Automated Combinatorial Test Generation for Alloy

Agustin Borda*, German Regis*, Nazareno Aguirre*’, Marcelo Friast and Pablo Ponzio*
*University of Rio Cuarto and CONICET, Rio Cuarto, Argentina
{aborda, gregis, naguirre, pponzio} @dc.exa.unrc.edu.ar
fGuangdong Technion-Israel Institute of Technology, Shantou, China
iUniversity of Texas at El Paso, El Paso, USA
mfrias4 @utep.edu

Abstract—Specifications are an essential component of soft-
ware development, and getting specifications right, especially
Jormal specifications, can be very challenging. While the use of
tools such as model finders and model checkers can be very
effective for specification analysis through property checking,
researchers have also realized that by the explicit provision of
wanted and unwanted specification scenarios, in the style of
testing in programs, specification assessment can be significantly
enhanced. Thus, various testing and test generation techniques
have been recently proposed for assessing formal specifications.

In this paper, we present such a specification testing approach,
in the form of a novel combinatorial testing technique for
Alloy specifications, called COMBA. COMBA implements an
automated partitioning of the state space of Alloy specifications
solely based on elements of the specification (thus not requiring
user intervention), and defines a family of test criteria, that
indicate how such partitions are to be covered. The coverage
of the partitions is defined by a family of combinatorial criteria
that, given a positive integer ¢, require to cover through test cases
all feasible ¢t-uples of elements from different partitions. Finally,
COMBA introduces an efficient algorithm to generate test cases
that satisfy the combinatorial criteria. By leveraging on incre-
mental SAT solving techniques, COMBA achieves significantly
better performance in test generation.

We experimentally assess COMBA against existing test gener-
ation approaches for Alloy, using a large number of specifications
with known errors. The results show that COMBA (with ¢ = 2)
runs faster, produces smaller test suites, and finds a significantly
larger number of real bugs than related approaches.

Index Terms—Alloy, Specification Testing, Combinatorial Test-
ing, Incremental SAT Solving

I. INTRODUCTION

Specification is an essential component of software design
and development. Writing specifications that correctly capture
the problem domain as well as the characteristics of the
system-to-be can be very challenging, especially when formal
languages are used to capture software specifications. Thus,
developers often resort to different analysis tools such as
model checkers and model finders, to help in the construc-
tion of specifications. These tools are particularly useful for
debugging, analyzing, and improving formal specifications, as
they enable developers to identify misconceptions, incomplete
as well as inconsistent assumptions, and in general design
flaws in the characteristics of the specified system, early in the
development process, thus leading to more robust and reliable
software systems [6].

Alloy is a widely used formal specification language that has
been successfully employed in different software engineering

activities, including the analysis of software designs [12],
[13], the analysis of communication protocols [48], as well
as a backend for test case generation [31], [36] and software
verification [8], [10], among other activities. One of Alloy’s
main advantages —that contributed to its success— is that its
specifications are amenable to automated analysis via software
tools, the most prominent being the Alloy Analyzer. The
Alloy Analyzer implements two kinds of automated analyses
of specifications. First, it allows one to run simulations of
a specification, i.e., it finds (bounded) instances satisfying
a given specification (if such instances exist), and provides
these to the user. Second, it allows one to perform a bounded
verification of properties of the specification, and generates
and provides counterexamples, if these exist. The analysis
implemented by the Alloy Analyzer relies on SAT solving,
and requires the user to provide bounds on the data domains
of the specification. The Analyzer translates the bounded
specification and the property to be analyzed to a propositional
formula, that is then fed to a SAT solver to search for satisfying
instances or counterexamples.

Although bounded simulation and property verification are
of great help to the user, especially for assessing the cor-
rectness of a specification, by themselves these approaches
are often not enough. Formal specifications are typically
affected by issues such as overspecification defects, where the
specification is overconstrained and discards valid instances,
and underspecification defects, where the specification accepts
invalid instances. Overspecification defects lead to considering
invalid properties as valid properties, in cases where some
of the discarded valid instances are exactly the ones that
would violate the property. Overspecification defects are not
easily found by simulation, as they are only detected by the
lack of specific instances. As the user often explores only a
few instances, he might miss the ones that reveal the error.
Underspecification issues might not be found for the same
reason: the instances witnessing underspecification might not
be presented to the user during manual exploration.

To address these problems, automated test generation ap-
proaches for Alloy specifications have been proposed, in an
effort to provide the user with mechanisms to gain confidence
about the correctness of the specifications [41]], [43]], [40], [L7].
Two main testing approaches exist for Alloy. AUnit proposes
a systematic way to cover subformulas of a specification with
test cases [40]], and it resembles code coverage criteria in

traditional software testing (line coverage, branch coverage)
[S]. MuAlloy is a mutation based approach, it creates small
syntactical modifications of the specification (that simulate
typical specification errors made by engineers), and generates
test cases to “kill the mutants” [43]], [L7], in a similar way to
mutation testing for software[5].

Notice that, resembling traditional software testing, sys-
tematic testing approaches for Alloy define coverage criteria
over specifications, where each criteria defines a set of fest
requirements (subformulas for AUnit, mutants for MuAlloy)
that must be covered with specific test cases [5]. The goal of
coverage criteria is the same as in software testing: a good
coverage criteria should guide the testing process (manual or
automated) to produce a relatively small set of test cases that
find most of the flaws in the specification. In the case of
formal specifications, the flaws are in many cases related to
underspecification and overspecification issues, as discussed
above. These are examples of the kind of errors that testing
approaches for Alloy aim to discover.

In this paper, we introduce a novel automated testing
approach for Alloy specifications, called COMBA, inspired by
the combinatorial testing approaches for software systems [3]].
The first stage of COMBA consists of an automated approach
to partition the state space of the Alloy specification under
test. The partitioning is based on a combination of structural
aspects of the specification, as captured by the specification’s
signatures and fields, and more semantic-related character-
istics, as captured by the user through the predicates and
assertions of the specification. More precisely, the partitioning
considers test requirements that involve: covering signatures
and fields by their cardinality, with goals for covering these
each field/signature with zero or more elements. Additionally,
predicates and assertions present in the specification lead to
equivalence classes for covering these properties with their
satisfaction and non-satisfaction (i.e., covering these properties
making them true and false, respectively). The rationale here
is that this partitioning enforces more diversity in “semantic”
equivalence classes (based on predicates and assertions), by
combining these with “syntactic” equivalence classes (based
on signatures and fields). Note that, the coarseness of the
cardinality based partitions allows us to maintain a manageable
number of combinations. Using this approach, COMBA par-
titions the state space of Alloy specifications without requiring
user intervention.

COMBA defines a family of test adequacy criteria that
indicates how the partitions of the previous stage should
be covered with tests cases. Given a positive integer t, the
criteria require to cover all feasible t-uples of equivalence
classes from different partitions with test cases. In a second
stage, COMBA generates all the test requirements to be
covered (sets of t-uples). We call COMBA, the approach that
partitions the state space of the specification under test (first
stage), generates the t-uples that conform the test require-
ments (second stage), and then creates test cases to cover all
the t-uples (third stage).

In this way, the third stage of COMBA is an algorithm that

efficiently generates tests that satisfy COMBA’s combinatorial
adequacy criteria. Since the number of t-uples to be covered
by COMBA is usually very large, test generation can be very
expensive. To tackle this issue, the test generation algorithm of
COMBA is designed to exploit incremental SAT solving for
efficient generation [9]], [28]]. The algorithm works at the level
of propositional CNF formulas [9]], that result from translating
the (bounded) Alloy specification to a SAT problem. The
algorithm is designed to leverage the mechanisms of modern
incremental SAT solvers to iteratively query the solver for
test cases to cover all test requirements, one after another. It
achieves this without having to generate a new propositional
formula or restart the solver for each new test requirement to
be covered, as it would be the case using a non-incremental
solving approach. The use of incremental SAT solving has
been shown very effective for improving the efficiency of
approaches that need to make a large number of queries to
a SAT solver (e.g. [3], [32]).

We experimentally assess COMBA against state-of-the-art
(SOTA) test generation approaches for Alloy, AUnit, [40],
MuAlloy [43], [17]], and Scenario Tour [37]] using 18 case
studies taken from the literature with 29.946 known real bugs
[27], [26]]. The results show that COMBA is faster, generates
smaller test suites, and it finds a significantly higher number
of real bugs than SOTA approaches. In addition, the use
of incremental SAT solving make COMBA; and COMBA,
faster by 6.5 and 11.1 times, respectively, w.r.t. versions of the
approaches that use traditional SAT solving.

To summarize, the contributions of this paper are:

e« A combinatorial test generation approach for Alloy,
COMBA, that automatically partitions the state space of
the specification, and defines a family of combinatorial
criteria to create test requirements from the partitions.

o An efficient algorithm to generate test suites for the
combinatorial criteria, based on incremental SAT solving;
a crucial part of COMBA’s approach.

o A comprehensive experimental assessment systematic
testing approaches for Alloy, using a benchmark consist-
ing of 18 case studies, with a total of 29.946 known real
bugs. The results of the assessment show that COMBA,
is faster, generates smaller test suites, and it finds a signif-
icantly larger number of real bugs than SOTA approaches.

II. BACKGROUND
A. The Alloy Specification Language

Alloy is a formal specification language, that proposes to
capture software properties using a logical language with a
relational flavor [11]], [12]. This language follows the spec-
ification approach of model-oriented specification languages
[45], [4], [15], which capture software and problem domains
in terms of data domains, their properties, and transformations
between these domains. But as opposed to previous languages,
from its inception, Alloy has put a strong emphasis on auto-
mated analysis [14]. Indeed, the language is accompanied by
an efficient, fully automated, mechanism for bounded analysis

of specification properties. This analysis mechanism resorts to
SAT solving to query for the bounded satisfiability or bounded
validity of Alloy formulas [12], [13].

Alloy features a simple syntax and semantics for specifi-
cations. Moreover, the syntactic elements in Alloy specifica-
tions have an intuitive interpretation close to object-oriented
abstractions, which together with the relational nature of the
language, makes it accessible to software developers [12], [13].
Alloy allows for the definition of data domains via the concept
of signature. Signatures can have fields, whose associated
types are relations, of any (positive) arity, between signatures.
Alloy specifications can be equipped with formulas written in
relational logic, the logic underlying Alloy. Relational logic
is a first-order logic extended with relational operators, such
as union (+), intersection (&), join (.), and most importantly,
transitive closure (~). Alloy’s logic is therefore strictly more
expressive than first-order logic [12]. Alloy formulas use
standard logical connectives (and, or, not, etc.), quantifiers
(all, some, no, the latter corresponding to “there is no”),
relational inclusion (in) and equality (=). Predicates are pa-
rameterized formulas, that can be used to state properties, and
capture operations, among other things. Assertions are used
to state intended properties, i.e., formulas that are expected
to hold. Both predicates and assertions can be automatically
analyzed, by searching for satisfying instances, in the case of
predicates, and for counterexamples, in the case of assertions.

Starting with version 6, Alloy was extended to incorporate
linear temporal logic (LTL) constructs, in an effort to facilitate
the specification of dynamic properties of systems [25]. The
keyword var allows to specify mutable signatures and fields,
that is, relations that can change over time. Instances of such
relations are fraces, with at most N time steps, where N
is a bound on the maximum length of traces that must be
provided by the user. Temporal properties over traces can
be specified using the following operators. ’ denotes the
value of a mutable relation in the next time step. after,
eventually, always are the typical LTL operators, that
specify that a property is valid in the next, in some, and in all
time steps, respectively [25].

B. Incremental SAT solving

The test generation algorithm of COMBA is designed to
exploit the “solve with assumptions” mechanism of modern
SAT solvers [9]], [28]]. Basically, solve with assumptions allows
one to query the solver to find an instance satisfying the
current formula under the assumption that some variables
vi,Va, .., VE are set to true (the solver allows to set some
variables to false as well [9]). The idea is that the assumptions
V1,Va, .., Vg are only valid for the current query, the solver
discards the assumptions after it answers the query (no matter
the result). That is, the solver stays “clean” after each query
with assumptions, and it can be queried again afterwards
using a different set of assumptions. To abstract away the
implementation details, we assume a Solver class, with a
solve_assumptions ([vars]) method that takes a list
of variables as assumptions (the variables assumed to be true).

1 abstract sig Source {}

2 sig User extends Source {

3 profile: set Work,

4 visible: set Work

5)

6 sig Institution extends Source {}

7

8 sig Id {}

9 sig Work {

10 ids: some Id,

11 source: one Source

12}

13 /7 [...1

14 pred owner[] {

15 all u:User, w:Work| w in u.profile implies
16 // Defect:

17 (some i:Institution| u in w.source or i in w.source)
18 // Fix:

19 //(u in w.source or some i:Institution| i in w.source)
20)
21 /7 [...]

Fig. 1. Excerpt of a defective version of cv from Alloy4Fun

pred instance2l[] {

1

2 some disj IO : Id {

3 some disj WorkO: Work {

4 some disj Sourcel : User ({

5 no Institution

6 Id = Id0

7 Work = WorkO

8 User = Source0

9 no visible

10 ids = Work0 -> IdO

11 profile = Source0 -> WorkO

12 source = Work0O —-> SourceO }}}
13}

14

15 run { instance2l[] and owner[] } for 5

Fig. 2. A failing test with an instance generated by COMBA2

In Section[[V-B] we discuss how test requirements generated
by COMBA can be defined as tuples of propositional variables
of the CNF formula that encodes the (bounded) Alloy as a SAT
problem. Hence, we can employ solve_assumptions to
obtain test suites that satisfy COMBA'’s combinatorial criteria,
by querying the solver one test goal after another, without
having to generate a new CNF formula for each test goal, and
without having to restart the solver each time. Not as obvious
yet still crucial for the performance of COMBA, the learning
mechanisms of the incremental solvers speed up subsequent
invocations by learning conflict clauses from past invocations
[9], [28]. In this way, the use of incremental SAT solving
allows COMBA to make thousands of queries to the solver
and yet perform very well.

Finally, we would like to remark that the typical incremental
SAT solving mechanism used to enumerate instances in the
Alloy Analyzer does not work for our purposes. This mech-
anism consists of incrementally adding clauses to the CNF
formula. However, clauses added using this approach are kept
for all the subsequent queries [9]. For example, a clause added
for covering test requirement vi, vo would interfere with a
subsequent clause added to cover a different one, say va, vg
(v1 would still be required at this point).

III. ILLUSTRATIVE EXAMPLE

In this section, we illustrate COMBA by means of an
example. We show how COMBA generates an error revealing
instance for (a buggy variant of) the Alloy4Fun cv specifica-
tion [27]. cv models a system that keeps track of the works
in the curriculum vitae of users. Signature Work defines the
set of works in the system, and Source the set of feasible
sources for works. Sources can be either users or institutions,
as Source is an abstract signature extended by signatures
User and Institution. Each work has at least one Id
(due to the some modifier), as defined by the relation ids of
Work. Also, each work has exactly one Source (due to the
one modifier), defined by relation source of Work, which
as stated before can be either an User or an Institution.

Predicate owner (lines 14-20 in Fig. [T) should formally
describe the property: “A user profile can only have works
added by himself or some external institution”. The property
is correctly described by the following Alloy formula. The
defect in the specification is in line 17 of Fig. [I] The buggy
owner predicate rejects cases where there are no institutions
in the model, since such cases make the consequent of the
implication false (the existential quantifier some becomes
false when the set Institution is empty). This clearly
does not capture the intended behavior for owner.

The following Figure shows the relevant partitions

generated by COMBA for this specification:
TInstitution = { Towner = {
v1 = no Institution, vs = ownerl[],
ve = some Institution} v4 = not owner[]}
COMBA generates a partition Tr,stitution 1Or the

Institution signature with two equivalence classes:
the first describes the instances where there are no institutions
(the Alloy formula no Institution holds), and the
second the instances where there is at least one institution
(formula some Institution holds). For each partition,
COMBA instruments the Alloy specification by introducing
a unique propositional variable that is true if and only if the
corresponding formula holds. We denote this by v, = pred
in the definition of the partitions, where pred is an Alloy
predicate. Thus, by setting v; to true, COMBA forces the
solver to generate instances that belong to the corresponding
partition. For example, vy is true exactly for instances
where there is no institution (no Institution holds).
COMBA also creates a partition using the owner predicate,
that contains two equivalence classes, owner[] and not
owner []. That is, it splits the state space into instances
where owner holds and where it does not, respectively.
COMBA creates partitions in a similar way for the remaining
signatures, relations (ids, source, etc), predicates and
assertions; we omit them here for space reasons.

Given an integer ¢ > 0, COMBA, creates test requirements
in a combinatorial manner for the partitions, that is, it tries to
cover all combinations of t-uples of different partitions with
test cases. In our example, for ¢t = 2, COMBA produces the
following test requirements:

TR = { TRV = {
(no Institution, owner[]), (vi,v3),
(no Institution, not owner([]), (V1,va),
(some Institution, owner[]), (va,v3),
(some Institution, not owner([]) (vo,vyq)

} }

Notice that test requirements can be expressed in terms
of the Alloy predicates that must hold (TR at the left), or
equivalently as the propositional variables that enforce the
corresponding predicates to hold (TRV at the right part).

COMBA, generates an instance that reveals the error
when it tries to cover test requirement (no Institution,
owner []). It produces the valuation shown in the test in Fig.
E} A test in Alloy is a pair (i, c), where i is an instance
and c is a command that indicates whether i is expected to
be a valid or an invalid instance of the specification [41]]. If
the execution of the command fails (the command states that
the instance should be valid but it is not, or vice versa), the
test reveals an error in the specification. Lines 2-12 in Fig.]
describe by extension the instance generated by COMBAS.
Line 15 shows the command of the test, which states that
owner must evaluate to true in the instance. The command
fails for the instance, as owner is not satisfied for and instance
with no institutions (see line 5 in Fig. [2).

IV. COMBA: COMBINATORIAL TESTING FOR ALLOY

In this section, we describe COMBA in detail, which
includes: (i) partitioning the state space of the specification

(Sec.|[IV-A), (ii) the definition of test requirements (Sec. [[V-B)),

and (iii) the generation of test cases to cover test requirements

(Sec. [IV-C).

A. Partitioning approach for Alloy specifications

fun make_partitions (Spec): Seqg(Partition) {

|

2 res = []

3 for S in signatures (Spec)

4 v = new_var(); w = new_var();

5 res = res ++ [{ v =no S, w = some S }]
6 for R in fields (Spec)

7 v = new_var(); w = new_var();

8 res = res ++ [{ v = no R, w = some R }]
9 for U in functions (Spec)

10 v = new_var(); w = new_var();

11 res = res ++ [{ v = no U, w = some U }]
12 for P in predicates (Spec)

13 v = new_var(); w = new_var();

14 res = res ++ [{ v = P, w = not P }]

15 for A in asserts (Spec)

16 v = new_var(); w = new_var();

17 res = res ++
18 return res
19 1}

[{ v =A, w=not A }]

Fig. 3. Partitioning approach for Alloy specifications

For the remaining of this section, let us assume a fixed
Alloy specification Spec. Algorithm [3] shows a pseudocode
of COMBA'’s approach to create partitions. As illustrated in
Section COMBA creates a partition for each signature
and each relational field of the specification (Lines 3-8 in
Fig. 3). Both signatures and relational fields are represented

fun test_regs(Spec, p: Seg(Partition), t: int):

1

2 Set (Tuple (Var)) {
3 res = {}

4 for i; in 1..len(p) {

5 for eq; in 1l..len(p[i1]) |

6 vy = var(plii]leqai])

7 for iz in (ij+1)..len(p) {

8 for egs in 1..len(pli2]) {

9 ve = var(pliz]legz])

10

11 for i; in (it—1+1)..len(p) {
12 for eq: in 1..len(p[it]) {

13 ve = var(plis] [eqe])

14 res = res U {(v1,V2,..,Vs)}
15 |RRRRN

16 return res

17}

Fig. 4. Generation of test goals given a sequence of partitions

by relations in Alloy. Thus, the partitioning approach creates
equivalence classes bases on their cardinality: one for the
case the relation has no elements (described by formula no
S), and another for when relation has at least one element
(described by some S). As discussed in Section[[lI, COMBA
instruments the Alloy model with a new propositional variable
to represent each equivalence class. We assume a method
new_var that creates fresh variables each time is called. For
example, in line 4 two new propositional variables v and w
are created, such that v represents the equivalence class where
S has no elements (v = true iff no S), and w is represents
the equivalence class where S has at least one element (w
= true iff some S). In general, each new propositional
variable v created by new_var is used to represent exactly
one equivalence class, by defining v = pred, where pred
is an Alloy predicate that characterizes the class. In this way,
setting v to true forces the solver to generate an instance that
satisfies pred, i.e., an instance that belongs to the equivalence
class represented by v. The test generation algorithm of
COMBA heavily relies on this observation. Notice that, the
instrumentation with new propositional variables is performed
behind the scenes by COMBA. After test generation is fin-
ished, the user is presented with test cases that only refer to
the syntactical elements of the original specification.

Similarly, COMBA creates partitions for functions based
on the cardinality of their return value (Lines 9-11). COMBA
also makes partitions using each predicate (see Section [[I)) and
assertion, by considering the cases where the predicate/asser-
tion holds and does not hold (lines 12-17).

The partitioning scheme defined here supports the static
and the dynamic specification styles (introduced in Alloy 6
[25]). To see why, consider that COMBA requires generating
tests cases to make predicates true/false. For example, for the
Alloy4Fun trains_1t1 model, COMBA; will produce an
instance to make the following predicate true: it is always the
case that the signal eventually becomes Green”. In addition,
for temporal models, we partition temporal signatures/relations
as: (i) always empty, and (ii) eventually non-empty.

B. Definition of test requirements

Let p= m,mo,...,m, be the partitions induced in Spec
by the make_partitions algorithm (Fig. [3). COMBA
defines a family of coverage criteria. Given a positive integer
t provided by the user, COMBA,; aims to cover every t-
uple of equivalence classes from different partitions from
p. We call such tuples the test requirements for COMBA.
test_reqgs in Figure {4 is a pseudocode of the algorithm
used by COMBA to generate test requirements. test_reqgs
is a typical algorithm to compute the cartesian product of t-
uples of equivalence classes from different partitions. It iterates
over t different partitions, with indexes i;, i2, .., iy in p,
draws equivalence classes with indexes eqi, eqs, . ., eq;
from each partition, and obtains the variables v, vo, .., vy
that represent the corresponding equivalence classes. Then, it
adds test requirement (vy,va, . ., vy) tothe result in line 14.
Note that, the algorithm avoids creating tuples that represent
the same test requirement in different order, e.g., (vi, vs)
and (v3,vy). It does so by ensuring that i1 <is <...<iy
while iterating over the partitions in p.

We say test requirement tr=(vy,ve, .., Vv:) is covered
by a instance I if I satisfies the facts of Spec and belongs
to equivalence classes eqj, eqs, and eq;. In addition, we
say that test requirement tr is infeasible when there is no
valid instance (satisfying the facts) of Spec that covers tr.
The occurrence of infeasible test goals is typical when using
coverage criteria for software testing [S]. In COMBA, infea-
sible test goals can appear due to the facts of the specification
making some equivalence classes unsatisfiable, or due to
some combinations of equivalence classes being impossible
to satisfy when taken in conjunction (and/or in conjunction
with the facts). When COMBA cannot produce an instance
to cover an infeasible test requirement t r, COMBA discards
tr and continues with the next.

C. Combinatorial test generation approach

1 fun make_neg_partitions (Spec) : (Spec, Seqg(Partition)) {
2 res = []

3 Spec’, facts = remove_facts (Spec)

4 { or{not F | for F in facts} }"
5 tion of the negated facts is the
6 on]

7 add_fact (Spec’, NF)

8 for F in facts {

9 let F = "fact F { body }"

10 let PF = "pred PF { body }"

11 // PF is used to ask for instances that
12 // satisfy/do not satisfy the original F
13 add_pred (Spec’, PF)

14 v = new_var(); w = new_var();

15 res = res ++ [{ v = PF, w = not PF }]

16 }

17 for S in signatures (Spec’)

18 v = new_var(); w = new_var();

19 res = res ++ [{ v = no S, w = some S }]
20 for R in fields (Spec’)
21 v = new_var(); w = new_var();
22 res = res ++ [{ v = no R, w = some R }]
23 return (Spec’, res)

Fig. 5. Partitioning approach for the generation of negative instances

1) Generation of negative instances: As usual in software
testing [5], we want to have some test cases with invalid
instances, that check that the instances are rejected by the
specification. We call these negative tests. Negative instances
are useful, for example, to find overspecification errors, since
they represent instances that are currently rejected by the
specification, but this might be due to overly restrictive facts.

COMBA’s approach to create partitions for the gen-
eration of negative instances is shown in Figure [
make_neg_partitions first needs to and create a new
specification Spec’ by removing the original facts of Spec
(line 4). Then, it adds the disjunction of the negations of the
original facts as a fact for Spec’ (line 7). The reason is
that we want the valid instances of Spec’ to be the invalid
instances of Spec (and vice versa). Thus, the added fact forces
the valid instances of Spec’ to violate at least one of the
original facts.

Then, the algorithm iterates over the original facts (lines
9-17), and creates for each fact F a new predicate PF with
the same body as F (lines 9-11). Predicates PF are added to
Spec’ (line 14). Then, for each PF the algorithm creates a
partition as if it were a normal predicate, i.e., it will make test
generation cover the partition by making the predicate true
and false (lines 15-16). In this way, covering the equivalence
classes results in tests that satisfy and violate the original
fact F, respectively. After generating test requirements for
falsifying the original facts, we add additional partitions to
ensure that COMBA tests the negation of the facts with a
few different instances (lines 18-23). Thus, we partition the
signatures and relational fields of Spec’ in the same way as
we did in make_partitions (Fig.[3).

2) COMBA'’s test generation approach: A pseudocode of
COMBA'’s test generation approach is shown in Figure [6]
gen_tests takes the Alloy specification under test, Spec,
the scopes for test generation, scope, and a positive integer
t to choose the combinatorial criteria to be employed. As
typical in Alloy, scope defines the maximum number of
allowed elements for each signature, and the maximum length
of traces for temporal specifications (if needed). As output
gen_tests yields a test suite that covers all feasible t-uples
for the partitions induced in Spec.

gen_tests first generates happy path tests (lines 4-11).
It invokes make_partitions to create a sequence of
partitions p for Spec (line 4). We assume a Translation
class that returns a translator object t r, which abstracts away
all the low level details of the translation from Alloy to a
CNF formula using the given scopes (line 5). The transla-
tion is performed by method translate, which yields a
CNF formula (line 6). Then, gen_tests invokes routine
gen_instances (defined in lines 24-38), which is in charge
of producing a set of positive instances to achieve combina-
torial coverage of t-uples for the partitions in p (line 7).

gen_instances first initializes the incremental SAT
solver using the provided CNF formula (line 25). It initializes
a set covered to store the covered test requirements during
the generation of instances (line 27). Then, it iterates over the

1 fun gen_tests(Spec, scope: int, t: int): Test Suite {
2 suite = []

3 // Generation of positive tests

4 p = make_partitions (Spec)

5 tr = Translation (Spec, scope)

6 CNF = translate(tr, Spec)

posI = gen_instances (CNF, p, t)

8 for in posI {

9 test = gen_alloy_test (Spec, scope, I, tr, true)
10 suite = suite ++ [test]

11 }

12 // Generation of negative tests

13 Spec’, p’ = make_neg_partitions (Spec)

14 tr’ = Translation(Spec’, scope)

15 CNF’ = translate(tr’, Spec’)

16 negl = gen_instances (CNF’, p’, t)

17 for I in negI {

18 test = gen_alloy_test (Spec’, scope, I, tr’, false)
19 suite = suite ++ [test]

20 }
21 return suite

22}

24 fun gen_instances (CNF, p: Seg(Partition), t: int) {
25 solver = Solver (CNF)
26 res = []
27 covered = {}
28 for (vi,va,..,Vv¢) in test_reqgs(p, t) {
29 if (vi,ve,..,vt) in covered continue
30 if solve_assumptions (solver, [vi,Va,..,V¢])=SAT {
I = get_instance(solver)
res = res ++ [I]
// Mark all test regs satisfied by I as covered

covered = covered U covered_tuples (I)
}
}

return instances

L)L L W L L) W
o NV R WS ISR

3

38}

40 fun gen_alloy_test (Spec, scope: int, I: Instance,
41 tr: Translation, pos: bool): Test {

42 predI = gen_alloy_pred(tr, I)

3 let predI = "pred I() { body }"

44 if (pos) { // Positive test, SAT in Spec

45 assert = {}

46 for P in (predicates (Spec) U asserts(Spec))
47 if (eval(tr, "I and P")))

48 assert = assert U {P}

49 else

50 assert = assert U {not P}

51 A = and{a | a in assert}

52 return ("pred I() { body }",

53 "run { I and A } for scope expect 1")
54 }

55 else // Negative test, UNSAT in Spec

56 return ("pred I() { body }",

7 "run { I } for scope expect 0")

N N
0

Fig. 6. COMBA’s test generation algorithm

test requirements yielded by function test_reqs (Fig.) for
the current partitions p and the given t (line 28). Recall that
test requirements are tuples of variables : (vi,va, .., V¢),
which represent equivalence classes from different partitions
of p. If the current test requirement has been already covered
by a test, gen_instances moves to the next one (line 30).
Otherwise, it queries the SAT solver under the assumptions
that variables vi,vs, .., vy must be set to true, which is
equivalent to asking the solver for an instance that covers the
current test requirement (line 31). If the SAT solver finds such
an instance (the answer to solve_assumptions returns
SAT), the algorithm stores the instance in res (line 32).

The instance I found by the solver is an assignment of
truth values to propositional variables in the CNF formula.
Notice that, T must assign truth values to variables that
represent equivalence classes, i.e., to the variables created by
new_var when make_partitions is invoked (see Figure
[B). Function covered_tuples (line 34) generates all the
t-uples of variables that represent equivalence classes and are
set to true in I. These are the test requirements covered by I.
That is, a single instance might cover many test requirements.

For example, the instance in Figure 2] makes true the
following variables that represent equivalent classes: v (no
Institution), vs (owner), vg (some User), vg (some
profile), vg (no visible), vis (some Id), vig (some
Work), vig (some ids), vig (some source). Thus, for
t=2, covered_tuples (I) (line 34) creates all pairs of
the aforementioned variables, that are covered by the I:

{ (vi, v3), (vi, ve), (vi, vg), (vi, Vo), (Vvi, Vi2),
(vi, via), (vi, vie), (vi, vig), (v3, ve), (v3, vg),
(v3, vo9), (v3, vi2), (v3, Vvia), (v3, Vie), (v3, Vvig), ...}

Afterwards, the tuples produced by covered_tuples are
stored in set covered (line 34) (i.e., are considered covered
by the algorithm). At the end, a set of instances that achieve
combinatorial coverage of t-uples is returned (line 37).

gen_tests then creates an Alloy test for each positive in-
stance yielded by gen_instances (lines 8-11). To achieve
this, gen_alloy_test is invoked for each instance I (line
9). gen_alloy_test (defined in lines 40-58) first converts
the instance I, which at this point is an assignment of truth
values to propositional variables, to an Alloy predicate (line
42). For this it employs a mapping from propositional variables
to syntactical elements of the Alloy specification provided by
the Alloy Analyzer [12]] (which we assume is encapsulated in
the translation object t r). We omit the implementation details,
and simply invoke method gen_alloy_pred, which we
assume it generates the corresponding predicate predI using
I and tr. An example of such a predicate is shown in Figure
[2l We are left with adding regression assertions to complete the
command of the test. Thus, for each predicate and assertion
P of Spec, the translator tr employs the Alloy evaluator
(implemented in the Alloy Analyzer) to check whether the
instance satisfies P or not P, and adds either P or !P to
the list of predicates satisfied by the instance, assert (lines
45-50). Then, a single Alloy expression with the conjunction
of all the assertions is generated (line 51). The resulting test
consists of invoking the Alloy predicate generated for I, and
a run command stating that I satisfies the assertions (lines 52-
53). All the generated positive tests are stored in the resulting
test suite, suite (line 10).

Afterwards, gen_tests starts the generation of neg-
ative instances (lines 13-20). It generates the “negative”
specification Spec’, and partitions p’ for it, by invok-
ing make_neg_partitions (line 13). Similarly to the
generation of positive instances, gen_tests translates
Spec’ to a new CNF formula, CNEF’ (lines 14-15). Then,
gen_instances is invoked again, but this time with
the goal of covering the partitions in p’ (line 16). Neg-

ative instances must also be converted to tests in the Al-
loy language (lines 17-20). This is performed by -calling
gen_alloy_test for each negative instance (line 18).
The yielded negative Alloy tests are then added to the re-
sulting test suite, suite (line 19). For negative instances
gen_alloy_test first generates an Alloy predicate, in the
same way as for positive ones (lines 42-43). As negative
instances are by definition rejected by the facts of the original
Spec, the command of the test must ensure that running
the test returns UNSAT. Hence, gen_alloy_test adds
expect 0 to the command of negative tests (lines 56-57).

Finally, gen_tests terminates and returns the generated
test suite, suite (line 21).

V. EXPERIMENTAL EVALUATION

We now experimentally assess COMBA. Our goal is to
answer the following research questions:

¢« RQI1: How efficient is COMBA compared to related
techniques?

e RQ2: How many tests does COMBA generate in com-
parison with related techniques?

e RQ3: How effective is COMBA at finding bugs with
respect to related approaches?

e RQ4: Does incremental SAT solving contribute to the
performance of COMBA?

« RQS5: How many unfeasible test requirements are gener-
ated by COMBA?

A. Experimental Setup

To evaluate the approach, we use specifications from two
sets of subjects, the latest version of Alloy4Fun [26]], and
three more complex specifications taken from the literature.
Alloy4Fun is composed of various subjects, each consisting
of a correct (reference) Alloy specification, and various faulty
variants of the same specification. Each faulty variant is a syn-
tactically valid Alloy specification containing semantic errors
involuntarily introduced by a human (a student) while trying to
capture the right specification. The benchmark includes both
static (non-temporal) and temporal models. The static models
(called A4F Static) comprise: class_fol and class_rl, models
of a school classroom, in first order logic and relational logic,
resp.; graph, a model of the graph data structure; cv and
cv2, old and new versions of a Curriculum Vitae specification,
resp.; courses, a model of courses taught in a school; network,
a specification of the network connections in a social media
app; trash_fol and trash_rl, file system trash can specification
in first order logic and relational logic, resp.; Its a model of
labeled transition systems; trains, a specification of a train
station; and prod and prod2, two alternative specifications
of production lines. The temporal models (called A4F Tem-
poral) employ Alloy 6’s temporal notation [25]. These are:
trash_Itl, temporal specification of a file system trash can;
and trains_Itl, a temporal model of a train station. The more
complex models from the literature, which we refer to as
Complex, are: https, a specification of web attacks based on
credentials stealing (taken from Alloy’s website); dijkstra, a

TABLE I
FEATURES OF THE ANALYZED CASE STUDIES

Benchmark | Model | LOC sig/rel fact pred/fun faulty
class_fol 91 5/3 0 15/0 2070
class_rl 87 513 0 15/0 1881
courses 98 5/5 0 15/0 6719
cv 44 5/4 0 4/0 486
cv2 44 5/4 0 4/0 176
graph 70 /1 0 8/0 644
A4F Static Its 61 3/1 0 7/0 901
network 60 5/4 0 8/0 6714
prod 75 10/4 0 10/0 2758
prod2 45 513 0 4/0 224
trash_fol 88 3/1 0 10/0 520
trash_rl 82 3/1 0 10/0 719
trains 63 712 0 10/0 3252
chord 503 12/9 22 29/0
Complex dijkstra 84 32 0 8/0
https 133 11/12 3 4/1
trains_ltl 119 713 1 18 667
A4F Temporal ‘ trash_ll ‘ n7 30 20 215

model of Dijkstra’s mutual exclusion algorithm (taken from
Alloy Analyzer 4); and chord, Pamela Zave’s specification of
Chord’s ring maintenance protocol [47]]. Table [l summarizes
the key features of the specifications: lines of code (LOC),
number of signatures (sig), relations (rel), facts (fact), predi-
cates (pred), functions (fun), and, for Alloy4Fun subjects, the
corresponding number of faulty versions (faulty). Alloy4Fun
faulty specifications are student submissions, each possibly
containing multiple faults, in different predicates. To isolate
the effect of errors in different predicates, from each faulty
specification, we generated a version of the specification for
each fault where only a single predicate was faulty, and all
others were corrected (we also removed syntactic duplicates).

We compare COMBA;, COMBA,; and COMBAj; (Cy,
Csy, C3 for short) with related test generation approaches
for Alloy, namely AUnit (AU), MuAlloy (MuZ), and the
partitioning scheme introduced in [37], which we refer to
as “Scenario Tour” (ST). While, as opposed to AUnit and
MuAlloy, ST is not technically presented as a test generation
technique for Alloy, its instance enumeration approach draws
ideas from combinatorial testing, as in our approach, and
thus deserves a comparison and a more detailed description.
Basically, ST considers, for each relational field r: A —>
B in a model, different cardinality constraints on r. These
constraints enforce constructing different instances where there
exists an element of A: (i) not related to any value through
r (called None), (ii) related to exactly one value through r
(called One), and (iii) related to more than one value through
r (called MTE2). Similar constraints are enforced on elements
of B related to elements of A by the transpose of r, leading to
a total of six cardinality constraints per relational field [37]].
The constraints on individual fields are combined to form
test requirements. While [37] refers to the combination as
“pairwise”, the actual test requirements correspond in fact to
“all combinations” (see Fig. 3, page 47 of [37]). Since we
could not find a replication package for ST, we simulated
the approach (excluding negative instance generation, which

as described in [37] requires manual intervention) in our
COMBA prototype, by creating and combining the ST test
requirements described above. There is no obvious adaptation
of ST for temporal models, where the Time signature is
involved in mutable fields, and thus most of the cardinality
constraints become unfeasible. We thus exclude ST of the
analysis of temporal models.

Since both our approach and ST are inspired by combi-
natorial testing, it is important to stress the similarities and
differences. ST first introduced cardinality based partition-
ing, but the test classes are defined solely for fields, with
six classes per field. Our approach uses a coarser grained
partitioning (only two classes), but these are not restricted
to fields; instead, these are defined for various specification
elements, including signatures, fields, predicates and functions.
Also, ST combines these classes in an “all combinations”
fashion, whereas our approach offers the traditional flexibility
of combinatorial testing [5]. Our approach also incorporates
a fully automated mechanism for generating negative tests,
by systematically negating facts and contrasting satisfiability
results with respect to the original specification. Finally, while
ST employs standard SAT solving, our approach exploits a
more sophisticated SAT mechanism, based on a novel usage
of incremental SAT solving.

To assess the bug-detection effectiveness of test generation
approach TG in specification S, we perform a regression
analysis. This is the traditional way to assess test generation
approaches for software [18]], [19]], [38]. We use TG to generate
test cases in the correct version of S, and then run all tests in
each faulty variant S’ of S. If at least one test fails, the error
in S’ is revealed by TG. In other words, we analyze whether
tests generated by TG are capable of detecting regressions in
S (bugs introduced in S leading to S’).

Since the specifications in Complex lack faulty variants,
we introduce artificial bugs into the correct specifications via
mutations, using MuAlloy (this clearly favors MuAlloy in
the experiments). Furthermore, we also employ the DeepSeek
large language model [1] to generate faulty versions of these
specifications, using prompts that request the introduction of
human-like faults in the specifications. We limit the LLM
based generation of faulty specifications to 10 specifications
per model. The reason is that, in our experiments, the quality
of the specifications produced after the 10th request was
typically very low, generally producing either syntactically in-
correct specifications, specifications with very drastic semantic
changes, or simple mutations already captured by MuAlloy,
and thus redundant for our experiments.

All experiments were conducted on an Intel Core i7-11700
workstation with 32GB RAM, enforcing a one-hour time limit
per execution. We evaluated scopes from 3 to 6, as MuA cannot
generate tests within the time constraint for larger scopes.
Notice that temporal model comparisons exclude AU due to its
lack of support for temporal specifications. Extended experi-
mental results and a replication package for the experiments
are available online [2].

TABLE II
AVERAGE TEST GENERATION TIMES FOR VARIOUS SCOPES (IN SECONDS)

Specs | Scope | MuA AU C; Cy Cs ST
3 1.6 13 03 03 0.4 6
» 4 18 13 03 03 0.4 8.2
A4F Static 5 29 13 03 04 05 9.4
6 270.6 14 03 04 0.6 109
3 278 1369 08 13 4 1336
Comsl 4 417 2208 12 89 454 14413
omplex 5 893 2653 1.8 321 12055 2400.2
6 3772 4108 34 305 24003 24002
3 464.9 09 12 19 R
4 18259 16 19 27 :
A4F Temporal 5 1830.8 55 33 49 -
6 18353 37 55 123 -
TABLE III
AVERAGE TEST SUITE SIZES FOR SEVERAL SCOPES
Specs | Scope | MuA AU Ci Ca Cs ST
3 78 551 86 202 512 283
, 4 761 544 81 21 55 163
AdF Static 5 783 553 81 215 576 173
6 808 546 83 218 605 204
3 2316 793 24 616 2036 TO
Comblex 4 257 75 283 68 2246 TO
P 5 2783 823 256 67 TO TO
6 2863 8 28 636 TO TO
3 6115 19 42 123 -
4 TO - 185 445 113
A4F Temporal 5 TO - 185 46 1255 -
6 TO - 1715 4 16 -

B. Results

a) RQI: Efficiency: Table|lll summarizes the average test
generation times in seconds for the assessed approaches and
increasingly large scopes, on the evaluated subjects. Unsurpris-
ingly, MuA, ST and C3 show the worse runtime performance,
even for the smaller Alloy4Fun static models. Also, these
techniques noticeably suffer from scalability, as scopes are
increased, especially for the Complex and Alloy4Fun temporal
models (when applicable). Au has a reasonable performance
for the Alloy4Fun static models (recall that it is inapplicable
to the temporal models), but starts to show some serious
performance limitations for the Complex models, being even
worse than MuA. It is worth mentioning that the average times
reported for the less scalable techniques, MuA, ST, and for
some scopes Cs, include timeout cases (for those cases, we
computed the timeout time as the analysis time, while the
actual analysis time may be larger; timeout cases are further
reported in the following subsection on test suite size). Overall,
C; is in general the fastest of the assessed approaches, and
the one with less scalability issues as scopes grow. Cs is also
fast in comparison with the other techniques. In particular, for
Alloy4Fun models, both C; and C, are able to generate test
suites in less than 6 seconds (on average), for all the analyzed
scopes, significantly below the other techniques. Even for the
Complex models, Co shows good performance, generating test
suites in about 30 seconds, on average (the closest competing
technique is Au, taking on average over 6.5 minutes).

TABLE IV
BUG DETECTION (%) IN A4F FAULTY SPECIFICATIONS

Specs | Scope | MuA AU C; Ca C3 ST
3 | 876 771 833 939 962 789
. 4 | 853 786 835 942 967 651
A4F Static 5 | 867 781 815 946 969 648
6 | 865 785 819 938 975 6l.1
3 | 945 - 917 989 996
4 | 89 - 931 992 998
AdF Temporal | 5| 415 _ g9 992 998
6 | 409 - 915 989 998

b) RQ2: Number of tests: Table shows the average
number of tests generated by each approach, for scopes rang-
ing from 3 to 6. As the Table illustrates, for each technique,
its corresponding test suite sizes do not change as scopes
are increased, since the test requirements of each of the
approaches is independent of the scope for analysis. Across
techniques we observe that both MuA and Au lead to the largest
test suites on average, with Cz also showing large (although
slightly smaller than the other two) suites. ST has test suite
sizes that are comparable to C,, for A4F Static.

Given the above observation, and since some approaches
exceed the timeout for larger scopes (MuA in A4F Temporal,
C3 in Complex), let us focus our comparison on test suite size
solely for scope 3, where the majority of the techniques are
able to fully generate their corresponding test suites without
timeouts. C; produces test suites that are at leat 69% smaller
than those of AU (Complex), while C, generates suites that
are at least 22% smaller than AU’s. In relation to MuA, C;
generates suites at least 88% smaller (A4F Static), and C,
produces suites at least 73% smaller (Complex). With respect
to ST, C; generates suites 69% smaller, and Cy produces
suites 28% smaller (in A4F Static only, since ST times out
for scope 3 in Complex). C3 generates significantly more tests
than C,. Still, C3’s test suites are smaller than MuA’s suites in
all cases. With respect to AU, C3’s test suites are 153% larger
in Complex. In A4F Static, C3’s test suites are 80% larger
than those of ST.

To put in perspective the test suite size in relation to
the complexity of the specifications, we may also analyze
the average number of tests per specification (avg. size in
Table divided by the number of specification components
(predicates, functions and facts). In the worst case (Complex),
C; generates about 1.3 tests per component, and C, generates
2.8. C3’s test suites are significantly larger, consisting of 7.1
tests per component in the worst case. AU lies in between
Cs and Cg, 5.8 tests per component in the worst case (A4F
Static); recall that AU is inapplicable to temporal models.
Finally, MuA’s cost per component is significantly larger: 31.6
tests by component in the worst case, A4F Temporal.

¢) RQ3: Bug finding performance: Table|[V|presents the
fault detection percentage achieved on average by the assessed
approaches. C, and Cj exhibit a clearly superior bug-finding
performance, they find over 94% and 96% of the 29.946 bugs

TABLE V
BUG DETECTION IN LLM-GENERATED FAULTS AND MUTATION SCORE
FOR COMPLEX

Bug Detection in LLM-Generated Faults

Model | MuA AU C, Co Cs ST # bugs
chord 3 7 9 9 TO TO 10
dijkstra 10 9 9 10 TO 6 10
https 8 8 8 8 8 TO 10
average (%) | 70 80 86.66 90
Mutation Score
chord 100 99.74 99.74 99.74 TO TO 797
dijkstra 100 76.87 8571 92.51 TO 60.54 147
https 100 100 100 100 100 TO 97
average (%) \ 100 922 9515 9741

in this benchmark. The next best tool is MuA, followed by C;.
AU and ST show the worst performance here.

Taking into account generation times, size of the test suites,
and bug-finding performance, C; is overall the best approach.
It finds 7.1 and 4.7% more bugs than the best existing approach
MuZ, with suites 74% and 93% smaller, in A4F Static and
A4F Temporal, respectively. It also finds 21,7% more bugs
than AU in A4F Static, with 63% less tests. Co is also
significantly faster and scales better w.r.t. the complexity of
the specifications and the scopes, compared to MuA and AU.

C, is a good intermediate approach, since it achieves good
bug-finding results (it finds above 83% of the bugs) with very
small test suites and very fast run times (less than 4 seconds
on average in all cases). It finds 5% and 3% less bugs than
MuA, but its suites are substantially smaller: 88% and 93%
smaller, in A4F Static and A4F Temporal, respectively. In
addition, C; clearly outperforms AU, finding 8% more bugs
with 69% less tests in A4F Static. C; also generates much
smaller suites than Cs: 57 and 61% smaller in A4F Static and
A4F Temporal, respectively.

Cs finds a few more bugs than C» but at the cost of generat-
ing 153 to 192% larger suites A4F Static and A4F Temporal,
respectively, and suffering from scalability problems in larger
models (see below). We believe the disadvantages of C3 w.r.t.
C4 greatly outweigh its benefits.

c1 MuA AU

26593

26258 23373

Fig. 7. Comparison of overlapping and unique faults detected for C; (left)
and Ca (right), in relation to other techniques

Figure [/| graphically illustrates the overlapping and unique
faults detected by C; (left) and C, (right), in relation to

other techniques. Due to a lack of space, we only discuss
Cq briefly here. As expected from the bug finding results,
C4 finds more unique bugs than the other approaches (1349),
followed by MuA (126), AU (49) and finally ST (24). C,
uniquely finds bugs requiring interaction of the components of
the specification. In particular, a combination of predicates is
found to be effective for finding errors. We mention here a few
examples of these situations, corresponding to bugs uniquely
found by C,. The illustrative example (Section shows a
bug that is discovered when combining a cardinality partition
(no Institution) with a predicate (owner). In graph,
predicate faulty_weaklyConnected incorrectly requires
strong connectivity, and Cy combines its negation with the
oriented predicate to generate a witness for the error.
In trains_1t1, the intended property is underspecified,
and faulty_propl4 omits “or leaves station” from the
conditions that should make the signal change from green
to a different color; combined with prop2 (all signals are
eventually green), Co generates tests where a train leaves the
station and the signal is kept green, revealing the error.

Table |V| presents the but finding results for complex speci-
fications (recall that these are based on mutations as artificial
bugs). MuA achieves perfect mutation score for mutants gener-
ated by MuAlloy, as expected. Both C; and Cs perform very
well, surpassing AU and ST, and achieving a score of 95%
and 97%, respectively. In addition, Table [V] shows results for
complex models with LLM-generated bugs. Here, C; and C,
outperform all other approaches, in every case. C, maintains
the best balance overall between efficiency, size of the test
suites, and bug-finding performance.

d) RQ4: Impact of incremental SAT solving: For this
RQ we compared two COMBA variants: one employing
incremental solving and another using a traditional SAT ap-
proach (that has to produce a new CNF formula for each test
requirement). The results show that the incremental versions
of Cq, Cy and C3 run 6.5x, 11.1x and 38.3x faster (for the
larger assessed scopes where the approaches do not timeout,
scope 6 for C; and C,, and scope 4 for Cgs), respectively,
in comparison to the versions that employ traditional SAT
solving. Clearly, incremental SAT solving is crucial for the
efficiency of COMBA.

e) RQ5: Unfeasible test requirements: We report the
average of unfeasible test requirements generated by COMBA
for Complex, which is the worst case because the models
have many facts (only a few of the A4F cases have facts).
On average, C;, Co and Cj3 generate 12% (7.6 avg.), 33%
(329 avg.) and 64% (19443 avg.) unfeasible test requirements
(again, for scopes 6 for C; and Cs, 4 for Cs). The very large
number of unfeasible requirements created by Cg explains its
bad performance in the complex specifications.

VI. RELATED WORK

Specification instances have been used as input for model
validation [48], to analyze software [3]], [10], [31], [20], and
to implement executable contracts [30], among other applica-
tions. For example, there are many test generation approaches

for software that employ Alloy specifications to generate fest
inputs [31], [3], [20]. Alloy instances have also been employed
for automated repair and synthesis of Alloy models [44]], [[7],
[16], as well as for fault localization [21]], [49]].

Other works deal with the selection of instances to be pre-
sented to Alloy users. HawkEye is designed to assist the user
in querying for new instances with particular characteristics
[39]. Aluminum’s approach consists of presenting the user
with minimal instances [29]. Other works propose abstract
instances [35]: abstract representations of families of concrete
instances that summarize common aspects of related instances.
These approaches aid the user in assessing the correctness of
a specification by reducing the number of reported instances,
often by focusing in instances with specific characteristics.

COMBA differs from manual inspection of instances in
several crucial aspects. Inspection of instances is often sub-
jective: there is no clear termination criteria, and provides no
guidance on what component of the specification to test next.
Hence, the user might stop looking at instances before finding
an error in some component. In contrast, systematic testing
approaches like COMBA (also AUnit, MuAlloy) provide a
clear termination criteria for testing, and its thorough coverage
of the specification results in good bug-finding performance
(as evidenced by our experiments). COMBA tests all the
individual components of the specification, and interactions
between the components (when tuples regarding different
components are covered). This is why COMBA does not
take into account run/check commands for the generation. The
most closely related systematic testing approaches, AUnit [40]]
and MuAlloy [41], [43], [17], are comprehensively assessed
against COMBA in Sec. [V]

Another related approach is CompoSAT [34], which in-
troduces a coverage criterion for Alloy, guided by the spec-
ification. However, the focus is not on test generation, but
rather on provenances: essentially, explanations of the neces-
sary constituent elements in satisfying instances. In addition,
CompoSAT only deals with positive test scenarios, as opposed
to our approach. COMBA’s goal is different, as it aims at
generating test scenarios for Alloy specifications, involving
both positive and negative cases, and achieving a thorough
examination of the specification. In addition, COMBA lever-
ages on advanced SAT-solving techniques.

The work in [31], [33] delves into the domain of field-
exhaustive input generation for specification-based black-box
testing for software. These approaches exploit the incremental
SAT solving approach of adding clauses iteratively, in order to
speed up the generation of test inputs. As mentioned earlier,
adding clauses incrementally would not work for COMBA, as
once a clause is added it cannot be removed without restarting
the solver. Besides being applied to a different problem,
COMBA presents an innovative use of the mechanisms of
modern incremental SAT solvers, namely employing “solve
with assumptions” [9]], [28] to achieve the desired results.

Many approaches in the literature deal with the problem
of generating “minimal” test suites that achieve combinatorial
coverage [24], [23], [22], [46], [42]. Some of the approaches

employ heuristics for fast sampling of a set of instances that
cover many of the test requirements [24], some approaches
use greedy algorithms [46], other approaches employ meta-
heuristics [23], [22], etc. The approach of [42] addresses the
problem of keeping the combinatorial test suites of evolving
software up to date, and strives to maintain small test suites.
While the generation of minimal test suites is very important,
our experimental evaluation shows that the approaches C; and
C, already produce small enough test suites. For future work,
we plan to incorporate some of the approaches for minimizing
test suites into COMBA, and make COMBA scale better to
larger combinations of parameters (e.g., t > 2). For example,
we could incorporate into COMBA the sampling approach of
[24], or the elimination of unfeasible tuples based on UNSAT
cores presented in [46].

VII. CONCLUSIONS

We introduced COMBA, a novel combinatorial test gener-
ation approach for Alloy specifications. A key characteristic
of COMBA is that it partitions the state space of an Alloy
specification in an automated way (without user assistance).
In this way, COMBA defines a systematic way to produce
a relatively small set of test cases to assess the correctness
of the specification. Remarkably, COMBA, generates smaller
test suites than existing test generation approaches for Alloy,
that find a significantly larger number of bugs. In addition,
thanks to its efficient test generation algorithm (which heavily
exploits incremental SAT solving), COMBA, generates tests
faster than existing approaches.

Being a combinatorial approach, an advantage of COMBA
over existing approaches is that it can be configured to pro-
duce test suites of different sizes. Stronger COMBA criteria
(using a larger f) give increasing levels of thoroughness in
the coverage of the interactions between the specification
components, thus improving the confidence on the correctness
of the specification, but at the cost of producing a larger
number of tests.

Note that, unlike combinatorial approaches for software
testing where often the different partitions are created for
different components (e.g., different partitions for different
methods), COMBA generates a unique partitioning scheme
for the whole specification. In other words, COMBA aims
to generate test cases for all the components (signatures,
relations, predicates, facts, asserts) of the specification. It
does so by creating test requirements that involve partitions
from distinct components, therefore testing the combination
of structural properties of the specification (e.g., based on the
cardinalities of signatures/relations) with semantic properties
(e.g., using the predicates/assertions).

We believe COMBA could be a good fit for automated
specification repair and synthesis techniques that require tests
to work [44]], [7], [16]. The relatively low number of tests
generated, and capacity of varying the size of the generated
test suites could be key in this context. We will explore this
topic in future work.

[1]
[2]

[4]
[5]
[6]
[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

Deepseek’s website. https://www.deepseek.com/. Accessed: 2025.
Replication package for Automated Combinatorial Testing for Alloy.
https://sites.google.com/view/combinatorial-testing-alloy/. Accessed:
2025.

Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Ciolek,
Marcelo F. Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato,
Nicolds Rosner, and Ignacio Vissani. Improving test generation under
rich contracts by tight bounds and incremental SAT solving. In Sixth
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013,
pages 21-30. IEEE Computer Society, 2013.

Jean-Raymond Abrial. The B-book - assigning programs to meanings.
Cambridge University Press, 1996.

Paul Ammann and Jeft Oftutt. Introduction to Software Testing, 2nd ed.
Cambridge University Press, 2016.

Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

Simén Gutiérrez Brida, Germén Regis, Guolong Zheng, Hamid Bagheri,
ThanhVu Nguyen, Nazareno Aguirre, and Marcelo F. Frias. ICE-
BAR: feedback-driven iterative repair of alloy specifications. In 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pages 55:1—
55:13. ACM, 2022.

Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular
verification of code with SAT. In Lori L. Pollock and Mauro Pezze,
editors, Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July
17-20, 2006, pages 109-120. ACM, 2006.

Niklas Eén and Niklas Sorensson. An extensible sat-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers,
volume 2919 of Lecture Notes in Computer Science, pages 502-518.
Springer, 2003.

Juan P. Galeotti, Nicolds Rosner, Carlos Gustavo Lépez Pombo, and
Marcelo F. Frias. TACO: efficient sat-based bounded verification using
symmetry breaking and tight bounds. [EEE Trans. Software Eng.,
39(9):1283-1307, 2013.

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol., 11(2):256-290, 2002.

Daniel Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

Daniel Jackson. Alloy: a language and tool for exploring software
designs. Commun. ACM, 62(9):66-76, 2019.

Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: the alloy
constraint analyzer. In Carlo Ghezzi, Mehdi Jazayeri, and Alexander L.
Wolf, editors, Proceedings of the 22nd International Conference on on
Software Engineering, ICSE 2000, Limerick Ireland, June 4-11, 2000,
pages 730-733. ACM, 2000.

Clifford B. Jones. Systematic software development using VDM (2. ed.).
Prentice Hall International Series in Computer Science. Prentice Hall,
1991.

Ana Jovanovic and Allison Sullivan. Towards automated input gen-
eration for sketching alloy models. In 10th IEEE/ACM International
Conference on Formal Methods in Software Engineering, FormaliSE-
ICSE 2022, Pittsburgh, PA, USA, May 22-23, 2022, pages 58-68. ACM,
2022.

Ana Jovanovic and Allison Sullivan. Mutation testing for temporal alloy
models. In 26th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2023, Viisterdas, Sweden,
October 1-6, 2023, pages 228-238. IEEE, 2023.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database
of existing faults to enable controlled testing studies for java programs.
In Corina S. Pasareanu and Darko Marinov, editors, International
Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA,
USA - July 21 - 26, 2014, pages 437-440. ACM, 2014.

René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real
faults in software testing? In Shing-Chi Cheung, Alessandro Orso,
and Margaret-Anne D. Storey, editors, Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

neering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pages
654-665. ACM, 2014.

Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov,
and Sarfraz Khurshid. Testera: A tool for testing java programs using
alloy specifications. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ASE "11,
pages 608-611, Washington, DC, USA, 2011. IEEE Computer Society.
Tanvir Ahmed Khan, Allison Sullivan, and Kaiyuan Wang. Alloyfl: a
fault localization framework for alloy. In Diomidis Spinellis, Geor-
gios Gousios, Marsha Chechik, and Massimiliano Di Penta, editors,
ESEC/FSE ’21: 29th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, pages 1535-1539. ACM, 2021.
Jinkun Lin, Shaowei Cai, Bing He, Yingjie Fu, Chuan Luo, and Qingwei
Lin. Fastca: An effective and efficient tool for combinatorial covering
array generation. In 43rd IEEE/ACM International Conference on
Software Engineering: Companion Proceedings, ICSE Companion 2021,
Madrid, Spain, May 25-28, 2021, pages 77-80. IEEE, 2021.

Jinkun Lin, Chuan Luo, Shaowei Cai, Kaile Su, Dan Hao, and Lu Zhang.
TCA: an efficient two-mode meta-heuristic algorithm for combinatorial
test generation (T). In Myra B. Cohen, Lars Grunske, and Michael
Whalen, editors, 30th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2015, Lincoln, NE, USA, November
9-13, 2015, pages 494-505. IEEE Computer Society, 2015.

Chuan Luo, Qiyuan Zhao, Shaowei Cai, Hongyu Zhang, and Chunming
Hu. Samplingca: effective and efficient sampling-based pairwise testing
for highly configurable software systems. In Abhik Roychoudhury,
Cristian Cadar, and Miryung Kim, editors, Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2022, Singapore,
Singapore, November 14-18, 2022, pages 1185-1197. ACM, 2022.
Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis
Kuperberg. Lightweight specification and analysis of dynamic systems
with rich configurations. In Thomas Zimmermann, Jane Cleland-Huang,
and Zhendong Su, editors, Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, pages 373-383. ACM,
2016.

Nuno Macedo, Alcino Cunha, and Ana C. R. Paiva. Alloy4fun dataset
for 2022/23. https://doi.org/10.5281/zenodo.8123547, Jul 2023.

Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo
Silva, Ana C. R. Paiva, and Miguel Sozinho Ramalho anbd Daniel Cas-
tro Silva. Experiences on teaching alloy with an automated assessment
platform. In Alexander Raschke, Dominique Méry, and Frank Houdek,
editors, Rigorous State-Based Methods - 7th International Conference,
ABZ 2020, Ulm, Germany, May 27-29, 2020, Proceedings, volume
12071 of Lecture Notes in Computer Science, pages 61-77. Springer,
2020.

Alexander Nadel and Vadim Ryvchin. Efficient SAT solving under
assumptions. In Alessandro Cimatti and Roberto Sebastiani, editors,
Theory and Applications of Satisfiability Testing - SAT 2012 - 15th
International Conference, Trento, Italy, June 17-20, 2012. Proceedings,
volume 7317 of Lecture Notes in Computer Science, pages 242-255.
Springer, 2012.

Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and
Shriram Krishnamurthi. Aluminum: principled scenario exploration
through minimality. In David Notkin, Betty H. C. Cheng, and Klaus
Pohl, editors, 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 232-241.
IEEE Computer Society, 2013.

Pengyu Nie, Marinela Parovic, Zhigiang Zang, Sarfraz Khurshid, Alek-
sandar Milicevic, and Milos Gligoric. Unifying execution of imperative
generators and declarative specifications. Proc. ACM Program. Lang.,
4(OOPSLA):217:1-217:26, 2020.

Pablo Ponzio, Nazareno Aguirre, Marcelo F. Frias, and Willem Visser.
Field-exhaustive testing. In Thomas Zimmermann, Jane Cleland-Huang,
and Zhendong Su, editors, Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, pages 908-919. ACM,
2016.

Pablo Ponzio, Nazareno Aguirre, Marcelo F. Frias, and Willem Visser.
Field-exhaustive testing. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2016, pages 908-919, New York, NY, USA, 2016. ACM.

https://www.deepseek.com/
https://sites.google.com/view/combinatorial-testing-alloy/
https://doi.org/10.5281/zenodo.8123547

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Pablo Ponzio, Ariel Godio, Nicolds Rosner, Marcelo Arroyo, Nazareno
Aguirre, and Marcelo F. Frias. Efficient bounded model checking of
heap-manipulating programs using tight field bounds. In Esther Guerra
and Mariélle Stoelinga, editors, Fundamental Approaches to Software
Engineering - 24th International Conference, FASE 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, volume 12649 of Lecture Notes in Computer Science,
pages 218-239. Springer, 2021.

Sorawee Porncharoenwase, Tim Nelson, and Shriram Krishnamurthi.
Composat: Specification-guided coverage for model finding. In Klaus
Havelund, Jan Peleska, Bill Roscoe, and Erik P. de Vink, editors, Formal
Methods - 22nd International Symposium, FM 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018,
Proceedings, volume 10951 of Lecture Notes in Computer Science,
pages 568-587. Springer, 2018.

Jan Oliver Ringert and Allison Sullivan. Abstract alloy instances.
In Marsha Chechik, Joost-Pieter Katoen, and Martin Leucker, editors,
Formal Methods - 25th International Symposium, FM 2023, Liibeck,
Germany, March 6-10, 2023, Proceedings, volume 14000 of Lecture
Notes in Computer Science, pages 364-382. Springer, 2023.

Nicoléds Rosner, Jaco Geldenhuys, Nazareno Aguirre, Willem Visser, and
Marcelo F. Frias. BLISS: improved symbolic execution by bounded lazy
initialization with SAT support. IEEE Trans. Software Eng., 41(7):639—
660, 2015.

Takaya Saeki, Fuyuki Ishikawa, and Shinichi Honiden. Automatic gen-
eration of potentially pathological instances for validating alloy models.
In Kazuhiro Ogata, Mark Lawford, and Shaoying Liu, editors, Formal
Methods and Software Engineering - 18th International Conference on
Formal Engineering Methods, ICFEM 2016, Tokyo, Japan, November
14-18, 2016, Proceedings, volume 10009 of Lecture Notes in Computer
Science, pages 41-56, 2016.

Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil
McMinn, and Andrea Arcuri. Do automatically generated unit tests
find real faults? an empirical study of effectiveness and challenges (T).
In Myra B. Cohen, Lars Grunske, and Michael Whalen, editors, 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pages 201-211.
IEEE Computer Society, 2015.

Allison Sullivan. Hawkeye: User-guided enumeration of scenarios. In
Zhi Jin, Xuandong Li, Jianwen Xiang, Leonardo Mariani, Ting Liu, Xiao
Yu, and Nahgmeh Ivaki, editors, 32nd IEEE International Symposium on
Software Reliability Engineering, ISSRE 2021, Wuhan, China, October
25-28, 2021, pages 569-578. IEEE, 2021.

Allison Sullivan, Kaiyuan Wang, and Sarfraz Khurshid. Aunit: A test

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

automation tool for alloy. In /ith IEEE International Conference on
Software Testing, Verification and Validation, ICST 2018, Viisteras,
Sweden, April 9-13, 2018, pages 398-403. IEEE Computer Society,
2018.

Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz
Khurshid. Automated test generation and mutation testing for alloy. In
2017 IEEE International Conference on Software Testing, Verification
and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017, pages
264-275. IEEE Computer Society, 2017.

Rachel Tzoref-Brill and Shahar Maoz. Modify, enhance, select: co-
evolution of combinatorial models and test plans. In Gary T. Leavens,
Alessandro Garcia, and Corina S. Pasareanu, editors, Proceedings of the
2018 ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIG-
SOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018,
pages 235-245. ACM, 2018.

Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. Mualloy: a
mutation testing framework for alloy. In Michel Chaudron, Ivica
Crnkovic, Marsha Chechik, and Mark Harman, editors, Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
pages 29-32. ACM, 2018.

Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. Arepair: a
repair framework for alloy. In Joanne M. Atlee, Tevfik Bultan, and Jon
Whittle, editors, Proceedings of the 41st International Conference on
Software Engineering: Companion Proceedings, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, pages 103-106. IEEE / ACM, 2019.
J. C. P. Woodcock and Jim Davies. Using Z - specification, refinement,
and proof. Prentice Hall international series in computer science.
Prentice Hall, 1996.

Akihisa Yamada, Armin Biere, Cyrille Artho, Takashi Kitamura, and
Eun-Hye Choi. Greedy combinatorial test case generation using un-
satisfiable cores. In David Lo, Sven Apel, and Sarfraz Khurshid,
editors, Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, Singapore, September
3-7, 2016, pages 614-624. ACM, 2016.

Pamela Zave. Pamela zave’s chord algorithm specification.

Pamela Zave. Reasoning about identifier spaces: How to make chord
correct. IEEE Trans. Software Eng., 43(12):1144-1156, 2017.
Guolong Zheng, ThanhVu Nguyen, Simén Gutiérrez Brida, German
Regis, Marcelo F. Frias, Nazareno Aguirre, and Hamid Bagheri.
FLACK: counterexample-guided fault localization for alloy models. In
43rd IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22-30 May 2021, pages 637-648. IEEE,
2021.

	Introduction
	Background
	The Alloy Specification Language
	Incremental SAT solving

	Illustrative example
	COMBA: Combinatorial testing for Alloy
	Partitioning approach for Alloy specifications
	Definition of test requirements
	Combinatorial test generation approach
	Generation of negative instances
	COMBA's test generation approach

	Experimental Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusions
	References

