
Under consideration for publication in Formal Aspects of Computing

Categorical Foundations for
Structured Specifications in Z
Pablo F. Castro1,3 and Nazareno Aguirre1,3 and Carlos L. Pombo2,3 and T. S. E. Maibaum4

1Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Córdoba, Argentina.
2Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina.
3Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4Department of Computing & Software, McMaster University, Hamilton (ON), Canada.

Abstract. In this paper we present a formalization of the Z notation and its structuring mechanisms. One
of the main features of our formal framework, based on category theory and the theory of institutions, is that
it enables us to provide an abstract view of Z and its related concepts. We show that the main structuring
mechanisms of Z are captured smoothly by categorical constructions. In particular, we provide a straight-
forward and clear semantics for promotion, a powerful structuring technique that is often not presented as
part of the schema calculus. Here we show that promotion is already an operation over schemas (and more
generally over specifications), that allows one to promote schemas that operate on a local notion of state to
operate on a subsuming global state, and in particular can be used to conveniently define large specifications
from collections of simpler ones. Moreover, our proposed formalization facilitates the combination of Z with
other notations in order to produce heterogeneous specifications, i.e., specifications that are obtained by
using various different mathematical formalisms. Thus, our abstract and precise formulation of Z is useful
for relating this notation with other formal languages used by the formal methods community. We illustrate
this by means of a known combination of formal languages, namely the combination of Z with CSP.

Keywords: Z Notation; System Specification; System Verification; Category Theory; Heterogeneous Spec-
ifications

1. Introduction

Formal specifications are descriptions of software systems given in terms of mathematical notations, that
enable one to rigorously reason about system properties. Given the complexity both of software systems
and the problems they solve, and how crucial it is in many contexts to guarantee that software performs
its functionalities correctly, formal specification can be an important aid in requirements analysis, software
design and implementation.

Correspondence and offprint requests to: Pablo F. Castro, Universidad Nacional de Ŕıo Cuarto, Ruta Nac. No. 36 Km. 601,
Ŕıo Cuarto (5800), Córdoba, Argentina. e-mail: pcastro@dc.exa.unrc.edu.ar

2 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Usually, software tends to be large and complex. So, an important concern in software development is scal-
ability. Formal specifications of such software are typically also large, due to the level of detail that formality
often requires, technically involved and hard to understand. A mechanism to achieve scalability, considered
crucial by software engineers since the seminal work of Parnas [Par72, Par85], is software modularization. In
the context of formal specification, modularization is realized via diverse structuring mechanisms, provided
by formal notations with the aim of simplifying the task of describing and reasoning about specifications:
large system descriptions are decomposed into several interacting modular specifications, enabling in this
way reasoning compositionally over complex problems.

One of the formal languages that heavily relies on the concept of module is the Z notation [Nic95], a
well-known formal specification language used for describing and reasoning about systems. Indeed, one of the
main characteristics of Z is that it provides syntactical constructions to describe modules, called schemas,
together with several structuring mechanisms for building large systems from schemas, usually called schema
operators. These mechanisms, or operators, allow for the combination (and generalization) of schemas, to
build complex specifications out of simpler parts. Some standard schema operators used in Z specifications are
(i) schema inclusion, which facilitates the reuse of specifications by allowing the inclusion of one schema into
another; (ii) schema conjunction and disjunction, which enable the combination of schemas by combining
their constituent constraints using logical connectives; (iii) schema quantification, which enables one to
generalize schemas over a set of values; and (iv) schema promotion, an operation that allows one to promote
schemas that operate on “local” state to operate on a subsuming “global” state; in particular, promotion
can be used to conveniently define large specifications from collections of simpler ones.

Promotion is one of the most powerful structuring mechanisms associated with Z. This technique allows
one to map a local state into a global one. A particularly recurring use of promotion is in the definition
of the global state as being composed of collections of local states; when these local states represent the
states of module instances, one can achieve a construction similar to the notion of objects in object oriented
programming [Mey00]. One of the contributions of this paper is the provision of a mathematical foundation
for Z that provides a rigorous semantics for schema operators and its structuring mechanisms, including pro-
motion. As we discuss in section 6, most of the proposed approaches to provide semantics to the Z notation
do not reflect, or appropriately treat, the structure of Z specifications in the semantics. Our proposed char-
acterization provides appropriate formalizations for schema operators in terms of categorical constructions,
and in particular captures promotion as a straightforward construction. As we will show, this has important
benefits, in particular because it allows us to formally deal, semantically, with promoted specifications.

Another important element employed for dealing with software complexity is separation of concerns. In
fact, a common practice in software engineering is to model different aspects of a software system using
different notations, each of which is better suited for a particular aspect. For instance, the static structure
of a system may be captured using a given notation (e.g., class diagrams), while the run time behaviour of
the system may be described in a different setting (e.g., using state machines). As argued in [HJ98, MML07,
BSM04, FKNG92, Lan09], a complete description of a complex artifact of software might only be achieved by
resorting to several orthogonal software notations, where each aspect of the system is modeled by choosing
a suitable formalism. This philosophy is followed, for example, by the Unified Modeling Language [BSM04]
(and related languages) where class diagrams are used for describing the architecture of the system, sequence
diagrams and state charts are used for modeling the dynamic interaction of the system’s components and
object diagrams are employed to capture run time scenarios of the system execution.

Formal specification, as all forms of software specification, can greatly profit from this “multiple views”
approach, and therefore heterogeneous formal notations for specifying, verifying and validating software
specifications are receiving increasing attention. Intuitively, a heterogeneous specification is a mathematical
model of a system that is built by resorting to several (and perhaps highly different) logical or formal
languages. Each of these formal notations is used for describing some important aspect, or view, of the
system. The combination of various formal languages allows software designs to gain expressivity and clarity.
From a mathematical point of view, the combination of different notations introduces some technical issues
that are hard to deal with. In particular, finding a mathematical framework expressive enough to harmonize
the conflicts or inconsistencies that arise when different “views” are combined is not always a trivial task.
The categorical framework that we propose in this work enjoys the benefit of providing such an abstract,
and general setting, that can be used to combine Z with other languages and notations, thus making possible
the use of the Z notation in a heterogeneous setting. This is the other main contribution of our proposal.

This work extends that presented in [CAPM12], where a basic categorical framework to capture schema
conjunction and promotion is introduced. We now rework that framework to obtain a more expressive setting,

Categorical Foundations for Structured Specifications in Z 3

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

lunes 22 de abril de 13

Fig. 1. Examples of Z Schemas

by extending some definitions to be able to capture other schema operators such as schema disjunction and
schema quantification. In addition, we study in detail the properties of promotion, and demonstrate that the
introduced framework naturally supports heterogeneous specifications. We illustrate this with an example
that involves process algebras.

The paper is structured as follows. Section 2 provides a short introduction to Z and the basic categorical
concepts used throughout this text. Section 3 describes the categorical formalization of Z and its structuring
mechanisms; in section 4, we show how promotion can be captured by resorting to standard constructions
from the theory of institutions. In section 5 we show that the categorical framework provided in this paper
can be used for combining Z with other formalisms to obtain heterogeneous specifications. We illustrate this
by providing a formal semantics for a language that combines Z and CSP, that we refer to as CZP, and that
is similar to Z-CSP [Fis97]. Finally, we discuss related work and present some final remarks. For the sake of
readibility some technical details about the definitions given in Section 2 are gathered in the appendix.

2. Preliminaries

In this section, we introduce some basic concepts that are necessary throughout the paper. These include a
description of the Z notation and its main features, and basic definitions regarding category theory and the
theory of institutions.

2.1. The Z Notation

Z is a formal notation based on mathematical logic and set theory. It is often regarded as being model based,
since specifications in the language describe systems behaviour via models, typically involving the description
of data domains and operations on these domains [Woo96]. Such models are expressed in terms of well defined
types, including a rich set of provided types, such as the typical numerical domains (technically, all defined
in terms of the built-in type Z), sets, sequences, tuples, relations and functions, etc. Z specifications are
structured via the notion of schema [Woo96]. Essentially, a schema defines a set of typed variables, whose
values might be constrained; so a schema has a declaration section, and a constraint (or predicate) section.
This extremely simple notion is powerful and convenient for defining data domains and operations on these,
as formal models of systems. As a first example, suppose that we need to specify a game similar to Risk
[Ris63], consisting of players whose goal is to conquer territories on a map. For simplicity, let us suppose that
territories are labelled by natural numbers, identifying each territory. We might start by defining players,
indicating the territories they own. In Z, this is achieved by the schemas shown in Fig. 1. These are very
simple schemas that have an empty predicate part (no special constraints on the variables). Basic operations
for a player are settling in a territory, and leaving an occupied territory. In Z, operations are also captured
by schemas; schemas characterising the settle and leave operations are shown in the same figure. In these
schemas, ∆Player indicates that two copies of the schema Player are incorporated into Settle and Leave, one
exact copy of Player and the other with its variables renamed by priming. This is done in order to capture
the effect of settling (resp. leaving) as a relation between “pre” states of the player (the unprimed variables)
and the “post” states of the player, resulting from settling on (resp. leaving from) a territory. Additional
variables, in this case representing parameters of the operations, are incorporated and constrained in the

4 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

Categorical Foundations for Z Specifications 3

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

Categorical Foundations for Z Specifications 3

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the following
schema:

Player
owns : P N

This is a very simple schema, that has an empty predicate part (no special constraints on the variables).
Basic operations for a player are settling in a territory, and leaving an occupied territory. In Z, operations
are also captured by schemas; schemas characterising the settle and leave operations are the following:

Settle
�Player
t : N

t /2 owns
owns0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns0 = owns \ {t}

In these schemas, �Player indicates that two copies of the schema Player are incorporated into Settle and
Leave, one exact copy of Player and the other with its variables renamed by priming. This is done in
order to capture the e↵ect of settling (resp. leaving) as a relation between “pre” states of the player (the
unprimed variables) and the “post” states of the player, resulting from settling on (resp. leaving from) a
territory. Additional variables, in this case representing parameters of the operations, are incorporated and
constrained in the predicate part of the schemas. When defining a schema in terms of another one, constraints
from the used schema are made part of the constraints of the using schema; for instance, constraints from
Player and Player’ (coming from �Player) are part of the Settle schema (although in this case no actual
constraints are incorporated, because the used schemas had no constraints). According to the denotational
semantics of Z, a model for a schema is an assignment, that provides values in the corresponding types for
the variables in the schema, and satisfies the predicate part of the schema [23]. That is, a model provides
actual values for the variables in a schema. Notice for instance that, for the case of Player, all possible models
of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but
we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

lunes 22 de abril de 13

Fig. 1. Examples of Z Schemas

and a constraint (or predicate) section. This extremely simple notion is powerful and convenient for defining
data domains and operations on these, as formal models of systems. As a first example, suppose that we
need to specify a game similar to Risk, consisting of players whose goal is to conquer territories in a map.
For simplicity, let us suppose that territories are labelled by natural numbers, identifying each territory. We
might start by defining players, indicating the territories they own. In Z, this is achieved by the schemas
shown in figure 1. These are very simple schemas, that has an empty predicate part (no special constraints
on the variables). Basic operations for a player are settling in a territory, and leaving an occupied territory.
In Z, operations are also captured by schemas; schemas characterising the settle and leave operations are
shown in the same figure. In these schemas, �Player indicates that two copies of the schema Player are
incorporated into Settle and Leave, one exact copy of Player and the other with its variables renamed by
priming. This is done in order to capture the e↵ect of settling (resp. leaving) as a relation between “pre”
states of the player (the unprimed variables) and the “post” states of the player, resulting from settling on
(resp. leaving from) a territory. Additional variables, in this case representing parameters of the operations,
are incorporated and constrained in the predicate part of the schemas. When defining a schema in terms
of another one, constraints from the used schema are made part of the constraints of the using schema;
for instance, constraints from Player and Player’ (coming from �Player) are part of the Settle schema
(although in this case no actual constraints are incorporated, because the used schemas had no constraints).
According to the denotational semantics of Z, a model for a schema is an assignment, that provides values
in the corresponding types for the variables in the schema, and satisfies the predicate part of the schema
[23]. That is, a model provides actual values for the variables in a schema. Notice for instance that, for the
case of Player, all possible models of the schema capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange b= Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting of the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms of
“local states”, to definitions of a “global state”, often composed of various instances of the local state [27].
As an example, suppose that we define the state of game, using our previously defined Player schema:

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

This schema explicitly indicates who are the players of the game (ps), and the territories composing the map
(ts); it also constrains the valid states of the game to nonempty sets of territories, and prevents players from
sharing the occupation of a territory. We have already defined game related operations Settle and Leave, but

4 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

we have done so for Player. We would like to be able to promote those “local” operations to the “global”
state characterised by Game, instead of having to redevelop them as operations on Game. In order to do so,
one needs to define a promotion schema, i.e., a schema relating the local and global states:

PromotePlayer
�Game
�Player
p : Player

p = ✓Player ^ p 2 ps
ts = ts0

ps0 = ps \ {p} [{✓Player 0}

Notice that this schema indicates how a state change of a single player is embedded into a state change for
the global state of the game. Now, one can promote the Settle operation to the system level, as follows:

GameSettle b= 9�Player • Settle ^ PromotePlayer

The existential quantification in this definition has the purpose of hiding the “local state”, which by the
restrictions in the PromotePlayer schema is already embedded into the state of the game. That makes
GameSettle an operation exclusively on the state of the game.

2.2. Institutions and Category Theory

In section ?? we provide a categorical semantics to Z, in this section we recall some useful definitions of
category theory, for a detailed introduction to these topics the reader is referred to [?, ?]. A category is a
mathematical structure composed of two collections: the collection of objects: a, b, c, . . . and the collection
of arrows (or morphisms): f , g , h, . . . between them. An arrow has a domain and a codomain, and we write
f : a ! b to indicate that a (resp. b) is the domain (resp. codomain) of f . We have two basic operations
involving arrows: the identity, that given an object a produces an arrow ida : a ! a, and the composition,
which given arrows f : a ! b and h : b ! c, returns an arrow f ; g : a ! c. Identity arrows satisfy:
f ; idb = f and ida ; f = f , for every f : a ! b. The composition of arrows is associative. A functor
is essentially a homomorphism between categories. The most natural example of a category is Set, made
up of the collection of sets and the collection of functions between sets. An indexed category is a functor
F : Iop ! C, the basic properties of indexed categories can be consulted in [?]. Given a indexed category we
can build a plain category called the Grotehendieck construction [], these two concepts will be very useful in
the following. Furthermore, a monoidal category is a category C plus a functor ⌦ : C⇥C! C and a object
id such that they satisfy, up to isomorphism, the diagrams corresponding to associativity and identity. A
monoidal indexed category is an indexed category of type: F : Cop ! MonCat, where MonCat is the
category whose objects are monodical categories [].

Another useful concept we will use throughtout this text is that one of institutions, an institution is an
abstract formulation of a logical system, let us recall its definition given in [].

Definition 2.1. [Institution] An institution is a structure of the form hSign,Sen, Mod, {|=⌃}⌃2|Sign|i
satisfying the following conditions:

• Sign is a category of signatures,

• Sen : Sign! Set is a functor. Let ⌃ 2| Sign |, then Sen(⌃) returns the set of ⌃-sentences,

• Mod : Signop ! Cat is a functor. Let ⌃ 2| Sign |, then Mod(⌃) returns the category of ⌃-models,

• {|=⌃}⌃2|Sign|, where |=⌃✓| Mod(⌃) | ⇥Sen(⌃), is a family of binary relations,

and for any signature morphism � : ⌃ ! ⌃0, ⌃-sentence � 2 Sen(⌃) and ⌃0-model M0 2| Mod(⌃) |, the
following |=-invariance condition holds:

M0 |=⌃0
Sen(�)(�) i↵ Mod(�op)(M0) |=⌃ � .

Furthermore, given two di↵erent institutions we can define di↵erent kinds of morphisms between them. The
following definition is taken from [?], and formalizes the notion of institution representation.

Definition 2.2. ([?]) Let I = hSign,Sen,Mod, {|=⌃}⌃2|Sign|i and I0 = hSign0, Sen0,Mod0, {|=0
⌃}⌃2|Sign0|i

be institutions. Then, h�Sign , �Sen , �Modi : I ! I 0 is an institution representation if and only if:

lunes 22 de abril de 13

Fig. 2. Examples of Promotion

predicate part of the schemas. When defining a schema in terms of another one, constraints from the used
schema are made part of the constraints of the using schema; for instance, constraints from Player and
Player’ (coming from ∆Player) are part of the Settle schema (although in this case no actual constraints are
incorporated, because the used schemas had no constraints). According to the denotational semantics of Z,
a model for a schema is an assignment, that provides values in the corresponding types for the variables in
the schema, and satisfies the predicate part of the schema [Spi88]. That is, a model provides actual values for
the variables in a schema. Notice for instance that, for the case of Player, all possible models of the schema
capture the “state space” for the player.

Z also features schema structuring operations, that is, operations that enable one to define schemas based
on other existing schemas. A rather simple one is schema composition. Suppose that we would like to define
an operation to capture the situation in which a player exchanges one territory for another one, i.e., it leaves
a territory and settles in another one. Such an operation can be defined using schemas Leave and Settle, via
a simple composition:

Exchange =̂ Leave[t1/t] o
9 Settle[t2/t]

This composition (slightly complicated with the renamings necessary for the composition to distinguish the
t variables in the two schemas) captures the state change produced by applying the second operation to the
state resulting from the application of the first operation.

Promotion is another structuring mechanism of Z. It enables one to promote definitions given in terms
of “local states”, to definitions of a “global state”, often composed of various instances of the local state
[Woo96]. As an example, suppose that we define the state of game, using our previously defined Player
schema, as shown in Fig. 2. This schema explicitly indicates who are the players of the game (ps), and
the territories composing the map (ts); it also constrains the valid states of the game to nonempty sets of
territories, and prevents players from sharing the occupation of a territory. We have already defined game
related operations Settle and Leave, but we have done so for Player. We would like to be able to promote
those “local” operations to the “global” state characterised by Game, instead of having to redevelop them as
operations on Game. In order to do so, one needs to define a promotion schema, i.e., a schema relating the
local and global states. Notice that this schema indicates how a state change of a single player is embedded
into a state change for the global state of the game. Note also the Θ notation, in this case ΘPlayer is used for
referring to the state of Player before the execution of the action, in a similar way one might use ΘPlayer ′

to denote the state after. Now, one can promote the Settle operation to the system level, as follows:

GameSettle =̂ ∃∆Player • Settle ∧ PromotePlayer

The existential quantification in this definition has the purpose of hiding the “local state”, which by the
restrictions in the PromotePlayer schema is already embedded into the state of the game. That makes
GameSettle an operation exclusively on the state of the game.

2.2. Logic, Institutions and Category Theory

In this section we recall some useful definitions of logic, category theory and institution theory. For a detailed
introduction to these topics the reader is referred to [End01, Dia08, Mac98, Fia04].

First, let us start providing the basic definitions of propositional logic. A propositional vocabulary,
or propositional signature, is an enumerable collection of symbols acting as propositional variables: Σ =
{p0, p1, p2, . . . }; propositional formulas are defined as usual; propositional variables are formulae and boolean

Categorical Foundations for Structured Specifications in Z 5

operators (¬, ∨, ∧ and ⇒) combining formulae are formulae. Semantics for propositional formulae is given
by functions v : Σ → {true, false} called assignments, which map propositional symbols to truth values,
boolean operators are interpreted in a logical way as usual. A translation between two propositional signa-
tures Σ = {p0, p1, p2, . . . } and Σ′ = {p′0, p′1, p′2, . . . } is a function τ : Σ→ Σ′. Given a translation τ : Σ→ Σ′

and an assignment v : Σ′ → {true, false}, we can define an assignment v |τ : Σ → {true, false} as follows:
v |τ (pi) = v(τ(pi)); this is called the τ -reduct of v .

First-order logic enriches propositional logic with quantifiers, variables ranging over individuals of certain
sorts, function symbols and relation symbols. A first-order signature is a tuple Σ = 〈F ,R, ι〉 where F is a set
of function symbols and R is a collection of relation symbols, and ι : F ∪R → N is a function returning the
arities of the function and relation symbols. Constants will be represented by function symbols whose arity is
0. First-order terms are obtained as the smallest set S of syntactic objects such that 0-ary functions are in S
and for every n-ary function symbol f and n-tuple t1, . . . , tn in S n , f (t1, . . . , tn) is in S ; first-order formulae
is obtained as the smallest set S ′ such that for every n-ary relation symbol r and n-tuple t1, . . . , tn of terms,
r(t1, . . . , tn) is in S ′, the boolean combination of formulae in S ′ is in S ′ and for any variable symbol x and
formula α in S ′, ∃ x • α is in S ′. An interpretation (or structure) for a first-order signature Σ is a structure:
M = 〈S , I 〉 where S is a non-empty set, and I is a function mapping each n-ary function symbol f to a n-ary
function I (f) : S ×· · ·×S → S and each n-ary relation symbol r to a n-ary relation I (r) : S ×· · ·×S . Given
a first-order logic formula α, a model of it is an interpretation M together with an assignment of elements of
the set to variable symbols v such that 〈M , v〉 satisfies the formula, denoted as 〈M , v〉 |= α. This is naturally
extended to sets of formulae by requiring the pair to be a model of all the formulae in the set. A translation
between two first-order signatures Σ = 〈F ,R, ι〉 and Σ′ = 〈F ′,R′, ι′〉 is a function τ : R ∪ F → R′ ∪ F ′

such that n-ary functions (resp. relations) of Σ are mapped to n-ary function (resp. relations) of Σ′. Given a
translation τ : Σ→ Σ′ and a model M ′ = 〈〈S ′, I ′〉, v ′〉 of Σ′ we can define a model M ′|τ = 〈〈S ′|τ , I ′|τ 〉, v ′|τ 〉
of Σ as follows: S |τ = S , I ′|τ (f) = I ′(τ(f)) for f ∈ R ∪ F , v ′|τ = v ′; M ′|τ is called a τ -reduct of M ′, or
simply a reduct of M ′ when τ is clear from the context.

A category is a mathematical structure composed of two collections: the collection of objects: a, b, c, . . .
and the collection of arrows (or morphisms): f , g , h, . . . between them. An arrow has a domain and a
codomain, and we write f : a → b to indicate that a is the domain of f and b is the codomain of f . We have
two basic operations involving arrows: the identity, that given an object a produces an arrow ida : a → a,
and the composition, which, given arrows f : a → b and g : b → c, returns an arrow f ; g : a → c. Identity
arrows satisfy: f ; idb = f and ida ; f = f , for every f : a → b. Also, for any arrows f : a → b, g : b → c, and
h : c → d f ; (g ; h) = (f ; g) ; h. Sometimes, when the arrows are functions, instead of using the operator
; we use the symbol ◦ to write the composition of arrows in applicative order, e.g., g ◦ f : a → c. Given a
category C, its collection of objects is denoted by |C|, and its collection of arrows by ||C||. The most natural
example of a category is Set, made up of the collection of sets and the collection of functions between sets.
The dual category of C, denoted Cop , has the same objects as C, and its arrows are obtained by inverting
the domain and codomain of the arrows of C, formally: ||Cop || = {f op : b → a | f : a → b ∈ ||C||}. We say
that an arrow f : a → b is iso if there exists an arrow g : b → a such that f ◦ g = idb and g ◦ f = ida ; in this
case we write a ∼= b, or we simply say that a and b are isomorphic.

A functor is essentially a homomorphism between categories that maps objects to objects and arrows to
arrows preserving identity and composition. A simple example of functor is the powerset functor of set theory
(written P : Set → Set), which maps any set S to its powerset P(S) and maps any function f : S → S ′ to
a function P(f) : P(S) → P(S ′) defined as: P(f)(A) = {f (x) | x ∈ A}. Another useful example of functor
is the following, given any category A we denote by HomA(x , y) the set of arrows between x and y in A;
furthermore HomA(x ,−) : A → Set is a functor, that maps each object x to its sets of arrows, and each
arrow f : y → z to a function Hom(x , f) : Hom(x , y) → Hom(x , z) mapping arrows to arrows, defined as
Hom(x , f)(g) = f ◦ g . Similarly, a bifunctor F : A×B→ C is a functor from the product category A×B
(with objects pairs of objects and arrows pair of arrows) to another category C.

A natural transformation is a morphism between functors; given two functors F ,G : A → B, a natural

transformation η : F
�→ G from F to G is a mapping that assigns to each object x of A an arrow ηx : F (x)→

G(x) (called its components), such that for every arrow f : x → y in A we have ηy ◦ F (f) = G(f) ◦ ηx (this

is called the natural condition). Natural transformations will be denoted by the use of the symbols
�→, and,

when useful, we identify a natural transformation with the collection of its components.
The concept of adjoint arises almost everywhere in category theory (and in mathematics in general).

It can be thought of as a generalization of the notion of Galois connection. The simplest definition of the

6 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

concept of adjoint is as follows. Given functors F : A→ B and G : B→ A, G is said to be right adjoint of
F when there is a bijection between HomA(F (x), y) ∼= HomB(x ,G(y)) which is natural in x and y . In this
case, we simply say that F and G are adjoints.

A monoidal category is a category C plus a functor ⊗ : C×C→ C and an object 1 such that they satisfy,
up to isomorphism, the diagrams corresponding to associativity and identity along with some coherence
conditions (the so-called triangle and pentagon diagrams, see the appendix).

The notion of bicategory [Ber67] will be important when defining schemas and operations of Z . Bicate-
gories are a generalization of categories, where we have an additional notion of arrow (between arrows) that
admits two kinds of compositions; formally, a bicategory V consists of:

• a class of objects |V| (also called 0-cells),

• for every x , y ∈ |V|, V(x , y) is a category whose objects are called arrows (or 1-cells) and whose mor-
phisms are called 2-cells, composition in V(x , y) is called vertical composition.

• for every object a ∈ |V|, a 1-cell 1a : a → a ∈ |V(a, a)|, which is called the unit of a, and

• a bifunctor ; x ,y,z : V(x , y) × V(y , z) → V(x , z), for every x , y , z ∈ |V|, this is called the horizontal
composition operator.

The bifunctor ; (we omit the subindexes when they are clear from context) must be associative up to
isomorphism, see the appendix for the coherence conditions. We will make use the well-known constructions
of products, coproducts, limits and colimits. Here, we only introduce the notion of coproduct for the other
ones the reader is referred to [Mac98]. Consider a pair of arrows f : a → a + b and f : b → a + b, if for every
other pair of arrows f ′ : a → c and g ′ : a → c we have that there is a unique arrow u : a + b → c such
that f ′ = f ; u and g ′ = g ; u, then we say that 〈f , g〉 is a coproduct and a + b is the coproduct object; the
existence (and uniqueness) of u is often referred as the universal property of coproducts, and similarly for
the other constructions.

Another useful concept we will use throughout this text is that of institutions. An institution is an
abstract formulation of the model theory of a logical system.

Definition 2.1. ([GB92]) An institution is a structure of the form 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 satisfying
the following conditions:

• Sign is a category of signatures,

• Sen : Sign→ Set is a functor. Let Σ ∈| Sign |, then Sen(Σ) returns the set of Σ-sentences,

• Mod : Signop → Cat is a functor. Let Σ ∈| Sign |, then Mod(Σ) returns the category of Σ-models,

• {|=Σ}Σ∈|Sign|, where |=Σ⊆|Mod(Σ) | ×Sen(Σ), is a family of binary relations,

and for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ) and Σ′-model M′ ∈| Mod(Σ) |, the
following |=-invariance (or satisfaction) condition holds:

M′ |=Σ′ Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Note that in the |=-invariance condition, the expression Sen(σ)(φ) must be associated to the left (i.e.,
(Sen(σ))(φ)), also note that Sen is a functor (which maps objects to objects and arrows to arrows) and
σ : Σ→ Σ′ is a translation between signature, thus Sen(σ) : Sen(Σ)→ Sen(Σ′), defined as the homomorphic
extension σ to the structure of formulae is a function translating sentences of Σ to sentences of Σ′.

Let us give a simple example to clarify this definition. Consider propositional logic (PL from now on),
we can define it as an institution as follows. The syntax of PL is given by a category SignPL which has as
objects sets of propositional variables, and translations between them are its morphisms. On the other hand,
the functor SenPL, maps each sets of propositional variables to the collection of propositional formulae that
can be constructed from them using the standard boolean operators, also Sen maps each translation σ of
propositional variables to a translation Sen(σ) between formulae on the signature in the domain of σ to
formulae on the signature in the codomain of σ by replacing propositional symbols in formulas in the ways
prescribed by σ. The semantics of the logic is given by a functor Mod which maps each signature to its
class of models, assignments of truth values to propositional variable symbols; here it is important to note
that translations of propositional signatures are mapped to reducts (in the traditional sense of model theory
[CK90]), thus a translation σ : Σ → Σ′ is mapped to a reduct operation Mod(σ) : Mod(Σ′) → Mod(Σ),
turning assignments of truth values to variable symbols in Σ′ to an assignments of truth values to variable
symbols of Σ, by simply forgetting the variables that are not in the codomain of σ, and mapping the other in

Categorical Foundations for Structured Specifications in Z 7

the opposite direction that the one prescribed by σ. One must note that reducts go in the opposite direction
w.r.t. signature translation, for this reason the functor Mod goes from Signop (the dual of Sign) to Cat.

Furthermore, given two different institutions we can define different kinds of morphisms between them.
The following definition is taken from [Tar95], and formalizes the notion of institution representation (also
called comorphisms).

Definition 2.2. ([Tar95]) Let I = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and I′ = 〈Sign′, Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉
be institutions. Then, 〈γSign , γSen , γMod〉 : I → I ′ is an institution representation if and only if:

• γSign : Sign→ Sign′ is a functor,

• γSen : Sen
�→ γSign ; Sen′, is a natural transformation,

• γMod : (γSign)op ; Mod′
�→Mod, is a natural transformation,

such that for any Σ ∈| Sign |, the function γSen
Σ : Sen(Σ) → Sen′(γSign(Σ)) and the functor γMod

Σ :
Mod′(γSign(Σ)) → Mod(Σ) preserve the following satisfaction condition: for any α ∈ Sen(Σ) and M′ ∈|
Mod(γSign(Σ)) |,

M′ |=γSign(Σ) γSen
Σ (α) iff γMod

Σ (M′) |=Σ α .

An institution representation γ : I → I ′ expresses how a “poorer” logical system is encoded in another
“richer” one. This is done by:

• constructing, for a given I -signature Σ, an I ′-signature into which Σ can be interpreted,

• translating, for a given I -signature Σ, the set of Σ-sentences into the corresponding I ′-sentences,

• obtaining, for a given I -signature Σ, the category of Σ-models from the corresponding category of Σ′-
models.

The direction of the arrows shows how the whole of I is represented by some parts of I ′. Institution rep-
resentations enjoy some interesting properties. For instance, logical consequence is preserved, and, under
some conditions, logical consequence is preserved in a conservative way. Roughly speaking, an institution
representation embeds one logical system into another.

As above, a simple example is useful to clarify the concepts, consider the institution of first-order logic
(named FOL), where SignFOL is the category whose objects are first-order signatures (i.e., collection of
constant names, function symbols and relation symbols), and whose arrows are translations of first-order
symbols. The functor Sen is defined in the usual way, by defining the set of first-order formulae over a given
signature; the functor Mod maps FOL signatures to first-order models (as described in previous paragraphs),
Mod maps symbol translation to first-order reducts. Now, we can define an institution representation be-
tween PL and FOL, as follows: 〈γSign , γSen , γmod〉 where γSign maps a set of propositional variables (a
propositional signature) to a set of nulary relations (first-order signature), γSen maps propositional formulas
to first-order formulas (a direct conversion) and γMod extracts from a first-order structure a propositional
assignment, by setting a proposition true iff the corresponding nulary relation holds. Summing up, this
institutions representation shows how propositional logics can be embedded into first-order logic. A large
collection of examples can be found in [Tar95].

3. A Categorical View of Z

In this section we provide a basic characterization of Z constructs. As we show below, this categorical
framework allows us to give a clear semantics for Z , including the schema calculus, which is one of the
most important aspects of this formal notation. All the operations over schemas: conjunction, disjunction,
negation, quantification, and promotion, together with related constructions (schema inclusion, ∆ and Ξ
notation) have their categorical counterpart in this setting in a general and straightforward way. Moreover,
the concept of action and its associated notions are also formally captured in the framework proposed below.
One of the main benefits of this categorical foundation for Z is that it enables the combination of Z with
other formal settings; an example of this is shown in Section 5. This is based on the fact that most formal
languages used in computer science can be captured as institutions, this enables the combination of these
formalisms with the categorical presentation of Z given below. The combination of different institutions

8 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

is a topic that have been extensively studied over the past few years within the context of heterogeneous
specifications [MTP97].

First, we introduce a category of signatures (named Zign); this basic category is used as a mathematical
base to build other, more structured, categories. In this mathematical framework, Z schemas are captured
as axiomatic theories, as discussed above. This agrees with the original semantics of Z given in [Spi84]. As
described below, the plain category of theories is not powerful enough to capture the schema calculus used
in Z , we show that a more expressive framework can be obtained by using monoidal categories and related
constructions.

3.1. The Basic Categories

The first notions we need to introduce are those of type and typed variable.

Definition 3.1. Given a set T = {t0, t1, . . . } of basic types, the set of types over T is defined as follows:

• Any ti ∈ T is a type.

• Z is a type.

• If t is a type, then P(t) is a type.

• If t , t ′ are types, then t × t ′ is a type.

A typed variable is a pair 〈v , t〉, where v is variable name and t is a type name. This is usually denoted by
v :t . We use strings over the alphabet {a, b, c, . . . } for both variables and variable types, we also consider
any additional symbols that may be useful in these sets, e.g., symbols with superscripts.

It is worth noting that we will be able to introduce other useful types (e.g. → and 7→) by using these
basic types (as done in Z). First, we start defining the concept of signature, that is, a collection of variables
and types.

Definition 3.2. A signature is a tuple 〈N ,T ,V 〉, where: N is the name of the signature, T is a set of basic
types and V = {v0:t0, v1:t1, . . . } is a collection of typed variables, where ti ∈ T for all vi :ti ∈ V .

Given a signature Σ = 〈N ,T ,V 〉, we denote by Types(Σ) the second projection of Σ, and we use V ar(Σ)
to name the third projection of Σ. It is worth noting that we allow for repetition of variable names (with
different types) in signatures. This is not the case in Z , where schema signatures cannot include repetition
of variables (with different types). Thus the collection of signatures, as defined above, includes Z signatures
but also provides a generalisation of them. This flexibility allows us to provide a simple formalisation of the
so-called schema calculus.

On the other hand, morphisms between signatures are mappings between variables that preserve types.
Signature names only serve to decorate, and make clearer, specifications; for the sake of simplicity, and when
no confusions arise, we avoid writing the name of signatures when they are presented as tuples.

Definition 3.3. Given two signatures Σ = 〈T ,V 〉 and Σ′ = 〈T ′,V ′〉, a morphism σ : Σ→ Σ′, is a function
σ : V → V ′ such that:

• T ⊆ T ′,
• If v :t ∈ V , then σ(v):t ∈ V ′.

When useful, we write v :t ∈ Σ if v :t is a variable in Σ. We also write σ : Σ ↪→ Σ′ to indicate that σ is
an inclusion, i.e., a function that maps each symbol to itself. Examples of signature morphisms are symbol
substitutions (renaming variables in a signature), and embeddings of a signature into another one. It is worth
pointing out that types are preserved by morphisms. Type renaming will not be needed in the framework
described in this paper. It is direct to see that the set of signatures as objects and their morphisms as arrows
constitute the category Zign.

Theorem 3.1. Zign, with the set of signatures as objects and the set of signature morphisms as arrows, is
a category.

Theorem 3.2. Zign is finitely cocomplete.

Categorical Foundations for Structured Specifications in Z 9

Proof. This is equivalent to proving that it has coproducts, coequalizers and an initial object. For proving
the existence of coproducts, consider the signatures Σ0 = 〈T0,V0〉 and Σ1 = 〈T1,V1〉. Then we define:

Σ0 + Σ1 = 〈T0 ∪ T1, {v0:t | v :t ∈ V0} ∪ {v1:t | v :t ∈ V1}〉
It is simple to observe that we can define injections i : Σ0 → Σ0 + Σ1 and j : Σ1 → Σ0 + Σ1 such that the
corresponding diagram commutes, and the universal property holds. Thus, coproduces of arbitrary pair of
signatures exist. The existence of coequalizers is proved by considering morphisms f , g : Σ0 → Σ1, where
Σi = 〈Ti ,Vi〉 and R the smallest equivalence relation over V1 such that f (v :t)Rg(v :t) (note that f (v :t)
and g(v :t) have the same type). Let us use V1/R to refer to the quotient set. There is a selection function
s : V1/R → V1 that chooses one representative for each equivalence class. Therefore, let us define the
following signature:

Σ = 〈T1, {s([x :t]) | [x :t] ∈ V1/R}〉
where [x :t] is the equivalence class of x :t , and then we have a morphism σ : Σ1 → Σ that maps each element
to the representative of its equivalence class. Finally it is easy to prove that 〈0, ∅, ∅〉 is the initial object of
Zign. Thus Zign is finitely cocomplete.

This result implies that we can use the colimit construction on arbitrary finite diagrams to put specifi-
cations together; this is a common technique used in categorical specifications [GB92, Fia04].

Furthermore, we can provide a generalised version of intersection for signatures.

Definition 3.4. Given signatures Σi = 〈Ti ,Vi〉 (for i = 0, 1), their intersection is defined as follows:

Σ0 ∩ Σ1
def
= 〈T0 ∩ T1,V0 ∩V1}〉

Let us remark the importance of this operation for the framework delineated here. It allows us to identify
common parts of signatures, which will be important for putting schemas together.

We have defined the basic machinery that captures the syntactical aspects of Z and now we need to
provide a formalisation of its semantics. Given a signature, an interpretation is an assignment of values to
variables preserving their typing (i.e. every variable is mapped to a value in the set interpreting its type).

Definition 3.5. Given a signature Σ = 〈T ,V 〉, an interpretation is a (Σ-)structure I = 〈{Dt}t∈T , I〉 such
that I is a function defined as follows:

• I(DZ) = Z,

• I(t) = Dt ,

• I(t × t ′) = I(t)× I(t ′),

• I(P(t)) = 2I(t),

• For every v :t , I(v) ∈ I(t).

That is, an interpretation provides a suitable set for each type and an element (in these sets) for each variable.
Note that structured types are interpreted using the denotation of basic types and the operations of standard
set theory. The notion of morphisms between interpretations can be obtained is a straightforward way.

Definition 3.6. Given a signature Σ = 〈N ,T ,V 〉 and two Σ-Interpretations Ii = 〈{D i
t }t∈T , Ii〉 for i = 0, 1,

a morphism f : I0 → I1 is a collection of functions f : D0
t → D1

t for each t ∈ T , such that the following
commutation property holds:

f ∗(I0(v)) = I1(v), for every v : t ∈ T

where f ∗ is the homomorphic extension of f to structured types, defined as follows:

• f ∗(a) = f (a), if a ∈ D0
t ,

• f ∗(〈a0, a1〉) = 〈f ∗(a0), f ∗(a1)〉,
• f ∗({a0 7→ b0, a1 7→ b1, . . . }) = {f ∗(a0) 7→ f ∗(b0), f ∗(a1) 7→ f ∗(b1), . . . },
• f ∗({a0, a1, . . . }) = {f ∗(a0), f ∗(a1), . . . }.

The notion of reduct introduced in Section 2 can be straightforwardly extended to this new setting.

10 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

{hts V {0, 1}, ps V {howns V {0}i}i} ✏
Fig. 3. An interpretation of schema Game.

Definition 3.7. Given two signatures Σi = 〈Ti ,Vi〉 (for i = 0, 1), a morphism σ : Σ0 → Σ1 and a Σ1-
structure I = 〈{Dt}t∈T1 , I〉 we define the σ-reduct of I (denoted I|σ) as follows:

I|σ = 〈{Dt}t∈T0
, I ◦ σ∗〉

where σ∗ is an extension of σ mapping types to types as follows:

• σ∗(v :t) = σ(v):t ,

• σ∗(t × t ′) = t × t ′,
• σ∗(P(t)) = P(t)

In Z literature, interpretations are called bindings, as remarked in [Spi92, pp. 28]. Furthermore, we can
generalise the notion of interpretation to obtain a variation of this concept. The main idea is that we now
admit variables to be interpreted in many ways, leading to a loose interpretation described by a collection of
interpretations. This enables a more general semantics for schemas: each variable in a schema is now inter-
preted as a set of possible values, in contrast to the more usual tight semantics, where a given interpretation
assigns a unique value to a variable. This semantics will be useful, in particular, for formalising promotion
(see Section 4).

Definition 3.8. A loose interpretation of a signature Σ is a collection {Ij}j∈J , where each Ij is an inter-
pretation of Σ.

Similarly, we introduce a generalisation of the concept of morphism between interpretations.

Definition 3.9. A morphism m : {Ii}i∈I → {I′j}j∈J between two loose interpretations is given by: a
function ι : I → J and a collection of morphisms {mi : Ii → I′ι(i)}i∈I .

Now, it is possible to define a functor sending each signature to the category of its interpretations, as
follows.

Definition 3.10. We define a functor Mod : Zignop → Cat as follows:

• For each signature Σ, Mod(Σ) is the category whose objects are the collection of interpretations of Σ,
and the arrows are the homomorphisms between these structures.

• For each signature morphism σ : Σ→ Σ′, Mod(σ) : Mod(Σ′)→Mod(Σ) is the following functor:

– For each interpretation {Ii}i∈I , Mod(Σ)({Ii}i∈I) = {(Ii)|σ}i∈I , that is, it applies pointwise reduct,

– For each interpretation morphism m = {mi : Ii → I′ι(i)}i∈I , Mod(Σ)(m) = {(mi)|σ : (Ii)|σ →
(I′ι(i))|σ}i∈I , are the morphisms obtained by restricting the mi ’s to the reduct (Ii)|σ.

Some additional words regarding the interpretation of schemas are useful. Note that a schema can be used
to describe the state space of a system; thus, in many cases, a given interpretation can be thought of as
describing a state of the system (assigning values to variables); but it should be noted that there could be
many interpretations of this schema, each one describing a different feasible state of the system; in the case
of loose interpretations, they identify a schema with a collection of feasible states.

We use the standard Z notation to describe signatures, that is, we list the variables with their types
inside a box. We provide some examples to illustrate the ideas presented above. An example of a model for
Game is shown in Figure 3, using a notation borrowed from [Woo96]. This interpretation maps ts to the set
{0, 1} and ps to a corresponding set. Also note that we use a triple arrow V to describe an interpretation
(or binding). Note that, in the aforementioned figure, each variable is mapped to a corresponding value, the
symbol � is used to state that this structure is an interpretation of the schema Game. We will use the same
notation when the schema contains some restrictions, as described below.

Now, we need to incorporate in our framework the Z formulas; they are the syntactic ingredient that
enables Z designers to write software specifications. Given a signature Σ, we denote by Sen(Σ) the set of Z

Categorical Foundations for Structured Specifications in Z 11

formulas that we can obtain by using the symbols of Σ. Z formulas include propositional operators, first-order
quantifiers, relational operators and lambda expressions; the interested reader can find a detailed definition
in [Woo96].

Definition 3.11. We define the functor Sen : Zign→ Set as follows:

• For each signature Σ, we define Sen(Σ) as the set of Z formulas built from the symbols in Σ.

• For each translation σ : Σ0 → Σ1, Sen(σ) : Sen(Σ0)→ Sen(Σ1) is the translation of formulas obtained
based on morphism σ.

The notion of satisfiability can be straightforwardly defined for Z formulas and (loose) interpretations. This
relation is denoted by �Σ⊆Mod(Σ)×Sen(Σ). Using these definitions we can prove that Z is an institution.

Theorem 3.3. The structure Z, formed by: (i) the category Zign, (ii) the functor Sen : Zign→ Set, that
sends each signature to its set of formulas, (iii) the functor Mod : Zignop → Cat, that sends each signature
to the category of its models, and (iv) the collection of relations �Σ (satisfaction relations relating models
of a signature to formulas of the signature), is an Institution.

Proof. The main point to prove is that the |=-invariance condition for satisfaction holds. This can be proven
by structural induction on formulas; since Z formulas are built using standard logical operators and higher-
order constructions the interested reader is referred to [GB92, Bor99].

We have characterised the basic logical machinery of Z using institutions, we can start providing the
definitions concerning the structuring mechanism of Z .

The notion of schema is the most important structuring mechanisms of Z . A schema defines a set of
typed variables, and provides constraints on these variables. At first sight, the notion of axiomatic theory
captures naturally the notion of schema, as illustrated in [Spi84, CAPM12]; however, schemas support
several operations over them (conjunction, disjunction, promotion, etc) that do not have a corresponding
formalisation in the category of theories over signatures. In this context, a theory is a signature together
with a set of axioms over that signature closed under logical consequence. Pairs formed by a signature and
an arbitrary set of axioms are usually called theory presentations and denote the theory obtained by closing
the set of axioms by logical consequence. When no confusion arise we will use the term “theory” to denote
the latter too. For this reason, in the following definition, we use a generalisation of the notion of theory
that allows us to obtain an abstract formalisation of the schema calculus. Intuitively, we define a schema
as a “disjunction” of several axiomatic theories. This reflects the fact that schema disjunction is one of the
basic operators when combining schemas. Let us give the formal definition of schema.

Definition 3.12. A schema is a a tuple 〈N ,Σ, {Γi}i∈I 〉 composed of:

• A name N ,

• A signature Σ ∈| Zign |, containing the set of typed variables declared in the schema,

• A collection {Γi}i∈I of sets of formulas.

As before, we omit the name of schemas and/or signatures when possible; and we assume that the name of
a schema and its signature coincide.

Given a schema S = 〈Σ, {Γi}i∈I 〉, we denote by Sign(S) its signature, and by Ax (S) its sets of axioms.
Note that the relation � can be straightforwardly extended to deal with schemas.

Definition 3.13. If Zchm(Σ) denotes the collection of all the schemas with signature Σ, then the relation
�⊆ Mod(Σ)× Zchm(Σ) is defined as follows:

M � S iff ∃Γ ∈ Ax (S) •M � Γ

Let us give some examples to illustrate how these extended notions of axiomatic theories can be employed
to capture the concept of schema. Consider the schemas in Figure 4 taken from [Jac97]. Let us write down
each of these Z schemas as tuples following Definition 3.12. The box named Division in the figure denotes
the following schema:

〈Division, 〈{N}, {n : N, d : N, q : N, r : N}〉, {{d 6= 0, r < d ,n = q ∗ d + r}}〉,
while the schema T Division has the following formal counterpart:

〈T Division, 〈{N}, {n : N, d : N, q : N, r : N}〉, {{d 6= 0, r < d ,n = q ∗ d + r}, {r = 0, q = 0, d = 0}}〉.

12 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

{hts V {0, 1}, ps V {howns V {0}i}i} ✏

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

T Division b= Division _DivideByZero

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

T Division b= Division _DivideByZero

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

T Division b= Division _DivideByZero

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Fig. 4. Schemas: Division, DivisionByZero, and T Division.

Note that the last schema is obtained as a disjunction of two schemas. As we will show below, the operations
over schemas such as conjunction and disjunction can be formalized as categorical operations. It is worth
remarking that the colimit construction is the standard mechanism to conjoin theory presentations (see
[GB92] for a detailed presentation); however, in the category of plain theories there is no obvious way to
obtain schema disjunction as a categorical construction. We show that the generalisation of theories presented
here allows for a categorical formalisation of schema disjunction by using the notion of symmetric monoidal
category; we will return to this topic later on.

Let us now define a notion of morphism between schemas; signature morphisms can be straightforwardly
extended to schema morphisms:

Definition 3.14. Given schemas S0 = 〈Σ0, {Γ0
i }i∈I 〉 and S1 = 〈Σ1, {Γ1

j }j∈J 〉, a schema morphism σ : S0 →
S1 is a signature morphism σ : Sign(S0)→ Sign(S1) that satisfies the following condition:

∀Γ1 ∈ Ax (S1) • ∃Γ0 ∈ Ax (S0) • Γ1 � Sen(σ)(Γ0) (1)

Essentially, a schema morphism is a mapping between logical theories [End01] in a general sense: each
collection of formulas of the target theory logically implies at least one collection of formulas of the origin
specification. Roughly speaking, in a schema morphism, the target schema is stronger than the source one,
in the sense that the former chooses some theories of the latter and refines them; that is, the implementation
(the target schema) selects what part of the source schema (that can be thought as a specification) will
implement. Furthermore, note that, if we only consider schemas with singleton sets of sentences, then we
obtain the standard concept of interpretation between axiomatic theories.

Schemas and schema morphisms constitute a category. This is the basic structure upon which specifica-
tions are built. From now on, when no confusion is likely to arise, instead of writing Sen(σ)(Γ) we write
σ(Γ), where Γ is a collection of formulas.

Theorem 3.4. The structure Zchm formed by the set of Z schemas and the set of Z schema morphisms,
is a category.

Proof. Given a schema S , the identity morphism idS : S → S is defined by mapping each symbol to itself.
This obviously satisfies Condition 1. Given schemas: Sj = 〈N j ,Σj ,Γj

i 〉 with j = 0, 1, 2 and morphisms
σ1 : S0 → S1 and σ2 : S1 → S2, then σ2 ◦ σ1 : S0 → S2 is obtained by the composition of the signature
translations. The only point to prove is that this translation satisfies Condition 1 of Definition 3.14; we have
that:

∀Γ2
i ∈ Ax (S2) • ∃Γ1

i ∈ Ax (S1) • Γ2
i � σ2(Γ1

i)

and,

∀Γ1 ∈ Ax (S1) • ∃Γ0 ∈ Ax (S0) • Γ1 � σ1(Γ0)

Considering that � is transitive, and using properties of FOL, we get:

∀Γ2 ∈ Ax (S2) • ∃Γ0 ∈ Ax (S0) • Γ2 � (σ2 ◦ σ1)(Γ0)

and this ends the proof.

Categorical Foundations for Structured Specifications in Z 13

Note that we can extend the notation Sign(S) (returning the signature of schema S) to a (forgetful)
functor Sign : Zchm → Zign which, given a schema returns its signature and given a morphism between
schemas returns the signature translation associated with it.

The category Zchm has some interesting properties. The first property we prove is that Zchm has initial
objects.

Theorem 3.5. Zchm has an initial element.

Proof. The initial element (up to isomorphism) is 〈0, 〈∅, ∅〉, {{true}}〉. Note that 〈∅, ∅〉 is an initial element
of Zign. Also note that, for any translation from this signature to any other, we have that Condition 1 is
trivially true.

Moreover, we can prove that this category is finitely cocomplete.

Theorem 3.6. Zchm is finitely cocomplete.

Proof. Let D : I→ Zchm be a finite diagram in Zchm; we can obtain a finite diagram Sign ◦D : I→ Zign
in Zign, since Zign is finitely cocomplete. This diagram has a colimit, so let fi : D(i) → Σ be the colimit
cocone and Σ its tip. Consider the schema:

〈Σ, {⋃i∈I fi(sel(i)) | sel : I → ⋃
i∈I Ax (D(i)) ∧ ∀ i ∈ I : sel(i) ∈ Ax (D(i))}〉

where, given a schema S , Ax (S) denotes its collection of axioms, and function sel : I → ⋃
i∈I Ax (D(i))

can be thought of as a selection function. It chooses one set of axioms for each schema in diagram D .
We can consider that these collections of axioms are indexed by selection functions. Now, take any arrow
fi : D(i)→ S . Given a Γf in S , we have that for some Γi

k in D(i), fi(Γ
i
k) ⊆ Γf by definition; this means that

fi : D(i) → S is a morphism in Zchm for any i , thus conforming a cocone. The universality of this cocone
follows from the universality of the corresponding cocone in Zign.

In the following, it will be useful to consider schemas with a finite number of axioms and a finite number
of variables. The category of finite schemas is defined as follows.

Theorem 3.7. The structure Zchmfin formed by:

• The objects are schemas 〈Σ, {Γi}i∈I 〉 such that I is finite, each Γi is finite, and Σ has a finite number of
variables and types,

• The arrows are the arrows of Zchm restricted to the objects of Zchmfin .

is a category.

Proof. The proof follows as a corollary of of Theorem 3.4.

Note that Z specifications use finite schemas, that is, in practice we work in Zchmfin . The following
properties of Zchmfin can be proved analogously to the proofs of Theorems 3.5 and 3.6.

Theorem 3.8. Zchmfin has an initial object.

Theorem 3.9. Zchmfin is finitely cocomplete.

3.2. Schema Operators

One of the basic operations over schemas is the so-called schema conjunction, an informal description of
which can be obtained from Figure 5. In this figure the schema Division is defined by means of conjoining
schemas Quotient and Remainder. Basically, a conjunction of two schemas constructs a new signature,
retaining the symbols shared by the signatures and conjoining their axioms. This operation can be captured
using the notion of pushout, as illustrated in Figure 6.

In this figure schemas S and T are put together preserving their common part W ; it is worth noting that
W could be any subset of the common part of S and T . Usually, we consider W to be the entire part shared
by the two schemas, that is, ∧ is the pushout along the intersection of its signatures. This is formalised as
follows:

14 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

{hts V {0, 1}, ps V {howns V {0}i}i} ✏

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

T Division b= Division _DivideByZero

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

T Division b= Division _DivideByZero

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

T Division b= Division _DivideByZero

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

Remainder
r , d : N

r < d

Division b= Quotient ^ Remainder

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

Remainder
r , d : N

r < d

Division b= Quotient ^ Remainder

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

Remainder
r , d : N

r < d

Division b= Quotient ^ Remainder

Division
n, d , q , r : N

d 6= 0
r < d
n = q ⇤ d + r

DivideByZero
d , q , r : N

d = 0
q = 0
r = 0

Fig. 5. Schemas: Quotient, Remainder, and Division.

S ∧ T

S

i
;;

T

j
cc

W

cc ;;

U

S ∧ T

u

OO

S

i
;;

::

T

j
cc

dd

W

cc ;;

Fig. 6. Schema conjunction as a pushout.

Definition 3.15. Given S = 〈Σ, {Γi}i∈I 〉 and S ′ = 〈Σ′, {Γj}j∈J 〉, the operation ∧ defines the schema:

S ∧ S ′
def
= 〈Σ ∪ Σ′, {Γij}ij∈I×J 〉

where:

• Σ ∪ Σ′ = 〈Types(Σ) ∪ Types(Σ′),Var(Σ) ∪Var(Σ′)〉,
• Γij = Γi ∪ Γj .

Note that S ∧ S ′ is (up to isomorphism) the tip of the pushout depicted in the following diagram:

S ∧ S ′

S

77

S ′

gg

〈Σ ∩ Σ′, {{true}}〉

gg 77

Where 〈Σ∩Σ′, {{true}}〉 is the schema consisting of the intersection of the signatures (see Definition 3.4)
and the axiom true. Observe that in Zchm, ∧ is not a bifunctor, that is, we cannot generalise it to morphisms.
However, restricting Zchm to language inclusion, we obtain the functoriality of ∧. This is proved in the
theorem below. The interesting point here is that this coincides with the view of schema inclusion given in
Z . Let us introduce the subcategory Zchm⊆, defined as follows:

Definition 3.16. The category Zchm⊆ is the subcategory of Zchm such that:

• The objects of Zchm⊆ are the objects of Zchm,

• The morphisms of Zchm⊆ are the signature inclusions in Zchm that satisfy Definition 3.14.

Since the relation of inclusion is reflexive and transitive, it is trivial to prove that Zchm⊆ is indeed
a category; also note that this subcategory preserves colimits and pullbacks (intersections). In this new
category we can capture the operator ∧ as a bifunctor.

Definition 3.17. The bifunctor ∧ : Zchm⊆ × Zchm⊆ → Zchm⊆ is defined as follows:

Categorical Foundations for Structured Specifications in Z 15

• For objects S and S ′, S ∧ S ′ is the schema of Definition 3.15.

• For arrows m : S → S0 and m ′ : S ′ → S ′0 it returns the mediating arrow (m ∧m ′) of the diagram:

S0 ∧ S ′0

S0

*

77

S ∧ S ′
?�

m∧m′

OO

S ′0
T4

gg

S
*

77

?�

m

OO

〈Σ0 ∩ Σ′0, {{true}}〉
4 T

gg

*

77

S ′T4

gg

?�
m′

OO

〈Σ ∩ Σ′, {{true}}〉
� ?

OO

4 T

gg

*

77

Proving that ∧ is indeed a bifunctor is straightforward because it is associative and it has an identity (up
to isomorphism). Thus we have a symmetric monoidal category.

Theorem 3.10. The structure 〈Zchm⊆,∧,1〉, where: 1
def
= 〈〈∅, ∅〉, {∅}〉, is a symmetric monoidal category.

Proof. First, consider the following natural isomorphisms:

αS0,S1,S2 : (S0 ∧ S1) ∧ S2 → S0 ∧ (S1 ∧ S2).

Their existence is given by the associativity (up to isomorphism) of pushouts; then α is formed by iso arrows
and therefore it is a natural isomorphism; furthermore, we have that the corresponding associativity diagram

commutes (see Section A.1 further details). The unit of ∧ is given by the schema 1
def
= 〈〈∅, ∅〉, {∅}〉 thus,

by simple calculation 1∧ 〈Σ′, {Γi}i∈I 〉 = 〈Σ′, {Γi}i∈I 〉. That is, the identities give us natural isomorphisms:
λS : 1 ∧ S ∼ S and ρS : S ∧ 1 ∼ S , and the coherence properties hold. That finishes the proof that
〈Zchm⊆,∧,1〉 is a monoidal category; it is straightforward to see that it is symmetric by definition of ∧.

Note that in Z we can only combine schemas with compatible signatures [Spi92], that is, they must give
the same type to their common variables. Note that, if we combine two incompatible schemas in Zchm, by
mean of ∧, we obtain an object of this category which is not a Z schema; however, this is not a problem;
restricting ourselves to manipulate compatible schemas will guarantee that we always construct valid Z
specifications. In other words, Zchm provides not only Z schemas but also a more general version of them,
allowing us to deal with the problems related with schema compatibility in a simple and direct way.

We can define an implication between schemas (denoted by ⇒); this operator allows us to introduce the
negation and the disjunction operators over schemas as shown below.

Definition 3.18. Given schemas S i = 〈Σi , {Γi
j}j∈Ji 〉 for i = 0, 1, we define the schema:

S 0 ⇒ S 1 = 〈Σ0 ∪ Σ1,Γ∗〉
where:

Γ∗ = {⋃j0∈J0
{σ2(¬f (j0))} | f ∈ Sel({Γ0

j0
}j0∈J0

)} ∪ {σ1(Γ1
j1

)}j1∈J1

with σ1 : Σ→ Σ0 ∪ Σ1 and σ2 : Σ→ Σ0 ∪ Σ1 being the inclusions of the pushout, and:

Sel({Γj}j∈J) = {f : J → ⋃
j∈J Γj | ∀ j : f (j) ∈ Γj}

being the space of functions that selects members of the collection Γ. From now on, we denote it by Sel
when no confusion arise. We consider Γ∗ as indexed by pairs formed by selection functions and j ∈ J .

The interesting point here is that, under certain conditions, ⇒ is a right adjoint of ∧. To prove this,
we need to consider the category [Zchm]Σ; this category is the subcategory of Zchm containing the set of
schemas over the signature Σ, and restricting morphisms to the identity on Σ. That is, in this category we
have all the schemas with the same language, and the arrows can be identified with schema strengthening.

16 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Definition 3.19. Given Σ, the category [Zchm]Σ is formed by:

• Schemas S such that Sign(S) = Σ as objects.

• Morphisms m : S → S ′ in Zchm such that Sign(m) = idΣ as arrows.

Le us first that ⇒ is a bifunctor (contravariant in the first parameter) in [Zchm]Σ.

Theorem 3.11. The mapping ⇒: [Zchm]op
Σ × [Zchm]Σ → [Zchm]Σ, defined as in Definition 3.18 over

objects can be extended to a bifunctor.

Proof. First, note that the mapping can be straightforwardly extended to morphisms in [Zchm]Σ mapping
identities to identities. We only need to prove that, if m : S0 → S and m ′ : S ′ → S ′0 are arrows in [Zchm]Σ,
then m ⇒ m ′ : (S ⇒ S ′) → (S0 ⇒ S ′0) is an arrow in [Zchm]Σ. Let us assume there is a set of formulae
Γ0

i ∈ Ax (S0 ⇒ S ′0). By definition we have that either: Γ0
i ∈ Ax (S ′0), in which case the proof is straightforward,

or Γ0
i ∈ {

⋃
j∈J{¬f (j)} | f ∈ Sel({Γ′j}j∈J)} where {Γ′j}j∈J = Ax (S ′0). Suppose that ¬∃Γ ∈ Ax (¬S) •Γi

0 � Γ;

where Ax (¬S) = {⋃j∈J{¬f (j0)} | f ∈ Sel({Γj}j∈J)} and {Γj}j∈J = Ax (S) (as in Definition 3.18). That is,

we have a structure M such that M � Γ0
i and M 2 Γ¬i for every Γ¬i ∈ Ax (¬S). Let us pick one ¬ϕi for each

Γ¬i ∈ Ax (¬S) such that M � ¬ϕi , we know that {ϕi | ¬ϕi ∈ Γ¬i } = Γj for some Γj ∈ Ax (S); thus M � Γj .
Then there is a set of formulae Γ0 ∈ Ax (S0) such that M � Γ0 (since we have an arrow m : S0 → S), but
note that for some ψ ∈ Γ0 we have that ¬ψ ∈ Γ¬i which is a contradiction.

Then we can prove the following theorem:

Theorem 3.12. There is a natural isomorphism hom(S0 ⇒ S1,S2) ∼= hom(S1,S0 ∧ S2) in [Zchm]Σ.

Proof. Let us define an one-to-one mapping from hom(S0 ⇒ S1,S2) to hom(S1,S0∧S2). Since the morphisms
in [Zchm]Σ are the identities in Zign, we only need to prove that, if we have a morphism id : S0 ⇒ S1 → S2,
meaning that condition:

∀Γ2 ∈ Ax (S2) • ∃Γ⇒ ∈ Ax (S0 ⇒ S1) • Γ2 � Γ⇒,

holds, then the corresponding condition holds for id : S1 → S0 ∧ S1.
Now, given Γ∧ ∈ Ax (S0 ∧ S1), by definition of ∧, Γ∧ = Γ0 ∪ Γ2 where Γ0 ∈ Ax (S0) and Γ2 ∈ Ax (S2).

Now, observe that for any Γ⇒ ∈ Ax (S0 ⇒ S1), by definition, we have either

• Γ⇒ = Γ1, where Γ1 ∈ Ax (S1), or

• Γ⇒ =
⋃

i∈I {¬f (i)}, where f : I → Ax (S0) is a selection function.

In the first case we have that Γ2 � Γ1, for some Γ1 ∈ Ax (S1) and then Γ2 ∪ Γ0 � Γ1, for some Γ1 ∈ Ax (S1).
Otherwise, Γ⇒ =

⋃
i∈I {¬f (i)}, and then Γ0 ∪⋃{¬f (i)} � false holds, since

⋃{¬f (i)} is composed of the

negations of formulas of Ax (S0); and therefore Γ0 ∪ Γ2 � false must also hold. Thus, for any Γ1 ∈ Ax (S1)
we have Γ0 ∪ Γ2 � Γ1 holds, and consequently in either case the theorem follows.

As a direct consequence of the previous theorem, we can prove the following result.

Theorem 3.13. For any signature Σ, we have that 〈[Zchm]Σ,∧, 〈Σ, {∅}〉〉 is a monoidal closed category.

Summarising, we have bifunctors ∧ and ⇒; the first captures (in a general way) the concept of schema
conjunction, while the bifunctor⇒ can be associated with an implication between schemas. When we restrict
the languages of the schemas to a particular language (defining the states of our system), the two functors
are adjoints. Furthermore, we can use these two operators to define the remaining Z schema operators.

Definition 3.20. We define the operators ∨,¬ as follows:

• ¬S
def
= S ⇒ FalseSign(S), where FalseΣ

def
= 〈Σ, {{false}}〉,

• S ∨ S ′
def
= ¬S ⇒ S ′.

Following the proof of Theorem 3.11, it is straightforward to prove that ∨ is a bifunctor in [Schm]Σ, and
¬ is a contravariant functor in [Schm]Σ.

Other interesting schema operators are the schema quantifiers; these operators allow one to introduce
universal or existential quantification over schemas. They can be straightforwardly formalised considering

Categorical Foundations for Structured Specifications in Z 17

finite schemas. A more powerful logical framework might be obtained by generalising this to schemas with
an infinite number of axioms; this is not studied in this paper since we restrict ourselves to formalising Z .

We can capture existential quantification as a functor: ∃ x ∈ t • − : Zchmfin → Zchmfin , as described
in the following definition.

Definition 3.21. We define ∃ x ∈ t • − : Zchmfin → Zchmfin as follows:

• Given a schema S = 〈Σ, {Γi}i∈I 〉 where Σ = 〈T ,V 〉, then:

∃ x ∈ t • S
def
= 〈Σ− {x : t}, {Γ∗i }i∈I 〉

where: Σ−{x : T} def
= 〈T ∪{t},V −{x : t}〉, and: Γ∗i

def
= {∃ x ∈ T •∧Γi}, where

∧
Γi is the conjunction

of the formulas in Γi

• Given a translation σ : S → S ′, we define an arrow ∃ x ∈ t • σ : ∃ x ∈ t • S → ∃ x ∈ t • S as:

∃ x ∈ t • σ(v : t)
def
= v : t

that is, it is the restriction of σ to 〈T ,V − {x : T}〉.
This mapping is a functor as proven in the following theorem.

Theorem 3.14. ∃ x ∈ t • − : Zchmfin → Zchmfin is a functor.

Proof. ∃ x ∈ t • − : Zchmfin → Zchmfin is a mapping between schemas. Given a morphism m : S → S ′,
where S = 〈s, {Γi}i∈I 〉 and S ′ = 〈s ′, {Γ′i′}i′∈I ′〉, then we have that:

∀Γ′ ∈ Ax (S ′) • ∃Γ ∈ Ax (S) • Γ′ � m(Γ)

But note that using properties of first-order logic we get the formula:

∀Γ′ ∈ Ax (S ′) • ∃Γ ∈ Ax (S) • ∃ x ∈ t •∧Γ′ � ∃ x ∈ t •∧m(Γ)

and then ∃ x ∈ T •m : ∃ x ∈ t • S → ∃ x ∈ t • S ′ is a morphism in Zchmfin .
We now have to prove that it preserves identity and composition of morphisms. For any identity id : S →

S , it is trivial to see that it maps each variable to itself and therefore we obtain an identity: ∃ x ∈ t • id :
∃ x ∈ t • S → ∃ x ∈ t • S . For composition, take two arrows in Zchm, m0 : S0 → S1 and m1 : S1 → S2,
where Si = 〈si , {Γi

ji
}ji∈Ji 〉, for i = 0, 1, 2. Proving that Sign(m1 ◦m0) : Sign(S0)→ Sign(S2) is a translation

is straightforward. Then, we have:

∀Γ2 ∈ Ax (S2) • ∃Γ1 ∈ Ax (S1) • Γ2 � m1(Γ1)

and:

∀Γ1 ∈ Ax (S1) • ∃Γ0 ∈ Ax (S0) • Γ1 � m0(Γ0)

Using properties of first-order quantifiers, this means that:

∀Γ2 ∈ Ax (S2) • ∃Γ1 ∈ Ax (S1) • ∃ x ∈ t •∧Γ2 � m1(∃ x ∈ t •∧Γ1)

and

∀Γ1 ∈ Ax (S2) • ∃Γ0 ∈ Ax (S1) • ∃ x ∈ t •∧Γ1 � m0(∃ x ∈ t •∧Γ0)

and therefore by transitivity we obtain:

∀Γ2 ∈ Ax (S2) • ∃Γ0 ∈ Ax (S2) • ∃ x ∈ t •∧Γ2 � m1 ◦m0(∃ x ∈ t •∧Γ0)

This implies that m1 ◦m0 is a morphism between schemas.

Universal quantification can be defined as usual, as the dual of existential quantification as follows.

Definition 3.22. Given a schema S we define: ∀ x ∈ t • S
def
= ¬(∃ x ∈ t • ¬S).

Using the same reasoning as before we can prove that it is a functor:

Theorem 3.15. The mapping ∀ x ∈ t • − : Zchmfin → Zchmfin is a functor.

18 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

id id

�

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

⟨ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}⟩

#
These kinds of mappings are called representation maps, and are a mappings

between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

⟨ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}⟩

#

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts ̸= ∅
∀ p : ps • p.owns ⊆ ts
∀ p1, p2 : ps • p1 ̸= p2 ⇒ p1.owns ∩ p2.owns = ∅

Game
NumberP

state : Players ⇥ Numbers

Game 0

Number 0P

state 0 : Players ⇥ Numbers

Play
�Game
AddNumberP

p? : Player

state(p?) = ns?
{p?} �C state 0 = {p?} �C state

Game
NumberP

state : Players ⇥ Numbers

Game 0

Number 0P

state 0 : Players ⇥ Numbers

Play
�Game
AddNumberP

p? : Player

state(p?) = ns?
{p?} �C state 0 = {p?} �C state

Game
NumberP

state : Players ⇥ Numbers

Game 0

Number 0P

state 0 : Players ⇥ Numbers

Play
�Game
AddNumberP

p? : Player

state(p?) = ns?
{p?} �C state 0 = {p?} �C state

{hts V {0, 1}, ps V {howns V {0}i}i,
hts V {2, 3}, ps V {howns V {2}i}i}|�

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

Numbers
ns : P N

#ns > 0

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

{hns V {0, 1}i, hns V {2, 3}i}

Fig. 7. An example involving schemas, schema models, a schema morphism and the corresponding model reduct.

Furthermore, we can introduce quantification over schemas (as done in Z) as follows.

Definition 3.23. Given schemas S ,W in Zchmfin such that Sign(S) = 〈T , {v0:t0, . . . , vn :tn}〉, we define:

∃S •W
def
= ∃ v0 ∈ t0 • (∃ v1 ∈ t1 • . . . (∃ tn ∈ tn •W) . . .), and

∀S •W
def
= ∀ v0 ∈ t0 • (∀ v1 ∈ t1 • . . . (∀ tn ∈ tn •W) . . .).

Let us note some facts about schemas and schemas operators. As we said, an arrow S → S ′ repre-
sents schema strengthening (modulo translation), as understood in Z. For instance, we have the following
properties:

Theorem 3.16. We have the following arrows in Zchm:

• S → S ∧ S ′,
• S ∨ S ′ → S , when Sign(S ∨ S ′) ∼= Sign(S),

• S → TrueSign(S), where TrueΣ
def
= 〈Σ, {{true}}〉,

• S ∧TrueSign(S)
∼= S ,

• S ∨ FalseSign(S)
∼= S , where FalseΣ

def
= 〈Σ, {{false}}〉,

• ∀ x ∈ t • S ∧ S ′ ∼= (∀ x ∈ t • S) ∧ (∀ x ∈ t • S ′), in Zchmfin .

Proof. The properties follow directly from the definitions of ∧,∃ and TΣ.

Since in practice we only use finite schemas, in what follows we assume, unless otherwise stated, that we
are working in the subcategory Zchmfin . Furthermore, let us note that, given finite schemas S and S ′, the

schema S ∧ S ′ is also finite. That is, considering the category of finite schemas named Zchm⊆fin , we get the
following result:

Theorem 3.17. 〈Zchm⊆fin ,∧, 〈〈∅, ∅〉, {∅}〉〉 is a symmetric monoidal category.

In order to clarify the above view of signatures and schemas as objects in a category, consider the diagram
in Figure 7. This diagram involves two simple schemas, one of them being our previous Game schema, and
the other being a simple schema defining a nonempty set of natural numbers. A schema morphism in this
diagram shows that the simpler schema is embedded (via morphism σ) into the schema Game, where the
variable ns is translated as variable ts. Notice that, for this morphism to be correct, one must be able to
prove that the axiom #ns > 0 is a consequence of the constraints in the Game schema, which is trivial. After
this simple example, the reader familiar with Z may notice that schema morphisms subsume the notion of
schema strengthening. Models complement the picture of schemas and schema morphisms.

An example of interpretation for Numbers is also shown in Figure 7, using the notation of [Woo96]. This
model maps ns to the sets {0, 1} and {2, 3}; note that morphism σ induces a mapping ()|σ : Mod(Game)→
Mod(Numbers) between models of Game and models of Number [GB92]. This mapping builds reducts as
defined above, i.e., given a model of Game, it removes from the model all the parts that are unnecessary
to interpret symbols originating in Numbers, obtaining a model of the smaller schema; this scenario is also
shown in Figure 7.

Categorical Foundations for Structured Specifications in Z 19

(a) C

A

f
>>

B

g
`` (b) Op

S

i
>>

(−)′ // S ′

jaa

Fig. 8. Cospans, and Z operations as cospans.

3.3. Z Operations

In Z specifications, one usually defines operations via schemas that relate the description of the pre and post
states of the operation. In our categorical view of Z , operations correspond to a particular class of diagrams,
of the form shown in Figure 8 (a), where A and B are the related “domain” schemas, and C is the operation
schema. Such a diagram, called cospan, is a categorical diagram in the category Zchm; a cospan is usually
described by a pair of morphisms with common codomain, e.g., 〈f : A→ C , g : B → C 〉.

An operation for a system S (captured as a schema) is typically specified as a schema extending ∆S , i.e.,
over the conjunction of S and S ′, where S ′ represents the “post” state of S , i.e., the state after the operation
has been executed. Such an operation is also a cospan, and has the form shown in Figure 8 (b). Meanwhile,
the priming operation can be characterised as a functor in Zign as we do in the following definition.

Definition 3.24. For any signature Σ = 〈T ,V 〉 we define the functor (−)′ : Zign→ Zign as follows:

• Σ′
def
= 〈T , {v ′:t | v :t ∈ V }〉

• Given σ : Σ→ Σ0 where Σ0 = 〈T0,V0〉, we define σ′(v ′:t)
def
= w ′ : t if σ(v :t) = w :t .

The proof that this is a functor is straightforward. This functor can be extended to the category Zchm
as follows it is done in the following definition.

Definition 3.25. We define (−)′ : Zchm→ Zchm as follows:

• For objects: 〈Σ, {Γi}i∈I 〉′ def
= 〈Σ′, {Sen((−)′)(Γi)}i∈I 〉

• For arrows: let σ : s0 → s1 be a translation, then σ′ : s ′0 → s ′1 is obtained by applying (−)′.

Next theorem proves that the functor (−)′ is an equivalence of categories.

Theorem 3.18. The functor (−)′ : Zchm→ Zchm is an equivalence of categories.

An operation is a specification that relates initial states with final states, in a way similar to the way pro-
gram specifications are written in Hoare Logic; that is, operations are cospans whose domain and codomain
are related in a certain way. Let us formalise the concept of operations more precisely.

Definition 3.26. Let T ,S ∈| Zchmfin |, then an operation Op is a cospan with shape f : S → Op ← T : g
in Zchmfin such that T ∼= S (that is, there is an arrow between T and S).

We use the notation Op : S ⇒ T to express that 〈f : S → Op, g : T → Op〉 is an operation.
Operations modifying the state S of a system (captured as a schema) are usually defined over ∆S . ∆S

can also be captured categorically:

Definition 3.27. Given a schema S , we denote by ∆S the coproduct S + S ′.

Note that, for any other schema combining S1 and S2 (meaning that we have schema morphisms from
S1 and S2 to the combined schema), there exists a unique schema morphism u from the coproduct to this
combined schema that makes the diagram (involving these schemas and the schema morphisms corresponding
to the combinations) commute. This situation is described in Figure 9, for the case of ∆S , the coproduct of
S and S ′.

We have used an arrow notation for cospans, in our characterisation of Z operations. In fact, cospans
can be thought of as arrows (or morphisms), which are composed by applying pushouts [Ber67]. This is the
basic way in which schema composition is categorically captured.

Definition 3.28. Given two cospans 〈f : S → Op1, g : T → Op1〉 and 〈f ′ : W → Op2, g
′ : V → Op2〉 such

that T ∼= W , we define the schema Op1 # Op2 as follows:

Op1 # Op2
def
= ∃ u(T) •Op1 � Op2

20 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Op

∆S

u
OO

S

==

==

S ′

bb

aa

Fig. 9. Categorical definition of ∆S as a coproduct.

where Op1 � Op2 is the tip of the following colimit diagram:

Op1 � Op2

Op1

i 55

Op′2

jii

S

f @@

T

g^^

∼= W

f ′ >>

V

g′__

u : T → Op1 � Op2 is the arrow from T to the colimit, and u(T) denotes the schema obtained by translating
T by using u. Note that 〈i ◦ f : S → Op1 � Op2, j ◦ g ′ : V → Op1 � Op2〉 is a cospan.

Note that in Z we usually want to compose two operations of the form Opi : S → S ′ (for i = 1, 2); the
reader should note that the composition of such schemas can be obtained using the constructions presented
above. This generalizes the usual composition of cospans in category theory [Ber67].

Another useful construction in Z is the ΞS operation. This operator on schemas denotes a skip operation.
That is, it is a special case of ∆S , in which S and S ′ are identical. This schema operator can be also defined
(up to isomorphism) as follows:

Definition 3.29. Given S = 〈Σ, {Γi}i∈I 〉, ΞS : S ⇒ S ′ is defined as follows:

ΞS = 〈Σ + Σ′, {v = v ′ | v : t ∈ Σ}〉
This schema has some interesting properties: it is an identity with respect to the composition of opera-

tions:

Theorem 3.19. Given Op : S ⇒ S ′, we have the following properties of ΞS :

• Op # ΞS ∼= Op

• ΞS # Op ∼= Op

where the symbol ∼= indicates that there exists an isomorphism between the two corresponding objects in
Zchmfin .

Proof. Note that Op is a tip of a cocone with the shape of Definition 3.28, thus we have a mediating arrow
Op � ΞS to Op. It is straightforward using Def.inition 3.21 to check that the language of ∃ u(S ′) •Op � ΞS
is isomorphic to Op, thus we have an iso Op # ΞS → Op. The other property is similar.

Given schemas S and S ′, we have a category Cospans(S ,S ′) where the objects are the cospans between
S and S ′ and the morphisms are the schema morphisms between the corresponding cospans. Interestingly,
the category Op(S ,S ′) of operations between S and S ′ is a subcategory of Cospan(S ,S ′).

Definition 3.30. Given two (isomorphic) schemas S and S ′, the category of operations between S and S ′

denoted as Op(S ,S ′) is formed by:

• Operations as defined in Definition 3.26 〈i : S → Op, j : S ′ → Op〉 as objects,

• Given two operations 〈i : S → Op, j : S ′ → Op〉 and 〈i : S → Op′, j : S ′ → Op〉, an arrow is a morphism
m : Op → Op′ (in Zchmfin), such that the following diagram commutes.

Categorical Foundations for Structured Specifications in Z 21

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −! {c} = v0 −! {c}

. . .
v ′
n −! {c} = vn −! {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!!!!!!!!!!!!!
SP

""""""""""
S ′P

##########

S

$$$$$$$$$$

!!!!!!!!!!!!!! S ′

%%%%%%%%%%

!!&&&&&&&&&&&&&

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

Numbers
ns : P N

#ns > 0

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −! {c} = v0 −! {c}

. . .
v ′
n −! {c} = vn −! {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!!!!!!!!!!!!!
SP

""""""""""
S ′P

##########

S

$$$$$$$$$$

!!!!!!!!!!!!!! S ′

%%%%%%%%%%

!!&&&&&&&&&&&&&

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

〈ns " {0, 1, 2, 3}〉

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

– The category Zign,

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −! {c} = v0 −! {c}

. . .
v ′
n −! {c} = vn −! {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!!!!!!!!!!!!!
SP

""""""""""
S ′P

##########

S

$$$$$$$$$$

!!!!!!!!!!!!!! S ′

%%%%%%%%%%

!!&&&&&&&&&&&&&

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

〈ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}〉

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

– The category Zign,

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −! {c} = v0 −! {c}

. . .
v ′
n −! {c} = vn −! {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!!!!!!!!!!!!!
SP

""""""""""
S ′P

##########

S

$$$$$$$$$$

!!!!!!!!!!!!!! S ′

%%%%%%%%%%

!!&&&&&&&&&&&&&

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

〈ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}〉

#

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −! {c} = v0 −! {c}

. . .
v ′
n −! {c} = vn −! {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!!!!!!!!!!!!!
SP

""""""""""
S ′P

##########

S

$$$$$$$$$$

!!!!!!!!!!!!!! S ′

%%%%%%%%%%

!!&&&&&&&&&&&&&

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

〈ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}〉

#
These kinds of mappings are called representation maps, and are a mappings

between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

(−)P

(−)U

where schemas are indexed in some way. Let us introduce somewhere schemas are indexed in some way. Let us introduce some

NumbersP

ns : X !→ P N

∀ x ∈ X • #ns(xs) > 0

Numbers
ns : P N

#ns > 0

〈ns ! {0, 1, 2, 3}〉 〈ns ! {x0 "→ {0, 1}, x1 "→ {2, 3}}〉

! !

(−)P

(−)U

!"#$%#&'(')#'*+$,-')#'(./(

Fig. 3. Example of mappings between schemas and models

EndGame
result : Numbers

result .ns = {0, 1, 2, 3, 4, 5, 6}

of a game where the player need to collect numbers, the game ends when the
player collected the six numbers. Note that the actual semantics of this schema
can be defined using the schema manager NumbersP introduced above; by includ-
ing NumbersP in the the schema EndGame which obviously has the categorical
interpretation of a corresponding arrow between Numbers and EndGame. The
diagram is depicted in figure []. Note that in this case result .ns is a syntatic
sugar for ns(result).

In the same way that we dealt with single instances, we can deal with indexed
instances of schemas (that is, a promoted schema). For instance, consider the
promoted schema

Game
NumbersP

result : Numbers

ns(result) = {0, 1, 2, 3, 4, 5, 6}

Taking these observations into account, It is straightforward to obtain an
institutional view of Z.

Theorem 3. The structure Z composed of:

– The category Zign,
– the functor sen : Zign → Sen, that sends each signature to its set of formu-

las,
– the functor Mod : Zignop → Cat, that sends each signature to the category

of its models,
– the collection of relations !Σ, as introduced above,

is an institution.

where schemas are indexed in some way. Let us introduce somewhere schemas are indexed in some way. Let us introduce some

NumbersP

ns : X !→ P N

∀ x ∈ X • #ns(xs) > 0

Numbers
ns : P N

#ns > 0

〈ns ! {0, 1, 2, 3}〉 〈ns ! {x0 "→ {0, 1}, x1 "→ {2, 3}}〉

! !

(−)P

(−)U

!"#$%#&'(')#'*+$,-')#'(./(

Fig. 3. Example of mappings between schemas and models

EndGame
result : Numbers

result .ns = {0, 1, 2, 3, 4, 5, 6}

of a game where the player need to collect numbers, the game ends when the
player collected the six numbers. Note that the actual semantics of this schema
can be defined using the schema manager NumbersP introduced above; by includ-
ing NumbersP in the the schema EndGame which obviously has the categorical
interpretation of a corresponding arrow between Numbers and EndGame. The
diagram is depicted in figure []. Note that in this case result .ns is a syntatic
sugar for ns(result).

In the same way that we dealt with single instances, we can deal with indexed
instances of schemas (that is, a promoted schema). For instance, consider the
promoted schema

NumbersP

ns : Numbers → P N

∀ x ∈ Number • ns(x) > 0

Taking these observations into account, It is straightforward to obtain an
institutional view of Z.

Theorem 3. The structure Z composed of:

– The category Zign,
– the functor sen : Zign → Sen, that sends each signature to its set of formu-

las,
– the functor Mod : Zignop → Cat, that sends each signature to the category

of its models,
– the collection of relations !Σ, as introduced above,

is an institution.

It is straightforward to prove that Z is an institution; as the proof system given
in the literature [] are standard axioms of first-order and high-order logic which
are institutions []. Furthermore, the the functor (−)P : Zign → Zign.

where schemas are indexed in some way. Let us introduce somewhere schemas are indexed in some way. Let us introduce some

NumbersP

ns : X !→ P N

∀ x ∈ X • #ns(xs) > 0

Numbers
ns : P N

#ns > 0

〈ns ! {0, 1, 2, 3}〉 〈ns ! {x0 "→ {0, 1}, x1 "→ {2, 3}}〉

! !

(−)P

(−)U

!"#$%#&'(')#'*+$,-')#'(./(

Fig. 3. Example of mappings between schemas and models

EndGame
result : Numbers

result .ns = {0, 1, 2, 3, 4, 5, 6}

of a game where the player need to collect numbers, the game ends when the
player collected the six numbers. Note that the actual semantics of this schema
can be defined using the schema manager NumbersP introduced above; by includ-
ing NumbersP in the the schema EndGame which obviously has the categorical
interpretation of a corresponding arrow between Numbers and EndGame. The
diagram is depicted in figure []. Note that in this case result .ns is a syntatic
sugar for ns(result).

In the same way that we dealt with single instances, we can deal with indexed
instances of schemas (that is, a promoted schema). For instance, consider the
promoted schema

NumbersP

ns : Numbers → P N

∀ x ∈ Number • ns(x) > 0

Taking these observations into account, It is straightforward to obtain an
institutional view of Z.

Theorem 3. The structure Z composed of:

– The category Zign,
– the functor sen : Zign → Sen, that sends each signature to its set of formu-

las,
– the functor Mod : Zignop → Cat, that sends each signature to the category

of its models,
– the collection of relations !Σ, as introduced above,

is an institution.

It is straightforward to prove that Z is an institution; as the proof system given
in the literature [] are standard axioms of first-order and high-order logic which
are institutions []. Furthermore, the the functor (−)P : Zign → Zign.

id

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts �= ∅
∀ p : ps • p.owns ⊆ ts
∀ p1, p2 : ps • p1 �= p2 ⇒ p1.owns ∩ p2.owns = ∅

Settle
∆Player
t : N

t /∈ owns
owns � = owns ∪ {t}

Leave
∆Player
t : N

t ∈ owns
owns � = owns \ {t}

Player
owns : P N

Player �

owns � : P N

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts �= ∅
∀ p : ps • p.owns ⊆ ts
∀ p1, p2 : ps • p1 �= p2 ⇒ p1.owns ∩ p2.owns = ∅

Settle
∆Player
t : N

t /∈ owns
owns � = owns ∪ {t}

Leave
∆Player
t : N

t ∈ owns
owns � = owns \ {t}

Player
owns : P N

Player �

owns � : P N

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts �= ∅
∀ p : ps • p.owns ⊆ ts
∀ p1, p2 : ps • p1 �= p2 ⇒ p1.owns ∩ p2.owns = ∅

Settle
∆Player
t : N

t /∈ owns
owns � = owns ∪ {t}

Leave
∆Player
t : N

t ∈ owns
owns � = owns \ {t}

Player
owns : P N

Player �

owns � : P N

owns �→ owns owns� �→ owns�

∆Player

Fig. 10. A Z specification as a categorical diagram in Zpec.

Op′

Op

m

OO

S

i

>>
i′

AA

S ′
j

aa
j ′

]]

These kinds of constructions form a bicategory [Ber67]. An important remark is that we can think of our
category of schemas as having two different kinds of arrows, one representing schema morphisms (schema
embeddings after translation), and another one capturing Z operations (as cospans), with # acting as the
composition for the latter.

Definition 3.31. Zpec is formed by:

• The set of finite schemas as its set of objects (called 0-cells).

• For each pair of schemas S ,S ′, the category Op(S ,S ′) of operations between S and S ′ (called 1-cells),
and morphisms between operations (called 2-cells).

• The composition between 2-cells is defined as in Definition 3.28.

It is well-known that a category together with the collection of cospans satisfies the definition of a
bicategory, see for instance [Mac98]; in the same way we can prove that Zpec is a bicategory.

Theorem 3.20. Zpec is a bicategory.

Proof. The horizontal composition of the bicategory is #, and the identity is given by 1S = ΞS for any
S . We must prove that the laws of bicategories hold. First, note that, by properties of colimits, we have
that (Op0 � Op1) � Op2

∼= Op0 � (Op1 � Op2). Since ∃ x ∈ t • − is a functor, and functors preserve
isomorphisms, we have that (Op0 # Op1) # Op2

∼= Op0 # (Op1 # Op2). Thus we can straightforwardly define a
natural isomorphism between (Op0 # Op1) # Op2 and Op0 # (Op1 # Op2). Note that, since Theorem 3.19, ΞS
behaves as an identity. Thus the pentagon and triangle diagrams commute.

Summarizing, a Z specification is a collection of schemas S0, . . . ,Sn together with a set of cospans Opi :
Si ⇒ S ′i , all elements in the bicategory of Z specifications. An example illustrating schemas and operations,
and their relationships, is shown in Figure 10, as a diagram in Zpec.

4. Schemas as Types and Promotion

In this section we focus on formalizing promotion. A key feature of Z that facilitates promotion, and software
specification in general, is the use of schemas as types. In order to capture this in our mathematical formalism,
we need to spice up our categorical framework with some additional machinery. Towards this goal, we

22 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

S
v0 : T0

. . .
vn : Tn

φ

SP

v0 : Index 7→ T0

. . .
vn : Index 7→ Tn

S : P Index

S ⊆ dom(v0)
...
S ⊆ dom(vn)
∀ s ∈ S • φP

Fig. 11. A schema and its manager construction.

introduce the concept of schema manager, which supports the idea of managing schema instances. Roughly
speaking, a manager of a component C is a component that provides the behaviour of various instances of
C , and usually enables the manipulation of these instances. This technique makes it possible to interpret
schemas as types in a way that differs from the established mechanism for doing this as presented in [Woo96].
Our approach consists of building a manager specification. Consider the schemas in Figure 11; the one on the
left represents an arbitrary schema, involving v0 : T0, . . . , vn : Tn as its typed variables. The schema on the
right represents the manager for the previous schema, where φP is obtained from φ by adding a parameter
of type Index to each variable. For the schema on the right, Index is simply a fresh given type.

First, we define the notion of promoted signature. Since our construction of promotion introduces a new
type, this definition of promoted signature uses the name of the signature to introduce the new type.

Definition 4.1. We define a functor (−)P : Zign→ Zign as follows:

• For signatures Σ = 〈N ,T ,V 〉:

ΣP def
= 〈N P ,T ∪ {Index}, {v :Index 7→ t | v :t ∈ V } ∪ {N :P Index}〉.

• For translations σ : Σ0 → Σ1 (where Σi = 〈Ni ,Ti ,Vi〉 for i = 0, 1):

σP (v :t ′)
def
=

{
σ(v):Index 7→ t if t ′ = Index 7→ t
N1:P Index otherwise

Here Index is a fixed given type.

Proving that (−)P is indeed a functor is direct. Using this definition, we introduce a mapping (−)P : Zchm→
Zchm that promotes schemas.

Definition 4.2. We define the mapping (−)P : Zchmfin → Zchmfin in the following way:

• For schemas:

〈N , 〈T ,V 〉, {Γi}i∈I 〉P def
= 〈N P , 〈T ,V 〉P , {{∀ x ∈ N •∨i∈I

∧
Γi(x)} ∪ {N ⊆ dom vi | vi :ti ∈ V }}〉,

where Γ(x)
def
= {ϕ(x) | ϕ ∈ Γ}, for any set of formulas Γ.

• For arrows σ : S0 → S1 (where Si = 〈Ni , 〈Ti ,Vi〉, {Γi
j}j∈J 〉, for i = 0, 1, are schemas) we proceed as

follows. First, note that a morphism between schemas is basically a translation between their signatures
that preserves axioms; thus we define σP : ΣP

0 → ΣP
1 as in Definition 4.1 and then show that condition

of Definition 3.14 holds.

Let us prove that the mapping (−)P : Zchm→ Zchm is a functor.

Theorem 4.1. The mapping (−)P : Zchm→ Zchm is a functor.

Proof. First, we need to prove that, given σ : S0 → S1, for Si = 〈Σi , {Γi
j}j∈Ji 〉, σP : S P

0 → S P
1 is a morphism

between schemas, that is, we must prove that:

∀Γ1 ∈ Ax (S P
1) • ∃Γ0 ∈ Ax (S P

0) • Γ1 � σP (Γ0).

Categorical Foundations for Structured Specifications in Z 23

(a)

Numbers
ns : PN

#ns > 0

EndGame
result : Numbers

result .ns = {0, 1, 2, 3, 4, 5, 6}

(b)

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

Numbers
ns : P N

#ns > 0

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

⟨ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}⟩

#

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

⟨ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}⟩

#
These kinds of mappings are called representation maps, and are a mappings

between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

(�)P

(�)U

where schemas are indexed in some way. Let us introduce somewhere schemas are indexed in some way. Let us introduce some

NumbersP

ns : X !→ P N

∀ x ∈ X • #ns(xs) > 0

Numbers
ns : P N

#ns > 0

⟨ns ! {0, 1, 2, 3}⟩ ⟨ns ! {x0 "→ {0, 1}, x1 "→ {2, 3}}⟩

! !

(−)P

(−)U



Fig. 3. Example of mappings between schemas and models

EndGame
result : Numbers

result .ns = {0, 1, 2, 3, 4, 5, 6}

of a game where the player need to collect numbers, the game ends when the
player collected the six numbers. Note that the actual semantics of this schema
can be defined using the schema manager NumbersP introduced above; by includ-
ing NumbersP in the the schema EndGame which obviously has the categorical
interpretation of a corresponding arrow between Numbers and EndGame. The
diagram is depicted in figure []. Note that in this case result .ns is a syntatic
sugar for ns(result).

In the same way that we dealt with single instances, we can deal with indexed
instances of schemas (that is, a promoted schema). For instance, consider the
promoted schema

NumbersP

ns : Numbers → P N

∀ x ∈ Number • ns(x) > 0

Taking these observations into account, It is straightforward to obtain an
institutional view of Z.

Theorem 3. The structure Z composed of:

– The category Zign,
– the functor sen : Zign → Sen, that sends each signature to its set of formu-

las,
– the functor Mod : Zignop → Cat, that sends each signature to the category

of its models,
– the collection of relations !Σ, as introduced above,

is an institution.

It is straightforward to prove that Z is an institution; as the proof system given
in the literature [] are standard axioms of first-order and high-order logic which
are institutions []. Furthermore, the the functor (−)P : Zign → Zign.

id

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

owns 7! owns owns0 7! owns0

�Player

{hns V {0, 1}i,
hns V {2, 3}i}

{hns V {x0 7! {0, 1}, x1 7! {2, 3}}i}

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Numbers
ts : P N

#ns > 0

Numbersp

ns : Index 7! P N
Numbers : P Index

8n 2 Numbers • #ns(n) > 0

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

Remainder
r , d : N

r < d

Division b= Quotient ^ Remainder

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Numbers
ts : P N

#ns > 0

Numbersp

ns : Index 7! P N
Numbers : P Index

Numbers ✓ dom ns
8n 2 Numbers • #ns(n) > 0

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

Remainder
r , d : N

r < d

Division b= Quotient ^ Remainder

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Numbers
ts : P N

#ns > 0

Numbersp

ns : Index 7! P N
Numbers : P Index

Numbers ✓ dom ns
8n 2 Numbers • #ns(n) > 0

EndGame
NumbersP

result : Numbers

ns(result) = {0, 1, 2, 3, 4, 5, 6}

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

Fig. 12. Using managers as types

First, note that, since σ : S0 → S1 is a morphism in Zchm, we have that:

∀Γ1 ∈ Ax (S1) • ∃Γ0 ∈ Ax (S0) • Γ1 � σ(Γ0).

and then by properties of FOL we get:

∀ x ∈ N •∨j∈J1

∧
Γ1

i (x) � σP (∀ x ∈ N •∨j∈J0

∧
Γ0

i (x))

thus implying that σP : S P
0 → S P

1 is a morphism between schemas.
Now, we need to prove that promoting schemas preserves identities and composition. The preservation of

composition is straightforward since the translation of a composition is defined basically as the composition
of signature translations. For identity, if we have id : S → S , then idP : S P → S P maps each variable to
itself and the new introduced variable to itself too, that is, it is the identity translation over Sign(S), also it
satisfies Condition 1 of Definition 3.14.

Using a schema as a type can be achieved by including the manager of the schema. Let us illustrate this
with an example.

Consider the schema given in Figure 12 (a); it defines the end state of a game where the player needs to
have conquered territories 0 to 6. Notice that the actual semantics of this schema can be defined using the
schema manager NumbersP introduced above, simply by including NumbersP in the schema. This has a self
evident categorical interpretation, and the existence of an arrow between Numbers and EndGameEndGame
relates them both syntactically and semantically. The resulting diagram is shown in Figure 12 (b), where
result.ns is just syntactic sugar for ns(result).

We can define a similar transformation over operations. Consider the schemas in Figure 13; the schema
on the left is the definition of an operation, where v0, . . . , vn , v

′
0, . . . , v

′
n are the variables of S and S ′,

respectively. We introduce the schema on the right. This situation is graphically depicted as a categorical
diagram in Fig. 14. Therein, the dashed arrows denote the application of the transformation described above.
Thus, the definition of this mapping is as follows.

Definition 4.3. Given an operation in Op(S ,S ′) = 〈f : S → Op, g : S ′ → Op〉 where i : S → S ′ is the
required isomorphism, we define an operation in Opp(S p , (S ′)p) as follows.

• S p and (S ′)p are defined as in Definition 4.2.

• Let Op = 〈〈T ,V 〉, {Γi}i∈I 〉 be the tip of the cospan, then we define Opp : S p ⇒ (S ′)p to be OpP =
〈〈T ∪ {Index}, {v :Index 7→ t | v :t ∈ V } ∪ {S :P Index ,S ′:P Index , this:S , this ′:S ′}〉, {Γp

i }i∈I 〉.
where:

Γp
i = {ϕ[v0(this)/v0, . . . vn(this)/vn , i(v0)(this ′)/i(v0), . . . i(vn)(this ′)/i(vn)] | ϕ ∈ Γi} ∪⋃

i≤n

{{this ′} −C i(vi) = {this} −C vi} ∪ {S = S ′}

That is, the promoted operation takes into account the new variables representing the instance to which
the operation is applied, and the rest of the operation is reformulated accordingly. Let us note that, in the
promoted operations, we add an axiom stating that S = S ′, thus the indexes in S are exactly the same
as the indexes belonging to S ′. That is, we assume that operations do not change the number of instances

24 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Op
�S

�

OpP

�SP

this : S

�[v0(this)/v0, . . . vn(this)/vn , v 0
0(this)/v

0
0, . . . v

0
n(this)/v 0

n]
{this} �C v 0

0 = {this} �C v0

. . .
{this} �C v 0

n = {this} �C vn

Fig. 7. Operation promotion using managers.

The following theorem can be proven by resorting to the definition of (�)P .

Theorem 4. (�)P : Zchem! Zchem is a lax functor.

Lax functors are morphisms between bicategories; this means that promotion is
coherent with respect to identities and composition of operations.

Moreover, given a model M of ⌃P we can define a corresponding model MD

(a degraded model), which forgets the new sort introduced. In figure ?? a simple
example of mapping between schemas and their models is shown to illustrate
these ideas. These kinds of mappings are called institution representations [?],
and are mappings between logical systems. Intuitively, a collection of schemas
and the relations between them conform a logical system. An institution repre-
sentation allows us to move inside the same system but adding certain useful
features, while keeping the basic properties of these schemas.

The operation of using a schema as a type can be understood of as a kind
of schema inclusion. Consider for instance the schema given in figure ?? (a); it
defines the end state of a game where the player needs to conquer territories 0
to 6. Notice that the actual semantics of this schema can be defined using the
schema manager NumbersP introduced above, simply by including NumbersP in

OpP

Op

44

SP

==

S 0P

bb

S

?? 44

S 0

`` 33

Fig. 8. Categorical diagram depicting operation promotion.

(�)P

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

owns 7! owns owns0 7! owns0

OpP

�(SP)
this : S
this 0 : S 0

�[v0(this)/v0, . . . , vn(this)/vn , v 0
0(this)/v

0
0, . . . , v

0
n(this)/v 0

n]
{this 0} �C v 0

0 = v0 �C {this}
...
{this 0} �C v 0

n = vn �C {this}

Fig. 13. Operation promotion using managers.

OpP

Op

44

S P

<<

(S P)′

cc

S

?? 44

S ′

`` 33

Fig. 14. Categorical diagram depicting operation promotion.

of a promoted type. Since operations that add or delete instances could be needed (as in object oriented
programming), the definition of promotion for operations can be straightforwardly modified to support this;
we do not tackle this issue in this paper.

In Figure 13 this translation is illustrated by means of the usual notation of Z .
The important point is that the translation (−)P : Zpec → Zpec is a mapping between structures,

which maps schemas to promoted schemas, and operations to promoted operations. We can define it in three
parts:

• A functor (−)P : Zchm→ Zchm, which translates schemas in the way described above.

• A functor (−)P : Op(S ,T) → Op(S P ,T P), that translates operations to promoted operations. (For the
sake of simplicity we use (−)P for naming both these functors.)

• The canonical extension of (−)P to formulas, as explained above.

The following lemma will be important to prove some properties about promotion.

Lemma 4.1. In Zchmfin we have an arrow: (∃ v ∈ Index 7→ t • S P)→ (∃ v ∈ t • S)P .

Proof. Let 〈〈V ,T 〉, {Γi}i∈I 〉 be a schema. To prove that there is such a morphism, first note that the
language of both schemas (domain and codomain) are exactly the same except for the new type introduced
that may have different names. We should prove that:

∀Γ ∈ Ax ((∃ v ∈ t • S)P) • ∃Γ′ ∈ Ax (∃ v ∈ Index 7→ t • S P) • Γ � Γ′

But note that Ax ((∃ v ∈ t • S)P) has a unique axiom which is:

∀ x ∈ N •∨i∈I ∃ v(x) ∈ t • Γi

and similarly for Ax (∃ v ∈ Index 7→ t • S P) whose axiom is:

∃ v ∈ Index 7→ t • ∀ x ∈ N ′ •∨i∈I

∧
Γi(x)

That both axioms are equivalent (renaming N ′ by N) follows from the rule of skolemization of second
order logic, thus the translation that maps each symbol to itself and N (the new variable introduced in the
codomain) is mapped to N ′ (the new variable introduced by promotion in the domain) is an arrow between
(∃ v ∈ Index 7→ t • S P) and (∃ v ∈ t • S)P .

The following theorem can be proven by resorting to the definition of (−)P .

Theorem 4.2. (−)P : Zpec→ Zpec is a lax functor.

Categorical Foundations for Structured Specifications in Z 25

Op′′0 # Op′′1

Op′′0

99

Op′0 # Op′1

OO

Op′′1

ee

Op′0

h

OO 99

Op0 # Op1

OO

Op′1

k

OOee

Op0

h′

OO 99

Op1

k ′

OOee

S

==

//

66

S ′

ee

pp

jj

99

//

44

S ′′

bb

oo

ii

Fig. 15. Distributivity of # and ◦

Proof. First, let us recall the components of a lax functor. A lax functor F : A→ B between bicategories A
and B is composed of: (i) for every object A of A an object F (A) in B, (ii) for every pair of objects A,B
of A, a functor FA,B : A(A,B) → B(F (A),F (B)), (iii) for every triple of objects A,B ,C in A, a natural

transformation: γA,B,C : ; F(A),F(B),F(C) ◦ (FA,B × FB,C)
�→ FA,C ◦ ; A,B,C , and (iv) for every object A in

A a natural transformation δA : 1F(A)
�→ FA,A ◦ 1A, where 1A is the unit isomorphism of the corresponding

bicategory. Subject to the coherence laws (see Section A.2 for further details).

First, let us define a natural transformation δA : 1AP
�→ (−)P ◦ 1A. Note that in both cases (the domain

and codomain of the morphism) for any schema A, we have ΞP
A. Thus an iso arrow exists (the identity).

Now, let us define a natural transformation: γ : # ◦ (−)P × (−)P → (−)P ◦ #. First note that by the
properties of colimit we have an arrow: m : OpP

1 � OpP
2 → (Op1 � Op2)P . But now since (∃ v ∈ t • −)

is a functor we get an arrow: ∃ u(T P) • OpP
1 � OpP

2 →: ∃ u(T P) • (Op1 � Op2)P , thus by Lemma 4.1,
we get an arrow ∃ u(T) • OpP

1 � OpP
2 →: (∃ u(T) • Op1 � Op2)P . By Definition 3.28 this is an arrow

OpP
1 # OpP

2 → (Op1 # Op2)P . This collection of arrows form the natural transformation γ. As before the
coherence properties follow from the definition of # and the properties of colimits.

Lax functors are morphisms between bicategories; this means that promotion is coherent with respect to
identities and composition of operations. One property that we obtain as a corollary of this is that promotion
distributes w.r.t. composition of schema strengthening:

Theorem 4.3. For schemas S ,S ′,S ′′ where h ′, h ∈|| Op(S ,S ′) || and k ′, k ∈|| Op(S ′,S ′′) ||, we have that
(k ◦ k ′) # (h ◦ h ′) = (k # h) ◦ (k ′ # h ′) holds.

An illustration of the meaning of this theorem can be found in Figure 15.

First note that this equation is well-typed since # is a bifunctor, that is, it also maps arrows in Op(S ,S ′)×
Op(S ′,S ′′) to arrows in Op(S ,S ′′). Therefore, the equation of Theorem 4.3 states that composing operations
and then strengthening them (for instance, by strengthening preconditions in the usual way) is the same as
strengthening and then composing.

Furthermore, we can prove the following theorem.

Theorem 4.4. Given two schemas S0 and S1 we have an arrow a : S P
0 ∧ S P

1 → (S0 ∧ S1)P .

Proof. For the first property, let S0 = 〈〈T0,V0〉, {Γ0
i }i∈I 〉 and S1 = 〈〈T1,V1〉, {Γ1

j }j∈J 〉 be schemas. Recall
that a morphism between two schemas is a translation between their signatures that preserves axioms
(Definition 3.14). Let us first define this translation. The signature of S P

0 ∧ S P
1 is:

Sign(S P
0 ∧ S P

1) = 〈T0 ∪ T1 ∪ {Index}, {v : Index 7→ t | v ∈ V0 ∪V1} ∪ {s0:P Index} ∪ {s1:P Index}〉

26 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

OutP

�Bu↵erP

t ! : N
b? : bu↵er

b.s 6= hi
t ! = (head b.s)
b.s 0 = tail(b.s)
{b} �C s 0 = {b} �C s

Bu↵er
s : Seq N

Bu↵erP

s : Bu↵er ! Seq N

OutP

�Bu↵erP

t ! : N
b? : Bu↵er

b.s 6= hi
t ! = (head b.s)
b.s 0 = tail(b.s)
{b} �C s 0 = {b} �C s

InitP

State 0b : Bu↵er

b.s 0 = hi

InP

�State
t? : N
b? : Bu↵er

b.s 0 = b.s a ht?i
{b} �C s 0 = {b} �C s

File
f : Key 7! Record
blocked : Bool

FileBlocked
File

blocked

FileUnblocked
File

¬blocked

FileBlockedp

f : File ! (Key 7! Record)
blocked : File ! Bool

8 f 2 File • f .blocked

FileUnblockedp

f : File ! (Key 7! Record)
blocked : File ! Bool

8 f 2 File • ¬f .blocked

FileBlockedp _ FileUnblockedp

f : File ! (Key 7! Record)
blocked : File ! Bool

(8 f 2 File • f .blocked) _ (8 f 2 File • ¬f .blocked)

(FileBlocked _ FileUnblocked)p

f : File ! (Key 7! Record)
blocked : File ! Bool

(8 f 2 File • (f .blocked _ ¬f .blocked)

OpP

�(SP)
this : S
this 0 : S 0

�[v0(this)/v0, . . . , vn(this)/vn , v 0
0(this)/v

0
0, . . . , v

0
n(this)/v 0

n]
{this 0} �C v 0

0 = v0 �C {this}
...
{this 0} �C v 0

n = vn �C {this}

FileBlocked
File

blocked

FileUnblocked
File

¬blocked

FileBlockedp

f : File ! (Key 7! Record)
blocked : File ! Bool

8 f 2 File • f .blocked

FileUnblockedp

f : File ! (Key 7! Record)
blocked : File ! Bool

8 f 2 File • ¬f .blocked

FileBlockedp _ FileUnblockedp

f : File ! (Key 7! Record)
blocked : File ! Bool

(8 f 2 File • f .blocked) _ (8 f 2 File • ¬f .blocked)

(FileBlocked _ FileUnblocked)p

f : File ! (Key 7! Record)
blocked : File ! Bool

(8 f 2 File • (f .blocked _ ¬f .blocked)

OpP

�(SP)
this : S
this 0 : S 0

�[v0(this)/v0, . . . , vn(this)/vn , v 0
0(this)/v

0
0, . . . , v

0
n(this)/v 0

n]
{this 0} �C v 0

0 = v0 �C {this}
...
{this 0} �C v 0

n = vn �C {this}

InitP

State 0

b.s 0 = hi

InP

�(Bu↵erP)
t? : N
this : Bu↵er
this 0 : Bu↵er

this 0.s 0 = this .s a ht?i
{this 0} �C s 0 = {this} �C s

2 Example File

FileBlockedP

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
FileB : P Index

FileB ✓ dom f
FileB ✓ dom blocked
8 x 2 FileB • x .blocked

FileUnblockedP

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
FileU : P Index

FileU ✓ dom f
FileU ✓ dom blocked
8 x 2 FileU • ¬x .blocked

FileBlockedp _ FileUnblockedp

f : File ! (Key 7! Record)
blocked : File ! Bool
FileB : P Index
FileU : P Index

FileB ✓ dom f
FileU ✓ dom f
FileB ✓ dom blocked
FileU ✓ dom blocked
(8 fx 2 FileB • x .blocked) _ (8 f 2 FileU • ¬x .blocked)

InitP

State 0

b.s 0 = hi

InP

�(Bu↵erP)
t? : N
this : Bu↵er
this 0 : Bu↵er

this 0.s 0 = this .s a ht?i
{this 0} �C s 0 = {this} �C s

2 Example File

FileBlockedP

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
FileB : P Index

FileB ✓ dom f
FileB ✓ dom blocked
8 x 2 FileB • x .blocked

FileUnblockedP

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
FileU : P Index

FileU ✓ dom f
FileU ✓ dom blocked
8 x 2 FileU • ¬x .blocked

FileBlockedp _ FileUnblockedp

f : File ! (Key 7! Record)
blocked : File ! Bool
FileB : P Index
FileU : P Index

FileB ✓ dom f
FileU ✓ dom f
FileB ✓ dom blocked
FileU ✓ dom blocked
(8 fx 2 FileB • x .blocked) _ (8 f 2 FileU • ¬x .blocked)

FileBlockedp _ FileUnblockedp

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
FileB : P Index
FileU : P Index

FileB ✓ dom f
FileU ✓ dom f
FileB ✓ dom blocked
FileU ✓ dom blocked
(8 fx 2 FileB • x .blocked) _ (8 f 2 FileU • ¬x .blocked)

(FileBlocked _ FileUnblocked)p

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
File : P Index

File ✓ dom f
File ✓ dom blocked
(8 x 2 File • (x .blocked _ ¬x .blocked)

FileBlockedp _ FileUnblockedp

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
FileB : P Index
FileU : P Index

FileB ✓ dom f
FileU ✓ dom f
FileB ✓ dom blocked
FileU ✓ dom blocked
(8 fx 2 FileB • x .blocked) _ (8 f 2 FileU • ¬x .blocked)

(FileBlocked _ FileUnblocked)p

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
File : P Index

File ✓ dom f
File ✓ dom blocked
(8 x 2 File • (x .blocked _ ¬x .blocked)

Fig. 16. Counterexample for promotion

where s0 : P Index and s1 : P Index are the variables added by promoting the corresponding schemas. On
the other hand, we have:

Sign((S0 ∧ S1)P) = 〈T0 ∪ T1 ∪ {Index}, {v :Index 7→ t | v ∈ V0 ∪V1} ∪ {s0 ∧ s1:P Index}〉
Thus, we can define a translation σ : Sign(S P

0 ∧ S P
1) → Sign((S0 ∧ S1)P), mapping S0:Index and S1:Index

to S0 ∧ S1:Index , and any other variable to itself. To finish the proof we need to show that this translation
satisfies the condition of Def. 3.14. Note that we have:

Ax (S0 ∧ S1)P = {{∀ x ∈ S0 ∧ S1 •
∨

(i,j)∈I×J

∧
Γ0

i (x) ∧∧Γ1
j (x)}}

and:

Ax (S P
0 ∧ S P

1) = {{∀ x ∈ S0 •
∨

i∈I

∧
Γ0

i (x),∀ x ∈ S1 •
∨

j∈J

∧
Γ1

j (x)}}
which is equivalent by considering properties of FOL and distributivity of ∨ w.r.t. ∧ in propositional logic
to:

Ax (S P
0 ∧ S P

1) = {{∀ x ∈ S0 • ∀ x ∈ S1 •
∨

(i,j)∈I×J

∧
Γ0

i (x) ∧∧Γ1
j (x)}}

Now taking into account that variables S0:Index and S1:Index are mapped to S0 ∧ S1:Index by σ, we obtain
that:

∀ x ∈ S0 •
∨

i∈I

∧
Γ0

i (x),∀ x ∈ S1 •
∨

j∈J

∧
Γ1

j (x) � σ(∀ x ∈ S0 • ∀ x ∈ S1 •
∨

(i,j)∈I×J

∧
Γ0

i (x) ∧∧Γ1
j (x))

Thus, σ : S P
0 ∧ S P

1 → (S0 ∧ S1)P is a morphism in Zchmfin

Roughly speaking, this property states a (semi-)distributive property of promotion w.r.t. schema con-
junction. One may expect an equivalence (an isomorphism in this case) in this theorem since universal
quantification distributes over conjunction in first-order logic (and promotion has an universal character).
The main problem here is that promotion introduces new variables, and in this case the arrow a does not
have an inverse.

One of the main points of our formalisation is that we characterise promotion as a mapping between
specifications. To the authors’ knowledge this is not achieved in any related work. For instance, in [Woo90]
a promoted state is captured as a particular schema; this prevents an investigation of the properties of
promotion, such as the one stated in Theorem 4.4.

Let us illustrate the fact that promotion does not distribute over disjunction consider the schemas in
Figure 16.

Categorical Foundations for Structured Specifications in Z 27

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

Numbers
ns : P N

#ns > 0

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

⟨ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}⟩

#
These kinds of mappings are called representation maps, and are a mappings

between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

It is translated to:

Op
∆SP

c : X

φ[v0(c)/v0, . . . vn(c)/vn , v ′
0(c)/v ′

0, . . . v
′
n(c)/v ′

n]
v ′
0 −▹ {c} = v0 −▹ {c}

. . .
v ′
n −▹ {c} = vn −▹ {c}

where v0, . . . , vn , v ′
0, . . . , v

′
n are the variables of S and S ′, respectively. That is,

we add a parameter c that is the particular instance to which is applied the
operation. The categorical diagram is as follows:

OpP

Op

!!✐✐✐✐✐✐✐✐✐✐✐✐
SP

""④④④④④④④④
S ′P

##❉❉❉❉❉❉❉❉

S

$$⑦⑦⑦⑦⑦⑦⑦⑦

!!✐✐✐✐✐✐✐✐✐✐✐✐ S ′

%%❆❆❆❆❆❆❆❆

!!❤❤❤❤❤❤❤❤❤❤❤❤❤

where the dashed arrows denote the application of the transformation described
above. The translation (−)P : Zpec → Zpec is a functor, which maps schemas
to promoted schemas, and operations to promoted operations; we can define it
in two steps:

– A functor (−)P : Zign → Zign, which translates the signatures in the way
described above.

– The canonical extension of (−)P to formulae, as explained.

Moreover, given a model M of ΣP we can define corresponding model MD (a
degraded model), which forgets the new sort introduced. Let us present a simple
example to illustrate these ideas:

⟨ns " {x0 $→ {0, 1}, x1 $→ {2, 3}}⟩

#

These kinds of mappings are called representation maps, and are a mappings
between logical systems. Intuitively, a collection of schemas and relation between
them are a logical system, and a representation map allows us to move inside the
same system but adding certain useful features, and keeping the basic properties
of these schemas. Taking these observations into account, It is straightforward
to obtain an institutional view of Z.

Theorem 3. The structure Z composed of:

(�)P

id

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

ts 6= ;
8 p : ps • p.owns ✓ ts
8 p1, p2 : ps • p1 6= p2) p1.owns \ p2.owns = ;

Settle
�Player
t : N

t /2 owns
owns 0 = owns [{t}

Leave
�Player
t : N

t 2 owns
owns 0 = owns \ {t}

Player
owns : P N

Player 0

owns 0 : P N

owns 7! owns owns0 7! owns0

�Player

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Numbers
ts : P N

#ns > 0

Numbersp

ns : Index 7! P N
Numbers : P Index

8n 2 Numbers • #ns(n) > 0

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

Remainder
r , d : N

r < d

Division b= Quotient ^ Remainder

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Numbers
ts : P N

#ns > 0

Numbersp

ns : Index 7! P N
Numbers : P Index

Numbers ✓ dom ns
8n 2 Numbers • #ns(n) > 0

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

Remainder
r , d : N

r < d

Division b= Quotient ^ Remainder

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Numbers
ts : P N

#ns > 0

Numbersp

ns : Index 7! P N
Numbers : P Index

Numbers ✓ dom ns
8n 2 Numbers • #ns(n) > 0

EndGame
NumbersP

result : Numbers

ns(result) = {0, 1, 2, 3, 4, 5, 6}

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

(�)D

Examples for Paper in FM

Pablo F. Castro1,3, Nazareno Aguirre1,3, Carlos López Pombo2,3, and
Tom Maibaum4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina. E-mail: {pcastro, naguirre}@dc.exa.unrc.edu.ar

2 Departamento de Computación, FCEyN, Universidad de Buenos Aires,
Buenos Aires, Argentina. E-mail: clpombo@dc.uba.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Department of Computing & Software, McMaster University, Hamilton (ON),

Canada. E-mail: tom@maibaum.org

Game
ps : P Player
ts : P N

Numbers
ts : P N

#ns > 0

Numbersp

ns : Index 7! P N
Numbers : P Index

Numbers ✓ dom ns
8n 2 Numbers • #ns(n) > 0

EndGame
NumbersP

result : Numbers

ns(result) = {0, 1, 2, 3, 4, 5, 6}

Quotient
n, d , q , r : N

d 6= 0
n = q ⇤ d + r

{hns V {0, 1}i, hns V {2, 3}i} {hns V {x0 7! {0, 1}, x1 7! {2, 3}}, Numbers V {x0, x1}i}

Fig. 17. Example of mappings between schemas and models

We use the example introduced in [Jac97] adapted to our setting, where we have a file and we promote
this schema to have a file system. In this case we use the technique introduced above, and therefore a schema
Filep is defined (this schema can be included in other ones to form the specification of a filesystem). The
important point here is that the schema (FileBlocked ∨ FileUnblocked)p is not equivalent to FileBlockedp ∨
FileUnblockedp . It worth noting, that the latter schema introduces two subsets of Index while the former
introduces only one (here named File for the sake of clarity).

4.1. Promotion as an Institution Representation

Let us note that, given a model M of a promoted schema S P , we can define a corresponding model MD (a
degraded model), which forgets the new sort introduced. In Figure 17 a simple example of mapping between
schemas and their models is shown to illustrate these ideas.

As explained in Section 2, these kinds of mappings are called institution representations [Tar95], which
are mappings between logical systems. Intuitively, a collection of schemas and the relations between them
define a logical system. An institution representation allows us to translate one logical system into another,
while keeping the basic properties of theories, or schemas in this case.

Institution representations were introduced informally above, where we argued for their inclusion for
capturing promotion. As institutions are an abstract characterisation of logical systems, institution repre-
sentations capture the notion of embedding of a logical system into another one [Tar95]. The logical machinery
of Z used for describing states and operations constitutes an institution, and the operation of promoting
schemas corresponds to an institution representation from this institution to itself. The key elements involved
in the promotion process are:

• The definition of a mapping (functor) (−)P : Zign → Zign, mapping a signature to its promoted
signature.

• The definition of a mapping (natural transformation) (−)D : Mod ◦ (−)P → Mod , mapping models of
promoted signatures to models of the original signature.

• The definition of a mapping (natural transformation) (−)P : Sen → Sen ◦ (−)P mapping formulas of
the original signature to formulas of the promoted signature.

These mappings satisfy the property M � φP ⇔ MD � φ. That is, a model of a promoted signature
satisfies a promoted property if and only if the degraded model satisfies the original property. A graphical
representation of this situation is shown in Fig. 18. To clarify this diagram, suppose that we have a translation
from one schema signature to another schema signature (named σ). Notice that reducts move in the opposite
direction of translations (this explains the (−)op in the definition of institutions). Then, if we take a reduct
of a promoted schema, and so we take the degraded model (the right path of the diagram), we obtain the
same model as if we take the degraded model first and then take the reduct (the left path in the diagram).
This ensures the coherence between the operations of strengthening and promotion in Z, which is guaranteed
by the following theorem.

Theorem 4.5. (−)P and (−)D form an institution representation.
Proof. As shown above (−)P : Zign→ Zign is a functor. The functor ΣD : Mod(ΣP)→ Mod(Σ) is defined
as follows:

• Given a structure I = {Ij}j∈J of ΣP , we define

ID
def
= Uj∈J ,x∈Ij (N){DN (x)(Ij)}

28 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Σ2

Σ1

σ

OO Mod(Σ2)

Mod(σ)

��

Mod(ΣP
2)

Mod(σP)

��

(−)Doo

Mod(Σ1) Mod(ΣP
1)

(−)D

oo

Fig. 18. Institution representations.

where DN (x)(Ij)(v : t)
def
= Ij (v)(x).

It is straightforward to extend this mapping to reducts. Identities are mapped to identities, and composi-

tion is preserved, thus (−)D is a functor. For formulas, each formula ϕ is translated to ϕP def
= ∀ x ∈ N •ϕ(x),

which is obviously natural w.r.t. translation. We only need to prove that:

M � ∀ x ∈ N • ϕ(x)⇔ MD � ϕ
but this is straightforward by definition of MD .

5. Heterogeneous Z Specifications and Structuring

Following the recent trend in software engineering that favours a “multiple views” approach to specification
and design, the Z notation has been extended in various ways, in combination with other notations. Some of
these extensions are Z-CSP [Fis97] (Z plus the process algebra CSP), and Z plus statecharts [Web96]; more
recently, the language Circus was introduced in [Woo01]. This language combines Z and CSP, providing
also a refinement calculus for this extension of Z. These heterogeneous specification languages pose new
challenges, e.g., for defining appropriate formal semantics for the composite languages, and for providing
effective mechanisms to reason about these specifications.

A consequence of the abstract nature of our formalisation of Z, and its structuring mechanisms, is that
we can deal with these extensions in a systematic way. Most formalisms for specifying software systems can
be viewed as institutions; well-known examples are: first-order logics [GB92], temporal logics [GB92], modal
logics [GB92], Unity-like languages [FM92] and process algebras [MR06], all constitute institutions. Our
formalisation of the basic construction of Z in an institutional setting, and the wide toolset available from
the theory of institutions, enables us to flexibly combine Z with other formalisms, obtaining extensions of Z
with appropriate, well structured semantics. It is important to remark that the combination of institutions is
a well studied area; see for instance [MTP97]. In this section we use basic ways of combining two institutions
but the interested reader is referred to the cited work to have a deeper understanding of this area.

In order to illustrate this important characteristic of our formalisation, we describe in this section the
combination of Z with CSP (structured CSP, as introduced in [MR06]). The combination thus obtained
is, in essence, similar to the framework Z-CSP, with a well defined structured semantics, that makes the
semantic relationships between different (heterogeneous) components of a specification explicit. We make
use of the CSP (structured CSP) institution. The interested reader can find the details of this formalism in
[MR06]. Signatures in this institution are pairs 〈A,P〉, where A is an alphabet (used for the communication
of processes), and P is a collection of process names. Elements of both A and P have an associated list of
typed parameters. A morphism 〈f , g〉 : 〈A,P〉 → 〈A′,P ′〉 between two CSP signatures consists of an injective
function f : A→ A′, mapping members of A to members of A′ preserving parameters and their types1, and
a function g : P → P ′, mapping process names to process names, preserving parameters and their types.
The category of CSP signatures is called CSPSig [MR06]. A CSP theory is a tuple 〈Σ, π〉, where Σ is a CSP
signature, and π is a set of processes in the CSP notation. A model of a theory is given by a set of traces
corresponding to the processes of the theory. For the sake of simplicity, we employ a finite trace semantics
(as introduced in [MR06]), although the failure-divergence semantics is also supported in this institution.
We have a morphism between models M1 → M2 iff M2 v M1 (i.e., M2 is a refinement of M1). A simple

1 The use of injective mappings introduces some subtle technical problems when combining specifications. A way of avoiding
these problems is described in [MR06].

Categorical Foundations for Structured Specifications in Z 29

{〈〉, 〈coin〉,
〈coin, choc〉,
〈coin, choc, coin〉
. . . }

�
A = {coin, choc}
P = {VM}
π = {VM = coin → choc → VM}

Fig. 19. A theory in Structured CSP, and a model of it.

example of a vending machine is described as a CSP theory in Figure 19. Neither communication letters nor
processes have parameters in this example. A model of the theory accompanies the example as well.

A new institution CZP can be defined using the institutions CSP and Z. Essentially, we want specifica-
tions to have a data part, given in Z with its corresponding operations, and a process part, with each atomic
process being associated with an operation as described in the Z part of the specification.

Definition 5.1. The category SignCZP of CZP signatures is composed of:

• tuples Σ = 〈ΣCSP ,ΣZ 〉 as signatures, where ΣCSP and ΣZ are CSP and Z signatures, respectively;

• a morphism σ : Σ→ Σ′ is a tuple of morphisms 〈f : ΣCSP → Σ′CSP , g : ΣZ → Σ′Z 〉.
We can also introduce a functor Sen, that formalizes the syntactical constructions of this new formalism.

Definition 5.2. The functor SenCZP is defined as follows:

SenCZP (〈ΣCSP ,ΣZ 〉) = 〈SenCSP (ΣCSP),SenZ (ΣZ)〉.
The semantics of this logical systems is given by execution traces, characterised in the following definition:

Definition 5.3. The functor ModCZP is defined as follows:

• Given Σ = 〈ΣCSP ,ΣZ 〉, we define:

Mod(Σ) = {〈〈a1, . . . , an〉, 〈I1, . . . , In+1〉 | ∃M ∈Mod(ΣCSP) : 〈a1, . . . , an〉 ∈ M ∧ Ii ∈Mod(ΣZ)}.
That is, a model is a possible trace together with a sequence of states representing the state changes
produced by this finite trace.

• Given a morphism σ : Σ0 → Σ1 (where 〈Σi = 〈Ai ,Ni〉〉) the morphism Mod(σ) is defined pointwise,
using reducts of traces as defined in [MR06] and reducts of schema interpretations as defined in Section 3.

That is, models are execution traces, together with models of the corresponding operations. The relation
�CZP is also defined resorting to �CSP and �Z as follows:

Definition 5.4. M � 〈π, φ〉 iff π1(M) � π and for every 〈I1, . . . , In+1〉 ∈ π2(M) we have Ii � φ, for every i .
(Here note that each Ii is a collection of (loose) interpretations as defined in Section 3).

Specifications in CZP are theories in Z; together with processes in CSP and some elements that coor-
dinate the two, as defined in the following definition.

Definition 5.5. A theory in CZP is a tuple 〈ΣCSP ,ΣZ ,S ,Ops, events, π〉, where:

• ΣCSP = 〈A,N 〉 is a signature in CSP,

• ΣZ is a signature in Z,

• S is a schema 〈S ,Φ〉,
• OPS = {op0 : S ⇒ S ′, . . . opn : S ⇒ S ′} is a collection of operations over the state S 2,

• event : A→ OPS is a function mapping events to operations, and mapping event : Par(a)→ Par(event(a)),
for every a ∈ A, thus identifying parameters of each event with parameters of the corresponding opera-
tion.

• π is a set of CSP processes.

In the above, for a given event a, Par(a) returns its (actual) parameters and for a Z operation schema
OP : S ⇒ S ′, Par(OP) returns its list of parameters (input and output parameters).

2 Here we use the notation op : S ⇒ S ′ to indicate that op is a Z operation on state S , as defined in Section 3.

30 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

(skip)P def
= skip

(stop)P def
= stop

n(x1 : T1, . . . , xn : Tn)P = n(x : S , x1 : T1, . . . , xn : Tn)

(a → Proc)P def
= a?x : X → ProcP

(?y:T → Proc)P def
= ?x :X ?y:T → ProcP

(S2Q)P def
= SP2SP

(S uQ)P def
= SP uQP

(S ‖ Q)P def
= SP ‖ QP

(P ||| Q)P def
= SP ||| SP

MD
def
=

⋃
x∈S{σx | σ ∈ M}

where σx is obtained by deleting the
events in the trace where x is not
present, similarly for the corresponding
interpretation of schemas.

Fig. 20. Promoting basic CSP operators, and degrading traces.

Morphisms between CZP theories are straightforwardly defined pointwise. The relation � can be extended
to theories:

M � 〈ΣCSP ,ΣZ ,S ,OPS , event , π〉
iff

π1(M) � π and 〈Ii ,Mod((−)′)(Ii+1), event〉 � event(ai)

where 〈Ii ,Mod((−)′)(Ii+1), event〉 is the interpretation obtained by using Ii to give values to the variables
in ΣZ (unprimed variables in OP), Ii+1 to assign values to variables in Σ′Z (primed variables in OP),and
the values of the input and output variables in OP are assigned according the function event that matches
event (and its parameters) with operations (and its parameters). An example is shown in Figure 21.

Let us note that promotion can be easily extended to this new institution. We define functor (−)P :
CZPSign → CZPSign, mapping signatures to signatures, as follows. Given a signature 〈ΣCSP ,ΣZ 〉, ΣZ is
translated to ΣP

Z , and ΣCSP is mapped to the following CSP signature:

• If a ∈ A, then aP = a.x , where x ∈ S , being S the new type introduced in ΣP
Z ,

• If n ∈ N , then n(x1 : T1, . . . , xn : Tn)P = n(x : S , x1 : T1, . . . , xn : Tn).

This functor is extended to sentences in CZP: the translation of a process is defined inductively as in
Figure 20, and the translation of Z formulas is defined as in Section 3. Furthermore, we define the mapping
(−)D between models as in Figure 20. This extension of promotion is also an institution representation:

Theorem 5.1. Mappings (−)P and (−)D form an institution representation.

Fig. 21 shows, using a simple example, how promotion works in this new setting. In this case, we have a
standard specification of a buffer with its corresponding process specification. The schemas and the CSP
process on the left are promoted to the corresponding one the right. Via promotion, we obtain a specification
with various buffers whose executions interleave.

6. Related Work

Several frameworks have been proposed to give a formal semantics for Z. The original semantics proposed
in [Spi84] uses signatures and axiomatic theories, and the semantics of these axiomatic theories is given by
means of varieties; this work can be thought of as a precursor of the framework introduced here. However, in
that initial work, many important aspects of Z (such as schema calculus, schemas as types and promotion)
cannot be captured.

In [Bau99], institutions are used for providing semantics to Z specifications; in this work, schemas are
captured as logical sentences in an institution, and therefore a Z specification is viewed as an unstructured set
of expressions. In contrast, our approach makes use of theories and morphisms between them in formalising Z
designs, thus leading to a well structured categorical semantics of designs. In [Buj04], category theory is used
in the definition of a relational semantic framework to interpret Z, as well as other specification languages.
As in our case, the approach allows for heterogeneous specification; however, the work uses Z simply as an
example of a language based on the “state & operations” viewpoint, but it does not show how to deal with

Categorical Foundations for Structured Specifications in Z 31

– A functor (�)P : CZPSing! CZPSign mapping signatures to signatures.
The second component ⌃Z is translated to ⌃P

Z ; and the first component is
mapped the following CSP signature:

• If a 2 A, then aP = a?(x : S), being S the new type introduced in
⌃P

Z ; mapping a process name n(x1 : T1, . . . , xn : Tn) 2 N , to n(x1 :
T1, . . . , xn : Tn)P = n(x : Ss, x1 : T1, . . . , xn : Tn).

This functor can be straightforwardly extended to sentences in CZP: the trans-
lation of processes are defined inductively as in figure ??, and the translation
of Z formulae is defined as above. Furthermore, we can define a mapping (�)D
between models as in figure ??. The interesting point is that this extension of
promotion is also a institution representation, as stated by the following theorem:

Theorem 6. The mappings (�)P and (�)D are a representation map.

Figure ?? shows a simple example go how promotion works in this new setting.

(skip)PX
def
= skip

(stop)PX
def
= stop

(a ! Proc)PX
def
= a?x : X ! ProcPX

(?y :T ! Proc)PX
def
=?x :X ?y :T ! ProcPX

(S2Q)PX
def
= SPX 2SPX

(S u Q)PX
def
= SPX u QPX

(S k Q)PX
def
= SPX k QPX

(P ||| Q)PX
def
= SPX ||| SPX

(hi)DX

def
= hi

(a a S)DX

def
= aDX a SDX

where:

aDx

def
= a, if a 2 A,

(a.v)Dx

def
= a.v , if v /2 X ,

(a.v)Dx

def
= a.

Fig. 14. Promoting basic CSP operators, and degrading traces.

Bu↵er
s : Seq N

Out
�State
t ! : N

s 6= hi
t ! = heads
s 0 = tails

Init
State 0

s 0 = hi

– A functor (�)P : CZPSing! CZPSign mapping signatures to signatures.
The second component ⌃Z is translated to ⌃P

Z ; and the first component is
mapped the following CSP signature:

• If a 2 A, then aP = a?(x : S), being S the new type introduced in
⌃P

Z ; mapping a process name n(x1 : T1, . . . , xn : Tn) 2 N , to n(x1 :
T1, . . . , xn : Tn)P = n(x : Ss, x1 : T1, . . . , xn : Tn).

This functor can be straightforwardly extended to sentences in CZP: the trans-
lation of processes are defined inductively as in figure ??, and the translation
of Z formulae is defined as above. Furthermore, we can define a mapping (�)D
between models as in figure ??. The interesting point is that this extension of
promotion is also a institution representation, as stated by the following theorem:

Theorem 6. The mappings (�)P and (�)D are a representation map.

Figure ?? shows a simple example go how promotion works in this new setting.

(skip)PX
def
= skip

(stop)PX
def
= stop

(a ! Proc)PX
def
= a?x : X ! ProcPX

(?y :T ! Proc)PX
def
=?x :X ?y :T ! ProcPX

(S2Q)PX
def
= SPX 2SPX

(S u Q)PX
def
= SPX u QPX

(S k Q)PX
def
= SPX k QPX

(P ||| Q)PX
def
= SPX ||| SPX

(hi)DX

def
= hi

(a a S)DX

def
= aDX a SDX

where:

aDx

def
= a, if a 2 A,

(a.v)Dx

def
= a.v , if v /2 X ,

(a.v)Dx

def
= a.

Fig. 14. Promoting basic CSP operators, and degrading traces.

Bu↵er
s : Seq N

Out
�State
t ! : N

s 6= hi
t ! = heads
s 0 = tails

Init
State 0

s 0 = hi

In
�State
t? : N

s 0 = s a ht?i

6 Related Work and Conclusions

We proposed a mathematical foundation for Z and its structuring mechanisms,
which makes use of well established abstract notions of logical systems. Indeed,
the notions that we used in this formalisation have been employed to structure
concurrent system specification languages and algebraic specification languages,
and other formalisms [10, 9]. Several alternative approaches to provide a formal
semantics to Z can be found in the literature. One of these is the one presented
in [14], where schemas are interpreted as axiomatic theories (signatures plus
predicates), and the semantics of these axiomatic theories is given by means
of varieties; in this work, no semantics is proposed for promotion and the use
of schemas as types. In [12], the authors propose to interpret schemas as types;
they build a logical machinery in order to deal with these types. These ideas were
adopted in the international ISO standard of Z [13]. Some issues are, in our opin-
ion, not dealt with adequately in this approach; for instance, schema priming is
di�cult to explain in this context, since a schema and its primed version corre-
spond to di↵erent unrelated types. We believe that our approach fits better with
the original motivations for Z’s schema operators, were priming denotes a purely
syntactical operation, an operation also extensively used in other logics for pro-
gram specification (e.g., in TLA). The interpretation of priming (and related
operators) as categorical operations over logical theories provides a simple un-
derstanding of Z constructions, with a good separation of concerns between the
interpretation of schemas and schema operators, dealing even with promotion, a
sophisticated, and widely used, specification structuring mechanism. Moreover,
our approach maintains the structure of specifications when providing semantics
to them, leading to explicit semantic relationships between component schemas
and the composite schemas they are part of, which can be exploited to promote
reasoning, and with potential benefits for automated reasoning.

References

1. J.-R. Abrial, The B-Book, Assigning Programs to Meanings, Cambridge University
Press, 1996.

2. M. Barr and C. Wells, Category Theory for Computer Science. Centre de
Recherches Mathématiques. Université de Montréal, 1999.

3. J. Bérnabou, Introduction to bicategories, in Complementary definitions of pro-
gramming language semantics, LNM 42, Springer, 1967.

4. F. Borceux Handbook of Categorical Algebra: Volume 1: Basic Category Theory,
Vol.I, Encyclopedia of Mathematics and its Applications, Cambridge University
Press, 1994.

main(b : Buffer) = in?(b : Buffer)?(x : N)! main

⇤out?(b : Buffer)!(y : N)! main

main = in?(x : N)! main

⇤out!(y : N)! main

Game
NumberP

state : Players ! Numbers

Game 0

Number 0P

state 0 : Players ! Numbers

Play
�Game
AddNumberP

p? : Player

state(p?) = ns?
{p?} �C state 0 = {p?} �C state

Bu↵erP

s : Bu↵er ! Seq N

OutP

�State
t ! : N
b? : bu↵er

s 6= hi
t ! = (headb.s)
b.s 0 = tail(b.s)
{b} �C s 0 = {b} �C s

InitP

State 0b : Bu↵er

b.s 0 = hi

InP

�State
t? : N
b? : Bu↵er

b.s 0 = b.s a ht?i
{b} �C s 0 = {b} �C s

Game
NumberP

state : Players ! Numbers

Game 0

Number 0P

state 0 : Players ! Numbers

Play
�Game
AddNumberP

p? : Player

state(p?) = ns?
{p?} �C state 0 = {p?} �C state

Bu↵erP

s : Bu↵er ! Seq N

OutP

�State
t ! : N
b? : bu↵er

s 6= hi
t ! = (headb.s)
b.s 0 = tail(b.s)
{b} �C s 0 = {b} �C s

InitP

State 0b : Bu↵er

b.s 0 = hi

InP

�State
t? : N
b? : Bu↵er

b.s 0 = b.s a ht?i
{b} �C s 0 = {b} �C s

Game
NumberP

state : Players ! Numbers

Game 0

Number 0P

state 0 : Players ! Numbers

Play
�Game
AddNumberP

p? : Player

state(p?) = ns?
{p?} �C state 0 = {p?} �C state

Bu↵erP

s : Bu↵er ! Seq N

OutP

�State
t ! : N
b? : bu↵er

b.s 6= hi
t ! = (head b.s)
b.s 0 = tail(b.s)
{b} �C s 0 = {b} �C s

InitP

State 0b : Bu↵er

b.s 0 = hi

InP

�State
t? : N
b? : Bu↵er

b.s 0 = b.s a ht?i
{b} �C s 0 = {b} �C s

✏ ✏

(�)P

(�)D {hhhi, hii, hhin.b0.1i, hs V {}, b? V 0, t? V 1,

s0 V {b0 7! {0 7! 1}}ii, . . . }
{hhhi, hii, hhin.1i, hs V {}, t? V 1,

s0 V {0 7! 1}, ii, . . . }

1 Bu↵er Example

Bu↵er
s : Seq N

Init
State 0

s 0 = hi

Out
�Bu↵er
t ! : N

s 6= hi
t ! = head(s)
s 0 = tail(s)

In
�Bu↵er
t? : N

s 0 = s a ht?i

Bu↵erP

s : Index 7! Seq N
Bu↵er : P Index

Bu↵er ✓ dom(s)

OutP

�(Bu↵erP)
t ! : N
this : Bu↵er
this 0 : Bu↵er 0

b.s 6= hi
t ! = head(this .s)
this 0.s 0 = tail(this .s)
{this 0} �C s 0 = {this} �C s

main = in?(x : N)! main

⇤out!(y : N)! main

(�)P

1 Bu↵er Example

Bu↵er
s : Seq N

Init
State 0

s 0 = hi

Out
�Bu↵er
t ! : N

s 6= hi
t ! = head s
s 0 = tail s

In
�Bu↵er
t? : N

s 0 = s a ht?i

Bu↵erP

s : Index 7! Seq N
Bu↵er : P Index

Bu↵er ✓ dom s

OutP

�(Bu↵erP)
t ! : N
this : Bu↵er
this 0 : Bu↵er 0

b.s 6= hi
t ! = head this.s
this 0.s 0 = tail this .s
{this 0} �C s 0 = {this} �C s

1 Bu↵er Example

Bu↵er
s : Seq N

Init
State 0

s 0 = hi

Out
�Bu↵er
t ! : N

s 6= hi
t ! = head s
s 0 = tail s

In
�Bu↵er
t? : N

s 0 = s a ht?i

Bu↵erP

s : Index 7! Seq N
Bu↵er : P Index

Bu↵er ✓ dom s

OutP

�(Bu↵erP)
t ! : N
this : Bu↵er
this 0 : Bu↵er 0

b.s 6= hi
t ! = head this.s
this 0.s 0 = tail this .s
{this 0} �C s 0 = {this} �C s

1 Bu↵er Example

Bu↵er
s : Seq N

Init
State 0

s 0 = hi

Out
�Bu↵er
t ! : N

s 6= hi
t ! = head s
s 0 = tail s

In
�Bu↵er
t? : N

s 0 = s a ht?i

Bu↵erP

s : Index 7! Seq N
Bu↵er : P Index

Bu↵er ✓ dom s

OutP

�(Bu↵erP)
t ! : N
this : Bu↵er
this 0 : Bu↵er 0

b.s 6= hi
t ! = head this.s
this 0.s 0 = tail this .s
{this 0} �C s 0 = {this} �C s✏ ✏

{hhhi, hii, hhin.1i, hs V {}, t? V 1,

s0 V {0 7! 1}, ii, . . . }

main(b : Buffer) = in?(b : Buffer)?(x : N)! main.b

⇤ out?(b : Buffer)!(y : N)! main.b

{hhi, hii, hhin.b0.1i, hhBuffer V {b0}, s V {b0 7! hi}i,
hBuffer V {b0}, s V {hb0 7! 1i}ii}

InitP

State 0

b.s 0 = hi

InP

�(Bu↵erP)
t? : N
this : Bu↵er
this 0 : Bu↵er

Bu↵er = Bu↵er 0

this 0.s 0 = this .s a ht?i
{this 0} �C s 0 = {this} �C s

2 Example File

FileBlockedP

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
FileB : P Index

FileB ✓ dom f
FileB ✓ dom blocked
8 x 2 FileB • x .blocked

FileUnblockedP

f : Index 7! (Key 7! Record)
blocked : Index 7! Bool
FileU : P Index

FileU ✓ dom f
FileU ✓ dom blocked
8 x 2 FileU • ¬x .blocked

(�)D

1 Bu↵er Example

Bu↵er
s : Seq N

Init
State 0

s 0 = hi

Out
�Bu↵er
t ! : N

s 6= hi
t ! = head s
s 0 = tail s

In
�Bu↵er
t? : N

s 0 = s a ht?i

Bu↵erP

s : Index 7! Seq N
Bu↵er : P Index

Bu↵er ✓ dom s

OutP

�(Bu↵erP)
t ! : N
this : Bu↵er
this 0 : Bu↵er 0

Bu↵er = Bu↵er 0

this .s 6= hi
t ! = head this.s
this 0.s 0 = tail this .s
{this 0} �C s 0 = {this} �C s

Fig. 21. Promoting CZP specifications.

Z ’s structuring mechanisms. In [BM00], the authors propose a set of rules to manipulate Z schemas; as
opposed to our work, these rules are motivated as a means for refactoring specifications.

Other work, in particular [HR99, HR99b], proposes the use of higher-order logic to interpret schemas: this
has the clear benefit of interpreting schemas as types in a simple way; however, the semantics of specifications
obtained in this way does not reflect the structuring of specifications, flattening a modular Z specification
into a typed set theory. In addition, the direct interpretation of schemas as types in a higher-order logic
introduces difficulties when dealing with operations; in particular, the authors need to change the Z notation
to deal with the constructions ∆S and ΞS . Note that, in our framework, operations are schemas that extend
∆S , meaning that they relate pre and post states; furthermore, observing the semantics, and taking into
account that in Mod(Σ) the arrows go in the other direction, the semantics of an operation is provided by
a relationship between states, which coincides with the basic intuition about operations in Z. This, in our
opinion, reflects accurately the intuitions associated with the Z notation.

On the other hand, the schema calculus is presented in detail in the standard literature [Woo96, Spi88];
the properties of schema conjunction, disjunction and inclusion are described and illustrated with several
examples, but promotion is often, as argued in [Woo90], introduced in an informal way. In [Woo90], the
author captures some properties of promotion in a rigorous way; in our opinion the proposed mathematical
formulation of promotion does not capture the real power of the technique, which is essentially a mapping
between specifications, as proposed in Section 4.

Regarding heterogeneous specifications, special mention should be made of the Unifying Theories of Pro-
gramming (or UTP) [HJ98], a formal framework that makes possible the unification of different programming
paradigms and related formalisms, such as imperative programming and process algebra. A nice example
of the use of UTP to unify different languages (and their semantics) is given in [OCW09], where UTP is
employed to give the semantics of Circus [Woo01], a combination of Z with process algebras (in a CSP style).
An interesting aspect of UTP is that it allows for the formalization of the refinement calculus as used in
Z; note that we have not included in this paper a treatment of pre/postconditions and the Z refinement
calculus in our categorical framework. We leave this as further work. In comparison with our work, UTP
provides a technically simpler semantics to Z constructions, by only using notions coming from first and
second order logic; the categorical framework described in this paper is technically more involved, using
categorical constructions (bicategories, natural transformations, etc) that might not be familiar for most Z
users. However, we believe that a key benefit of our framework w.r.t. to the approaches mentioned above is
that it provides a transparent (and abstract) semantics to Z: schemas are captured as logical theories, and
the structure of modular Z specifications are naturally reflected in their categorical semantics; furthermore,

32 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

its high level of abstraction enables its combination with other frameworks in a more or less direct way, as
shown in Section 5. Other authors have proposed the combination of Z with other formalisms, for instance
[Web96, Fis97], but the frameworks proposed in these works are ad-hoc and cannot be used in more general
settings.

7. Conclusions

We have proposed a mathematical foundation for Z and its structuring mechanisms; this formal framework
makes use of well established abstract descriptions of logical systems. Indeed, the notions that we used in
this formalisation have been employed to structure concurrent system specification languages and algebraic
specification languages, and other formalisms [FM92, Fia04] usually found in formal methods. Several al-
ternative approaches to provide a formal semantics for Z can be found in the literature, as explained in
Section 6, but we believe that our approach fits better with the original motivations for Z’s schema oper-
ators, where priming denotes a purely syntactical operation, a syntactic operation also extensively used in
other logics for program specification (e.g., in TLA). The interpretation of priming (and related operators)
as categorical operations over logical theories provides a simple understanding of Z constructions, with a
good separation of concerns between the interpretation of schemas and schema operators, dealing even with
promotion, a sophisticated, and widely used, specification structuring mechanism. Moreover, our approach
maintains the structure of specifications when providing semantics for them, leading to explicit semantic re-
lationships between component schemas and the composite schemas they are part of, which can be exploited
to promote reasoning, and with potential benefits for automated reasoning. Finally, our formalisation is at a
level of abstraction that allows for a view of logical systems as building blocks. This provides the rigour and
flexibility needed to characterise not only Z but also its related languages and extensions, in particular the
heterogeneous ones. We have illustrated this point via a formal, well structured, combination of Z with CSP,
resulting in a formalism in essence equivalent to the Z-CSP formal method, and “inheriting” the structuring
of the composed languages, in particular promotion.

References

[Ris63] Risk! Rules of Play. Parker Brothers, 1963.
[Abr96] Abrial, J. R.: The B-Book, Assigning Programs to Meanings. Cambridge University Press, 1996.
[BSM04] Baar, T., Strohmeier, A., Moreira, A. and Mellor, S.: UML 2004. Lecture Notes in Computer Science, volume 3273.

Springer-Verlag, 2004.
[BW99] Barr, M. and Wells, C.: Category Theory for Computer Science. Centre de Recherches Mathématiques, Université

de Montréal, 1999.
[Bau99] Baumeister, H.: Relating Abstract Datatypes and Z-Schemata. In Proc. of WADT ’99, Lecture Notes in Computer

Science, volume 1827, Springer-Verlag, 1999.
[Ber67] Bérnabou, J.: Introduction to Bicategories. In Complementary Definitions of Programming Language Semantics,

LNM 42, Springer-Verlag, 1967.
[Bor94] Borceux, F.: Handbook of Categorical Algebra: Volume 1: Basic Category Theory. Enc. of Mathematics and its

Applications, Cambridge University Press, 1994.
[Bor99] Borzyszkowski, T.: Higher-Order Logic and Theorem Proving for Structured Specifications, In Proc. of WADT

’99, Lecture Notes in Computer Science, volume 1827, Springer-Verlag, 1999.
[BM00] Brien, S. M. and Martin, A. P.: A Calculus for Schemas in Z. Journal of Symbolic Computation, 30(1), Elsevier,

2000.
[Buj04] Bujorianu, M. C.: Integration of Specification Languages Using Viewpoints. In Proc. of IFM ’04, Lecture Notes in

Computer Science, volume 2999, Springer-Verlag, 2004.
[BG77] Burstall, R. and Goguen, J.: Putting Theories together to make Specifications. In Proc. of Intl. Joint Conference

on Artificial Intelligence, 1977.
[CAPM10] Castro, P. F., Aguirre, N., Lopez Pombo, C. G. and Maibaum, T. S. E.: Towards Managing Dynamic Reconfigu-

ration of Software Systems in a Categorical Setting In Proc. of ICTAC ’10, Lecture Notes in Computer Science,
volume 6255. Springer-Verlag, 2010.

[CAPM12] Castro, P. F., Aguirre, N., Lopez Pombo, C. G., and Maibaum, T. S. E.: A Categorical Approach to Structuring
and Promoting Z Specifications, In Proc. of FACS ’12, Lecture Notes in Computer Science, volume 7684. Springer-
Verlag, 2012.

[CK90] Chang, C. C. and Keisler, H. J.: Model Theory. 3rd. Ed., North Holland, 1990.
[Dia08] Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser Verlag, 2008.
[End01] Enderton, H.: A Mathematical Introduction to Logic. 2nd. Ed., Academic Press, 2001.
[Fia04] Fiadeiro, J.: Categories for Software Engineering. Springer-Verlag, 2004.

Categorical Foundations for Structured Specifications in Z 33

[FM92] Fiadeiro, J. and Maibaum, T. S. E.: Temporal Theories as Modularisation Units for Concurrent System Specifica-
tion. Formal Aspects of Computing, 4(3), Springer-Verlag, 1992.

[FKNG92] Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L. and Goedicke, M.: Viewpoints: A Framework for Integrat-
ing Multiple Perspectives in System Development. International Journal of Software Engineering and Knowledge
Engineering, 2(1), 1992.

[Fis97] Fischer, C.: Combining CSP and Z. Technical Report, University of Oldenburg, 1997.
[GB92] Goguen, J. and Burstall, R.: Institutions: Abstract Model Theory for Specification and Programming. Journal of

the ACM, 39(1), ACM Press, 1992.
[HR99] Henson, M. and Reeves, S.: Revising Z: Part I - Logic and Semantics. Formal Aspects of Computing, 11(4),

Springer-Verlag, 1999.
[HR99b] Henson, M. and Reeves, S.: Revising Z: Part II - Logical Development. Formal Aspects of Computing, 11(4),

Springer-Verlag, 1999.
[HJ98] Hoare, C. A. R. and Jifeng, H.: Unifying Theories of Programming. Prentice Hall College Division, 1998.
[Jac97] Jacky, J.: The Way of Z, Practical Programming with Formal Methods. Cambridge University Press, 1997.
[Lan09] Lano, K.: Model-Driven Software Development With UML and Java. Course Technology, 2009.
[Mac98] MacLane, S.: Categories for the Working Mathematician. (second ed.) Springer-Verlag, 1998.
[Mey00] Meyer, B.: Object-Oriented Software Construction. Prentice Hall, 2000.
[MML07] Mossakowski, T., Maeder, C. and Lüttich, K.: The Heterogeneous Tool Set (Hets), In Proc. of 4th International

Verification Workshop in connection with CADE-21, CEUR-WS.org, 2007.
[Nic95] Nicholls, J.: Z Notation: Version 1.2. Z Standards Panel, 1995.
[MTP97] Mossakowski, T., Tarlecki, A. and Pawlowski, W.: Combining and Representing Logical Systems, In Proc. of

Category Theory and Computer Science ’97, Lecture Notes in Computer Science, volume 1290, Springer-Verlag,
1997.

[MR06] Mossakowski, T. and Roggenbach, M.: Structured CSP - A Process Algebra as an Institution, In Proc. of WADT
’06, Lecture Notes in Computer Science, volume 4409, Springer-Verlag, 2006.

[OCW09] Oliveira, M., Cavalcanti, A. and Woodcock, J.: A UTP Semantics for Circus. Formal Aspects of Computing, 21(2),
Springer-Verlag, 2009.

[Par72] Parnas, D.: In the Criteria to be Used in Decomposing Systems into Modules. Commun. ACM, 15(12), 1972.
[Par85] Parnas, D.: The Modular Structure of Complex System. IEEE Trans. Software Eng., 11(3), 1985.
[Smi00] Smith, G.: The Object Z Specification Language. Advances in Formal Methods Series, Kluwer Academic Publishers,

2000.
[Spi84] Spivey, J. M.: Towards a Formal Semantics for the Z Notation. Oxford University Computing Laboratory, T.M.

PRG-41, 1984.
[Spi88] Spivey, J. M.: Understanding Z: A Specification Language and its Formal Semantics. Cambridge Tracts in Theo-

retical Computer Science, 1988.
[Spi92] Spivey, J. M.: The Z Notation: A Reference Manual. Prentice Hall, 1992.
[Tar95] Tarlecki, A.: Moving Between Logical Systems, In Proc. of ADT/COMPASS ’95, Lecture Notes in Computer

Science, volume 1130, Springer-Verlag, 1995.
[Web96] Webber, M.: Combining Statecharts and Z for the Design of Safety-Critical Control Systems, In Proc. of FME ’96,

Lecture Notes in Computer Science, volume 1051, Springer-Verlag, 1996.
[Woo90] Woodcock, J.: Mathematics as a Management Tool: Proof Rules for Promotion, In Software Engineering for Large

Software Systems, Springer-Verlag Netherlands, 1990.
[Woo96] Woodcock, J. and Davies J.: Using Z: Specification, Refinement, and Proof. Prentice Hall, 1996.
[Woo01] Woodcock, J. and Cavancanti A.: Circus: A Concurrent Refinement Language. Technical Report, Oxford University

Computing Laboratory, Oxford, UK, 2001.

A. Further details on category theory definitions

In this section we introduce further details about some categorical notions introduced in Section 2.

A.1. Monoidal categories

A monodical category 〈C,⊕, id〉 has natural isomorphisms:

• αA,B,C : A⊗ (B ⊗ C)→ (A⊗ B)⊕ C for objects A,B ,C ,

• ρA : A⊗ 1→ A,

• λA : 1⊗A→ A,

34 P. Castro and N. Aguirre and C. Pombo and T. Maibaum

Such that the following diagrams commute, the triangle diagram:

A⊗ (1⊗ B)
α(A,1,B) //

A⊗λB &&

(A⊗ 1)⊗ B

ρA⊗Bxx
A⊗ B

and the pentagon diagram:

A⊗ (B ⊗ (C ⊗D))

idA⊗αB,C ,D

uu

αA,B,C⊗D

))
A⊗ ((B ⊗ C)⊗D)

αA,B⊗C ,D

��

(A⊗ B)⊗ (C ⊗D)

αA⊗B,C ,D

��
(A⊗ (B ⊗ C))⊗D

αA,B,C⊗D

// ((A⊗ B)⊗ C)⊗D

Roughly speaking, these diagrams state that ⊗ is associative (up to isomorphism) and it has a unit (up to
isomorphism). An excellent introduction to monodical categories (and their application to computer science)
is given in [BW99].

A.2. Bicategories

Let us give the coherence conditions for bicategories. Given a bicategory V, the coherence conditions are
given by natural transformations:

• αA,B,C ,D : ; A,B,C ◦(Id × ; B,C ,D)
�→ ; A,C ,D ◦(; A,B,C ×Id),

• λA,B : ; A,B,B ×(Id × 1B)
�→ Id and

• ρ :A,B : ; A,A,B ◦(1A × Id)
�→ Id .

Intuitively, α (called the associator) shows that ; is associative up to isomorphism, and ρ and λ show that
1A is an identity up to isomorphism; these natural transformation are subject to the following coherence
laws expressed by the commutativity of the following diagrams:

p ; (q ; (r ; t))
idp ; α //

α

��

p ; ((q ; r) ; t)

α

��
(p ; q) ; (r ; t)

α
((

(p ; (q ; r)) ; t

α ; idtvv
((p ; q) ; r) ; t

and:

p ; (1B ; q)
α //

idp ; ρ
%%

(p ; 1B) ; q

λ ; idqxx
p ; q

where p : A→ B , q : B → C , r : C → D and t : D → E are 1-cells of the bicategory.
Now, we give the a detailed definition of lax functor. Given two bicategories A and B, a lax functor

F : A→ B between them is composed of:

Categorical Foundations for Structured Specifications in Z 35

• For every object A ∈ |A|, an object F (A) ∈ |B|,
• For every pair of objects A,B ∈ |A|, a functor FA,B : A(A,B)→ B(F (A),F (B)),

• For every triple of objects A,B ,C ∈ |A|, a natural transformation γA,B,C : ; F(A),F(B),F(C) ◦(FA,B ×
FB,C)→ FA,C ◦ ; A,B,C ,

• For every object A ∈ |A|, a natural transformation δA : 1F(A) → FA,A ◦ 1A. Where 1A is the unit object
of A.

Subject to the coherence laws expressed by the commutativity of the following diagrams:

F (f) ; (F (g) ; F (h))
id ; γ //

α

��

F (f) ; F (g ; h)
γ // F (f ; (g ; h))

F(α)

��
(F (f) ; F (g)) ; F (h)

γ ; Id
// F (f ; g) ; F (h)

γ
// F ((f ; g) ; h)

and:

1F(A) ; F (p)

ρ

&&
δ ; Id

��

F (p) ; 1F(B)

λ

xx
id ; δ

��
F (1A) ; F (p)

γ

��

F (p) F (p) ; F (1B)

γ

��
F (1A ; p)

F(ρ)

88

F (p ; 1B)

F(λ)

ff

