
Synthesizing Masking Fault-Tolerant Systems
from Deontic Specifications

Ramiro Demasi1, Pablo F. Castro2,3, Thomas S.E. Maibaum1, and
Nazareno Aguirre2,3

1 Department of Computing and Software, McMaster University, Hamilton, Ontario,
Canada, demasira@mcmaster.ca,tom@maibaum.org

2 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina, {pcastro,naguirre}@dc.exa.unrc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina

Abstract. In this paper, we study the problem of synthesizing fault-
tolerant components from specifications, i.e., the problem of automat-
ically constructing a fault-tolerant component implementation from a
logical specification of the component, and the system’s required level of
fault-tolerance. We study a specific level of fault-tolerance: masking tol-
erance. A system exhibits masking tolerance when both the liveness and
the safety properties of the behaviors of the system are preserved under
the occurrence of faults. In our approach, the logical specification of com-
ponents is given in dCTL, a branching time temporal logic with deontic
operators, especially designed for fault-tolerant component specification.
The synthesis algorithm takes the component specification, and auto-
matically determines whether a component with masking fault-tolerance
is realizable, and the maximal set of faults supported for this level of
tolerance. Our technique for synthesis is based on capturing masking
fault-tolerance via a simulation relation. Furthermore, a combination of
an extension of a synthesis algorithm for CTL to cope with dCTL spec-
ifications, with simulation algorithms, is defined in order to synthesize
masking fault-tolerant implementations.

Keywords: Formal specification, Fault-tolerance, Program synthesis,
Temporal logics, Deontic logics, Correctness by construction

1 Introduction

The increasing demand for highly dependable and constantly available systems
has focused attention on providing strong guarantees for software correctness, in
particular, for safety critical systems. In this context, a problem that deserves
attention is that of capturing faults, understood as unexpected events that affect
a system, as well as expressing and reasoning about the properties of systems
in the presence of faults. Indeed, various researchers have been concerned with
formally expressing and reasoning about fault-tolerant behavior, and some for-
malisms and tools have been proposed for this task [13, 4]. Moreover, in formal
approaches to fault-tolerance (and in general in formal approaches to software

development), it is generally recognized that powerful (semi-)automated analy-
sis techniques are essential for a method to be effectively applicable in practice.
Therefore, tools for automated or semi-automated reasoning, such as those based
on model checking or automated theorem proving, have been central in many of
the above cited works. In this direction, but with less emphasis, approaches for
automatically synthesizing programs, in particular fault-tolerant ones, have also
been studied [1, 12, 2, 5].

In this paper, we study the problem of automatically synthesizing fault-
tolerant systems from logical specifications. This work concentrates on a par-
ticular kind of fault-tolerance, namely masking tolerance. As stated in [10], the
fault tolerance that a system may exhibit can be classified using the liveness
and safety properties that the designers want the system to preserve. In mask-
ing fault-tolerance, the system must preserve, in the presence of faults, both
the safety and the liveness properties of the “fault free” system. More precisely,
masking fault-tolerance is usually stated with respect to an observable part of
the system or component, its so called interface. Essentially, a masking fault-
tolerant system ensures that faults are not observable at the system’s interface
level, and both liveness and safety properties of the system are preserved even
when subject to the occurrence of faults.

Our work is strongly related to the approach presented in [2]. The main
difference between our approach and that introduced in [2] is that, to specify
systems, we use dCTL-, a branching time temporal logic with deontic operators
(see Section 2), as opposed to the well established branching time temporal logic
CTL used in [2]. More precisely, the logic dCTL- features, besides the CTL tem-
poral operators, deontic operators that allow us to declaratively distinguish the
normative (correct, without faults) part of the system from its non-normative
(faulty) part. In particular, in our approach faults are declaratively embedded
in the logical specification. In our approach, faults are understood as violations
to the deontic obligations on the behavior of the system, in contrast with the
case of [2] and related works (e.g., [1, 12, 9]), where faults are given explicitly as
part of the behavior model of the system. This leads to some differences in the
way in which programs are synthesized. While in [2] a satisfiability algorithm for
CTL based on tableau is employed, with faults corresponding to adding states in
the tableau, we use instead the deontic specification to produce the faulty states
combined with a characterization of masking fault tolerance by means of a sim-
ulation relation, in order to “cut out” inappropriate parts of the tableau. Our
algorithm then combines a simulation algorithm with an adaptation of tableau
based CTL satisfiability to deal with dCTL- specifications. The algorithm is pre-
sented in detail in Section 3.

There are some interesting properties that our proposed algorithm enjoys.
If the algorithm is able to compute a masking fault tolerant implementation
from the system specification, then the implementation produced is maximal in
the sense that it “removes” the least number of states necessary to achieve the
required tolerance. If the algorithm does not compute an implementation, then
there are no feasible masking fault tolerant implementations for the specified

system. We show that our algorithm is sound, and that it holds the above men-
tioned kind of strong completeness (it returns a program that is maximal with
respect to masking similarity, which as explained later on, implies completeness).

The remainder of the paper is structured as follows. In Section 2 we introduce
some notions used throughout the paper. In Section 3, we describe our synthesis
method. A practical case study is shown in Section 4. Section 5 reviews some
related work. Finally, we discuss some conclusions and directions for further
work.

2 Preliminaries

In this section we introduce some concepts that will be necessary throughout
the paper. For the sake of brevity, we assume some basic knowledge of model
checking; the interested reader may consult [3]. We model fault-tolerant sys-
tems by means of colored Kripke structures, as introduced in [6]. Given a set of
propositional letters AP = {p, q, s, . . . }, a colored Kripke structure is a 5-tuple
〈S, I,R, L,N〉, where S is a set of states, I ⊆ S is a set of initial states, R ⊆ S×S
is a transition relation, L : S → ℘(AP) is a labeling function indicating which
propositions are true in each state, and N ⊆ S is a set of normal, or “green”
states. The complement of N is the set of “red”, abnormal or faulty states. Arcs
leading to abnormal states (i.e., states not in N) can be thought of as faulty
transitions, or simply faults. Then, normal executions are those transiting only
through green states. The set of normal executions is denoted by NT . We as-
sume that in every colored Kripke structure, and for every normal state, there
exists at least one successor state that is also normal, and that at least one ini-
tial state is green. This guarantees that every system has at least one normal
execution, i.e., that NT 6= ∅.

As is usual in the definition of temporal operators, we employ the notion of
trace. Given a colored Kripke structure M = 〈S, I,R, L,N〉, a trace is a maximal
sequence of states, whose consecutive pairs of states are adjacent with respect
to R. When a trace of M starts in an initial state, it is called an execution of
M , with partial executions corresponding to non-maximal sequences of adja-
cent states starting in an initial state. Given a trace σ = s0, s1, s2, s3, . . . , the
ith state of σ is denoted by σ[i], and the final segment of σ starting in posi-
tion i is denoted by σ[i..]. Moreover, we distinguish among the different kinds
of outgoing transitions from a state. We denote by 99K the restriction of R to
faulty transitions, and→ the restriction of R to non-faulty transitions. We define
PostN (s) = {s ∈ S| s→ s′} as the set of (immediate) successors of s reachable
via non-faulty (or good) transitions; similarly, PostF (s) = {s ∈ S| s 99K s′} rep-
resents the set of successors of s reachable via faulty arcs. Analogously, we define
PreN (s′) and PreF (s′) as the set of (immediate) predecessors of s′ via normal
and faulty transitions, respectively. Moreover, Post∗(s) denotes the states which
are reachable from s. Without loss of generality, we assume that every state has
a successor [3]. We denote by ⇒∗ the transitive closure of 99K ∪ →.

In order to state properties of systems, we use a fragment of dCTL [6], a
branching time temporal logic with deontic operators designed for fault-tolerant
system verification. Formulas in this fragment, that we call dCTL-, refer to prop-
erties of behaviors of colored Kripke structures, in which a distinction between
normal and abnormal states (and therefore also a distinction between normal
and abnormal traces) is made. The logic dCTL is defined over the Computation
Tree Logic CTL, with its novel part being the deontic operators O(ψ) (obliga-
tion) and P(ψ) (permission), which are applied to a certain kind of path formula
ψ. The intention of these operators is to capture the notion of obligation and
permission over traces. Intuitively, these operators have the following meaning:

– O(ψ): property ψ is obliged in every future state, reachable via non-faulty
transitions.

– P(ψ): there exists a normal execution, i.e., not involving faults, starting from
the current state and along which ψ holds.

Obligation and permission will enable us to express intended properties which
should hold in all normal behaviors and some normal behaviors, respectively.
These deontic operators have an implicit temporal character, since ψ is a path
formula. Let us present the syntax of dCTL-. Let AP = {p0, p1, . . . } be a set
of atomic propositions. The sets Φ and Ψ of state formulas and path formulas,
respectively, are mutually recursively defined as follows:

Φ ::= pi | ¬Φ | Φ→ Φ | A(Ψ) | E(Ψ) | O(Ψ) | P(Ψ)
Ψ ::= XΦ | Φ U Φ | ΦW Φ

Other boolean connectives (here, state operators), such as ∧, ∨, etc., are de-
fined as usual. Also, traditional temporal operators G and F can be expressed
as G(φ) ≡ φ W ⊥, and F(φ) ≡ > U φ. The standard boolean operators and
the CTL quantifiers A and E have the usual semantics. Now, we formally state
the semantics of the logic. We start by defining the relation �, formalizing the
satisfaction of dCTL- state formulas in colored Kripke structures. For the deontic
operators, the definition of � is as follows:

– M, s � O(ψ) ⇔ for every σ ∈ NT such that σ[0] = s, we have that, for
every i ≥ 0, M,σ[i..] � ψ.

– M, s � P(ψ)⇔ for some σ ∈ NT such that σ[0] = s, we have that, for every
i ≥ 0, M,σ[i..] � ψ.

For the standard CTL operators, the definition of � is as usual (cf. [3]). We
denote by M � ϕ the fact that M, s � ϕ holds for every state s of M , and by
� ϕ the fact that M � ϕ for every colored Kripke structure M . Furthermore,
the α and β classification of formulas given in [2] for tableau can be extended to
our setting. For CTL operators, this is done as in [2]. For the deontic operators
we proceed as follows:

– O(ϕ U ψ) is classified as a β formula. In this case: β1 = Oψ and β2 = Oϕ ∧
AXO(ϕ U ψ), where Oϕ is obtained by substituting in ϕ any propositional
variable p by a fresh variable Op, and similarly for Oψ.

– P(ϕ U ψ) is classified as a β formula. In this case: β1 = Oψ and β2 =
Oϕ ∧ EXO(ϕ U ψ), where Oϕ and Oψ are defined as before.

– O(ϕ W ψ) is classified as a β formula. In this case: β1 = Oψ and β2 =
Oϕ ∧ AXO(ϕW ψ), where Oϕ and Oψ are defined as before.

– P(ϕ W ψ) is classified as a β formula. In this case: β1 = Oψ and β2 =
Oϕ ∧ EXO(ϕW ψ), where Oϕ and Oψ are defined as before.

This classification of formulas will be essential for the tableau proofs and syn-
thesis algorithm, presented later on in this paper.

Fault-tolerance in characterized in our work via simulation relations. Various
detailed notions of fault-tolerance, namely masking, nonmasking and failsafe tol-
erances, are all defined via appropriate simulation relations, relating a specifica-
tion of the system (i.e., its fault-free expected behavior) with the fault-tolerant
implementation [8]. In this paper, we concentrate on masking fault-tolerance,
although synthesis mechanisms for other kinds of fault-tolerance, definable via
appropriate simulation relations, are relatively direct. In order to make the paper
self contained, let us reproduce here the definition of masking simulation.

Definition 1. (Masking fault-tolerance) Given two colored Kripke structures
M = 〈S, I,R, L,N〉 and M ′ = 〈S′, I ′, R′, L′,N ′〉, we say that a relationship
≺Mask⊆ S × S′ is masking fault-tolerant for sublabelings L0 ⊆ L and L′0 ⊆ L′

iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Mask s2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 ≺Mask s2).
(B) for all s1 ≺Mask s2 the following holds:

(1) L0(s1) = L′0(s2).
(2) if s′1 ∈ PostN (s1), then there exists s′2 ∈ Post(s2) with s′1 ≺Mask s

′
2.

(3) if s′2 ∈ PostN (s2), then there exists s′1 ∈ PostN (s1) with s′1 ≺Mask s
′
2.

(4) if s′2 ∈ PostF (s2), then either there exists s′1 ∈ PostN (s1) with
s′1 ≺Mask s

′
2 or s1 ≺Mask s

′
2.

Notice that Definition 1 makes use of a sublabeling L0 ⊆ L, whose intention is
to capture the observable part of the state, that visible from the component’s
interface. Our approach is in this sense state based, as opposed to event based
approaches where the interface is captured via observable actions/events. Mask-
ing fault-tolerance corresponds to the kind of fault-tolerance that completely
“masks” faults, not allowing them or their consequences to be observable. Mask-
ing fault-tolerance must then preserve both safety and liveness properties of the
“fault free” system. For further details, we refer the interested reader to [8].

In the next section, we use the fault-tolerance simulation relation in combi-
nation with a CTL synthesis algorithm (extended to cope with dCTL-) in order
to automatically construct, from a logical system description, a masking fault-
tolerant system. The resulting system is maximal with respect to masking toler-
ance, in the sense that it “cuts out” the minimal part of the system augmented
with faults, to make the resulting program masking tolerant. The synthesized
program may not support all original faults, or support faults only when they
occur in certain situations, but it is in a sense the most general solution: the “re-
moved” transitions are those that would lead to nonmasking system conditions.

3 The Synthesis Approach

Given a dCTL- specification of a component and a desired level of fault-tolerance
(in this case, masking), our goal is to automatically obtain a fault-tolerant com-
ponent, with the required level of fault-tolerance. Masking fault-tolerance re-
quires the system augmented with faults to preserve the observable behavior of
the fault-free system, in what concerns both safety and liveness properties. The
interface, in our case, is captured by a subset of the state variables (i.e., a state
sublabeling L0). The dCTL- system specification involves the use of CTL to de-
scribe the system declaratively (including safety and liveness properties of the
system), while the deontic operators of dCTL- allow us to capture obligations,
and to indirectly characterize faults as events violating these obligations. Notice
that the deontic specification states what the expected behavior of the system is,
and, indirectly, what the possible faults are. In other words, the possible faults
are not explicitly given, as in other approaches, but stated at the specification
level. We compare our approach with related work in Section 5.

The synthesis process is based on the extraction of a finite behavior model
from a dCTL- specification. This is achieved by constructing a behavior model
that captures the system augmented with faults, and then combining a synthesis
algorithm for dCTL- with a simulation relation that captures masking tolerance,
in order to remove from this model those states and faults that lie outside the
required level of tolerance, i.e., that cannot be masked. The synthesis algorithm
aims at detecting the maximal set of faults that can be tolerated (for the required
level of fault-tolerance), and returning a (maximal) program that provides re-
covery from these faults. Of course, if the resulting system can only deal with
the empty set of faults, then no masking fault-tolerant program is possible, from
the provided specification.

In this paper, we are concerned with the synthesis of a single component.
The approach can be extended to extract several concurrent components from a
specification, by using indexes as done in [2]. We leave this as further work. More
precisely, the problem of synthesis of a fault-tolerant component has as input a
problem specification, a dCTL- formula problem-spec of the form init-spec ∧
normal-spec, where init-spec and normal-spec can be any dCTL- formula.
From this description, we want to automatically obtain a system that satisfies
init-spec ∧ normal-spec, while being masking tolerant with respect to the
maximal set of faults obtained from violations of the system obligations.

3.1 The Synthesis Algorithm for Masking Tolerance

Our synthesis algorithm has three phases. The pseudocode of the algorithm
is shown in Figures 1, 2, 3, and 4. It starts by building a tableau (Figure 1),
following the tableau based algorithm for CTL satisfiability. We employ the rules
α and β both for CTL and deontic formulas. That is, we construct a graph TN =
(d, VC , VD, ACD, VDC , L), where VC are called And-nodes and VD are called Or-
nodes. The rules used for building the graph (involving also deontic formulas)
allow us to obtain the sub-formulas of the original specification. We stop when all

Algorithm 1 Construction of tableau TN = (d, VC , VD, ACD, VDC , L)

Require: deontic specification dSpec: init-spec and normal-spec

Ensure: Tableau TN

1: Let d be an Or-node with label {dSpec}
2: TN := d
3: repeat
4: Select a node e ∈ frontier(TN)
5: if ∃ e′ ∈ VD with L(e) = L(e′) then
6: merge e and e′

7: else
8: for all e′ ∈ Succ(e) being an And-node do
9: if e′ is non-faulty then

10: Norm := Norm ∪ {e′}
11: else
12: if ∃e′′ ∈ Succ(e) faulty such that NForm(e′) = NForm(e′′) then
13: delete(e”)
14: end if
15: end if
16: end for
17: attach all e′ ∈ Succ(e) as successors of e and mark e as expanded
18: end if
19: update VC , VD, ACD, VDC appropriately
20: until frontier(TN) = ∅
21: Apply the deletion rules to TN

22: Apply Algorithm 2 to check nodes in Norm
23: Apply Algorithm 3 to remove and create faulty nodes
24: Apply Algorithm 4 to check the relation of masking and remove nodes.
25: return TN

the frontier nodes are generated (nodes where no rules can be applied). We then
start applying the deletion rules explained in [2], in order to remove inconsistent
nodes and nodes containing eventuality formulas that cannot be satisfied. When
this process finishes, we obtain a graph similar to that obtained by the tableau
method for CTL satisfiability. Regarding deontic operations, we modified the
CTL algorithm to cope with these (recall our classification of deontic operators
as α and β). Or-nodes are expanded following the traditional rules. On the
other hand, when a new And-node (say x) is created, we check if there is some
violation, i.e., if either Op ∈ x and p /∈ x, or O¬p ∈ x and p ∈ x, belong to
the node. If this is the case, the node is considered faulty (proposition Op is
undestood as: p should be true, and when p is false we get a state in which the
normal or desirable behavior is not fulfilled). Otherwise, the node is added to
Norm, the set of normal (non-faulty) states (line 10 of Alg. 1). If there is a faulty
node (say e′) such that it has the same CTL formulas as a non-faulty node (say
e′′), e′ is deleted, since it is masked by e′′ (line 13).

Secondly, the algorithm enters a phase where nodes originating from the
specification of the system, that cannot fulfil deontic eventualities, are searched

Algorithm 2 Alg. for computing faulty states

Require: Tableau generated by alg. 1
Ensure: All faulty states are identified and removed from Norm
1: repeat
2: if ∃x ∈ Vc s.t. O(p U q) and ∃v : v ∈ Norm ∧ q /∈ v ∧ x →∗ v then
3: Norm := Norm\{x}
4: end if
5: if ∃x ∈ Vc s.t. P(p U q) and ∀v : v ∈ Norm ∧ q /∈ v ∧ x →∗ v then
6: Norm := Norm\{x}
7: end if
8: until Norm does not change

for. These nodes are marked as faulty, and their treatment is shown in Alg. 2.
Thirdly, we inject faults. We take each non-faulty state (i.e., each And-node) and
produce a copy of it which is an Or-node. But in order to distinguish it from the
other kinds of nodes, we call these FOr-nodes (faulty Or-nodes). The process for
dealing with these states is in Alg. 3. This algorithm consists of an adaptation
of the backward simulation algorithm shown in [3]. We use it in order to only
generate the nodes that can be masked, and cut out the remaining ones. The
generation is performed by applying the indicated operations. If a faulty node
that is not masked by any normal state is created, then we move “upwards”
in the graph, to appropriately prune the graph to get rid of this unmasked
state. After that, since all the faulty nodes that can be masked were generated,
we check condition B.2 of the masking simulation relation. This step may also
lead to cutting out further faulty nodes, namely those which exhibit normal
behavior, but that are not part of the correct behavior of the system. Finally, the
synthesized program is extracted from the generated tableau. The extraction is as
follows. First, a Kripke structureM is obtained from the tableau by unfolding the
tableau as explained in [2]. Then, we delete the non propositional formulas from
the nodes, and we add new propositional variables to distinguish nodes that have
the same formulas, to avoid erroneously collapsing nodes (these extra variables
can be seen as variables that indicate different phases of the algorithm; they
play the same same role as the shared variables of the algorithm for synthesis
introduced in [2]). Then, each transition s → t is labeled with the command
A → B iff A is the conjunction of all variables occurring in s and the negation
of those variables that do not appear in s (we assume that the finite alphabet
of propositional variables is given). We add b := ¬b if b changes its value from s
to t. An example of this is shown in the next section.

Let us state two important properties of the synthesis algorithm, whose proofs
are sketched following the proofs of correctness given for the algorithms for CTL
satisfiability based on tableau [7, 2], and for checking (bi)simulations [3, 11].

Theorem 1. Given a specification S over a set AP of propositional letters, if
we obtain a program P by applying the synthesis algorithm over the sublabeling
obtained from AP ′ ⊆ AP , then P is a masking tolerant implementation of S,
i.e., P ≺Mask P (with respect to AP ′) and P � S.

Algorithm 3 Computes relations satisfying B.3 and B.4 of Def. 1

Require: Tableau Generated by SAT
Ensure: Masks and RemoveL satisfy conditions B.3 and B.4.
1: for all s2 do
2: Masks(s2) := {s1 ∈ Norm | L0(s1) = L0(s2)}
3: RemoveL(s2) := Norm\PreN (Masks(s2)) {Note that all the nodes in Norm

are already generated}
4: end for
5: while ∃ s′2 ∈ S\Norm with RemoveL(s′2) 6= ∅ or there is a unexpanded v Or-node

do
6: select s′2 such that RemoveL(s′2) 6= ∅ or s′2 in faultySucc(v)
7: for all s1 ∈ RemoveL(s′2) do
8: for all s2 ∈ PreN (s′2) do
9: if s1 ∈ Masks(s2) then

10: Masks(s2) := Masks(s2)\{s1}
11: for all s ∈ PreN (s1) with PostN (s) ∩ Masks(s2) = ∅∧ s /∈ Masks(s2)

do
12: RemoveL(s2) := RemoveL(s2) ∪ {s}
13: end for
14: end if
15: end for(* this takes care of the faulty transitions*)
16: for all s2 ∈ PreF (s′2) do
17: if s1 ∈ Masks(s2) ∧ s1 /∈ Masks(s′2) then
18: Masks(s2) := Masks(s2)\{s1}
19: if Masks(s2) = ∅ then
20: delete DAG[s2]
21: removeL(s2) := ∅
22: else
23: for all s ∈ PreN (s1) with PostN (s) ∩ Masks(s2) = ∅ do
24: RemoveL(s2) := RemoveL(s2) ∪ {s}
25: end for
26: end if
27: end if
28: end for
29: end for
30: RemoveL(s′2) := ∅ and all the FOr-nodes are expanded
31: end while

Sketch of Proof. First, we prove that Alg. 3 ensures conditions B.3 and B.4 of
Def. 1. Then we prove that Alg. 4 ensures condition B.2. Notice that, when Alg. 2
starts, all the normative nodes (Norm) have been computed. Then, we have the
following invariant of Alg. 3: (i) RemoveL(s2) = Norm\PreN (Masks(s2)); (ii)
for any relation ≺Mask: {s1 ∈ Norm | s1 ≺Mask s2} ⊆ Masks(s2) ⊆ {s2 ∈
Norm | L(s1) = L(s2)}; and (iii) ∀s2 ∈Masks(s1), either:

– ∃s′1 ∈ Post(s1) with PostN (s2) ∩ Masks(s′1) = ∅ ∧ s′1 /∈ Masks(s1) and
s2 ∈ RemoveL(s1),

– ∀s′1 ∈ Post(s1) : PostN (s2) ∩Masks(s′1) = ∅

From the last item we obtain that, when RemoveL(s′1) = ∅ for every s′1, then:
∀s1 ∈ S : ∀s2 ∈Masks(s1) : ∀s′1 ∈ Post(s1) : PostN (s2)∩Masks(s′1) 6= ∅∨s2 ∈
Masks(s′1). That is, the relation defined as s1 ≺Mask s2 holds item B.3 and B.4
of Def. 1.

On the other hand, notice that before executing Alg. 3, all the faulty nodes
have been calculated. For this algorithm we have the following invariant: (i)
RemoveR(s2) = S\Pre(Masked(s2)); (ii) for any relation ≺Mask: {s2 ∈ VC |
s1 ≺Mask s2} ⊆ Masked(s1) ⊆ {s2 ∈ Vc | L(s1) = L(s2)}; and (iii) ∀s2 ∈
Masked(s1), either:

– ∃s′1 ∈ Post(s1) with Post(s2) ∩Masked(s′1) = ∅ and s2 ∈ RemoveL(s2),
– ∀s′1 ∈ PostN (s1) : Post(s2) ∩Masked(s′1) = ∅

That is, when RemoveR(s1) = ∅, then we have ∀s1 ∈ S : ∀s2 ∈ Masked(s1) :
∀s′1 ∈ PostN (s1) : Post(s2) ∩Masked(s′1) 6= ∅. Thus, the relation defined as:
s1 ≺Mask s2 iff s1 ∈ Masks(s2) ∧ s2 ∈ Masked(s1) satisfies condition B.2 of
Def. 1. Since it also satisfies B.3 and B.4, it is a masking relation. The proof that
the obtained structure satisfies the specification can be obtained, for CTL opera-
tors, following the proof given in [2]. For the deontic operators notice that all the
nodes that do not satisfy the deontic operators are marked as faulty, ensuring
that the safety deontic formulas are preserved. We treat deontic eventualities
by marking as faulty all the nodes that have unfulfilled deontic eventualities.
Thus, both CTL and deontic formulas are satisfied. Termination can be proved
by resorting to the approach for proving termination of simulation algorithms
(cf. [3]). The only point to note is that the injection of faults finishes at some
point since states start repeating.

The definition of masking similarity ensures that the safety and liveness prop-
erties of the normal behavior of P are preserved in the presence of faults. If the
synthesized program P contains no faults, we conclude that is not possible to
synthesize a masking tolerant program supporting faults, from the specification.
Moreover, we can prove that the synthesized program is the most general.

Theorem 2. Given a specification S, if a structure M is obtained by the syn-
thesis algorithm, then for any other structure M ′ � S such that it is masking
and the non-faulty part of M ′ coincides with that of M , then we have M ′ ≺M ,
where ≺ is the usual notion of simulation with respect to L0.

Sketch of Proof. The simulation relation is defined as: (i) if s ∈ Norm, s′ ≺ s
iff s′ ≺Mask s; (ii) if s /∈ Norm, s′ ≺ s iff Masked(s′) ⊆Masked(s), i.e., the M ′

nodes masked for s′ are a subset of those masked by s in M . In order to prove
that this relation is a simulation, assume s ≺ t. If s → s′ and s′ ∈ PostN (s),
by condition B.3 of Def. 1 we obtain that there is a t → t′ such that s′ ≺ t′.
Otherwise, if s → s′ and s′ ∈ PostF (S) and s is normative, then the transition
matches some part of the specification. Thus, a similar transition is in M and
therefore we have t → t′. Now if s′ masks any node, the same node has to be
masked by t′ (otherwise M ′ would not be masking). Thus, s′ ≺ t′. A similar
reasoning can be used when s is faulty.

Algorithm 4 Computes relations that satisfy condition B.2 of Def. 1

Require: Colored Kripke structure M
Ensure: Relations Masked and RemoveR satisfy condition B.2 of Def. 1
1: for all s2 ∈ F do
2: Masked(s2) := {s1 | s2 ∈ Masks(s1)}
3: RemoveR(s2) := S\Pre(Masked(s2)) {Note that all the faulty and normal

states are already generated}
4: end for
5: while ∃ s′2 ∈ F with RemoveR(s′2) 6= ∅ do
6: select s′2 such that RemoveR(s′2) 6= ∅
7: for all s1 ∈ RemoveR(s′2) do
8: for all s2 ∈ Pre(s′2) do
9: if s1 ∈ Masked(s2) then

10: Masked(s2) := Masked(s2)\{s1}
11: if Masks(s1)\{s2} = ∅ then
12: delete DAGG(s2)
13: else
14: for all s ∈ Pre(s1) with Post(s) ∩ Masked(s2) = ∅ do
15: RemoveR(s2) := RemoveR(s2) ∪ {s}
16: end for
17: end if
18: end if
19: end for
20: end for
21: RemoveR(s′2) := ∅
22: end while

Since the CTL algorithm is complete, if some structure that satisfies the CTL
specification exists, then the algorithm produces it, and by Theorem 2 we obtain
a program that is masking, and preserves as many faulty states as possible. That
is, as a corollary of Theorem 2, the synthesis algorithm is complete.

4 An Example: A Memory Cell

Let us consider a memory cell that stores a bit of information and supports
reading and writing. A state in this system maintains the current value of the
cell (m = i, for i = 0, 1), writing allows one to change this value, and reading
returns the stored value. Evidently, in this system the result of a read operation
depends on the value stored in the cell. Some potential faults occur when a bit’s
value (say 1) unexpectedly loses its charge and it turns into another value (say
0). Redundancy can be employed to deal with this situation, using for instance
three memory bits instead of one. Also, a variable v, that indicates the value
that the user wants to write (i.e., v = 0, v = 1 or v = ⊥, the latter being the
case in which the system is “idle” with respect to writing) is added to the model.

Writing operations are performed simultaneously on the three bits, whereas
a reading returns the value that is repeated at least twice in the memory bits.

Each state in the model is described by variables ri and wi which record the last
writing operation performed and the actual reading in the state. Each state also
has three bits, described by boolean variables c0, c1 and c2. The requirements on
this system (init-spec ∧ normal-spec) can be specified in dCTL-, as follows:

(1) c0 ↔ c1 ∧ c0 ↔ c2. In the initial state the three bits contain the same value.
(2) O((c0 ∧ c1 ∧ c2) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2)). A safety property of the system: the

three bits should coincide.
(3) O((r0 → w0) ∧ (r1 → w1)). The value read from the cell ought to coincide

with the last writing performed.
(4) AG(w0 ≡ ¬w1). If a zero has been written, then w1 is false and vice versa.
(5) AG(w0 U w1)∧ (w1 U w0). Variable w1 only changes when w0 becomes true,

and vice versa.
(6) AG(r0 ≡ (¬c0∧¬c1)∨(¬c0∧¬c2)∨(¬c1∧¬c2)). The reading of a 0 corresponds

to the value read in the majority.
(7) AG(r1 ≡ (c0 ∧ c1) ∨ (c0 ∧ c2) ∨ (c1 ∧ c2)). The reading of a 1 corresponds to

the value read in the majority.
(8) AG(v = 1 → AX(w1 ∧ v = ⊥ ∧ c0 ∧ c1 ∧ c2)). If the user wants to write 1,

then in the next step the memory will be setup to one.
(9) AG(v = 0 → AX(w0 ∧ v = ⊥ ∧ ¬c0 ∧ ¬c1 ∧ ¬c2)). Similar to the previous,

but for 0.
(10) AG(v = ⊥ → AX(v = 1 ∨ v = 0 ∨ v = ⊥)). At any moment the user may

decide to write a value.

Besides these formulas, one may add additional constraints, e.g., indicating that
atomic steps (including faults) change bits by one. These constraints are straight-
forward to capture in CTL.

Let us now illustrate how our synthesis approach works on this example.
Fig. 1 shows the partial tableau generated by Alg. 1 for this problem. And-
nodes and Or-nodes are shown as rectangles and rounded corner rectangles,
respectively. For the sake of brevity, we put only the relevant information inside
each box. Initially, a tableau is built using Alg. 1, employing the rules α and
β for CTL and dCTL- formulas until every node in the tableau has at least one
successor. The tableau contains a fault injection part, generated from the And-
node in the second level of the tableau. This FOr-node is labeled identically as
its And-node predecessor. From this FOr-node we generate all possible faults
from deontic formula violations. Particularly, this node has Oc0 , Oc1 , and Oc2 ,
deontic propositional variables, expressing that c0, c1, and c2 should be true
there, which is the case in this node. Now, we start to consider those cases in
which an obligation might be violated. Following Alg. 2, we negate one-by-one
these deontic propositional variables and check on-the-fly whether it is possible to
mask these faulty states using Alg. 3. We generated three faulty And-nodes (for
the sake of brevity, just two of them are drawn) from the FOr-node with similar
information to it except for the new negated propositional variable. The first
FAnd-node successor introduces ¬c0 violating Oc0 . The second and third FAnd-
nodes introduce ¬c1 and ¬c2 violating Oc1 and Oc2 , respectively. Every time a
new faulty FAnd-node is created, we check whether it can be masked. For the

Nodes And

c0 ⌘ c1 ^ c0 ⌘ c2

O((c0 ^ c1 ^ c2) _ (¬c0 ^ ¬c1 ^ ¬c2))
O((r0 ! w0) ^ (r1 ! w1))
v = ?

c0 c1 c2

Oc0
Oc1

Oc2

v = ?
O¬r1_w1

¬c0 ¬c1 ¬c2

OC0 OC1
OC2

O¬r1_w1

v = ?

O((c0 ^ c1 ^ c2) _ (¬c0 ^ ¬c1 ^ ¬c2))
O((r0 ! w0) ^ (r1 ! w1))
v = 1

c0 c1 c2

c0 c1 c2

Oc0
Oc1

Oc2

AXO(¬r1 _ w1)O¬r1_w1

v = 1

Fault Injection

c0 c1 c2

Oc0
Oc1

Oc2

v = ?
O¬r1_w1

FOR

Oc0
Oc1

Oc2

v = ?
O¬r1_w1

¬c0 c1 c2

Cut Nodes

Oc0
Oc1

Oc2

v = ?
O¬r1_w1

c0 ¬c1 c2

Cut Nodes

AXO((r0 ! w0) ^ (r1 ! w1)) AXO((r0 ! w0) ^ (r1 ! w1))

AXO((r0 ! w0) ^ (r1 ! w1)) AXO((r0 ! w0) ^ (r1 ! w1))

AXO((r0 ! w0) ^ (r1 ! w1))

Deleted

Same CTL
Formulae

FAND FAND

OR

AND

AND

OR

sábado 20 de abril de 13

Fig. 1. Partial tableau for a Memory Cell.

case of the FAnd-node which contains ¬c0 (say f0), Alg. 3 checks whether this
FAnd-node can be masked. Similarly for the other FAnd-nodes. We continue the
process of negating deontic propositional variables from these faulty And-nodes.
As a successor of f0, we obtain the same information of f0 with ¬c1. Thus, we
have that Oc0 and Oc1 are violated. Our algorithm cuts out these nodes because
they cannot be masked. Similar results are obtained for the other combinations.
Moreover, for each masked FAnd-node f , a (recovery) transition is added from
it to each successor of Masks(f) in case that we can reach a normal successor
using the rules of the tableau. Notice that faults introduced change a bit and
keep the bits unchanged during the recovery process. After that, since all the
faulty nodes that can be masked were generated, we check condition B.2 of the
simulation relation by using Alg. 4. This process may also cut out other faulty
nodes: those which exhibit normal behavior which is not the behavior of the
correct part of the system. Finally, we are ready to extract the fault-tolerant
program from the tableau using the unfolding process (see Section 3). Fig. 2
shows the transition diagram of the program extracted from the structure in
Fig. 1. For the sake of simplicity, the program does not include all the masked
faults (these are similar to those shown in the program).

This program was generated considering that faults are computed from deon-
tic operators automatically, only considering some basic operations on the data
structures of the states (in this case bits). Other approaches [1, 12, 2] require
faults to be given as input of the synthesis, e.g., as special actions specified as
guarded commands. Our synthesis method can be straightforwardly adapted to

1 1 1
v = ?

0 1 1
v = ?

1 1 1
v = 0

0 0 0
v = ?

v = 1
0 0 0

1 1 1
v = 1

0 0 0
v = 0

0 1 1
v = 0

0 1 1
v = 0

sábado 20 de abril de 13

Fig. 2. Part of the fault-tolerant program extracted from the structure in figure 1.

consider fault specifications given by the user, capturing these as CTL formulas.
For example, we can add the following formula in the memory cell example:

(11) AG(ci ∧ v = ⊥ → AX(v = ⊥ ∧ ¬ci)), for i = {0, 1, 2}, at some point a bit
may lose its charge.

Notice that sentence (11) is covered in our synthesis process.

5 Related Work

Various approaches have been proposed for synthesis of reactive systems from
temporal logic specifications. The initial work was presented by Emerson and
Clarke [7]. Their synthesis method was based on a decision procedure for check-
ing the satisfiability of a CTL temporal logic specification. With respect to au-
tomated synthesis of fault-tolerant systems, Attie, Arora, and Emerson [2] pre-
sented an algorithm for synthesizing fault-tolerant programs from CTL specifi-
cations, based on a tableau method defined by Emerson and Clarke in [7]. One
main difference with our work is that we use deontic operators to distinguish
between good and bad system’s behavior, while in [2] the abnormal behavior is
captured by means of faulty actions. Another difference with our work is that
in [2] safety properties only need to hold after faults or through fail-free paths,
which implies that the semantics of CTL has to be adapted to cope with this
condition. Another important stream of work is presented in [5]. Therein, Unity
style programs are developed, the Unity logic is used to specify programs and
to state fault-tolerant properties. Moreover, only a finite number of faults are
allowed. It is important to notice that a main difference between that work and
our approach is that our synthesized programs preserve all safety and liveness
properties of the non-faulty part of the obtained program, while both [5] and [2]
preserve only the properties explicitly stated in the specification.

6 Conclusions

We have presented an approach to synthesizing fault-tolerant components from
dCTL- specifications. dCTL- is a branching time temporal logic equipped with

deontic operators, which is especially designed for fault-tolerant component spec-
ification. We believe this logic is better suited for fault-tolerance specification,
and therefore synthesizing fault-tolerant implementations from dCTL- specifica-
tions is relevant. In order to capture fault-tolerance, we use an approach based
on defining appropriate (bi)simulation relations, describing the relationship that
must hold between a system specification and its fault-tolerant implementation.
Our mechanism for synthesis is then based on combining decision procedures for
the satisfiability of dCTL- temporal formulas, with (bi)simulation algorithms for
checking a user required level of fault-tolerance. Here, we have dealt with mask-
ing tolerance, but our approach can be extended to other kinds of fault-tolerance,
if these are captured via simulation relations.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful com-
ments. This work was partially supported by a Fellowship from IBM Canada,
in support of the Automotive Partnership Canada funded project NECSIS; by
the Argentinian Agency for Scientific and Technological Promotion (ANPCyT),
through grants PICT PAE 2007 No. 2772, PICT 2010 No. 1690 and PICT 2010
No. 2611; and by the MEALS project (EU FP7 programme, grant agreement
No. 295261).

References

1. A. Arora and S. Kulkarni, Automating the Addition of Fault-Tolerance, in Proc. of
FTRTFT, 2000.

2. P.C. Attie, A. Arora, and E. A. Emerson, Synthesis of fault-tolerant concurrent
programs, ACM Trans. Program. Lang. Syst. 26(1), 2004.

3. C. Baier and J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.
4. C. Bernardeschi, A. Fantechi and S. Gnesi, Model checking fault tolerant systems,

Softw. Test., Verif. Reliab. 12(4), 2002.
5. B. Bonakdarpour, S. Kulkarni and F. Abujarad, Symbolic synthesis of masking

fault-tolerant distributed programs, Distributed Computing 25(1), 2012.
6. P.F. Castro, C. Kilmurray, A. Acosta, and N. Aguirre, dCTL: A Branching Time

Temporal Logic for Fault-Tolerant System Verification, in Proc. of SEFM, 2011.
7. E. M. Clarke and E. A. Emerson, Design and synthesis of synchronization skeletons

using branching-time temporal logic, in Proc. of Logic of Programs, 1981.
8. R. Demasi, P.F. Castro, T.S.E. Maibaum and N. Aguirre, Characterizing Fault-

Tolerant Systems by Means of Simulation Relations, in Proc. of IFM, 2013.
9. A. Ebnenasir, S. Kulkarni and A. Arora FTSyn: a framework for automatic syn-

thesis of fault-tolerance, STTT 10(5), 2008.
10. F. Gärtner, Fundamentals of Fault-Tolerant Distributed Computing in Asyn-

chronous Environments, ACM Comput. Surv. 31(1), 1999.
11. M.R. Henzinger, T.A. Henzinger, and P.W. Kopke, Computing Simulations on

Finite and Infinite Graphs, in Proc. of FOCS, 1995.
12. S. Kulkarni and A. Ebnenasir, Automated Synthesis of Multitolerance, in Proc. of

DSN, 2004.
13. L. Lamport and S. Merz, Specifying and Verifying Fault-Tolerant Systems, in Proc.

of FTRTFT, 1994.

