function f as follows:

f(i)
def
= #{k | σ∗[k] 6= ∗ ∧ 0 < k ≤ i}

That is, f(i) counts the number of positions less than or equal to i (starting from 1) in which σ∗ does not
contain a ∗. Note that f is surjective: given any n ∈ N, consider the n-th occurrence of some s 6= ∗ in σ∗ (by
(1) there is such an occurrence), let be k the index of such an occurrence, then f(k) = n.

σ is obtained by removing all the ∗’s from σ∗. To do this we use an auxiliary function g(i), defined as
follows:

∀i ≥ 0 : g(i)
def
= min{k | f(k) = i}

This is well defined since f is surjective. Some interesting properties of these functions are the following:

∀i ≥ 0 : g(i) = last(g(i+ 1), σ∗) (3)

and

∀i ≥ 0 : σ∗[g(f(i))] = σ∗Ji+ 1K (4)

A detailed proof of these properties is shown in the Appendix. Now, we define the normative trace σ as
follows:

∀i ≥ 0 : σ[i] = σ∗[g(i)] (5)

That is, for computing σ[i] we take σ∗ and find the position of the ith symbol in σ∗ different from ∗.
Using these definitions we can prove that σ[f(i)] M σ′[i] as follows:

σ[f(i)] = σ∗[g(f(i))] (def. of σ)

= σ∗Ji+ 1K (property above)

M σ[i] (property above)

It remains to prove that σ ∈ FNT (M). First, let us prove that σ ∈ NT (M); that is, for every i,
σ[i + 1] ∈ PostN (σ[i]). By definition of σ, this is equivalent to: σ∗[g(i + 1)] ∈ PostN (σ∗[g(i)]), but by (3)
this is the same as: σ∗[g(i + 1)] ∈ PostN (last[g(i + 1)], σ∗) and that holds by the definitions of match and
σ∗.

Now, we prove that σ is a fair execution. The proof is by contradiction, suppose that for some w and t
we have that:

∀i : ∃j > i : σ[j] = w ∧ t ∈ PostN (w) ∧ ∃i ≥ 0 : ∀j > i : σ[j] = w ⇒ σ[j + 1] 6= t, (6)

and let be j1 < j2 < j3 . . . the positions that σ[jk] = w. Since f is surjective, we have i1, i2, . . . such
that f(ik) = jk, for every k, and since σ[f(ik)] M σ′[ik] (as proven above), we have that σ[jk] M σ′[ik].
Furthermore, t ∈ PostN (σ[jk]) for every jk. Since condition B.2 we have a set {t′k | k ≥ 0} such that
t′k ∈ PostN (σ′[ik]) and tM t′k. Note that the number of states in S′ is finite, so we must have some state (say
t′) that occurs infinitely often in {t′k | k ≥ 0}. Also, σ′ is a fair execution, then we must have σ′[ik + 1] = t′

for an infinite number of ik’s (by the fair successor property), that is, t ∈ match(σ[jk], σ′[ik]), which, by
(3) and definition of σ, implies that t ∈ match(σ∗[last(jk + 1, σ∗)], σ′[ik]). Now, by the assumption above,

Simulation Relations for Fault-Tolerance 11

we have some i such that ∀j > i : σ[j] = w ⇒ σ[j + 1] 6= t, but note that for a j enough large this leads
to a contradiction. Since in the definition of σ∗ when choosing σ∗[jk + 1] (for jk > j) we choose the state
in match(σ∗[last(jk + 2, σ∗)], σ′[ik]) occurring the minimum number of times in σ∗[0..jk], since t has been
neglected since position i, it must be the state in match(σ∗[last(jk +1, σ∗)], σ′[ik]) that occurs the minimum
number of times in the fragment σ∗[0..jk], and so it will occur at position jk + 1 in σ∗, contradicting (6).

Finally, we prove that f preserves initial segments. That is, for any initial segment {x | 0 ≤ x ≤ i} in N,
f({x | 0 ≤ x ≤ i}) = {y | 0 ≤ y ≤ f(i)}. First, note that f is monotone (a detailed proof is given in the
Appendix) and f(0) = 0. Take k ∈ f({x | 0 ≤ x ≤ i}), then k = f(j) for some j ≤ i, and by monotonicity
we have, f(j) ≤ f(i) and so k ∈ {y | 0 ≤ y ≤ f(i)}. Now, take k′ ∈ {y | 0 ≤ y ≤ f(i)}, that is, k′ ≤ f(i).
By surjectivity of f , we have f(k) = k′ for some k, and k ≤ i (otherwise we have a contradiction), and then
k′ ∈ f({x | 0 ≤ x ≤ i}). Thus both sets are equal.

Note that, if we only consider normative executions starting in s1 and s2 with s1 M s2, by conditions (B.3)
and (B.4) of Definition 3.1 we have that, for each normative path starting in s2, there exists a corresponding
path from s1, where its states are similar by a masking relation. This is proven in the following lemma.

Lemma 3.2. Let M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored Kripke structures, M ⊆ S×S′
a masking relation over a vocabulary AP ′, and s ∈ S, s′ ∈ S′ states such that s M s′. Then there exist a
function f : FNT (M)(s)→ FT (M ′)(s′) such that:

• ∀σ ∈ FNT (M)(s) : ∀i ≥ 0 : σ[i] M f(σ)[i],

Proof. Given σ ∈ FNT (M)(s) s.t. σ = ss1s2 . . . , then note that we have sM s′ and by (B.2), if si M s′i and
si+1 ∈ PostN (si), then there exists s′i+1 ∈ Post(s′i) such that si+1 M s′i+1. Thus, we can define inductively
a sequence f(σ) = s′s′1s

′
2 . . . that satisfies σ[j] M f(σ)[j] for every j. To ensure the fairness of such a

construction, when choosing the successor of a given f(σ)[i] where σ[i] M f(σ)[i], we select the successor
t ∈ Post(f(σ)[i]) such that σ[i+1]M t that appears the minimum number of times in f(σ)[0..i], which exists
by condition (B.2). The result follows.

Now, we can prove that, in the case of masking simulation, the liveness and safety properties of the
normal behavior of the specification are preserved by the implementation. However, note that not all the
temporal properties are preserved; formulas with occurrences of the next operator may not be preserved by
the implementation. Roughly speaking, this is because condition (B.4) allows implementations to advance
in time while staying in the same state on the specification side.

Theorem 3.3. Let M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored Kripke structures, M ⊆
S×S′ a masking relation over a vocabulary AP ′, and states s1 ∈ S, s2 ∈ S′ be states such that sMs′. Then:

M, s �nf ϕ⇔M ′, s′ �f ϕ,

where ϕ is a CTL-X formula where all the propositional variables of ϕ are in AP ′.

Proof. We proceed by induction over the structure of the formula ϕ.

• Base Case: ϕ = pi. From s M s′ it follows by condition (B.1) for masking fault-tolerance that s and s′

have the same propositional valuation. Thus, M, s �nf pi ⇔M ′, s′ �f pi.
• Inductive Case: we prove the property for operators ∧,¬,EU , EG since the other ones can be expressed

by means of them.

Case 1: For ϕ = ψ∧ψ′ and ϕ = ¬ψ the result follows by a direct application of the inductive hypothesis.

Case 2: ϕ = E(ψ1 U ψ2). Let us prove the right implication, suppose that M, s �nf (E(ψ1 U ψ2)), then
for some path σ ∈ FNT (M) with σ[0] = s we have that:

∃i ≥ 0 : M,σ[i] �nf (ψ2) and ∀0 ≤ j < i : M,σ[j] �nf ψ1

Then by Lemma 3.2 we have a path f(σ) ∈ FT (M ′) with f(σ)[0] = s′ s.t. ∀i ≥ 0 : σ[i] M f(σ)[i]; this
implies by induction that:

∃i ≥ 0 : M ′, f(σ)[i] �f ψ2 and ∀0 ≤ j < i : M,f(σ)[j] �f ψ1

Then, M ′, s′ �f E(ψ1 U ψ2).
For the other direction, we proceed as follows. Assume M ′, s′ �f E(ψ1 U ψ2), this means that

12 R. Demasi et al.

there is some σ′ ∈ FT (s′) such that ∃i ≥ 0 : M ′, s′ �f ψ2 and ∀j : 0 ≤ j < i : M ′, σ′ �f ψ1. Now,
by Lemma 3.1, we have a σ ∈ FNT (s) and a function f such that σ[f(i)] M σ′[i], by induction this
implies that M,σ[f(i)] � ψ2 and also M,σ[f(j)] � ψ1 for 0 ≤ j < i, but since f preserves initial
segments of N we have that {f(0), f(1), . . . , f(i)} = {j | 0 ≤ j < f(i)} and then M,σ[j] �nf ψ1 for
0 ≤ j < f(i) which is implies that: M,σ[0] �nf E(ψ1 U ψ2).

Case 3: ϕ = EGψ. Let us prove the right implication. Suppose M, s �nf EGψ, this means that there is
some σ ∈ FNT (s) ∀i ≥ 0 : M,σ[i] �nf ψ. By Lemma 3.2 we have some σ′ ∈ FT (M ′)(s′) such that
σ[i] M σ′[i], and so by induction the result follows.

For the other direction assume now that M ′, s′ �f EGψ, this means that ∀i ≥ 0 : M ′, σ′[i] �f ψ,
by Lemma 3.1 we have a trace σ ∈ FNT (s) and a function f such that σ[f(i)] M σ[i], by induction
we have that M,σ[f(i)] � ψ, but since f is surjective this implies that M,σ[i] �nf ψ for every i, thus
M, s �nf EGψ.

Summing up, in the case of masking simulation, the basic temporal properties of systems without faults,
such as invariants or liveness formulas, are preserved by masking tolerant implementations.

3.2. Nonmasking Fault-Tolerance

We now focus on nonmasking fault-tolerance. This kind of tolerance is more permissive than masking fault-
tolerance; recall that it allows for the existence of some states that do not mask faults. Intuitively, this
type of fault-tolerance allows the system to violate its specification while it is recovering from a fault and
eventually returning to a normal behavior. The technical definition of nonmasking [Gär99] states that the
liveness properties of the nonfaulty part of the system have to be preserved, whereas the safety properties
observed in the correct behavior of the system may not be fully preserved. Furthermore, sometimes a stronger
definition of nonmasking is adopted in which the safety properties may be violated but they should be
eventually reinstated [AAE04, Gär99], which can be captured in CTL with formulas AFϕ or EFϕ (being ϕ
the safety and liveness properties to be preserved) here we will be interested in the latter kinds of formulas,
which intuitively state that the system has a way of recovering from faults, stronger versions of the notion
of nonmasking given above can be considered (guaranteeing that all the execution recover from faults), but
they are much more complex to capture (and to algorithmically verify) since quantification over paths is
needed for formally defining them.

Our characterization of nonmasking fault-tolerance is as follows.

Definition 3.4. (Nonmasking fault-tolerance) Given two colored Kripke structures M = 〈S, I,R, L,N〉 and
M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relation N ⊆ S × S′ is nonmasking for sub-labelings L0 ⊆ L and
L′0 ⊆ L′, iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 N s2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 N s2).

(B) for all s1 N s2 the following holds:

(1) L0(s1) = L′0(s2);

(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ Post(s2) with s′1 N s′2;

(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s′1 N s′2;

(4) if s′2 ∈ PostF (s2), then there exists a s′1 ∈ PostN (s1) and a s′′2 ∈ Post∗(s′2) such that s′1 N s′′2 .

As before, when sub-labelings L0 and L′0 are obtained by restricting L0 and L′0 to a vocabulary AP ′ we just
say that N is defined over AP ′.

Let us briefly explain this definition. Conditions A, B.1, B.2 and B.3 are the same as the conditions of
Definition 3.1. Condition B.4 asserts that, if s1 N s2 and every “faulty” successor state (say s′2) of s2 is not
in a nonmasking relation with any normal successor of s1, then any faulty path fragment starting at s′2 can
be extended to reach a s′′2 such that s′1 N s′′2 for some normal successor s′1 of s1; that is, the system can
recover from faults.

We define the relation ≺Nonmask between colored Kripke structures.

Simulation Relations for Fault-Tolerance 13

s
0

11/111

s
1

00/000

t
0

11/111

t
1

00/000

t
2

11/101

t
3

10/100

Fig. 4. Two nonmasking fault-tolerance colored Kripke structures.

Definition 3.5. Given two colored Kripke structures M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉:

M ≺Nonmask M
′ ⇔ there is a nonmasking simulation N ⊆ S × S′

If M ≺Nonmask M
′ we say that M ′ is a nonmasking fault-tolerant implementation of M .

At first sight, nonmasking fault-tolerance seems similar to the notion of weak bisimulation used in process
algebra [Mil89], where silent steps are taken into account. Notice, however, that, as opposed to weak bisimu-
lation where silent steps produce only non-observable (i.e., internal) changes, faults may produce observable
changes in a nonmasking fault-tolerance relation. Let us present an example of nonmasking tolerance.

Example 3.2. For the memory cell introduced in Example 3.1, consider now the colored Kripke structures
M (left) and M ′ (right) depicted in Figure 4. Now we consider that two faults may occur: up to two bits
may lose their charge before any normal transition is taken. The relation N = {〈s0, t0〉, 〈s1, t1〉, 〈s0, t2〉}
is nonmasking tolerant for 〈M,M ′〉 and the sub-labelings L0 and L′0, obtained by restricting L and L′ to
variables m and w, respectively.

As discussed above, in nonmasking fault-tolerance, one is interested in preserving the liveness properties
of the non-faulty part of the system; for instance, the requests need to be granted, or the program should
exhibit some advance towards a given goal, even during a faulty scenario. Note that, in this case, safety
conditions do not need to be preserved. We prove that liveness properties defined by means of eventuality
CTL formulas are preserved by nonmasking simulation. First, we prove a lemma about normative and faulty
executions of two systems related by a nonmasking relation.

Lemma 3.4. GivenM = 〈S, I,R, L,N〉 andM ′ = 〈S′, I ′, R′, L′,N ′〉, N ⊆ S×S′ a nonmasking relation over
a vocabulary AP ′, and states s ∈ S, s′ ∈ S′ with sN s′. If there is a σ ∈ FNT (M)(s), such that M,σ � F∗p,
for some p in AP ′ (where ∗ is ¬ or blank), then there is a σ′ ∈ FT (M ′)(s′) such that M ′, σ′ � F∗p.

Proof. Given σ ∈ FNT (M)(s), we can define an execution σ′ ∈ FT (M ′) by induction. We define σ′[0] = s′,
and σ′[i+ 1] = w, for some w ∈ Post(σ′[i]) such that σ[i+ 1] Nw, which exists by condition B.2. To ensure
the fairness of σ when choosing w we select that state that occurs the minimum number of times in σ[0..i−1],
that is, no such a w will be neglected forever.

Now, since M,σ � F ∗ p, we have some k ≥ 0 such that M,σ[k] � ∗p, and then by condition B.1 of
Definition 3.4 and taking into account that σ[k] N σ′[k] , we have that M,σ′[k] � ∗p. Thus, M,σ′ � F ∗ p.

Now, we can prove that, in the presence of fairness, existential eventuality formulas are preserved by non-
masking implementations:

Theorem 3.5. Let M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored Kripke structures, N ⊆
S × S′ a nonmasking relation over a vocabulary AP ′, and states s ∈ S, s′ ∈ S′ with sN s′. Then

M, s �nf ϕ⇒M ′, s′ �f ϕ,

where ϕ is an existential eventuality CTL formula and all the propositional variables of ϕ are in AP ′.

Proof. The proof is by induction on ϕ. For the base case, we have :

14 R. Demasi et al.

• If ϕ = EFp, suppose M, s �nf ϕ, that is, there is an execution σ ∈ FNT (M) such that M,σ[i] � p, for
some i, thus by Lemma 3.4, we have a σ′ ∈ FT (M ′) such that M ′, σ′[k] � p for some k.

The inductive cases (that is, ψ1 ∨ ψ2 and ψ1 ∧ ψ2) are direct using the inductive hypothesis.

Note that this theorem guarantees that implementations preserve the existential liveness properties of speci-
fications. Furthermore, notice that the other direction of this property is not necessarily true. This is mainly
because nonmasking implementations may eventually make true some properties, during its faulty behavior,
which do not hold in the non-faulty program.

As argued in [AK98b, Gär99], in practice we are interested in those nonmasking programs that have
recovery executions to eventually reestablish the safety properties of their specifications, that is, faulty
programs may exhibit an incorrect behavior, but at some point they may execute a set of actions to start
behaving as expected. Obviously, to guarantee such a property in a nonmasking simulation, we need to avoid
scenarios where faults occur in such a way that the system cannot reach a normal execution. In the following
theorem, we prove that, when all the executions of the system only exhibit a finite number of faults, then
there is an execution that reestablishes the invariants of the system.

Theorem 3.6. Let M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored Kripke structures, N ⊆
S × S′ a nonmasking relation over a vocabulary AP ′, and states s ∈ S, s′ ∈ S′ with s N s′. If for every
σ′ ∈ FT (M ′)(s′) the number of i’s such that σ′[i+ 1] ∈ PostF (σ′[i]) is less than k (for some fixed k), then

M, s �n (AGϕ)⇒M ′, s′ � EFAGϕ,

where AGϕ is an invariant (as defined in Section 2) and all the propositional variables of ϕ are in AP ′.

Proof. To prove this property some observations are useful. First, note that, since we have finite structures,
requiring that the number of faults in any execution is bounded, it is equivalent to requiring that no faults
occur in any cycle, otherwise we can find a trace (the cycle) where we have an unbounded number of faults.
That is, in this case, for any execution σ′ ∈ T R(M ′), we have an instant i such that T R(M ′)(σ′[i]) ⊆
NT (M ′)(σ′[i]), that is, we have a point from which all the transitions are non-faulty. Note also that, if sNs′

with T R(M)(s) ⊆ NT (M)(s) and T R(M ′)(s′) ⊆ NT (M ′)(s′), then we have that s and s′ are bisimilar
(there are no faulty actions, and B.2 and B.3 for Definition 3.4 guarantee a bisimulation) and thus M, s � ϕ
iff M ′, s′ � ϕ for any CTL formula ϕ.

Now, suppose that M, s �n (AGϕ). Take the shortest finite path starting from s′ that leads to a s′k /∈ N ,
that is, we have a path: s′s′0 . . . s

′
k such that s′k ∈ PostF (s′k−1) (if there is no such a path the proof is direct

since all the paths are non-faulty and there is a bisimulation between s and s′), since s′i ∈ PostN (s′i−1) for
0 ≤ i ≤ k − 1 and by condition B.3 of Definition 3.4, we have a path in M : ss1 . . . sk−1 such that si N s′i
for 0 ≤ i ≤ k − 1, and for sk we have some s′k+t ∈ Post∗(s′k) and a sk ∈ PostN (sk−1) such that sk N s′k+t,
we can repeat (at most k times) this procedure until we get a state s′k′ from which no more faulty states
are reachable and so T R(M ′)(s′k′) ⊆ NT (M ′)(s′k′), and since we have sj N sk′ where sj ∈ Post∗N (s) and so
M, sj �n AGϕ, and by the observations above we have M ′, sk′ � AGϕ, considering that sk′ ∈ Post∗(s) we
get M ′, s′ � EFAGϕ.

Summarizing, this theorem says that, if we assume that the number of faults occurring in executions
is finite and bounded by a fixed number, then invariants can be eventually reestablished by means of a
recovery procedure. Let us note that the restriction to a finite number of faults during a system failure is a
strong assumption about the execution of our system, one may devise scenarios where weaker assumptions
guarantee the restoration of a subset of properties. We leave a deeper investigation about this as further
work.

3.3. Failsafe Fault-Tolerance

We now present a characterization of failsafe fault-tolerance. Essentially, failsafe fault-tolerance must ensure
that the system will stay in a safe state, although it may be limited in its capacity. More technically, this
means that the normative safety properties must be preserved, while normative liveness properties may not
be respected.

Simulation Relations for Fault-Tolerance 15

s
0

11/111

s
1

00/000

t
0

11/111

t
1

00/000

t
2

11/101

Fig. 5. Two failsafe fault-tolerance colored Kripke structures.

Definition 3.6. (Failsafe fault-tolerance) Given two colored Kripke structures M = 〈S, I,R, L,N〉 and
M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relation F ⊆ S × S′ is failsafe for sub-labelings L0 ⊆ L and L′0 ⊆ L′

iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 F s2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 F s2).

(B) for all s1 F s2 the following holds:

(1) L0(s1) = L′0(s2);

(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ Post(s2) with s′1 F s′2;

(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s′1 F s′2;

(4) if s′2 ∈ PostF (s2), then either:

i there exists s′1 ∈ PostN (s1) with s′1 F s′2 or s1 F s′2, or

ii ∀s : (s′2 ⇒∗ s)⇒ L′0(s2) = L′0(s).

As in the definitions above, when convenient, instead of giving the sub-labelings, we just say that F is defined
over AP ′.

As before, we can define a relation of failsafe simulation between colored Kripke structures.

Definition 3.7. Given two colored Kripke structures M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉:

M ≺Failsafe M
′ ⇔ there is a failsafe simulation F ⊆ S × S′

If M ≺Failsafe M
′ we say that M ′ is a failsafe fault-tolerant implementation of M .

Let us briefly explain Definition 3.6. Conditions A, B.1, B.2, B.3, B.4.i are the same as those conditions
of Definition 3.1 regarding masking fault-tolerance. Condition B.4.ii intuitively asserts that, from s′2 the
system in M ′ moves to a set of safe states which are equivalent to s′2 w.r.t. the interface. We now present a
simple example to illustrate this notion.

Example 3.3. Consider the colored Kripke structures M (left) and M ′ (right) depicted in Figure 5. M is
the specification of the expected ideal, fault-free, behavior. M ′, on the other hand, involves the occurrence
of one fault. The relation F = {〈s0, t0〉, 〈s1, t1〉} is a failsafe fault-tolerance relation for 〈M,M ′〉 and the
sub-labelings that are obtained by restricting L and L′ to variables m and w.

In the following we prove that our definition of failsafe fault-tolerance preserves safety properties. First, note
that a failsafe relation imposes a relationship between the traces of the two models involved in the relation;
this is proven in the following lemmas.

Lemma 3.7. Let M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored Kripke structures, F ⊆ S×S′
a failsafe relation over a vocabulary AP ′, and states s ∈ S, s′ ∈ S′ with sF s′. If there is a σ′ ∈ FT (M ′)(s′)
with M ′, σ′ � ∗p U ∗q (where ∗ is ¬ or blank) for some p, q ∈ AP ′, then there exists a σ ∈ FNT (M)(s) such
that M,σ � ∗p U ∗q.

Proof. Given σ′ ∈ FT (M ′)(s′) and s F s′, if M ′, σ′ � ∗p U ∗q then we have either:

16 R. Demasi et al.

(a) M ′, s′ � ∗q or

(b) there is a k > 0 such that M ′, σ′[k] � ∗q and M ′, σ′[j] � ∗p for every j < k.

In the first case, since sF s′ and condition B.1 of Definition 3.4 we obtain M, s � ∗q and so M,σ � ∗p U ∗ q,
for any σ ∈ FNT (M)(s), and by Property 2.1, FNT (M)(s) 6= ∅ and then we have a σ ∈ FNT (M)(s)
satisfying M,σ � ∗p U ∗ q.

On the other hand, if (b) holds, then let us define a finite path s, s1, s2, . . . , sk′ in M such that M, sk′ � ∗q
and M, si � ∗p for 0 ≤ i < k′. First, note that M ′, s′ 2 ∗q and M ′, σ′[k] � ∗q, since s′ ⇒∗ σ′[k] we have
that condition B.4.ii does not hold in any path starting from s′; taking into account that sF s′ we define a
sequence w = w0, w1, w2, . . . , wk of states in S as follows:

wi =

{
s if i = 0,
w if there is w ∈ Post(wi−1) with w F s′i,
wi−1 otherwise.

Note that for the segment obtained: w0, w1, . . . , wk we have wiFsi; also note that in w we may have some
repeated states, then let w′ = w′0, w

′
1, . . . , w

′
k′ (with k′ ≤ k) the finite path obtained by removing from w all

the repeated states that do not have self-loops in M . For this sequence of states w′, we have M,w′k′ � ∗q
(since w′k′ F wk) and M,w′i � ∗p (since w′i F s′j for some i < k′ and j < k), and also w′i+1 ∈ PostN (w′i),
because repeated states were removed. Now, by Property 2.2, we have some σ0 ∈ FNT (M)(wk′), and then
we can form the path: σ = w′:σ0 (w′ concatenated σ0), also note that σ ∈ FNT (M)(s) (it is fair since σ0
is fair). Furthermore, we have M,σ � ∗p U ∗q, this finishes the proof.

Lemma 3.8. Let M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored Kripke structures, F ⊆ S×S′
a failsafe relation over a vocabulary AP ′, and states s ∈ S, s′ ∈ S′ with sF s′. If there is a σ ∈ FNT (M)(s)
with M,σ � ∗pW ∗q (where ∗ is ¬ or blank) for some p, q ∈ AP ′, then there exists a σ′ ∈ FT (M ′)(s′) such
that M ′, σ′ � ∗pW ∗q.

Proof. Given σ ∈ FNT (M)(s) such that M,σ � ∗p W ∗q and let σ = s0s1, . . . , by definition of � we have
either:

(a) ∃j ≥ 0 : M,σ[j] � ∗q and ∀0 ≤ i < j : M,σ[i] � ∗p, or

(b) ∀j ≥ 0 : M,σ[j] � ∗p.

by B.2 of Definition 3.6 we can define inductively an execution σ′ in FT (M ′)(s′), say σ′ = s′0s
′
1 . . . , such

that: si F s′i, by Definition 3.6 this implies that L0(si) = L′0(s′i) for every i. That is if (a) holds, then we
have: ∃j ≥ 0 : M ′, σ′[j] � ∗q and ∀0 ≤ i < j : M ′, σ′[i] � ∗p; and if (b) holds we have: ∀j ≥ 0 : M ′, σ′[j] � ∗p;
thus in any case we get: M ′, σ′ � ∗pW ∗q.

Let us now prove that failsafe implementations preserve safety properties.

Theorem 3.9. Let M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 be colored Kripke structures, F ⊆
S × S′ a failsafe relation over a vocabulary AP ′, and states s1 ∈ S, s2 ∈ S′ with s1 F s2. Then:

M, s1 �nf ϕ⇒M ′, s2 �f ϕ

where ϕ is a CTL safety property and all the propositional variables of ϕ are in AP ′.

Proof. We proceed by induction on ϕ. The base case is as follows:

• If ϕ = A(∗p W ∗q), then suppose M, s �nf A(∗p W ∗q) and not M ′, s′ �f A(∗p W ∗q). Thus, we have
a σ′ ∈ FT (M ′)(s′) such that M ′, σ′ � (∗p ∧ ¬∗q) U (¬∗p ∧ ¬∗q), consider fresh variables s and t such
that s ≡ ∗p ∧ ¬∗q and t ≡ ¬∗p ∧ ¬∗q, that is we have M ′, σ′ � s U t. By Lemma 3.7 we get that for
some σ ∈ FNT (M)(s) we have that M,σ �nf s U t and so M,σ �nf (∗p ∧ ¬∗q) U (¬∗p ∧ ¬∗q), which
contradicts our initial assumption.

• If ϕ = E(∗p W ∗q), then we have some path σ ∈ FNT (M)(s1) such that M,σ � ∗p W ∗q, then by
Lemma 3.8 we have a σ′ ∈ FT (M ′)(s2) such that M ′, σ′ � ∗pW ∗q and so M ′, s2 � E(∗pW ∗q).

The inductive cases are direct by using the inductive hypothesis.

That is, if we have a failsafe relation between s1 and s2 and for every state in normal paths starting in s1,

Simulation Relations for Fault-Tolerance 17

and a safety property ϕ holds in the absence of faults, then ϕ is always true even in the presence of faults
in paths starting in s2.

3.4. Some Properties

The following lemma presents some properties of the fault-tolerance relations defined above.

Lemma 3.10. Let @∈ {≺Masking,≺Nonmask,≺Failsafe}, then the following properties hold.

• @ is transitive,

• If M and M ′ does not have faults, then: M @M ′ ⇒M ′ @M ,

• @ is not necessarily reflexive.

Proof. We prove the properties for any masking relation ≺Masking. The proofs for the other relations are
similar.

• Transitivity Suppose that M1 ≺Masking M2 and M2 ≺Masking M3, for colored Kripke structures M1 =
〈S1, I1, R1, L1,N1〉, M2 = 〈S2, I2, R2, L2,N2〉, and M3 = 〈S3, I3, R3, L3,N3〉, and sub-labellings L′1 ⊆
L1, L

′
2 ⊆ L2, and L′3 ⊆ L3 with L′1 = L′2 = L′3. By definition of ≺Masking this means that we have

relations: M1,2 ⊆ S1 × S2 and M2,3 ⊆ S2 × S3 such that the relation M1,3 = M1,2 ◦M2,3, defined as
usual, is masking fault-tolerant for 〈M1,M3〉. This can be proven by checking the conditions of Definition
3.1:

(A) Consider the initial state s1 of M1. Since M1,2 is masking fault-tolerant, there is an initial state s2
of M2 with 〈s1, s2〉 ∈M1,2. As M2,3 is masking fault-tolerant, there is an initial state s3 of M3 with
〈s2, s3〉 ∈M2,3. Thus, 〈s1, s3〉 ∈M1,3. In the same way, we can check that for any initial state s3 of
M3, there is an initial state s1 of M1 with 〈s1, s3〉 ∈M1,3.

(B.1) By definition of M1,3, there is a state s2 in M2 with 〈s1, s2〉 ∈M1,2 and 〈s2, s3〉 ∈M2,3. Then,
L′1(s1) = L′2(s2) = L′3(s3).

(B.2) Assume 〈s1, s3〉 ∈ M1,3. As 〈s1, s2〉 ∈ M1,2 (for some s2 by definition of ◦), it follows that, if
s′1 ∈ PostN (s1), then 〈s′1, s′2〉 ∈M1,2 for some s′2 ∈ PostN (s2). Since 〈s2, s3〉 ∈M2,3 (by definition of
◦), we have 〈s′2, s′3〉 ∈M2,3 for some s′3 ∈ PostN (s3). Hence, 〈s′1, s′3〉 ∈M1,3

(B.3) Similar to the proof for (B.2).

(B.4) Assume 〈s1, s3〉 ∈ M1,3, that is, for some s2 we have s1 M1,2 s2 and s2 M2,3 s3. Now, if s′3 ∈
PostF (s3), then by condition B.4 we have a s′2 ∈ PostN (s2) such that s′2 M2,3 s

′
3 or s2 M2,3 s

′
3; in

the latter case, by definition of ◦ we have that s1 M1,3 s
′
3 and then condition B.4 holds. In the former

case, since s′2 ∈ PostN (s2) and s1 M1,2 s2 by condition B.3 we have a s′1 ∈ PostN (s1) such that
s′1 M1,2 s

′
2 and then by ◦ we get s′1 M1,3 s

′
3.

Symmetry: In this case the proof is direct since conditions A,B.1, B.2 and B.3 imply that there is a
bisimulation between M and M ′.

Nonreflexivity: We show that ≺Masking is not reflexive via the following counterexample: given the
colored Kripke structure M with state space S = {s0, s1}, and initial state s0, that is, I = {s0}, the
structure is depicted in Figure 6. Let us prove that it does not hold M ≺Masking M . The proof is
by contradiction. Suppose that M ≺Masking M that is we have a relation M ⊆ S × S that satisfies
Definition 3.1. By condition A we must have s0 M s0 (since it is the unique initial state). But note
that the pair 〈s0, s0〉 does not satisfy condition (B.4) of Definition 3.1: for s1 ∈ PostF (s0) there is no
normal successor (say s′) of s0 such that s′ ≺Masking s1, and so M ⊀Masking M .

An important property of simulation and bisimulation relations is that they are preserved by unions; a
similar property holds for masking, nonmasking and failsafe relations, as proven in the following theorem.

Theorem 3.11. Given M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 two colored Kripke structures, and
sub-labellings L0 ⊆ L,L′0 ⊆ L′ with L0 = L′0. The union of two masking/nonmasking/failsafe relations for
sub-labelings L0 and L′0 is a masking/nonmasking/failsafe relation, respectively.

18 R. Demasi et al.

s0

p

s1

r

Fig. 6. Counterexample for reflexivity.

s0

p

s1

p

t0

p

t1

p

t2

p

Fig. 7. Counterexample for FSafe ∩ NMask ⊆ Mask .

Proof. Let us prove that the union of two nonmasking relations is a nonmasking relation. The other ones are
similar. Consider two nonmasking relations R and R′, conditions A and B.1, B.2, and B.3 are direct. Let us
prove B.4, consider a pair of states s1, s2 such that s1 R∪R′ s2, let us assume that for some s′2 ∈ PostF (s2)
we have that s′1 R∪R′ s′2 does not hold for any s′1 ∈ PostN (s1), then, by properties of the union, we get that
s′1 R s′2 and s′1 R

′ s′2 do not hold for any s′1 ∈ PostN (s1); which, since R and R′ are nonmasking, implies by
condition B.4 that either we have s1 R s′2 or s1 R

′ s′2 and then, by definition of union, we have s1 R∪R′s′2,
that is, condition B.4 holds.

As a corollary, we obtain that there exists a coarsest (that is, maximum w.r.t. inclusion [BK08]) mask-
ing/nonmasking/failsafe relation.

Corollary 3.12. Given M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉 two colored Kripke structures and
sub-labellings L0 ⊆ L,L′0 ⊆ L′ with L0 = L′0, there exists a coarsest masking/nonmasking/failsafe relation
for M ×M ′ and sub-labeling L0.

Proof. Suppose that M and M ′ are colored Kripke structures, then the relation M ⊆ S × S′:

M =
⋃
{R | R is a masking relation }

is a masking relation by Theorem 3.11, and by definition it contains any other masking relation. The proof
is similar for nonmasking and failsafe relations.

Finally, we prove that, in the case of NDF structures, the masking relations are also nonmasking and failsafe.

Theorem 3.13. Let Mask, NMask and FSafe be the sets of masking, nonmasking and failsafe relations
between two colored Kripke structures M and M ′ over vocabulary AP ′, where M ′ is a NDF structure; then
we have:

Mask ⊆ FSafe ∩ NMask

Proof. Note that the inclusion Mask ⊆ FSafe is straightforward by definition of masking and failsafe. Now,
let us prove Mask ⊆ NMask. First note that conditions A, B.1, B.2, and B.3 are the same in each one of
the definitions. Suppose that sM s′, and t′ ∈ PostF (s′), if there is a t ∈ PostN (s) such that tM t′, then we
also have that condition B.4 of Definition 3.4 holds, and so the relation is also a nonmasking relationship.
Now, in the other case we have s M t′, but since M ′ is NDF, we can always eventually reach a non-faulty
action from t, and thus we have a fragment t′ ⇒∗ w such that s′ M w by condition B.3. Thus the relation
also satisfies condition B.4 of nonmasking.

It is interesting to note that the other inclusion does not hold, that is, we have relations that are both

Simulation Relations for Fault-Tolerance 19

failsafe and nonmasking but which are not masking fault tolerant. A simple example is given in Figure 7.
Consider the relation R = {〈s0, t0〉, 〈s1, t1〉}, it is a failsafe and also a nonmasking fault-tolerant relation for
the two structures shown in the figure, and the sub-labeling obtained by restricting the original labelings to
the letter p. It is not a masking fault-tolerant relation because condition B.4 of Definition 3.1 does not hold.
However, any relation that is nonmasking and failsafe can be extended to a masking relation. Note in the
figure above if we add to R the pair 〈s0, t2〉, then the resulting relation is masking.

Theorem 3.14. Let Mask, NMask and FSafe be the sets of masking, nonmasking and failsafe relations
between two colored Kripke structures M and M ′ over vocabulary AP ′, where M ′ is a NDF structure; then
we have:

∀R ∈ NMask ∩ FSafe : ∃R+ ∈ Mask : R ⊂ R+

Proof. We define R+. Let M1 = 〈S1, I1, R1, L1,N1〉 and M2 = 〈S2, I2, R2, L2,N2〉 be Kripke structures,
where R ⊆ S1×S2 is defined over a vocabulary AP ′. Let {w1, . . . , wk} ⊆ S2 be the set of states such that for
any wi in this set there are s1 ∈ S2, s2 ∈ S2 with s1 R s2, and wi ∈ PostF (s2) and there is no s′1 ∈ PostN (s1)
with s′1 R wi. Note that, if this set is empty, R is masking. Since R is nonmasking we know that there is a
s′′2 such that s′′2 ∈ Post∗(wi) and s′1 R s′′2 (for some s′1 ∈ PostN (s1)), then we define the set:

{〈s′1, si2〉 | si2 ∈ Post∗(wi)}
We call this set C(wi). Note that all the elements in this set have the same labeling wrt AP ′ which coincides
with that of s′1 by definition of failsafe. We define:

R+ = R ∪
⋃
wi

C(wi)

Let us see that this relation is masking. Suppose that s1 R+ s2. If s1 R s2, then we know that items
A,B.1, B.2, B.3 of Definition 3.1 hold. Let us prove B.4 holds. By definition of R+ we know that for any
s′2 ∈ PostF (s2) there is a s′1 such that s′1 R

+ s′2, that satisfies condition A (by properties of failsafe) and
then it satisfies B.1, B.2, B.3, B.4.

For the case that s1 R
+ s2 but not s1 R s2 we know that they have the same labeling by definition of

R+, and as before the rest of the items of the definition of masking hold by the properties of nonmasking
and failsafe.

Summing up, if we have an implementation that is both failsafe and nonmasking, we know that we can obtain
a relation that “proves” that this implementation is also masking, thus in practice masking is equivalent to
the intersection of nonmasking and failsafe.

4. Checking Fault-Tolerance Properties

Simulation and bisimulation relations are amenable to polynomial computational treatment. In [BK08,
HHK95], algorithms for calculating several simulation and bisimulation relations are described and proved
to be of polynomial complexity with respect to the number of states and transitions of the corresponding
models. We have adapted these algorithms to our setting, thus obtaining polynomial procedures to compute
masking, nonmasking and failsafe fault-tolerance. Such algorithms can be used to verify whether M @ M ′,
with @∈ {≺Mask,≺Nonmask,≺Failsafe}.

The goal of this section is to present the algorithms for computing masking, nonmasking, and failsafe
relations. In general, these algorithms take as input a colored Kripke structure M = 〈S, I,R, L,N〉 and
a sub-labeling L0 ⊆ L and produce as output either the required fault-tolerance relation M, N, or F in
case that it exists or an empty relation, otherwise. Clearly, these algorithms yield at the same time an
automatic approach to check whether the fault-tolerant implementation is masking, nonmasking, or failsafe
fault-tolerant with respect to the system specification. For this case, the input M is the result of combining
two colored Kripke structures M1 = 〈S1, I1, R1, L1,N1〉 and M2 = 〈S2, I2, R2, L2,N2〉 over AP via disjoint
union, i.e., M1 ⊕M2. The former represents the system specification which exhibits the normal behavior
of the system and the latter the fault-tolerant implementation which is the extended version of the system
specification augmented with faults. In other words, we can check whether the extended version of the
nominal model with faults accomplishes the desired level of fault-tolerance.

20 R. Demasi et al.

The general scheme for computing the masking, nonmasking, or failsafe fault-tolerant relation for a
colored Kripke structure M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L is sketched in Algorithm 1. We
develop this main algorithm in the following three steps:

• Step 1: computation of condition B.2 (same algorithm for all levels of fault-tolerance).

• Step 2: computation of condition B.3 and B.4 for the corresponding level of fault-tolerance (masking,
nonmasking, or failsafe).

• Step 3: merge of the results obtained in step 1 and step 2 to return the corresponding fault-tolerant
relation M, N, or F.

Algorithm 1 Computation of a fault-tolerant relation

Input: Colored Kripke structure M = 〈S, I,R, L,N〉, a sub-labeling L0 ⊆ L, and a required level of fault-
tolerance R ∈ {masking, nonmasking, failsafe}

Output: Fault-tolerant relation (M, N, or F)
1: SimB2 := ComputeB2(M,L0)
2: switch R :
3: case masking
4: SimB3B4 := ComputeMaskB3B4(M,L0)
5: case nonmasking
6: SimB3B4 := ComputeNonMaskB3B4(M,L0)
7: case failsafe
8: SimB3B4 := ComputeFailsafeB3B4(M,L0)
9: end switch

10: FTSimRel := MergeSimRel(SimB2, SimB3B4)
11: return FTSimRel

In the first step of Algorithm 1, we compute a relation SimB2 that satisfies condition B.2 of Defini-
tion 3.1, 3.4 and 3.6. This is performed by procedure ComputeB2 on line 1. Notice that this condition
is the same for the three levels of fault-tolerance. In the second step, we compute the corresponding rela-
tion SimB3B4 that satisfies condition B.3 and B.4 for the required level of fault-tolerance (lines 2 − 9).
We have developed one algorithm for each case, namely ComputeMaskB3B4, ComputeNonMaskB3B4,
and ComputeFailsafeB3B4. In the last step, we combine the results obtained from the previous steps
(MergeSimRel on line 10) to return the corresponding fault-tolerant relation.

In the following subsections we explain all the details for each procedure used in the main algorithm.

4.1. Computing Masking Fault-Tolerance

In this subsection we present the algorithms for computing the masking fault-tolerant relation M for a
colored Kripke Structure M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L, where M ⊆ S × S. We start
describing Algorithm 2 (ComputeB2) that computes condition B.2 of Definition 3.1.

First, let us note that Algorithm 2 is also used in the algorithms for computing nonmasking and failsafe
relations, since the definitions of these relations also require condition B.2. This algorithm is an adaptation
from a standard procedure for computing simulation relations introduced in [HHK95]. Let us now describe
the general idea of Algorithm 2. It takes as input a colored Kripke structure M = 〈S, I,R, L,N〉 and a
sub-labeling L0 ⊆ L and computes a SimB2 relation, where the states in SimB2 satisfy condition B.2 of
Definition 3.1, 3.4, and 3.6. In the first loop, for each s1 ∈ N , the set SimB2(s1) contains the states that are
candidates for masking s1. Initially, SimB2(s1) consists of all normal and faulty states with the same labels
as s1 and RemoveR(s1) contains all states which do not have a normal or faulty successor state masking
s1. Moreover, these states cannot mask any of the predecessors of s1: note that Post(s2) ∩ SimB2(s1) 6= ∅
iff s2 ∈ Pre(SimB2(s1)). That is, we first obtain all the predecessors of those states that simulate s1
(Pre(SimB2(s1))), then we perform the difference between S and this set of predecessors. As a result we
obtain a set of states where each state in it does not have a successor that simulates s1 and thus these
states cannot simulate any of the predecessors of s1. The termination condition of the loop of lines 5-18 is
RemoveR(s′1) = ∅ for all s′1 ∈ N , in which case there are no states that need to be removed from the sets of

Simulation Relations for Fault-Tolerance 21

Algorithm 2 Computation of condition B.2 of Definition 3.1, 3.4, and 3.6 (ComputeB2(M,L0))

Input: Colored Kripke structure M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L
Output: Relation SimB2 where the states in it satisfy condition B.2

1: for all s1 ∈ N do
2: SimB2(s1) := {s2 ∈ S | L0(s1) = L0(s2)}
3: RemoveR(s1) := S\Pre(SimB2(s1))
4: end for
5: while ∃ s′1 ∈ N with RemoveR(s′1) 6= ∅ do
6: select s′1 such that RemoveR(s′1) 6= ∅
7: for all s2 ∈ RemoveR(s′1) do
8: for all s1 ∈ PreN (s′1) do
9: if s2 ∈ SimB2(s1) then

10: SimB2(s1) := SimB2(s1)\{s2}
11: for all s ∈ Pre(s2) with Post(s) ∩ SimB2(s1) = ∅ do
12: RemoveR(s1) := RemoveR(s1) ∪ {s}
13: end for
14: end if
15: end for
16: end for
17: RemoveR(s′1) := ∅
18: end while
19: return {〈s1, s2〉 | s2 ∈ SimB2(s1)}

simulators SimB2(s1) for s1 ∈ PreN (s′1). Within the while-loop body, the main idea is to consider all pairs
(s1, s2) ∈ N × S such that s2 ∈ RemoveR(s′1) and s1 ∈ PreN (s′1). This means that s1 → s′1 but there is no
transition s2 → s′2 or s2 99K s′2 with s′2 ∈ SimB2(s′1) because we have that s2 ∈ RemoveR(s′1), which means
that @ s′2 ∈ Post(s2) with s′2 ∈ SimB2(s′1). This yields that s1 is not masked by s2. Therefore, s2 is removed
from SimB2(s1) if s2 ∈ SimB2(s1). Subsequently, we add to the set RemoveR(s1) all predecessors s of s2
such that Post(s)∩SimB2(s1) = ∅. Intuitively speaking, for each s′1 ∈ N with RemoveR(s′1) 6= ∅ we explore
all states s2 that do not have any successor that masks s′1 (line 7). Then, we test whether there exists any
normal predecessor s1 of s′1 (line 8) such that s1 is masked by s2. If so, this is not correct because we know
that there does not exist any successor of s2 that masks s′1; consequently s2 is removed from SimB2(s1).

We now briefly explain Algorithm 3 (ComputeMaskB3B4). This takes as input a colored Kripke structure
M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L and computes a MaskB3B4 relation, where the states in
MaskB3B4 satisfy condition B.3 and B.4 of Definition 3.1. For each s2 ∈ S, the set MaskB3B4(s2) contains
the normal states that are candidates for masking s2. Initially, MaskB3B4(s2) consists of all normal states
with the same labels as s2 and Remove(s2) contains all the normal states which do not have a (normal)
successor state masking s2. Moreover, these states cannot mask any of the predecessors of s2. The termination
condition of the loop of lines 5-28 is Remove(s′2) = ∅ for all s′2 ∈ S, in which case there are no normal states
that need to be removed from the sets of simulators MaskB3B4(s2) for s2 ∈ PreN (s′2) or s2 ∈ PreF (s′2).
Within the while-loop body, we take care of normal transitions (B.3) and faulty transitions (B.4) of Definition
3.1. Firstly, in the for loop of lines 9-16, the main idea is to consider all pairs (s1, s2) ∈ S × N such that
s1 ∈ Remove(s′2) and s2 ∈ PreN (s′2). This means that s2 → s′2 but there is no transition s1 → s′1 with
s′1 ∈ MaskB3B4(s′2) because we have that s1 ∈ Remove(s′2), which means that @ s′1 ∈ PostN (s1) with
s′1 ∈MaskB3B4(s′2). This yields that s2 is not masked by s1. Therefore, s1 is removed from MaskB3B4(s2)
if s1 ∈ MaskB2B3(s2). Subsequently, we add to the set Remove(s2) all normal predecessors s of s1 such
that Post(s) ∩ MaskB3B4(s2) = ∅. Secondly, in the for loop of lines 18-26, we now consider all pairs
(s1, s2) ∈ S × S such that s1 ∈ Remove(s′2) and s2 ∈ PreF (s′2). This means that s2 99K s′2 but there is
no transition s1 → s′1 with s′1 ∈ MaskB3B4(s′2) because we have that s1 ∈ Remove(s′2), which means
that @ s′1 ∈ PostN (s1) : s′1 ∈ MaskB3B4(s′2). This yields that s2 is not masked by s1. Therefore, s1
is removed from MaskB3B4(s2) if s1 ∈ MaskB2B3(s2) and s1 /∈ MaskB3B4(s′2), that is, the last part
of condition B.4. Subsequently, we add to the set Remove(s2) all normal predecessors s of s1 such that
Post(s) ∩MaskB3B4(s2) = ∅, where we also check that s /∈MaskB3B4(s2) ∨ s /∈MaskB3B4(PreF (s2)),
that is, the last part of condition B.4.

22 R. Demasi et al.

Algorithm 3 Computation of condition B.3 and B.4 of Definition 3.1 (ComputeMaskB3B4(M,L0))

Input: Colored Kripke structure M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L
Output: Relation MaskB3B4 where the states in it satisfy condition B.3 and B.4 of Definition 3.1

1: for all s2 ∈ S do
2: MaskB3B4(s2) := {s1 ∈ N | L0(s1) = L0(s2)}
3: Remove(s2) := N\PreN (MaskB3B4(s2))
4: end for
5: while ∃s′2 ∈ S with Remove(s′2) 6= ∅ do
6: select s′2 such that Remove(s′2) 6= ∅
7: for all s1 ∈ Remove(s′2) do
8: {This takes care of non-faulty transitions}
9: for all s2 ∈ PreN (s′2) do

10: if s1 ∈MaskB3B4(s2) then
11: MaskB3B4(s2) := MaskB3B4(s2)\{s1}
12: for all s ∈ PreN (s1) with PostN (s) ∩MaskB3B4(s2) = ∅ do
13: Remove(s2) := Remove(s2) ∪ {s}
14: end for
15: end if
16: end for
17: {This takes care of faulty transitions}
18: for all s2 ∈ PreF (s′2) do
19: if s1 ∈MaskB3B4(s2) ∧ s1 /∈MaskB3B4(s′2) then
20: MaskB3B4(s2) := MaskB3B4(s2) \ {s1}
21: for all s ∈ PreN (s1) with PostN (s) ∩ MaskB3B4(s2) = ∅ ∧ (s /∈ MaskB3B4(s2) ∨ s /∈

MaskB3B4(PreF (s2))) do
22: Remove(s2) := Remove(s2) ∪ {s}
23: end for
24: end if
25: end for
26: end for
27: Remove(s′2) := ∅
28: end while
29: return {〈s1, s2〉 | s1 ∈MaskB3B4(s2)}

Finally, the masking fault-tolerance M relation is obtained by Algorithm 4 (MergeSimRel), which takes
as input two sets obtained from Algorithm 2 and Algorithm 3 and produces a set combining these sets. This
algorithm ensures a correct merging of the relation SimB2 and MaskB3B4, where we use some notations
coming from relation algebra: for a given relation R, R[s] denotes the relational image of s under R, R∼ is
the relational inverse of R, whereas π1 and π2 are the first and second projections, respectively.

The proofs of correctness and termination are obtained by adapting the corresponding proofs given in
[BK08].

Theorem 4.1 (Partial Correctness of Masking). On termination, Algorithms 2, 3 and 4 return a rela-
tion M ⊆ S × S.

Proof. We have to prove that Algorithm 3 ensures conditions B.3 and B.4 of Definition 3.1. First, let us
note that the loop of line 5 has the following loop invariant. For all state s2 ∈ S:

(a) Remove(s2) ⊆ N\PreN (MaskB3B4(s2))

(b) for any relation MaskB3B4: {s1 ∈ N | s1 MaskB3B4 s2} ⊆ MaskB3B4(s2) ⊆ {s1 ∈ N | L0(s1) =
L0(s2)}

(c) ∀s1 ∈MaskB3B4(s2), either:

(1) ∃s′2 ∈ PostN (s2) with PostN (s1) ∩MaskB3B4(s′2) = ∅ and s1 ∈ Remove(s′2),

(2) ∃s′2 ∈ PostF (s2) with PostN (s1)∩MaskB3B4(s′2) = ∅ and s1 /∈MaskB3B4(s′2) and s1 ∈ Remove(s′2),

Simulation Relations for Fault-Tolerance 23

Algorithm 4 Combination of SimRel1 and SimRel2 (MergeSimRel(SimRel1, SimRel2))

Input: Set SimRel1 and SimRel2
Output: Set R

1: R = {〈s1, s2〉 | s1 ∈ SimRel2(s2) ∧ s2 ∈ SimRel1(s1)}
2: RemoveL = {s1 ∈ π1(R) | ∃s′1 ∈ PostN (s1) : SimRel1(s′1) = ∅}
3: RemoveR = {s2 ∈ π2(R) | ∃s′2 ∈ PostN (s2) : SimRel2(s′2) = ∅}
4: while RemoveL ∪RemoveR 6= ∅ do
5: choose s ∈ RemoveL ∪RemoveR
6: if s ∈ RemoveL then
7: RemoveL := RemoveL \ {s}
8: for all s′ ∈ R[s] do
9: R := R \ {〈s, s′〉}

10: if R∼[s′] = ∅ then
11: RemoveR := RemoveR ∪ {s′} ∪ (Pre(s′) ∩ π2(R))
12: end if
13: RemoveL = RemoveL ∪ (PreN (s) ∩ π1(R))
14: end for
15: end if
16: if s ∈ RemoveR then
17: RemoveR := RemoveR \ {s}
18: for all s′ ∈ R∼[s] do
19: R := R \ {〈s, s′〉}
20: if R[s′] = ∅ then
21: RemoveL := RemoveL ∪ {s′} ∪ PreN (s′)
22: end if
23: RemoveR = RemoveR ∪ (Pre(s) ∩ π1(R))
24: end for
25: end if
26: end while
27: return R

(3) ∀s′2 ∈ PostN (s2) : PostN (s1) ∩MaskB3B4(s′2) 6= ∅,

(4) ∀s′2 ∈ PostF (s2) : PostN (s1) ∩MaskB3B4(s′2) 6= ∅ ∨ s1 ∈MaskB3B4(s′2).

From (c), we obtain that, when Remove(s′2) = ∅ for every s′2 ∈ S, then: ∀s2 ∈ S : ∀s1 ∈ MaskB3B4(s2) :
∀s′2 ∈ PostF (s2) : PostN (s1) ∩MaskB3B4(s′2) 6= ∅ ∨ s1 ∈ MaskB3B4(s′2). That is, the relation defined as
s1 MaskB3B4 s2 satisfies condition B.4, and similarly for B.3, of Definition 3.1. The proof for Algorithm 2
is similar.

We now prove that MergeSimRel generates a masking relation M from these two sets. We instantiate the
parameter set SimRel1 and SimRel2 with SimB2 and MaskB3B4, respectively. Note that the invariants
of Algorithm 4 are:

• M ⊆ R ⊆ {〈s1, s2〉 | s1 ∈MaskB3B4(s2) ∧ s2 ∈ SimB2(s1)}, for any masking relation M

• RemoveL = {s1 ∈ π1(R) | ∃s′1 ∈ PostN (s1) : SimB2(s′1) = ∅}
• RemoveR = {s2 ∈ π2(R) | ∃s′2 ∈ Post(s2) : MaskB3B4(s2) = ∅}

Note that RemoveL and RemoveR contain those elements in R that may violate the definition of masking,
this may happen since some successors of a given state are removed from the relation when merging SimB2
and MaskB3B4; however, on termination RemoveL and RemoveR are empty, and in addition we have
M ⊆ R ⊆ {〈s1, s2〉 | s1 ∈MaskB3B4(s2)∧ s2 ∈ SimB2(s1)}, thus R is a masking relation, and furthermore
is the coarsest masking one.

Lemma 4.2 (Termination of Masking). Algorithms 2, 3 and 4 terminate.

Proof. We prove termination of Algorithm 3; the proofs for the others are similar. The key point is to
note that any state s1 can only be inserted into Remove(s′) once. That is, once we process it, it will

24 R. Demasi et al.

never be inspected again in line 7 of this algorithm. Note that, if s1 ∈ Remove(s′2) and let s′2 be the
state that is selected in line 6, then s1 6∈ PreN (MaskB3B4(s′2)). Moreover, since the MaskB3B4 sets
are decreasing (line 11 and 20 of Algorithm 3), s1 6∈ PreN (MaskB3B4(s′2)) in all further iterations. The
only reason to insert s1 in Remove(s′2) is when s1 ∈ PreN (s′′1) for some state s′′1 ∈ MaskB3B4(s′2) with
{s′′1} = Post(s1) ∩MaskB3B4(s′2). But then s1 ∈ PreN (MaskB3B4(s′2)), which is a contradiction, and
therefore s1 will never be added again to Remove(s′2).

Theorem 4.3 (Complexity of Masking). The masking fault-tolerance relation M of a colored Kripke
structure M = 〈S, I,R, L,N〉 for sub-labeling L0 ⊆ L obtained by restricting AP to AP ′, can be computed
with algorithms 2 and 3 in a running time of O(|S|2 ∗ |AP ′|+ |E| ∗ |S|) where |E| is the number of edges of
the structure and |S| the number of states.

Proof. Let us prove the result for Algorithm 3; the proofs for the others are similar. Let |E| be the number of
edges of M . Similar to [HHK95], we use an array to keep track of the numbers count(s1, s

′
2) = |PostN (s1)∩

MaskB3B4(s′2)|. The initialization of MaskB3B4(s) for any s can be done in time O(|S| ∗ |AP ′|); thus,
initializing MaskB3B4 takes O(|S|2 ∗ |AP ′|) time. On the other hand, Remove(s) can be computed in time
O(|S|) for any s. Then calculating line 3 of the algorithm takes at most O(|S|2) (or O(|E|)) steps. Following
the argument of Lemma 4.2, note that the loop of line 5 is executed at most once for each s1 and s → s1;
furthermore, using the array counters, lines 9− 16 can be computed in time O(|S|) in the worst case; thus,
the entire loop takes time O(|E| ∗ |S|). The same argument holds for lines 18− 25. Thus the algorithm has
a running time of O(|S|2 ∗ |AP ′|+ |E| ∗ |S|), which in the worst case is O(|S|2 ∗ |AP ′|+ |S|3).

4.2. Computing Nonmasking Fault-Tolerance

Let us now explain Algorithm 5 for computing a relation that satisfies the condition B.3 and B.4 of Definition
3.4 for a colored Kripke Structure M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L. For each s2 ∈ S, the set
NonMaskB3B4(s2) will contain the normal states that are nonmasking for s2. Initially, NonMaskB3B4(s2)
consists of all normal states with the same labels as s2, while Remove(s2) contains all the normal states which
do not have successor states simulating some successor state from s2. We also consider a set Remove+(s2),
which intuitively contains those states that do not have successor states simulating some state reachable
from s2. Both sets are updated while inspecting the structure. This is the main difference with Algorithm
3. Note that in the algorithm we use the set of all states reachable from a state s starting with a faulty
action; this is defined formally as: Post+(s) = {s′′ | ∃s′ ∈ PostF (s) : s′ ⇒ s′′}. Similarly, we define the
transitive-reflexive closure as: Post∗(s) = {s′′ | s ⇒ s′′}. Inside the loop of lines 6-33, we compute the sets
Remove and Remove+ and the collection NonMaskB3B4(s) is updated following conditions B.3 and B.4.

The termination condition of the loop of lines 6-33 is Remove(s′2) ∪ Remove+(s′2) = ∅ for all s′2 ∈ S, in
that case there are no normal states that need to be removed from the sets of simulators NonMaskB3B4(s2)
for s2 ∈ PreN (s′2) or s2 ∈ PreF (s′2). Within the while-loop body, we take care of normal transitions (B.3)
and faulty transitions (B.4) of Definition 3.4. Firstly, in the for loop of lines 9-19, the main idea is to consider
all pairs (s1, s2) ∈ S × N such that s1 ∈ Remove(s′2) and s2 ∈ PreN (s′2). This means that s2 → s′2 but
there is no transition s1 → s′1 with s′1 ∈ NonMaskB3B4(s′2) because we have that s1 ∈ Remove(s′2),
which means that @ s′1 ∈ PostN (s1) with s′1 ∈ NonMaskB3B4(s′2). This yields that s2 is not nonmasking
by s1. Therefore, s1 is removed from NonMaskB3B4(s2) if s1 ∈ NonMaskB2B3(s2). Subsequently, we
add to the set Remove(s2) all normal predecessors s of s1 such that PostN (s) ∩ NonMaskB3B4(s2) = ∅.
Secondly, in the for loop of lines 20 − 31, we now consider all pairs (s1, s2) ∈ S × S such that s1 ∈
Remove+(s′2) and s2 ∈ PreF (s′2). This means that s2 99K s′2 but there is no transition s1 → s′1 with
s′1 ∈ NonMaskB3B4(s′′2) for some s′′2 ∈ Post∗(s′2). This yields that s2 is not nomasking by s1. Therefore, s1 is
removed from NonMaskB3B4(s2) if s1 ∈ NonMaskB2B3(s2). Subsequently, we add to the set Remove(s2)
and Remove+(s2) all normal predecessors s of s1 such that PostN (s) ∩ NonMaskB3B4(Post∗(s2)) = ∅,
where we also check that s /∈ NonMaskB3B4(PreF (s2)).

Note that the transitive closure can be computed in cubic time w.r.t. the set of states; however, in
practice, when constructing the graph that describes our system, we can also construct the transitive closure
at the same time, improving the complexity of Algorithm 5. Finally, we combine the sets SimB2 and
NonMaskB3B4 through Algorithm 4 by instantiating the parameter set SimRel1 and SimRel2 with SimB2
and NonMaskB3B4, respectively.

Let us prove the correctness of the algorithm for computing nonmasking relations.

Simulation Relations for Fault-Tolerance 25

Algorithm 5 Computation of condition B.3 and B.4 of Definition 3.4 (ComputeNonMaskB3B4(M,L0))

Input: Colored Kripke structure M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L
Output: Relation NonMaskB3B4 where the states in it satisfy condition B.3 and B.4 of Definition 3.4

1: for all s2 ∈ S do
2: NonMaskB3B4(s2) := {s1 ∈ N | L0(s1) = L0(s2)}
3: Remove(s2) := N\PreN (NonMaskB3B4(s2))
4: Remove+(s2) := N\PreN (NonMaskB3B4(Post∗(s2)))
5: end for
6: while ∃ s′2 ∈ S with Remove(s′2) ∪Remove+(s′2) 6= ∅ do
7: select s′2 such that Remove(s′2) ∪Remove+(s′2) 6= ∅
8: for all s1 ∈ Remove(s′2) ∪Remove+(s′2) do
9: if s1 ∈ Remove(s′2) then

10: for all s2 ∈ PreN (s′2) do
11: if s1 ∈ NonMaskB3B4(s2) then
12: NonMaskB3B4(s2) := NonMaskB3B4(s2)\{s1}
13: for all s ∈ PreN (s1) with PostN (s) ∩NonMaskB3B4(s2) = ∅ do
14: Remove(s2) := Remove(s2) ∪ {s}
15: Remove+(s2) := Remove+(s2) ∪ {s}
16: end for
17: end if
18: end for
19: end if
20: if s1 ∈ Remove+(s′2) then
21: for all s2 ∈ PreF (s′2) do
22: if s1 ∈ NonMaskB3B4(s2) then
23: NonMaskB3B4(s2) := NonMaskB3B4(s2)\{s1}
24: for all s ∈ PreN (s1) with PostN (s) ∩ NonMaskB3B4(Post∗(s2)) = ∅ ∧ (s /∈

NonMaskB3B4(PreF (s2))) do
25: Remove+(s2) := Remove(s2) ∪ {s}
26: Remove(s2) := Remove(s2) ∪ {s}
27: end for
28: end if
29: end for
30: end if
31: end for
32: Remove(s2) := ∅
33: end while
34: return {〈s1, s2〉 | s1 ∈ NonMaskB3B4(s2)}

Theorem 4.4 (Partial Correctness of Algorithm 5). On termination, Algorithm 5 returns N.

Proof. We have to prove that Algorithm 5 ensures conditions B.3 and B.4 of Definition 3.4. In the first
place, notice that the loop of line 6 maintains the following loop invariant. For all faulty states s2 ∈ S:

(a) Remove(s2) ⊆ N\PreN (NonMaskB3B4(s2))

(b) Remove+(s2) ⊆ N\PreN (NonMaskB3B4(Post∗(s2)))

(c) for any relation NonMaskB3B4: {s1 ∈ N | s1 NonMaskB3B4 s2} ⊆ NonMaskB3B4(s2) ⊆ {s1 ∈ N |
L0(s1) = L0(s2)}

(d) ∀s1 ∈ NonMaskB3B4(s2), either:

(1) ∃s′2 ∈ PostN (s2) with PostN (s1) ∩NonMaskB3B4(s′2) = ∅ ∧ s1 ∈ Remove(s′2), or

(2) ∃s′2 ∈ PostF (s2) with PostN (s1) ∩NonMaskB3B4(Post+(s′2)) = ∅ ∧ s1 ∈ Remove+(s′2), or

(3) ∀s′2 ∈ PostN (s2) : PostN (s1) ∩ NonMaskB3B4(s′2) 6= ∅ and ∀s′2 ∈ Post+(s2) : PostN (s1) ∩
NonMaskB3B4(s′2) 6= ∅

26 R. Demasi et al.

From (d), we obtain that, when Remove(s′2) = ∅ for all s′2 ∈ S, then ∀s2 ∈ S : ∀s1 ∈ NonMaskB3B4(s2):

• ∀s′2 ∈ PostN (s2) : PostN (s1) ∩NonMaskB3B4(s′2) 6= ∅ and

• ∀s′2 ∈ Post+(s2) : PostN (s1) ∩NonMaskB3B4(s′2) 6= ∅

That is, conditions B.3 and B.4 of Definition 3.4 hold. Finally, the proof that procedure MergeSimRel
merges SimB2 and NonMaskB3B4 in a correct way is similar to the proof given for the masking relation
M.

The proof of termination of Algorithm 5 is similar to the proof of Lemma 4.2; the reader is referred
to that result. With respect to the complexity of computing the nonmasking fault-tolerance relation N, it
maintains polynomial complexity with respect to the traditional simulation algorithms, as proven in the
following theorem.

Theorem 4.5. The running time of the algorithm for checking a nonmasking relationship is in worst case
O(|S|4 + |S|2 ∗ |AP ′|).

Proof. First, using the same reasoning as in Theorem 4.3, we get that verifying B.2 can be performed in
time O(|E| ∗ |S|). Now, to calculate the set Remove(s2) and Remove+(s2) of lines 3-4, we need to compute
the transitive closure of → which can be done in time O(|S|3). Since this set is calculated once per each
state we have that lines 1-5 take time O(|S|4) and NonMaskB3B4 is calculated in O(|S|2 ∗ |AP ′|). On the
other hand, as explained in the proof of Theorem 4.3, lines 6-33 take time O(|E| ∗ |S|). Thus, in the worst
case the time complexity of the algorithm is O(|S|4 + |S|2 ∗ |AP ′|).

4.3. Computing Failsafe Fault-Tolerance

We finally present Algorithm 6 for computing a relation that satisfies the condition B.3 and B.4 of Definition
3.6 for a colored Kripke Structure M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L. The scheme of this
algorithm is similar to that of Algorithm 3. This is because both masking and failsafe fault-tolerance require
that the safety properties have to be guaranteed. However, liveness properties are not necessarily preserved
in failsafe tolerance. The main difference with Algorithm 3 is in line 18, where we allow the faulty system
to stay in a safe set of states. In other words, in the case that the simulation relation is not preserved, the
system has the option to stay in a set of safe states. To this end, we introduce a set Eq(s) containing the
closure of reachable states with the same labeling. In the case that there exists some state reachable from
the origin with a different labeling, we set Eq(s) to empty.

Let us describe more in details Algorithm 6. In the first for loop, for each s2 ∈ S, the set FailsafeB3B4(s2)
contains those normal states that are candidates for simulating s2 which is initialized with all normal states
with the same labels as s2. Moreover, the setRemove(s2) contains all the normal states which do not have suc-
cessor states simulating some successor state from s2 and we also initialized the set Eq(s2) as explained above.
The termination condition of the loop of lines 6-27 is Remove(s′2) = ∅ for all s′2 ∈ S, in that case there are no
normal states that need to be removed from the sets of simulators FailsafeB3B4(s2) for s2 ∈ PreN (s′2) or
s2 ∈ PreF (s′2). Within the while-loop body, we take care of normal transitions (B.3) and faulty transitions
(B.4) of Definition 3.6. Firstly, in the for loop of lines 8-16, we compute condition B.3 in the same way that
is computed in Algorithm 3 in lines 7-16. Secondly, in the for loop of lines 17− 25, we now consider all pairs
(s1, s2) ∈ S×S such that s1 ∈ Remove(s′2) and s2 ∈ PreF (s′2). This means that s2 99K s′2 but there is no tran-
sition s1 → s′1 with s′1 ∈ FailsafeB3B4(s′2) because we have that s1 ∈ Remove(s′2). Moreover, we check that
the set Eq(s2) is empty, i.e., for a faulty successor s′2 of s2, there does not exist an state s with s′2 ⇒∗ s and
L0(s2) = L0(s). This yields that s2 is not simulated by s1. Therefore, s1 is removed from FailsafeB3B4(s2)
if s1 ∈ FailsafeB2B3(s2) and Eq(s2) = ∅, that is, the last part of condition B.4. Subsequently, we add
to the set Remove(s2) all normal predecessors s of s1 such that PostN (s) ∩ FailsafeB3B4(s2) = ∅, where
we also check that s /∈ FailsafeB3B4(PreF (s2)) ∨ FailsafeB3B4(Eq(PreF (s2))) 6= ∅), that is, the last
part of condition B.4. Finally, we combine the sets SimB2 and FailsafeB3B4 through Algorithm 4 by
instantiating the parameter set SimRel1 and SimRel2 with SimB2 and FailsafeB3B4, respectively.

The proofs of correctness and termination are similar to Theorem 4.1 and Lemma 4.2, with some minor
changes.

Theorem 4.6 (Partial Correctness of Failsafe). On termination, Algorithms 2 and 6 return F.

Simulation Relations for Fault-Tolerance 27

Algorithm 6 Computation of condition B.3 and B.4 of Defintion 3.6 (ComputeFailsafeB3B4(M,L0))

Input: Colored Kripke structure M = 〈S, I,R, L,N〉 and a sub-labeling L0 ⊆ L
Output: Relation FailsafeB3B4 where the states in it satisfy condition B.3 and B.4 of Definition 3.6

1: for all s2 ∈ S do
2: FailsafeB3B4(s2) := {s1 ∈ N | L0(s1) = L0(s2)}
3: Remove(s2) := N\PreN (FailsafeB3B4(s2))
4: Eq(s2) := {s | s2 ⇒∗ s ∧ L0(s2) = L0(s) ∧ (@s′ : s2 ⇒∗ s′ ∧ L0(s) 6= L0(s′))}
5: end for
6: while ∃ s′2 ∈ S with Remove(s′2) 6= ∅ do
7: select s′2 such that Remove(s′2) 6= ∅
8: for all s1 ∈ Remove(s′2) do
9: for all s2 ∈ PreN (s′2) do

10: if s1 ∈ FailsafeB3B4(s2) then
11: FailsafeB3B4(s2) := FailsafeB3B4(s2)\{s1}
12: for all s ∈ PreN (s1) with PostN (s) ∩ FailsafeB3B4(s2) = ∅ do
13: Remove(s2) := Remove(s2) ∪ {s}
14: end for
15: end if
16: end for
17: for all s2 ∈ PreF (s′2) do
18: if s1 ∈ FailsafeB3B4(s2) ∧ Eq(s2) = ∅ then
19: FailsafeB3B4(s2) := FailsafeB3B4(s2)\{s1}
20: for all s ∈ PreN (s1) with PostN (s)∩FailsafeB3B4(s2) = ∅∧(s /∈ FailsafeB3B4(PreF (s2))∨

FailsafeB3B4(Eq(PreF (s2))) 6= ∅) do
21: Remove(s2) := Remove(s2) ∪ {s}
22: end for
23: end if
24: end for
25: end for
26: Remove(s2) := ∅
27: end while
28: return {〈s1, s2〉 | s1 ∈ FailsafeB3B4(s2)}

Proof. We have to prove that Algorithm 6 ensures conditions B.3 and B.4 of Definition 3.6. As explained
above, condition B.2 is computed using Algorithm 2, which is correct by Theorem 4.1. For the other condi-
tions, first note that the loop of line 6 has the following loop invariant. For all states s2 ∈ S:

(a) Remove(s2) ⊆ (N\PreN (FailsafeB3B4(s2)))

(b) for any relation FailsafeB3B4: {s1 ∈ N | s1 FailsafeB3B4 s2} ⊆ FailsafeB3B4(s2) ⊆ {s1 ∈ N |
L0(s1) = L0(s2)}

(c) ∀s1 ∈ FailsafeB3B4(s2), either:

(1) ∃s′2 ∈ PostN (s2) with PostN (s1) ∩ FailsafeB3B4(s′2) = ∅ and s1 ∈ Remove(s′2),

(2) ∃s′2 ∈ PostF (s2) with PostN (s1) ∩ FailsafeB3B4(s′2) = ∅ ∧ Eq(s2) = ∅ and s1 ∈ Remove(s′2),

(3) ∀s′2 ∈ PostN (s2) : PostN (s1) ∩ FailsafeB3B4(s′2) 6= ∅,
(4) ∀s′2 ∈ PostF (s2) : PostN (s1) ∩ FailsafeB3B4(s′2) 6= ∅ ∨ s1 ∈ FailsafeB3B4(s′2) ∨ Eq(s2) 6= ∅

From (c), we obtain that, when Remove(s′2) = ∅ for every s′2 ∈ S, then ∀s2 ∈ S : ∀s1 ∈ FailsafeB3B4(s2):

• ∀s′2 ∈ PostN (s2) : PostN (s1) ∩ FailsafeB3B4(s′2) 6= ∅, and

• ∀s′2 ∈ PostF (s2) : PostN (s1) ∩ FailsafeB3B4(s′2) 6= ∅ ∨ s1 ∈ FailsafeB3B4(s′2) ∨ Eq(s2) 6= ∅.
That is, the relation defined as s1 FailsafeB3B4 s2 satisfies conditions B.3 and B.4, respectively, of Def-
inition 3.6. Finally, the proof that procedure MergeSimRel merges sets SimB2 and FailsafeB3B4 in a
correct way is similar to the proof given for the masking relation M.

28 R. Demasi et al.

Normal Actions:
x = z ∧ y = z → x, y := ¬x,¬y
z 6= maj(x, y, u) ∧ u 6= maj(x, y, u)→

z, u := maj(x, y, u),maj(x, y, u)

Fig. 8. The Muller C-element program with majority voting (fault-intolerant version).

Normal and Recovery Actions:
x = z ∧ y = z → x, y := ¬x,¬y
z 6= maj(x, y, u) ∧ u 6= maj(x, y, u)→

z, u := maj(x, y, u),maj(x, y, u)
x = z ∧ y 6= z → x := ¬x
x 6= z ∧ y = z → y := ¬y

Faulty Actions:
x = z ∧ y = z → x := ¬x
x = z ∧ y = z → y := ¬y
u = z → z := ¬u

Fig. 9. The Muller C-element fault-tolerant program with majority.

With respect to the complexity of the failsafe fault-tolerance relation F, a similar proof as for Algorithm
3 shows that it also has a polynomial complexity.

Theorem 4.7 (Complexity of Failsafe). The time complexity of Algorithm 6 is in O(|E| ∗ |S| + |E| ∗
|AP ′|).

5. Illustrating Examples

In order to show the suitability of our approach to reason about fault-tolerance, we apply the ideas presented
above to four examples of typical fault-tolerant systems.

5.1. The Muller C-element

The Muller C-element [MC80] is a simple delay-insensitive circuit which contains two boolean inputs and
one boolean output. Its logical behavior is described as follows: if both inputs are true (resp. false) then the
output of the C-element becomes true (resp. false). If the inputs do not change, the output remains the same.
Ideally, the inputs change simultaneously. In [AG93], the following (informal) specification of the C-element
with inputs x and y and output z is given:

(i) Input x (resp. y) changes only if x ≡ z (resp., y ≡ z), (ii) Output z becomes true only if x ∧ y holds, and becomes false
only if ¬x ∧ ¬y holds; (iii) Starting from a state where x ∧ y, eventually a state is reached where z is set to the same value
that both x and y have. Ideally, both x and y change simultaneously. Faults may delay changing either x or y.

We consider an implementation of the C-element with a majority voting circuit involving three inputs, where
an extra input u to the circuit is added. Then, the predicate maj(x, y, u) returns the value of the majority
circuit, which is assumed to work correctly, and is defined as maj(x, y, u) = (x ∧ y) ∨ (x ∧ u) ∨ (y ∧ u). In
addition to the traditional logical behavior of the C-element, u and z have to change at the same time, where
the output z is fed back to the input u.

Simulation Relations for Fault-Tolerance 29

s
2

110/0

s
0

000/0

s
1

111/1

s
3

001/1

czu

cxy

cxy

czu

t
2

110/0

t
0

000/0

t
1

111/1

t
3

001/1

czu

cxy

cxy

czu

t
4

011/1

t
5

101/1

t
8

011/0

t
6

001/0

t
7

101/0

t
9

111/0

cx cy

cy cx

cz
cz

cz
cz

cy cx

cxy
cx cy

Fig. 10. A nonmasking fault-tolerance for the Muller C-element with a majority circuit.

Figure 10 shows two models of this circuit. M exhibits the ideal behavior of the C-element containing
only normal transitions. M ′ takes into account the possibility of faults occurring, and provides a reaction
to these. Every state in these models is composed of boolean variables x, y, u, and z, where x, y, and u
represent the inputs, and z represents the output. For instance, the state s0 contains the information 000 \ 0
interpreted (reading from left to right) as x = 0, y = 0, u = 0, and z = 0.

For the sake of clarity, we have labelled the transitions with subsets of the set {cx, cy, cu, cz} of actions;
action cx (resp., cy and cu) is the action that changes input x (resp., y and u); cz is the action of changing
output z. When the actions cx and cy are executed in the same transition, we just write cxy. It is important
to remark that these action names do not belong to the corresponding formal model (note that colored
Kripke structures do not consider labels in the transitions), though one may enrich the states with more
data (boolean variables) to indicate the occurrence of actions.

We consider two types of faults: (i) a delay may occur in the arrival of some of the inputs x or y (i.e.,
they do not change simultaneously), and (ii) a delay in the signal from z to u occurs. We can observe these
classes of faults in the faulty states (indicated by dashed circles) when either x and y or u and z do not
match one another. Notice that these two models described in Figure 10 correspond to the fault-intolerant
and the fault-tolerant program in Figures 8 and 9 in a guarded command style, respectively.

The relation Rc−element = {〈s0, t0〉, 〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉} is a nonmasking fault-tolerant relation for
〈M,M ′〉 and the sub-labelings obtained by restricting the original labelings to letters u, x, y, z. Therefore,
when the majority circuit behaves correctly, this implementation tolerates delays of inputs.

5.2. The Byzantine Generals Problem

An interesting example of a fault-tolerant system is the Byzantine generals problem, introduced originally in
[LSP82]. This is an agreement problem, where we have a general with n− 1 lieutenants. The communication
between the general and his lieutenants is performed through messengers. The general may decide to attack an
enemy city or to retreat; then, he sends the order to his lieutenants. Some of the lieutenants might be traitors.
As a consequence, traitors might deliver false messages or perhaps they avoid sending a message that they
received. The loyal lieutenants must agree on attacking or retreating after m+ 1 rounds of communication,

30 R. Demasi et al.

s
0

r
0

s
1

P
1

 r
1

s
2

P
2

 r
2L0.sendA(L1,2,3) tt L1.fwd(L0, A, L2,3)

L2.fwd(L0, A, L1,3)

L3.fwd(L0, A, L1,2)

tt

restart

t
0

r
0

t
1

P
1

 r
1

t
3

P
3

 r
1

L0.sendA(L1,2,3) tt

L1.fwd(L0, A, L2,3)

L2.fwd(L0, A, L1,3)

L3.fwd(L0, A, L1,2)

tt

restart

t
2

P
2

 r
2

t
4

P
4

 r
2

L1.betray

restart

L2.fwd(L0, A, L1,3)

L3.fwd(L0, A, L1,2)

tt

P1: L1.A0 ⋀ L2.A0 ⋀ L3.A0

P3: L1.A0 ⋀ L2.A0 ⋀ L3.A0 ⋀ L1.traitor

P2: L1.A0,2,3 ⋀ L1.d ⋀ L2.A0,1,3 ⋀ L2.d ⋀ L3.A0,1,2 ⋀ L3.d

P4: L1.A0,2,3 ⋀ L1.traitor ⋀ L1.d ⋀ L2.A0,3 ⋀ L2.d ⋀ L3.A0,2 ⋀ L3.d

Fig. 11. A masking fault-tolerance relation for the Byzantine generals problem.

where m is the maximum numbers of traitors. The algorithm can ensure correct operation only if fewer
than one third of the lieutenants are traitors. We assume the following: L0 is the general, the messages are
delivered correctly and all the lieutenants can communicate directly with each other; in this scenario they
can recognize who is sending a message. Faults can convert loyal lieutenants into traitors. Finally, traitors
cannot forge messages on behalf of loyal lieutenants.

In Figure 11 two models of this problem are described. M exhibits the ideal behavior of the Byzantine
agreement for a general (L0) and three loyal lieutenants (L1, L2, and L3). On the other hand, M ′ expresses
the same behavior that M does, but considering the presence of lieutenant L1 as a traitor. We specify this
problem following the ideas introduced in [CM09]. We have the following predicates: Li.Al1,...,ln (this predicate
indicates that Li has received a message from lieutenants l1, . . . , ln saying that he must attack). We have a
violation predicate Li.traitor for each lieutenant (this predicate is true when Li is a traitor) and Li.d (this
predicate is true when Li has decided to attack), rj (this predicate is true when we are in round j). Each
state has the predicates (P1, P2, P3, or P4) which hold in it and the relevant information about the current
round. Each transition is labeled with some of the following actions: Li.sendA(Ll1,...,ln) (lieutenant Li sends to
lieutenants l1, . . . , ln the message of attack), Li.fwd(Lk,A, Ll1,...,ln) (the lieutenant Li forwards to lieutenants
l1, . . . , ln the message of attack that he received from Lk), Li.betray (lieutenant Li becomes a traitor). We
consider a clock that allows lieutenants to synchronize; the action tt increments the clock by one unit of
time. The specification uses m + 1 rounds of messages, which are coordinated by means of the clock, where
m is the number of traitors for which the specification ensures that the loyal lieutenants will agree on a
decision. In this case the relation

Rbyzantines = {〈s0, t0〉, 〈s1, t1〉, 〈s2, t2〉, 〈s1, t3〉, 〈s2, t4〉}

is a masking fault-tolerant relation for 〈M,M ′〉 where the sub-labelings are obtained by restricting the

Simulation Relations for Fault-Tolerance 31

s
0

init

s
1

SB

s
2

AD

@T(mReset)

@F(mInitialization) @T(mAltBelow)

@T(mReset)
@T(mDOIStatus = on)

t
0

init

t
1

SB

t
2

AD

t
3

FM

T@(mAltFail)

@T(mDOIFail)
T@(mInitFail)

@T(mReset)

@T(mAltBelow)@F(mInitialization)

@T(mReset)
@T(mDOIStatus = on)

@T(mReset)

Fig. 12. A nonmasking fault-tolerance for the Altitude Switch Controller.

original labeling to AP \ {L0.traitor, ..., Ln.traitor} ∪ {L0.Al1,...,ln , . . . Ln.Al1,...,ln}; this means that the model on
the bottom tolerates the existence of one traitor (specifically, L1). This can be generalized to support more
lieutenants and traitors.

5.3. Altitude Switch (ASW)

The Altitude Switch (ASW) controller in an avionics system is responsible for turning on a Device of Interest
(DOI) when the aircraft altitude is below a pre-specified threshold. We have adapted this real-world avionics
example from [JHAL09].

Basically, the ASW controller reads a set of variables and produces an output. There exist four internal
variables, a mode variable that determines the operating mode of the system, and four monitored variables
that represent the state of the altitude sensors. The monitored variables are as follows: (1) mAltBelow is
true if the altitude is below a pre-specific threshold. (2) mDOIStatus is true if the DOI is powered on; (3)
mInhibit is true when the DOI power-on is inhibited, and (4) mReset is true if the system is being reset. The
ASW program can be in three different modes: (1) the Initialization (Init) mode when the ASW system is
initializing; (2) the AwaitDOIon (AD) mode if the system is waiting for the DOI to power on, and (3) the
Standby (SB) mode for all other cases.

The ASW system can be subject to hardware malfunctions that may alter the ASW controller. In order
to deal with potential faults, the system is designed to tolerate three time-out faults: (1) initialization fault,
(2) altimeter fault, and (3) DOI fault. These types of faults require the system to stay in a given state for
a specific amount of time. Because we do not include the notion of time in this example, we model these
faults as on/off flags. As a consequence of these malfunctions, a new mode, Fault (FM), is added to the
mode class to indicate the presence of faults in the system. Figure 12 shows two models of this program. M
exhibits the ideal behavior of the ASW controller containing only normal transitions. M ′ takes into account
the possibility of faults occurring, and provides a reaction to these. Every state in these models identifies
some of the modes: Init, AD, SB, or FM. Transitions are labeled by events that represent the changes among
the different modes. Let us note that these events can be encoded in the colored Kripke structures with
fresh propositional variables; for instance, in state s0 one can have a variable mReset, which is true when
the corresponding event has occurred and then a transition to state s2 is enabled, this mechanism can be
reflected by adding more intermediate states (representing the changes in the events); the model we present

32 R. Demasi et al.

in Figure 12 is a simplified one (one can think of it as an abstract description of the corresponding model);
however, it illustrates how the notion of nonmasking applies to this scenario.

We use the following notation to represent events: @T(c), where c represents the condition value in the
before state. Once the event @F(mInitialization) occurs, which means that the initialization is complete, the
system moves from Init to SB. It returns to Init when the pilot pushes the reset button (@T(mReset) occurs).
Moreover, the system moves from SB to AD through the action altBelow when the aircraft descends below
the threshold altitude (@T(mAltBelow)), but requiring as precondition that powering on is not inhibited,
and the DOI is not powered on. Once the DOI signals that it is powered on T(mDOIStatus = on), the
system goes from AD to SB. Furthermore, the system returns from AD to Init when the pilot pushes the
reset button (@T(mReset) occurs). All these events correspond to the ideal behavior of the ASW program.
On the other hand, we add other monitoring variables mInitFail, mAltFail, and mDOIFail to model the
occurrences of faults, perturbing the normal behavior of the system. Consequently, when the system detects
any of these faults, it goes into the faulty mode (FM). Finally, the problem specification requires that the
program does not change its mode from Standby (SB) to AwaitDOI (AD) if the altitude sensors failed,
i.e., when @T(mAltFail) occurs. Moreover, from the faulty state FM, the program can only go into the
Initialization mode. In fact, the program can recover from the faulty state if the system has been reset by
the pilot (@T(mReset) occurs).

As a result, the relation Rasw−controller = {〈s0, t0〉, 〈s1, t1〉, 〈s2, t2〉, 〈s0, t3〉} is a nonmasking fault-tolerant
relation for 〈M,M ′〉. We obtain a similar result compared to [JHAL09], where the authors use the term
eventual masking (“the system enters a fault handling state but eventually recovers to normal behavior”)
for this kind of fault-tolerance behavior. We remark that the specification on this example has been slightly
simplified from the original one described in [JHAL09]. For example, the logic in the events that cause
transitions in our models is much simpler compared to the ones in [JHAL09].

5.4. A Simple Train System

We now consider a simple train system. Train systems control the movement of trains through a network of
rail segments. Fault-tolerance is a key aspect of these systems: a fault in the system may cause a train collision
and the loss of human life. These kinds of systems are the object of active research in the fault-tolerance
community (see [AB08, Abr06, GH90]).

The general version of our system consists of n trains and m rail segments. Rail segments are connected
to other rail segments, where in each of these connections the rails are equipped with a signal which indicates
if the segment is occupied or not. The signals can be green (when the segment is free) or red (when another
train is in the segment). We have the following predicates. For each 0 ≤ i ≤ n and 0 ≤ j ≤ m, we have a
predicate ti.rj which indicates that train i is in the segment j; the predicate rj .green (rj .red) expresses that
the signal of segment j is green (red), respectively. Moreover, ti.stop denotes that train ti is stopped and
riRrj means that segments i and j are connected. We have the following actions: ti.move(j): train ti moves
to segment j, ti.stops: train ti stops, ri.ggreen: the signal of ri is set to green, and ri.gred: the signal of ri
is set to red.

The specification requires that, if there is a train in a segment, then the signal for this segment must
be red. On the contrary, if there is no train in the segment, then the signal for the segment must be green.
Moreover, when a train detects that another train is already in the same segment, a fault has occurred,
and it ought to stop to avoid train collisions. Besides, when a train is in a segment where all the connected
segments have their signals set to red, the train will stop. Finally, an ideal safety property of this system is
that there are not two trains in the same segment; that is, this property must hold in the specification when
no faults are observed.

This system is implemented by a sensor in each segment which detects the existence of two trains.
Furthermore, the movement of trains between rail segments is controlled by a pair of sensors called Block
Instruments in railways. Essentially, these devices have the task of activating the green or red signal. The
basis of operation of the system is very simple, but what is more significant is the inherent fail-safety built
into it. In case a fault occurs, the interlocking relay logic turns the signal to red.

In order to provide a better understanding of this example and the particular situation for failsafe fault-
tolerance, let us consider trains ti with 0 ≤ i ≤ 2 and rail segments rj with 0 ≤ j ≤ 4, where they are
connected as follow: r0Rr1, r1Rr2, r2Rr3, r2Rr4, and r3Rr4. In Figure 13 two models of this problem are
described. M exhibits the ideal behavior of the simple train system for three trains on five rail segments. On

Simulation Relations for Fault-Tolerance 33

s
0

P
0

s
1

P
1

s
2

P
2

t0.move(1) t2.move(4)

w
0

P
0

w
1

P
1

w
2

P
2

t0.move(1) t2.move(4)

w
3

P
3

P0: t0.r0 ⋀ t1.r2 ⋀ t2.r3 ⋀ r0.red ⋀ r1.green ⋀ r2.red ⋀ r3.red ⋀ r4.green

P1: t0.r1 ⋀ t1.r2 ⋀ t2.r3 ⋀ r0.green ⋀ r1.red ⋀ r2.red ⋀ r3.red ⋀ r4.green

P2: t0.r1 ⋀ t1.r2 ⋀ t2.r4 ⋀ r0.green ⋀ r1.red ⋀ r2.red ⋀ r3.green ⋀ r4.red

P3: t0.r1 ⋀ t1.r2 ⋀ t2.r4 ⋀ r0.red ⋀ r1.red ⋀ r2.red ⋀ r3.red ⋀ r4.red

Fig. 13. A failsafe fault-tolerance for a Simple Train System.

the other hand, M ′ expresses the same behavior that M does, but considering the presence of faults. Notice
that in this figure we illustrate part of the behavior for this set of train and rail segments, starting from
a state s0 in which trains are already located on the rail segments. The states are labeled with predicates
(P0, P1, P2, or P3) pointing out the formulas holding in each state. Moreover, transitions are labeled with
some of the actions described above. We remark that the models in Figure 13 are partial, covering only
a specific scenario of normal behavior to describe a simple situation for failsafe fault-tolerance. Note also
the self-loop in state s2; we assume that in this case the trains have reached their destination. Of course, a
complete model (which may have millions of states) will have more states allowing the trains to start their
itinerary again. Regarding the model M ′, faults may occur that affect the communication of the system or
the behavior of the sensors. The block instruments on each rail segment react to this malfunction, turning
the signal to red (P3). It is clear that this state still guarantees the (safety) property that no two trains are
located in the same segment. However, reaching state w3 means that all trains will stop and they will stay
there (represented by the self-loop on w3) until an external recovery action is performed. In this case the
relation

Rtrain−system = {〈s0, w0〉, 〈s1, w1〉, 〈s2, w2〉}
is a failsafe fault-tolerant relation for 〈M,M ′〉 where the sub-labelings are obtained by restricting the original
labeling to ti.rj with 0 ≤ i ≤ 2 and 0 ≤ j ≤ 4.

Notice that a fault leading to a failsafe state is not considered as a failure in a safety critical system.
The main idea of a failsafe design is to detect the faults and mask its impact until some recovery actions are
undertaken.

6. Related Work

Our work is closely related to several formal approaches to fault-tolerance. The programming style we
use here for describing our programs was introduced in [AG93, AK98a, AK98b, Gär99], where programs are
written using Dijkstra’s guarded command language, and faults are specified as distinguished actions. In these
works, the authors characterize fault tolerance using sets of states, for instance, a set P of states captures the
desired invariant of the program, whereas a set T is employed to indicate those states that tolerate faults.
In this setting, masking, nonmasking and failsafe tolerance are formalized making use of liveness and safety
properties, where properties in general are written using first-order logic; no temporal operators are employed
in these works. In our opinion, temporal logic and the restriction to finite state systems provide key benefits
when verifying concurrent and reactive programs, in particular with respect to automatic verification, where
the model checking community has demonstrated relative success when verifying hardware and embedded
systems [BK08, Cla99]. Also it is important to remark that, in the cited works, the authors assume a linear
view of time when specifying systems and properties. In our approach, we focus on branching time properties
of programs. As pointed out by several authors [FMR07, AAE04, EL09, BFG02, YTK01], branching time

34 R. Demasi et al.

is useful for capturing important properties related to fault-tolerance. A simple example of this is given in
[AAE04] by means of the formula: AG(Di ⇒ EGDi), which intuitively expresses that: if process i crashes,
it may stay down forever ; this property cannot be expressed in LTL, for instance. In [BFG02], ACTL (a
branching time logic with actions) is used for expressing properties over models, where systems are specified
by means of process algebras; in that work the authors concentrate on model checking fault-tolerant systems,
the different levels of tolerance are not investigated by the authors.

In [JHAL09, JHAL10] is presented a model-based method for specifying and verifying the required
behaviour of a fault-tolerant system. The formal foundations of their method relies on formal notions like
or-composition, partial refinement, and fault-tolerant extension. The authors covers two classes of fault-
tolerance: transparent masking [JHAL09] and partial masking [JHAL10]; these can be related to the notion
of masking and nonmasking fault-tolerance presented in our paper, respectively. As it is stated by the authors,
in transparent masking, the component’s fault-tolerant behaviour is a full refinement of its normal behaviour.
On the other hand, in partial masking, the system behaviour is a partial refinement due to the refinement
holds during the normal system behaviour but may not hold during fault-handling. It is well-known that
simulation relations are used in theoretical computer science in order to formally stablish notions of modelling
abstraction and refinement in hierarchical systems. Clearly, the goal of the authors in [JHAL09, JHAL10]
is different to our aim because they introduce a formal method for building fault-tolerant systems. But, we
think that our approach can be adapted (fully coverage of the notion of transparent and partial masking) to
support and complement their method by checking that the constructed fault-tolerant extension is correct
for the required behaviour of a fault-tolerant system.

Another interesting approach is that of retrenchment [BP98, BPJS07], as opposed to conventional re-
finement, retrenchment can provide a formal account of the relationship between a nominal model and an
extended model enriched with the envisaged faults the system is designed to be robust against. Some ap-
proaches that exploit this technique are described in [BB06, BC04], where fault trees are mechanistically
extracted from the simulation relation of a suitable retrenchment, designed to capture the difference between
an “ideal” and a “faulty” behaviour of a system. These works rely on a particular stepwise simulation no-
tion called punctuation simulation for retrenchment [BP99], which is approached in a different manner to
refinement simulation. In our work, we also present different variations of standard simulation relations but
we focus on comparing the executions of a system that exhibits faults with executions where no faults are
present, for capturing specific levels of fault-tolerance.

We can also mention the work presented in [Jan95, Jan97], where various notions of bisimulation are
investigated with the aim of capturing fault-tolerant properties, in the context of process algebras. A related
approach is described [FH07], where the authors present a theoretical framework using π-calculus to capture
n-fault-tolerance in a distributed setting (i.e., the tolerance to n faulty nodes). An obvious difference w.r.t.
our work is that we use a state based approach and a temporal logic to reason about state based models,
in contrast to the aforementioned works where process algebras are employed for modeling systems, and the
associated logic is a variation of Hennesy-Milner logic (HML). HML is a simple logic with formulas of the style
〈acti〉ϕ, where acti represents and action, ϕ is another formula and 〈acti〉 is diamond modality of modal logic.
HML can only express properties about a finite number of steps into the future. For instance, reachability
properties (of the style AFϕ or EFϕ) cannot be captured with HML; that is, this logic is not expressive
enough to capture important temporal properties [BS07]. Also, the notions of masking, nonmasking and
failsafe fault-tolerance are not investigated in these works. Finally, it is important noting that preliminary
definitions of the simulation relations described here were discussed in [DCMA13a]. In that paper we do not
prove the properties of the introduced relations, and no algorithms were given for computing nonmasking
and failsafe tolerance. Additionally, the relation of failsafe given in that paper is more restrictive that the
one given here; in contrast to the definition of [DCMA13a], where a unique safe state was permitted, the
failsafe relation presented in Section 3 allows the system to stay in a set of safe states, thus generalizing the
original definition.

7. Final Remarks

We have presented a characterization of different levels of fault-tolerance by means of simulation relations.
This formalization is simple and uses standard notions of simulation relations, by relating an operational
system specification and a corresponding fault-tolerant implementation. Moreover, our approach to capturing
fault-tolerance enables us to automatically verify, for example, that a given implementation of a system masks

Simulation Relations for Fault-Tolerance 35

certain faults, or recovers from these faults, by employing variants of traditional bisimulation algorithms
applied to our context. Indeed, we have adapted well known (bi)simulation algorithms to our setting, so that
one can automatically check if a system implementation exhibits some degree of fault-tolerance. We have
also studied the complexity of the resulting algorithms, and proved that they preserve the time complexity of
traditional bisimulation algorithms. We have also studied properties of our formalizations of fault-tolerance,
showing that different kinds of temporal properties are preserved, depending on the degree of fault-tolerance
that a system exhibits. Moreover, we have also presented results relating the different kinds of fault-tolerance.

It is interesting to discuss whether it is convenient to use simulation relations instead of model checking
when verifying fault-tolerance. Note that algorithms for model checking CTL have complexity O(|E| ∗ |φ|)
[BK08], where |φ| is the size of the formula to be verified; since formulas are usually much shorter than
models, model checking a given fault tolerant property φ should be more efficient than using the algorithms
described here. However, note that simulation relations cannot be expressed in CTL, that is, we cannot em-
ploy model checking to prove that a faulty implementation exhibits fault-tolerant behavior (i.e., it preserves
the properties of the original nonfaulty system), instead we could use a model checker to prove that some
property is preserved by the faulty implementation; however, in this case we should codify faults using CTL
constructs which could cumbersome both the formula to be verified and the model describing the system.
We plan to implement symbolic versions of the algorithms given in Section 4 to analyze their performance in
practice. Also, it is interesting to point out that the ideas presented here admit other interesting applications,
for instance, we have been exploring the use of these ideas to automatically construct fault-tolerant programs
from specifications (this is called program synthesis). Synthesis of programs has been extensively investigated
in the context of linear time logic [PR89], while in our case it is necessary to deal with a branching time
formalism. As argued in [AAE04], some important properties related to fault-tolerance require branching
time operators; in that paper, a framework for synthesis of programs from branching time specifications is
introduced. We have used the notion of masking relation presented here to extend the algorithm introduced
in [AAE04], to automatically synthesize programs that mask faults. The results obtained in this line of
research are detailed in [DCMA13b] where an algorithm for synthesizing masking fault-tolerant programs is
presented, we have implemented this algorithm, the resulting tool is described in [DCR+15]. As future work,
we plan to extend our tool to synthesize nonmasking and failsafe fault-tolerant programs based on the corre-
sponding relations presented in this paper. Finally, we also plan to extend our framework to accommodates
multitolerance. Arora and Kulkarni formalized this concept in [AK98a]. Essentially, in multitolerance, the set
of fault actions is divided into classes, and different fault classes may require diverse levels of fault-tolerance
(masking, nonmasking, or failsafe). For example, one class of faults may require masking fault-tolerance,
while another class may demand only failsafe fault-tolerance. Thereby, “multitolerance refers to the ability
of a system to tolerate multiple classes of faults, each in a possibly different way”. Then, we could define
an algorithm in order to support multitolerance by computing the required level of fault-tolerance for each
particular fault class.

Acknowledgements

This work was partially supported by the APC (NSERC) funded project NECSIS and IBM through an IBM
CAS Fellowship to the first author. It was also partially supported by the Argentinean Agency for Scientific
and Technological Promotion (ANPCyT), through grants PICT 2012 No. 1298 and PICT 2013 No. 0080;
and by the MEALS project (EU FP7 programme, grant agreement No. 295261).

References

[AAE04] Paul C. Attie, Anish Arora, and E. Allen Emerson. Synthesis of fault-tolerant concurrent programs. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 26(1):125–185, 2004.

[AB08] Zair Abdelouahab and Reginaldo I. Braga. An adaptive train traffic controller. In An Adaptive Train Traffic
Controller, Springer Netherlands, pages 550–555, 2008.

[ABK04] Benjamin Aminof, Thomas Ball, and Orna Kupferman. Reasoning about systems with transition fairness. In Franz
Baader and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, 11th Inter-
national Conference, LPAR 2004, volume 3452 of Lecture Notes in Computer Science, pages 194–208. Springer,
2004.

[Abr06] Jean-Raymond Abrial. Train systems. In Michael J. Butler, Cliff B. Jones, Alexander Romanovsky, and Elena

36 R. Demasi et al.

Troubitsyna, editors, Rigorous Development of Complex Fault-Tolerant Systems [FP6 IST-511599 RODIN project],
RODIN Book, volume 4157 of Lecture Notes in Computer Science, pages 1–36. Springer, 2006.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge University Press,
2010.

[AG93] Anish Arora and Mohamed G. Gouda. Closure and convergence: A foundation of fault-tolerant computing. IEEE
Transactions on Software Engineering, 19(11):1015–1027, 1993.

[AK98a] Anish Arora and Sandeep S. Kulkarni. Component based design of multitolerant systems. IEEE Trans. Software
Eng., 24(1):63–78, 1998.

[AK98b] Anish Arora and Sandeep S. Kulkarni. Detectors and Correctors: A theory of fault-tolerance components. In
18th International Conference on Distributed Computing Systems, ICDCS 1998, pages 436–443. IEEE Computer
Society, 1998.

[Avi95] Algirdas A. Avizienis. Software Fault Tolerance, volume 2, chapter The Methodology of N-Version Programming,
pages 22–45. John Wiley & Sons, 1995.

[BB06] Richard Banach and Marco Bozzano. Retrenchment, and the generation of fault trees for static, dynamic and
cyclic systems. In Computer Safety, Reliability, and Security, 25th International Conference, SAFECOMP 2006,
Gdansk, Poland, September 27-29, 2006, Proceedings, pages 127–141, 2006.

[BC04] Richard Banach and R. Cross. Safety requirements and fault trees using retrenchment. In Computer Safety,
Reliability, and Security, 23rd International Conference, SAFECOMP 2004, Potsdam, Germany, September 21-
24, 2004, Proceedings, pages 210–223, 2004.

[BFG02] Cinzia Bernardeschi, Alessandro Fantechi, and Stefania Gnesi. Model checking fault tolerant systems. Softw. Test.,
Verif. Reliab., 12(4):251–275, 2002.

[BK88] Ralph-Johan Back and Reino Kurki-Suonio. Distributed cooperation with action systems. ACM Trans. Program.
Lang. Syst., 10(4):513–554, 1988.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
[Bon08] Borzoo Bonakdarpour. Automated Revision of Distributed and Real-Time Programs. PhD thesis, Michigan State

University, 2008.
[BP98] Richard Banach and Michael Poppleton. Retrenchment: An engineering variation on refinement. In B’98: Recent

Advances in the Development and Use of the B Method, Second International B Conference, Montpellier, France,
April 22-24, 1998, Proceedings, pages 129–147, 1998.

[BP99] Richard Banach and Michael Poppleton. Retrenchment and punctured simulation. In Integrated Formal Methods,
Proceedings of the 1st International Conference on Integrated Formal Methods, IFM 99, York, UK, 28-29 June
1999, pages 457–476, 1999.

[BPJS07] Richard Banach, Michael Poppleton, Czeslaw Jeske, and Susan Stepney. Engineering and theoretical underpinnings
of retrenchment. Sci. Comput. Program., 67(2-3):301–329, 2007.

[Bra06] Bastian Braun. Implementing automatic addition and verification of fault tolerance. Master’s thesis, RWTH
Aachen University, 2006.

[BS07] Julian Bradfield and Colin Stirling. 12 modal mu-calculi. In Johan Van Benthem Patrick Blackburn and Frank
Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning, pages 721 – 756.
Elsevier, 2007.

[CKAA11] Pablo F. Castro, Cecilia Kilmurray, Araceli Acosta, and Nazareno Aguirre. dCTL: A branching time temporal logic
for fault-tolerant system verification. In Gilles Barthe, Alberto Pardo, and Gerardo Schneider, editors, Software
Engineering and Formal Methods - 9th International Conference, SEFM 2011, volume 7041 of Lecture Notes in
Computer Science, pages 106–121. Springer, 2011.

[Cla99] Edmund M. Clarke. Model checking. MIT Press, 1999.
[CM89] K. Mani Chandy and Jayadev Misra. Parallel program design - a foundation. Addison-Wesley, 1989.
[CM09] Pablo F. Castro and Thomas S. E. Maibaum. Deontic logic, contrary to duty reasoning and fault tolerance. Electr.

Notes Theor. Comput. Sci., 258(2):17–34, 2009.
[Cri85] Flaviu Cristian. A rigorous approach to fault-tolerant programming. IEEE Trans. Software Eng., 11(1):23–31,

1985.
[DCMA13a] Ramiro Demasi, Pablo F. Castro, T. S. E. Maibaum, and Nazareno Aguirre. Characterizing fault-tolerant systems

by means of simulation relations. In Einar Broch Johnsen and Luigia Petre, editors, Integrated Formal Methods,
10th International Conference, IFM 2013, volume 7940 of Lecture Notes in Computer Science, pages 428–442.
Springer, 2013.

[DCMA13b] Ramiro Demasi, Pablo F. Castro, T. S. E. Maibaum, and Nazareno Aguirre. Synthesizing masking fault-tolerant
systems from deontic specifications. In Dang Van Hung and Mizuhito Ogawa, editors, Automated Technology for
Verification and Analysis - 11th International Symposium, ATVA 2013, volume 8172 of Lecture Notes in Computer
Science, pages 163–177. Springer, 2013.

[DCR+15] Ramiro Demasi, Pablo F. Castro, Nicolás Ricci, Thomas Stephen Edward Maibaum, and Nazareno Aguirre. synt-
maskft: A tool for synthesizing masking fault-tolerant programs from deontic specifications. In Tools and Algorithms
for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, pages 188–193, 2015.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties of parallel programs using fix-

points. In J. W. de Bakker and Jan van Leeuwen, editors, Automata, Languages and Programming, 7th Colloquium,
ICALP 1980, volume 85 of Lecture Notes in Computer Science, pages 169–181. Springer, 1980.

Simulation Relations for Fault-Tolerance 37

[EH86] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited: on branching versus linear time
temporal logic. J. ACM, 33(1):151–178, 1986.

[EL09] Jonathan Ezekiel and Alessio Lomuscio. Combining fault injection and model checking to verify fault tolerance
in multi-agent systems. In Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Simão Sichman,
editors, 8th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, pages
113–120. IFAAMAS, 2009.

[FH07] Adrian Francalanza and Matthew Hennessy. A theory for observational fault tolerance. J. Log. Algebr. Program.,
73(1-2):22–50, 2007.

[FMR07] Tim French, John Christopher McCabe-Dansted, and Mark Reynolds. A temporal logic of robustness. In Fron-
tiers of Combining Systems, 6th International Symposium, FroCoS 2007, Liverpool, UK, September 10-12, 2007,
Proceedings, pages 193–205, 2007.

[Gär99] Felix C. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous environments. ACM
Computing Surveys, 31, 1999.

[GH90] Gérard D. Guiho and Claude Hennebert. SACEM software validation (experience report). In François-Régis
Valette, Peter A. Freeman, and Marie-Claude Gaudel, editors, Proceedings of the 12th International Conference
on Software Engineering, ICSE 1990, pages 186–191. IEEE Computer Society, 1990.

[GJM03] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software engineering (2. ed.). Prentice Hall,
2003.

[HHK95] Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing simulations on finite and
infinite graphs. In 36th Annual Symposium on Foundations of Computer Science, FOCS 1995, pages 453–462.
IEEE Computer Society, 1995.

[Jan95] Tomasz Janowski. Bisimulation and Fault-Tolerance. PhD thesis, University of Warwick, United Kingdom, 1995.
[Jan97] Tomasz Janowski. On bisimulation, fault-monotonicity and provable fault-tolerance. In Michael Johnson, editor,

Algebraic Methodology and Software Technology, 6th International Conference, AMAST 1997, volume 1349 of
Lecture Notes in Computer Science, pages 292–306. Springer, 1997.

[JHAL09] Ralph D. Jeffords, Constance L. Heitmeyer, Myla Archer, and Elizabeth I. Leonard. A formal method for developing
provably correct fault-tolerant systems using partial refinement and composition. In Ana Cavalcanti and Dennis
Dams, editors, Formal Methods, Second World Congress, FM 2009, volume 5850 of Lecture Notes in Computer
Science, pages 173–189. Springer, 2009.

[JHAL10] Ralph D. Jeffords, Constance L. Heitmeyer, Myla Archer, and Elizabeth I. Leonard. Model-based construction
and verification of critical systems using composition and partial refinement. Formal Methods in System Design,
37(2-3):265–294, 2010.

[LA90] Peter A. Lee and Thomas Anderson. Fault Tolerance: Principles and Practice. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2nd edition, 1990.

[Lam85] Leslie Lamport. Solved problems, unsolved problems and non-problems in concurrency. Operating Systems Review,
19(4):34–44, 1985.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–923, 1994.
[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals problem. ACM Trans. Program.

Lang. Syst., 4(3):382–401, 1982.
[MC80] Carver Mead and Lynn Conway. Introduction to VLSI systems. Addison-Wesley, 1980.
[Mil89] Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall, 1989.
[MT01] Panagiotis Manolios and Richard J. Trefler. Safety and liveness in branching time. In 16th Annual IEEE Symposium

on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings, pages 366–374, 2001.
[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Sixteenth Annual ACM Symposium on

Principles of Programming Languages, POPL 1989, pages 179–190. ACM Press, 1989.
[PS05] Ignatius S. W. B. Prasetya and S. Doaitse Swierstra. Formal design of self-stabilizing programs. J. High Speed

Networks, 14(1):59–83, 2005.
[SECH98] Francis Schneider, Steve M. Easterbrook, John R. Callahan, and Gerard J. Holzmann. Validating requirements

for fault tolerant systems using model checking. In 3rd International Conference on Requirements Engineering,
ICRE 1998, pages 4–13. IEEE Computer Society, 1998.

[SS98] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems (3rd Ed.): Design and Evaluation. A. K.
Peters, Ltd., Natick, MA, USA, 1998.

[TP00] Wilfredo Torres-Pomales. Software fault tolerance: A tutorial. Technical report, NASA Technical Memorandum
TM-2000-210616, 2000.

[YTK01] Tomoyuki Yokogawa, Tatsuhiro Tsuchiya, and Tsuchiya Kikuno. Automatic verification of fault tolerance using
model checking. In 8th Pacific Rim International Symposium on Dependable Computing, PRDC 2001, pages
95–102. IEEE Computer Society, 2001.

38 R. Demasi et al.

A. Proofs of Properties

In this section we prove some properties introduced in Section 3.

Proof of Property: ∀i : σ∗Ji+ 1K M σ′[i]
The proof is by induction on i. For the base case i = 0, σ∗J1K = σ∗[0] = sM s′ = σ′[0]. For the inductive

case we have to prove that σ∗Ji+2KMσ′[i+1]. By definition of last, if σ∗[i+1] 6= ∗, then σ∗Ji+2K = σ∗[i+1].
Furthermore, by definition of σ∗, σ∗[i+ 1] = w for some w ∈ match(σJi+ 1K, σ′[i+ 1]), thus by definition of
match(), we have σ∗[i+ 1] M σ′[i+ 1], and since σJi+ 2K = σ∗[i+ 1], we get σ∗Ji+ 2K M σ′[i+ 1].

Let us prove the case σ∗[i+1] = ∗. In this case, by definition of σ∗Ji+2K, we get σ∗Ji+2K = σ∗Ji+1K, and by
induction we get: σ∗Ji+1KMσ′[i]. By definition of σ∗ we have σ∗[i+1] = ∗ since @w ∈ match(σJi+1K, σ′[i+1]),
but taking into account that σ′[i + 1] ∈ Post(σ′[i]) and σ∗Ji + 1K M σ′[i], by B.4 we must have that
σ∗Ji+ 1K M σ′[i+ 1] that is (recalling that σ∗Ji+ 2K = σ∗Ji+ 1K) we get σ∗Ji+ 2K M σ′[i+ 1].

Proof of Property: ∀i ≥ 0 : ∃j > i : σ∗[j] 6= ∗ (Used in Lemma 3.1)
The proof is by contradiction. Suppose that ∃i ≥ 0 such that ∀j > i : σ∗[j] = ∗, let k be the least of

such i’s, that is, σ∗[k] 6= ∗ and ∀j > k : σ∗[j] = ∗. This means that σ∗[last(k + h, σ∗)] = σ∗JkK for all h ≥ 0.
Furthermore, since σ′ is fair and a NDF structure we have a j > k such that σ′[j + 1] ∈ PostN (σ′[j]). Now,
note that we have σ∗Jj+1KMσ′[j] (by the property above) and since σ∗[k+h] = ∗ (for every h ≥ 0) we must
have @w ∈ match(σ∗Jk + hK, σ′[k + h]), that is for k + h = j + 1, we have @w ∈ match(σ∗Jj + 1K, σ′[j + 1]).
By definition of match, this implies that: @w ∈ PostN (σ∗Jj + 1K) : w M σ′[j + 1], which contradicts B.2.
This finishes the proof.

Now we prove some useful properties about function g as defined in Lemma 3.1 that will be useful to
prove the properties used in the proof of Lemma 3.1.

Property A.1. f is monotone.

Proof. Assume n ≤ m, that is, m = n+ h, then:

f(n) = #{k | σ∗[k] 6= ∗ ∧ 0 < k ≤ n} (Def. of f)

≤ #{k | σ∗[k] 6= ∗ ∧ 0 < k ≤ n+ h} (monotonicity of #)

= f(n+ h) (Def. f)

= f(m) (assumption)

Proof of Property: ∀i : g(i) = last(g(i+ 1), σ∗)

Proof. The proof is by using the definition of last:

last(g(i+ 1), σ∗) = max{k | 0 ≤ k < g(i+ 1) : σ∗[k] 6= ∗} (Def. of g)

= max{k | 0 ≤ k ≤ g(i) ∨ g(i) < k < g(i+ 1) : σ∗[k] 6= ∗} (properties of ≤)

= max{k | 0 ≤ k ≤ g(i) : σ∗[k] 6= ∗} (Def. of g)

= g(i) (Def. of max)

Proof of Property: ∀i : σ∗[g(f(i))] = σ∗Ji+ 1K.

Proof. First, let us prove that:

#{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ k′} = #{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ last(i+ 1, σ∗)} ⇒ k′ ≥ last(i+ 1, σ∗)

the proof is by contradiction, assume the antecedent holds and k′ < last(i+ 1, σ∗). That is: last(i+ 1, σ∗) =
k′ + h for some h, but then:

#{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ k′} = #{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ last(i+ 1, σ∗)} (assumption)

= #{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ k′ ∨ k′ < k ≤ last(i+ 1, σ∗)} (properties of ≤)

= #{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ k′}+ {k′ < k ≤ last(i+ 1, σ∗) ∧ σ∗[k] 6= ∗} (properties of #)

Simulation Relations for Fault-Tolerance 39

thus {k′ < k ≤ last(i+ 1, σ∗[k]) ∧ σ∗[k] 6= ∗} = 0, and then, σ∗[last(i+ 1, σ∗)] = ∗ which is a contradiction
by definition of last. Now, we can prove the property:

σ∗[g(f(i))] = σ∗[min{k | f(k) = f(i)}] (Def. of g)

= σ∗[min{k | #{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ k′} = #{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ i}}] (Def. of f)

= σ∗[min{k | #{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ k′} = #{k | σ∗[k] 6= ∗ ∧ 0 ≤ k ≤ last(i+ 1, σ∗)}}] (Def. of last)

= σ∗[last(i+ 1, σ∗)] (property above)

= σ∗Ji+ 1K (Def. of σ∗Ji+ 1K)

