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Abstract—The effectiveness of testing in uncovering software
defects depends not only on the characteristics of the test inputs
and how thoroughly they exercise the software, but also on the
quality of the oracles used to determine whether the software
behaves as expected. Therefore, assessing the quality of oracles
is crucial to improve the overall effectiveness of the testing
process. Existing metrics have been used for this purpose, but
they either fail to provide a comprehensive basis for guiding
oracle improvement, or they are tailored to specific types of
oracles, thus limiting their generality.

In this paper, we introduce state field coverage, a novel metric
for assessing oracle quality. This metric measures the proportion
of an object’s state, as statically defined by its class fields, that
an oracle may access during test execution. The main intuition
of our metric is that oracles with a higher state field coverage
are more likely to detect faults in the software under analysis,
as they inspect a larger portion of the object states to determine
whether tests pass or not.

We implement a mechanism to statically compute the state field
coverage metric. Being statically computed, the metric is efficient
and provides direct guidance for improving test oracles by
identifying state fields that remain unexamined. We evaluate state
field coverage through experiments involving 273 representation
invariants and 249,027 test assertions. The results show that state
field coverage is a well-suited metric for assessing oracle quality,
as it strongly correlates with the oracles’ fault-detection ability,
measured by mutation score.

I. INTRODUCTION

Improving the reliability of software systems is among
the most challenging problems in software engineering. This
problem is strongly related to finding software defects, i.e.,
identifying software behaviors that diverge from the expected
behavior. Software testing is one of the most widely used
systematic techniques to identify such software defects, and it
demands various complex tasks [7]. Firstly, software testing
requires crafting (manually or in an assisted manner) test
inputs that are able to exercise the software under test (SUT) in
realistic and sufficiently varied scenarios. Secondly, to increase
the automation in test suite execution and checking, it is
crucial to capture the intended behavior of software for the
designed test cases through fest oracles, assertions that attempt
to capture the expectations on the execution of test cases as
accurately as possible. The problem of producing accurate test
oracles, known as the oracle problem [9], has proved to be both
difficult and time-consuming.

Constructing accurate test oracles necessarily depends on
the intended software behavior and is largely a manual task.

It involves the software developers directly, who can greatly
benefit from support in oracle construction, particularly via
mechanisms to assess oracle quality. Indeed, oracles can be
inaccurate either by misrepresenting the developer’s intent or
by being too weak, i.e., approximating the intended behavior
in a way that fails to reveal many faults. An effective technique
to assess oracle quality can direct developers to inaccuracies
and other limitations, helping them produce stricter and more
accurate oracles with an improved ability to detect defects.

Various approaches have been proposed to evaluate oracle
quality. Among these, mutation testing [7], [41], a well-
established technique for assessing test suite effectiveness, has
been widely adopted due to its ability to approximate the
fault-detection capability of tests and oracles. Additionally,
more direct metrics have been introduced, such as checked
coverage [43], which measures how thoroughly test assertions
cover SUT statements that influence their outcomes, and the
search-based oracle deficiency detection put forward in [24],
which quantifies assert statement quality by identifying false
positives (correct executions incorrectly flagged as erroneous)
and false negatives (undetected faults) that the oracles lead to.

Despite these advances in oracle assessment, existing ap-
proaches suffer from various limitations. These techniques
typically rely on dynamic analyses that are computation-
ally expensive. In particular, mutation analysis requires re-
peated test executions to identify killed and surviving mu-
tants; checked coverage depends on dynamic slicing to trace
SUT statements affecting oracles; and search-based oracle
deficiency detection combines evolutionary computation [34]
with mutation analysis, both computationally expensive tasks.
Furthermore, while these techniques provide accurate oracle
quality metrics, their feedback for improving oracles remains
indirect (e.g., surviving mutants or unassessed SUT statements,
whose translation into oracle improvements is non-trivial).

In this paper, we introduce state field coverage, a novel
metric for oracle assessment. Our approach evaluates oracle
quality by measuring the proportion of the SUT’s state defini-
tion (i.e., class fields, in the context of object-oriented code)
referenced by the oracle. A field is considered ‘“covered” if
it is directly or indirectly referred to in oracle expressions.
As opposed to existing techniques to assess oracle quality,
we present an approach that computes our metric statically,
thus avoiding costly dynamic analyses. Moreover, our ap-
proach provides actionable feedback by explicitly identifying



uncovered state fields, guiding oracle enhancements. Also,
while other metrics (e.g., mutation testing) do yield explicit
feedback, they do not easily indicate oracle improvements.
For example, surviving mutants indicate undetected faults, but
require providing additional test data or crafting new tests
to kill these mutants [15], which are typically non-trivial to
provide. In contrast, state field coverage identifies specific
state variables omitted from oracles, directing the improvement
process.

Our experiments, comprising oracles originating from 273
representation invariants and 249,027 test assertions, show that
state field coverage is an effective metric for assessing oracle
quality, as it strongly correlates with fault-detection ability
measured by mutation score.

II. RELATED WORK

This section discusses some of the established approaches
to assess the quality of oracles, and other related works that
are relevant to our proposal.

A. Oracle Quality Assessment

1) Mutation-based Oracle Assessment: Mutation test-
ing [7], [41] is a widely used technique to assess the quality
of test suites, in terms of the ability of test suites to detect
(artificial) faults in the SUT. More precisely, mutation testing
generates mutants of the SUT by injecting artificial faults in
the code, and then measures the proportion of mutants that are
detected (or killed) by the test suite, i.e., that make at least
one test case fail. The proportion of mutants that are killed,
known as the mutation score, is known to correlate with real
fault detection better than other traditional testing metrics [27],
[42]. This score has also been effectively used as a metric
to assess the quality of oracles in a variety of techniques for
test oracle automation [6], [11], [18]—-[21], [36]-[38], [44] and
oracle assessment studies [22], [24], [43], [47]. These works
follow an approach similar to the use of mutation for test suite
assessment: given the SUT and an oracle (e.g., an assertion)
for it, the quality of the oracle is measured by its ability to
kill mutants, i.e., to identify mutants through violations to the
oracle, e.g., on generated or provided test suites. Through this
analysis, one can measure the strength of the oracles in terms
of their ability to detect faults.

Mutation-based oracle analysis can be effective in revealing
potential oracle weaknesses, by identifying faults that the
oracles are not able to detect. However, it also has some
limitations. Firstly, the result of the mutation analysis points to
the mutants that are not detected by the oracle, but exploiting
this feedback to improve the oracle itself (i.e., to recognize the
relationship between mutants and improvements to the oracle)
is non-trivial. Secondly, oracle assessment based on mutation
usually combines test generation with mutation analysis, both
computationally expensive tasks, notably the latter.

2) Coverage-based Approaches: Checked coverage [43] is
a metric that focuses on the evaluation of the quality of test
assertions. The checked coverage metric essentially works
by analyzing the code features that affect the expressions

involved in test oracles. To calculate checked coverage, a
dynamic backward slice of the test oracles is computed,
which determines the statements that contribute to the checked
expressions. The percentage of statements that contribute to
the expressions checked in the test oracles, in relation to the
total number of statements of the SUT, constitutes the checked
coverage. In other words, it attempts to measure the proportion
of sentences of the SUT whose effect is being directly or
indirectly checked by the test assertions.

Checked coverage has proved to be a good indicator of
test oracle quality, correlated with the ability of the oracles to
detect faults and even more sensitive than mutation score [43].
However, checked coverage concentrates on the evaluation of
test assertions, and is not easily adaptable to support other
more general types of oracles, such as contract assertions (e.g.,
pre and postconditions) [32], [33]. Consider, for instance, a
postcondition. Since the assertion is local to a method, it seems
more reasonable to measure checked coverage with respect to
sentences only of the method itself; the generality of such as-
sertions together with their locality to specific methods would
typically lead to high checked coverage values. Additionally,
computing checked coverage is expensive, demanding from
several hours to days for large projects [29], since it requires
the computation of dynamic slices [30].

State coverage [31] is another approach based on statement
coverage. As with checked coverage, state coverage also relies
on program slicing. It measures the quality of checks (e.g.,
test assertions) by considering all output defining statements
(ODS), i.e., statements that define an output variable. State
coverage is computed by counting the number of ODS present
in the dynamic slices of a given assertion, divided by the total
number of ODS. Being based on ODS, this technique depends
on the given test inputs (as for different inputs, different
statements may be output defining). A positive aspect of the
approach is that, in principle, it can provide ODS that are
not being checked by the assertions, which may be useful
for users to further improve the oracles. However, given the
very limited evaluation that exists for this technique, just a
small experiment with a proof of concept implementation in
a short paper [31], there is no significant evidence to support
its usefulness, or reveal deeper insights or limitations.

A second implementation of state coverage has also been
proposed [45], implementing an extension in which the state
coverage is computed as the ratio of state updates that are
read by assertions with respect to the total number of state
updates. Every code location in the source code in which an
update is performed is considered a state update. To compute
state coverage, a test suite is executed and monitored using
a process that collects the set of state updates (writes), and
the subset of updates read in the test assertions (reads); state
coverage is the ratio of reads over the number or writes.

3) Oracle Deficiencies: The deficiencies of an oracle can be
determined both qualitatively and quantitatively. For instance,
OraclePolish [23] is a dynamic technique that qualitatively
assesses the quality of test assertions by analyzing how they
interact with the inputs in a specific test. The technique focuses



on detecting brittle assertions, i.e., assertions that check values
of uncontrolled inputs (e.g, inputs declared outside the tests),
and unused test inputs, i.e., inputs in the tests that are not
checked in the assertions. Similarly to the checked coverage
metric, OraclePolish is also tailored for test assertions, and it
is not easily adaptable to other types of oracles.

The quality of an oracle can be quantitatively assessed by
identifying more concrete oracle deficiencies: false positives
and false negatives [24]. A false positive is a correct and
expected program state for which the oracle fails, i.e., a false
alarm; a false negative, on the other hand, is an incorrect
and unexpected program state for which the oracle is true,
i.e., a missed fault. OASIs [24] is a tool for automatically
assessing the quality of oracles, by computing the above oracle
deficiencies. It has been used as a metric for oracle quality [38]
and to guide the manual as well as the automated improvement
of oracles [24], [25], [44]. OASIs searches for false positives
and false negatives using evolutionary computation. False
positives are reported as test cases that falsify the oracle
when they should not. False negatives, on the other hand, are
calculated as mutations that are not detected by the oracle,
and thus are based on mutation analysis. Oracle deficiencies
provide a more direct input to the improvement of oracles.
Their computation is however expensive, and is designed for
specific oracles, expressed as assert statements in the code.

In general, the dynamic nature of the existing metrics for
oracle quality makes them computationally expensive, and the
use of their corresponding results as inputs for oracle improve-
ment may demand subsequent time-consuming analyses. Some
of the approaches, e.g., checked coverage and oracle deficiency
identification, concentrate on specific kinds of oracles. State
field coverage, the novel metric for oracle quality that we
introduce in Section III, aims to overcome these limitations.
Our metric can be efficiently computed, provides an output that
more directly leads to oracle improvement, and is applicable to
different kinds of oracles, including test assertions and contract
specifications such as operational class invariants.

B. Automated Test Oracle Generation

Most of the metrics for oracle quality assessment introduced
in the previous section have been used either to evaluate the
quality of automatically inferred oracles, or to guide an oracle
inference process. Notably, mutation testing has been the most
widely used approach to assess the quality of automatically
derived oracles [8], [10], [11], [36], [39], [44], [46]. Typically,
these oracle generation approaches observe some artifact of the
SUT, such as code comments or software executions, and infer
oracles from these artifacts. Then, mutation analysis is used
to assess the quality of the inferred oracles by measuring their
ability to detect artificial faults (mutants). Moreover, mutation
analysis has also been used to guide the oracle inference
process by trying to maximize the mutation score [18], [36],
[38] or by prioritizing the mutants used in the analysis [19],
leading to more efficient processes and more precise oracles.

More recently, oracle deficiencies have also been utilized
as part of oracle inference processes. In particular, the OASIs

tool has been used as a core component in a technique
that implements an evolutionary approach that tries to infer
assertions minimizing the number of false positives and false
negatives [44]. Though effective, computing oracle deficien-
cies using dynamic analysis, as in the case of OASIs, is
computationally expensive [44].

Our state field coverage metric may also be used to evaluate
the quality of automatically generated oracles, as well as to
guide oracle inference processes by optimizing the state field
coverage. In fact, as it is possible to compute our metric
statically, it is expected to be more efficient than the existing
metrics, and thus more suitable for guiding the oracle inference
process. We plan to explore this application in future work.

III. THE STATE FIELD COVERAGE METRIC

In this section, we formally introduce state field coverage,
our proposed metric to assess oracle quality. This metric is
based on the idea of analyzing to what extent a given oracle
predicates over the state of the software under analysis. The
intuition here is rather straightforward: the more an oracle
examines the software state, the better the oracle is. Instead
of assessing state field coverage in a dynamic fashion, our
approach concentrates on how the state is statically defined.
Indeed, from the state definition of the software under analysis,
e.g., in an object oriented setting, the definitions of fields in
the classes that compose the software, we build a graph-like
summary that we call the type graph, and statically analyze the
proportion of the type graph that is involved in the oracle, i.e.,
the direct and indirect fields present in the oracle expressions.
Below we formally define these concepts, and show how our
metric is computed.

Let us first assume that the software under analysis is
organized as a collection (', ..., C, of classes, where C is a
distinguished root class. Each class C; defines a set of fields,
whose types are among C',...,C,, and primitive datatypes.
From a given class C, we can compute the set F, of reachable
fields, which includes all the fields in C' plus all the reachable
fields of the classes C; for which there is a field in C of
type C;. A field f € F, is iterable if its type is a collection
(e.g., arrays, sets, etc), and non-iterable otherwise. Moreover,
recursive fields (fields from a class to itself), and other fields
present in classes that contain at least one recursive field (e.g,
value fields in nodes), are also considered iterable, as they
enable iteration over objects of linked structures. The set of
iterable fields is denoted by I..

A. Type Graph

A type graph, introduced in [35], is an abstract represen-
tation of a class that captures the relationships between the
types of all the reachable fields of a software under analysis.

Definition 1: Given a class C, its type graph G is defined as
the structure (V,, E.), where V¢ is a set of nodes representing
types (C' and all the types of the fields reachable from C'), and
E. is the set of edges representing the reachable fields, i.e.,
for each field f of type T in a class Cj;, there is an arc in



public class LinkedList<E> extends
AbstractSequentiallist<E> implements ... {
int size = 0;
Node<E> first, last;
private static class Node<E> {
E item;
Node<E> next, prev;

Fig. 1: LinkedList class from the java.util package.

next, prev

i item
first, last

size ‘Iiil'

Fig. 2: Type graph of the LinkedList class.

the graph going from the node representing C; to the node
representing 7.

As an example, consider the LinkedList class from
the java.util package shown in Figure 1. The class declares
three fields: first and last of type Node, and size of
type int. Additionally, the inner class Node also declares
three fields: next and prev of type Node, and item of
the generic type E. Figure 2 shows the type graph for the
LinkedList class. This graph contains four nodes, one per
each reachable type (LinkedList, Node, int and E). Then,
for each of the mentioned fields, there is an arc connecting the
nodes representing the corresponding types. For this example,
fields first, last and size are non-iterable, while next,
prev and item are iterable, since the first two are recursive,
and the last belongs to a class with a recursive field. Notice
that these fields are considered iterable as they allow one to
iterate over the nodes and values of a linked list. In fact, at run
time, they can be considered to lead to the definition of sets of
elements of type Node and E, respectively, e.g., all the nodes
reachable through next (resp. prev) from a given node, or
all items obtained from the nodes through field item.

B. State Field Coverage

To provide a formal definition of the state field metric, we
define the concepts of coverable and covered labels, i.e., the
set of target labels that an oracle may cover, and the subset of
these that the oracle actually covers, respectively.

Definition 2: Let C be the target class and G.. its type graph.
We define the set L. of coverable labels as E.U S, where E,
is the set of edges (fields) in the type graph G. and S is the
set of special labels, defined as S = {f+ | f € I.}, computed
from the set I, of iterable fields.

Basically, the set of coverable labels L. includes a label
f for each field f € F,., and a special label f+ for

public boolean isEmpty () {
return size == 0;

}

(a) Method checking if the list is empty.

public boolean checkSize () {
if (first == null) return size == 0;
Set<Node> visited = new java.util.HashSet<>();
visited.add (first);
Node<E> current = first;
while (current != null && visited.add(current)) {
current = current.next;
}

return visited.size () == size;

(b) Method checking consistency between the list size and the
number of nodes in the list.

Fig. 3: Two methods over the LinkedList class with
different state field coverage.

each iterable field f € I.. For the LinkedList exam-
ple, the set of coverable labels will contain the field labels
{first,last, size, next, prev,item}, and the special labels
{next+,prev+,item+} corresponding to the iterable fields
next, prev and item.

Definition 3: Let p be a program taking as input an object
of class C. We say that a label [ € L., corresponding to
field f, is covered by p, if p accesses field f. A label [+ €
L., corresponding to an iterable field f, is covered by p if
p iterates over the elements obtained through f. The covered
labels associated with p is the set of all labels covered by p.

In the above definition, the covered labels are defined for an
arbitrary program p. For the context of this paper, the program
p will always represent an oracle, e.g., the statements that are
called, directly or indirectly, within oracle assertions. Given
an oracle assertion, its state field coverage is the proportion
of coverable labels that are actually covered by the oracle.

Definition 4: Let ¢ be an oracle defined for class C, i.e.,
¢: C — Bool. The state field coverage SFCy of ¢ is defined
as the proportion of coverable labels L. that are covered by

o, i.e., L

¢
SFCy = 1 (1)
For example, consider the two methods in Figure 3 defined
over LinkedList, and assume that these are called within
respective test assertions. The first method checks if the list
is empty, accessing only the size field. Therefore, it only
covers the label size out of 9 coverable labels, which leads
to a state field coverage of 11.1%. The second method, on
the other hand, checks that the size of the list is consistent
with the number of nodes in the list, by accessing the size,
first and next fields, and also iterating over the next
field. Thus, it covers 4 labels (size, first, next and next+),

achieving an object state coverage of 44.4%.

Although state field coverage is defined for oracles predi-
cating over a single class, it can be easily extended to oracles




predicating over multiple classes. In such cases, the coverable
labels L. will be the union of the coverable labels for each
class, and the labels Ly covered by an oracle ¢ will be the
union of the covered labels in each class.

C. Implementation

To measure the state field coverage of an oracle, we im-
plement a static analysis approach. Our implementation is for
Java. The process takes as input a target class C' and the source
code of an oracle ¢., and computes the oracle’s state field
coverage according to Definition 4.

Type Graph Generation: Given a (root) Java class C, we
generate the type graph G. = (V, E..) by first initializing the
set of nodes V. with a node for C, the target class, and then
recursively adding edges and nodes for the reachable fields
and classes, respectively. In our implementation, this process
is performed in a depth-first fashion, and the type graph is
built using the jgrapht [3] library.

Coverable labels: The set L. of coverable labels is straight-
forwardly computed from the type graph G.. Besides each
edge in the graph being a label in L., we consider labels for
iterable fields, based on the following two cases:

o For every edge e = 11,7, such that T, is a class that
implements the Tterable interface, or is an array type,
e is deemed iterable, and we add label /.4 to L.,

o For every edge e = T3, T, such that 7T} participates in a
loop path (a non-empty graph path starting and ending in
the same node) within GG, e is deemed iterable, and we
add label [.+ to L..

Covered labels: The labels Ly that are covered by an
oracle ¢. are obtained by parsing the source code of ¢,
and identifying the fields accessed by the oracle, i.e., from
expressions or methods called within (test) assertions. More
precisely, the following two cases are considered:

e a label [ € L. is considered covered if there exists a
statement reachable from ¢.’s source code that accesses
the field corresponding to [,

o a special label [+ € L. is considered covered if there
exists a statement in a loop body (e.g., the body of a
for or while statement) reachable from ¢.’s source,
that accesses the field corresponding to [+.

Oracle source code parsing and analysis is implemented using
the JavaParser [2] library. Our current implementation is
specific to Java, as it relies on the Java syntax and type
system. Since our coverage approach assesses how thoroughly
the oracles evaluate the SUT’s state definition, its imple-
mentation needs to take into account the mechanisms that
the programming language provides for data representation.
Most programming languages provide means to define custom
datatypes, and these lead straightforwardly to notions of type
graphs, similar to what we have described above for Java.
Although our implementation computes our coverage metric
for Java, adapting the process to other programming languages
and datatype definition mechanisms is relatively direct.

Class #Properties  #Rep. Invariants
SinglyLinkedList 3 7
SortedList 4 15
DoublyLinkedList 3 7
BinaryTree 3 7
SearchTree 4 15
RedBlackTree 5 31
HeapArray 4 15
BinomialHeap 5 31
DisjSet 4 15
FibonacciHeap 7 127
DAG 2 3
Total 44 273
(a) Representation Invariants.
Project #Classes #Tests  #Assertions
Chart 29 6,557 27,301
Cli 6 1,008 1,347
Closure 47 25,150 27,317
Codec 3 2,219 5,396
Collections 6 8,160 9,764
Compress 11 2,548 5,834
Csv 13 840 2,748
Gson 3 3,097 5,842
JacksonCore 33 1,738 10,181
JacksonDatabind 23 6,439 21,756
JacksonXml 6 494 1,796
Jsoup 7 2,056 6,287
JxPath 9 1,152 2,052
Lang 3 6,737 38,774
Math 6 13,010 25,544
Mockito 4 4,064 5,364
Time 6 11,998 51,724
Total 215 97,267 249,027

(b) Test Assertions

Fig. 4: Distribution of the target representation invariants from
Korat (a) and the target test assertions from the 51 project
versions of the Defects4] benchmark (b) used in the evaluation.

IV. EVALUATION

Our evaluation of state field coverage is organized around
the following research questions:

RQ1 Is state field coverage correlated with fault detection?

RQ2 Can state field coverage be used for oracle improvement?

RQ3 Can oracle improvement based on state field coverage
help real bug detection?

RQ4 How efficiently can state field coverage be computed?

RQ1 analyzes the correlation between state field coverage and
the ability of the oracles to detect faults, measured as the
detection of mutants. RQ2 focuses on evaluating how the state
field coverage metric can be used to guide the improvement
of oracles; we analyze how the ability of test suites to detect
artificial faults varies as tests with increasingly larger state field
coverage are incorporated, comparing it with fault detection
when such tests are randomly added. RQ3 evaluates the impact
of state field coverage in detecting real faults, through an
experiment similar to the one used for RQ2, but on real
regression faults. Finally, RQ4 evaluates the efficiency with
which the state field coverage metric can be computed.



A. Evaluation Subjects

In our evaluation, we use two types of oracles: representa-
tion invariants and test assertions. The representation invari-
ants are taken from the Korat distribution [12], which provides
11 Java classes implementing data structures (e.g., linked lists,
trees, and graphs) along with their invariants. These invariants
check properties ranging from basic (e.g., no non-null values)
to complex (e.g., cyclicity/acyclicity). Invariants are typically
the conjunction of various properties that can be checked
independently. We thus decompose each invariant into its
corresponding individual properties, and consider subsets of
the invariant as alternative (weaker) invariants of the same
class. This yields a total of 273 distinct oracles for the Korat
classes. Figure 4a summarizes the invariants used, including
property counts and target invariants per class.

The test assertions in our evaluation are taken from the
Defects4] benchmark [26] (version 2.0.1), providing us with
developer-written test assertions for real-world projects. Due
to the computational cost of mutation analysis, we restrict our
evaluation to test assertions from the fixed versions of the three
most recent bugs in each of the 17 Defects4] projects, leading
to a total of 51 versions. For each version, we consider the
modified classes (and their dependencies) as target classes, and
all corresponding test assertions as target oracles. Figure 4b
summarizes the distribution of test assertions, showing, per
project, the sum (across the three versions) of target classes,
tests, and individual assertions.

To evaluate the correlation between state field coverage and
fault detection (RQ1), we use 273 representation invariants
from Korat and 17 project versions (one per project) from
Defects4], comprising 83,032 test assertions. The latter subset
consists of the latest version of each project, ensuring a
representative sample while reducing mutation analysis com-
putational costs compared to analyzing all 51 versions.

For RQ2, RQ3, and RQ4, we focus on test assertions,
as they better reflect real-world oracles. Since RQ2 involves
mutation analysis, we reuse the same 17-project subset from
RQI1. For RQ3 and RQ4, we analyze all 51 project versions
to study the relationship between state field coverage and
real faults, as well as the efficiency of our implementation
to compute our metric.

B. Experimental Setup

In this section we describe how we compute the metrics
involved in our experiments.

State Field Coverage: We compute state field coverage us-
ing the static analysis implementation from Section III-C. For
representation invariants, the type graph is derived from the
target class (the class the invariant corresponds to). State field
coverage is computed per invariant, based on its corresponding
source code. For test assertions, the type graph is computed
from classes modified in the bug-fixed version (as provided by
Defects4] [1]). This choice has some advantages: Defects4]
mutation analysis generates mutants for these classes, facil-
itating our evaluation and reducing the computational cost,
compared to considering all classes of the corresponding

projects. Additionally, it provides us with an unbiased criterion
to select the target classes. State field coverage is computed per
test, aggregating all assertions in the test. For each assertion,
we inspect its code and compute covered labels, both those
directly accessed and those accessed via invoked methods.

Our current implementation does not track field accesses
that indirectly influence assertion parameters (e.g., via earlier
statements or method calls). Detecting such cases would
require more complex information flow analysis, which we
leave for future work.

Mutation Analysis: To assess fault detection in RQI and
RQ2, we employ mutation analysis as follows. For the repre-
sentation invariant oracles (Korat subjects), mutants are gen-
erated using PIT [14] over each of the classes, excluding the
invariants themselves (invariants are the oracles, not the SUT,
and thus are not mutated). We obtained 26 mutants per class,
on average. Each mutant is evaluated using a Randoop [40]
generated test suite (up to 100 tests per class), with each test
invoking the target invariant as test oracle. We favored the
use of Randoop over EvoSuite [17] because of two reasons:
EvoSuite’s test generation is guided by mutation (among other
metrics), and thus introduces a bias in the generated tests in
relation to mutation analysis; also, EvoSuite aims to minimize
the number of generated tests, resulting in too small test suite
samples for our experiments.

For the test assertions from Defects4] projects, mutants
are generated using Major [28] (on average, ~1,593 mutants
per project), taking advantage of the framework’s support
for mutation analysis. Mutation scores are computed per-test
using the test suites available with the projects (on average,
~1,572 tests per project). Mutation score is computed as the
percentage of mutants killed by the oracles, excluding trivial
mutants triggering runtime exceptions before oracle execution.

Checked Coverage: Since the checked coverage metric
targets test assertions, we compute it for the Defects4] test
assertions analyzed in RQ2. We were unable to use the original
implementation [43] due to Java version incompatibilities
between the slicer used and Defects4]. Instead, we rely on a re-
implementation from [29], which is based on Slicer4] [4]. As
discussed in the results, computation failed for some projects
due to implementation errors.

Workstation: All the experiments described in this paper
were run on a workstation with a Xeon Gold 6154 CPU
(3GHz), 128 GB of RAM, running Debian GNU/Linux 12.

C. Correlation with Fault Detection (RQI)

We first analyze state field coverage and mutation scores
for both representation invariants and test assertions. Figure 5
shows the results of these metrics for each oracle type,
including checked coverage for test assertions. Notice that this
figure shows the overall distribution of the values obtained
for each metric considering all projects and whole test suites.
As mentioned earlier, for this RQ, we evaluate a subset of
17 project versions containing 83,032 test assertions; reported
values on test assertions correspond to this subset.
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Fig. 5: Distribution of the obtained State Field Coverage and
Mutation Score for each type of oracle, including Checked
Coverage for test assertions.

For the 273 representation invariants analyzed, state field
coverage ranges from 11.7% to 100% (avg. 70.3%), while
mutation scores range from 9% to 100% (avg. 50.2%). The
high state field coverage is expected for invariants, since these
assertions explicitly check object properties, requiring access
to most state fields. Indeed, 50% of the invariants achieve over
75% state field coverage.

The 83,032 test assertions show state field coverage rang-
ing from 0% to 64.5% (avg. 14.3%), significantly lower
than invariants, as assertions typically verify method outputs
corresponding to specific test inputs, rather than thoroughly
inspecting object state. Over 75% of assertions fall below
22% state field coverage. Mutation scores range from 2.5% to
92.8% (avg. 34.1%), while checked coverage spans 0%—68%
(avg. 27.8%).

To assess how state field coverage correlates with fault
detection, we examine how increasing oracle quantity affects
both state field coverage and mutation score. For represen-
tation invariants, we track these metrics as invariants grow
more complex (checking additional properties). For test asser-
tions, we evaluate them as test suites expand (adding more
tests/assertions).

1) Correlation for Representation Invariants: Figure 6
shows how average state field coverage and mutation score
increase with the number of properties checked by represen-
tation invariants. That is, we group invariants by the number
of properties they check, and compute the average state field
coverage and mutation score for each group. Both metrics
exhibit similar growth trends as invariants become more com-
plex. We quantify this relationship using Pearson correlation,
which measures linear dependence between variables (ranges
from -1 to 1, with values greater than zero indicating positive
correlation). For our dataset, we find a coefficient of 0.54, indi-
cating a high positive correlation between state field coverage
and mutant detection.

2) Correlation for Test Assertions: Figure 7 presents the
relationship between test suite size (percentage of selected
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Fig. 6: State Field Coverage and Mutation Score as the
number of properties in representation invariants increases.
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Fig. 7: State Field Coverage and Mutation Score for increased
percentages of selected tests and assertions.

tests/assertions) and both state field coverage and mutation
score. For each project version, we randomly select increasing
percentages of tests, and compute the state field coverage and
mutation score for the selected tests. Results are averaged
across all 17 project versions. To account for selection random-
ness, each data point represents the average of 100 runs. While
we analyzed state field coverage across all 17 project versions,
Collections—28 (version id 28 of the Collections project)
was excluded from mutation analysis due to a Defects4]
framework error that prevented score computation.

The state field coverage exhibits slower but consistent
growth compared to the mutation score, as test suites grow.
While their growth rates differ more markedly than with
representation invariants, both metrics increase with additional
tests. Calculating the Pearson correlation coefficient (excluding
projects with 0% state field coverage) yields ~0.45, confirming
a moderate positive correlation.

For a more detailed analysis, Figure 8 shows per-project
correlations between average state field coverage (x-axis)
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and average mutation score (y-axis) across test suite sizes.
We excluded six projects (C11i-40, Codec-18, Gson-16,
JacksonXml-6, Lang—4, and Mockito-22) where target
classes were stateless (resulting in 0% state field coverage). As
discussed in Section V, stateless classes lead to type graphs
with no edges to cover, and thus low state field coverage does
not necessarily reflect assertion limitations.

The data shows a strong positive correlation between state
field coverage and mutation score, as evidenced by the con-
sistent trend where increased state field coverage improves
fault detection. This relationship is particularly robust, with
Pearson coefficients exceeding 0.96 for most projects. The
sole exception is JxPath-22, where maximum coverage
plateaus at 2.78% due to tests overall covering a small number
of labels. In this case, additional tests cannot significantly
improve state field coverage, allowing mutation scores to
increase independently. These results demonstrate that state
field coverage effectively predicts oracle quality for both rep-
resentation invariants and test assertions, showing consistent
correlation with the established mutation score metric.

D. Oracle Improvement (RQ2)

To assess how state field coverage can guide oracle im-
provement, we conduct an experiment using test assertions.
We simulate extending an initial single-test suite by incre-
mentally adding tests whose oracles maximize uncovered state
field labels, comparing the resulting mutation score against
that of random test selection (averaged over 10 iterations to
account for randomness). Since this experiment also involves
mutation analysis, we use the same 17 project versions from
RQI1. When possible, we simulate oracle guided test suite
extension based on checked coverage, reporting the results for
cases where this metric was successfully computed (projects
Csv-16, Jsoup—-93, and Time-13 out of all the projects
in this experiment). Note that Collections—-28 had to be
excluded due to a Defects4] error, and other six projects are
disregarded due to the corresponding modified classes being
stateless. Additionally, we incorporate as a reference a test

suite extension strategy based on optimizing statement cover-
age. Notice that this strategy chooses as new tests to extend
the suite those that maximize covering previously uncovered
statements, without considering whether these newly covered
statements are called from oracles or not. Thus, it is not an
oracle guided strategy, but serves as a reference with traditional
test prioritization strategies.

Figure 9 shows the experimental results across all projects,
plotting mutation score (y-axis) against number of selected
tests (x-axis). The graph compares four test selection strate-
gies: state field coverage maximization (blue line), random
selection (green line), checked coverage maximization (orange
line, where available), and statement coverage maximization
(red line). We analyze each strategy’s effectiveness below.

1) Statement Coverage-based Selection: Increasingly se-
lecting tests that maximize statement coverage leads to higher
mutation scores compared to the other strategies in most of
the project versions. This is expected, as improving statement
reachability improves mutant detection, and this approach does
not focus on the oracles, but on the statements covered by the
unit tests as a whole. The purpose of including this strategy is
to provide a reference point for comparison, as is not directly
related to oracle quality. As we discuss below, state field
coverage-based selection is in general superior to the random
and checked coverage-based selection approaches.

2) State Field Coverage-based Selection: Several project
versions demonstrate significantly higher mutation scores
when extending test suites via state field coverage maxi-
mization versus random selection. In Chart-1, Math-2,
Compress-47, and JacksonCore-26, this strategy de-
tects up to 20% more faults initially. The mutation score
improvement remains substantial even at scale, e.g., for
Chart-1, Compress—47, and JacksonCore—-26 with
300 tests, and for Math-2 with 2,000 tests.

Figure 10 illustrates a representative test from Math-2 that
was prioritized by our state field coverage heuristic. This single
test achieves a 9.7% mutation score (30% of the suite’s total
31.08%) while covering 50% of target class labels with just
four assertions. Similar patterns emerge in other projects: in
Chart-1, the first test yields ~3% mutation score, increasing
to ~10% with 10 tests and ~20% with 100 tests, nearing
the maximum ~30%. For Compress—47, the first ten tests
achieve ~16.3% mutation score, a notable efficiency given the
suite’s 800+ tests and maximum ~34.8% score.

In several project versions (JxPath-22,
JacksonDatabind-112, Time-13, Csv-16, and
Jsoup—93), our state field coverage strategy yields mutation
scores comparable to random selection. These projects
generally exhibit low state field coverage (e.g., below
25% for JxPath-22 and JacksonDatabind-112),
suggesting that our metric provides limited benefit when
state field coverage is low. However, for projects like
JacksonDatabind-112 and Csv-16, our strategy
achieves better initial mutation scores. The Closure-176
project is unique in showing significantly worse performance
with our strategy compared to random selection. This aligns
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@Test

public void testMoments () {
final double tol = le-9;
HypergeometricDistribution dist;

dist = new HypergeometricDistribution (1500, 40,
100) ;
Assert.assertEquals (dist.getNumericalMean (), 40d =x
100d / 1500d, tol);
Assert.assertEquals (dist.getNumericalVariance (), (
100d * 40d % (1500d - 100d) = (1500d - 40d) ) /
( (1500d = 1500d = 1499d) ), tol);

dist = new HypergeometricDistribution (3000, 55,
200) ;
Assert.assertEquals (dist.getNumericalMean (), 55d =
200d / 3000d, tol);
Assert.assertEquals (dist.getNumericalVariance (), (
200d = 55d * (3000d - 200d) * (3000d - 55d) ) /
( (3000d % 3000d %= 2999d) ), tol);

Fig. 10: Test from Math-2 with a 50% state field coverage
and 9.7% mutation score.

with its very low state field coverage (~25%), among the
poorest of all projects.

These results demonstrate that state field coverage can
effectively guide oracle improvement, particularly when high
state field coverage is achievable. Furthermore, our metric’s
ability to identify uncovered state portions directly supports
targeted assertion generation for improved fault detection.

3) Checked Coverage-based Selection: Figure 9 includes
checked-coverage based selection results for Time-13,
Csv-16, and Jsoup-93, the only projects where both
checked coverage and state field coverage could be computed.
The analysis shows that for Csv—-16 and Jsoup—93, checked
coverage yields comparable mutation scores to state field

coverage in early test selection phases, while Time—13 shows
inferior performance for checked coverage compared to the
other strategies. While state field coverage generally outper-
forms checked coverage in our experiments, more extensive
studies are required to validate this observed trend, and better
characterize the relationship between these metrics.

Finally, we analyze whether the effect of state field coverage
based selection is due to indirectly improving code coverage,
or not. We build test suites where all tests have very similar
statement coverage, selecting the maximum subset of tests
where the difference in statement coverage among any two
tests is at most 10%. Then, we perform state field coverage-
based and random selections from these subsets. To compare
these strategies, we compute the progression of the APFD met-
ric [16], which measures a weighted average of the percentage
of faults detected, for increasingly larger subsets (10%, 20%,
and so on), of the suite with similar statement coverage. The
results of this experiment are shown in Table L.

Notably, for smaller percentages of selected tests (10% to
40%), state field coverage selection considerably outperforms
random selection in most of the project versions, obtaining a
higher APFD in at least 8 out of 10 project versions. This
indicates that, for the same level of code coverage, selecting
tests that improve oracles according to state field coverage
leads to better fault detection than selecting tests randomly.
As the percentage of selected tests increases, the advantage
of state field coverage-based selection diminishes, but still
outperforms random selection in most projects. These results
show that our metric provides benefits beyond code coverage,
and can guide test selection for improved fault detection.

It is worth remarking that, in some cases, the APFD pro-
gression for greater suite subsets can decrease. For instance,
in Chart-1, the APFD progression for state field coverage



TABLE I: Weighted Average of the Percentage of Faults Detected (APFD) by the State Field Coverage-based Selection (SFC)
and Random Selection (Random). For each target project, we report the APFD values achieved by each strategy considering
a percentage of selected tests. Green SFC cells indicate that SFC outperforms random selection, red cells otherwise.

APFD by Test suite percentages

Subject Technique
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
Chart-1 SFC 6775 | 6858 | 76.95 | 7979 | 833 | 37.46 | 46.25 | 52.96 | 57.8 | 61.26
Random 8198 | 6737 | 7249 | 78.88 | 8255 | 83.73 | 83.16 | 44.72 | 5025 | 55.09
Closure-176 SFC 6536 | 7555 | 79.31 | 81.81 | 83.47 | 78.45 | 7891 | 79.96 | 81.14 | 80.92
Random 6382 | 762 | 81.06 | 81.74 | 84.02 | 84.43 | 8549 | 85.04 | 85.25 | 86.08
Compress-47 SFC 62.16 | 60.71 | 6341 | 67.53 | 67.69 | 70.43 | 74.91 | 7593 | 77.48 | 7827
Random 3125 | 40.86 | 57.73 | 60.34 | 51.54 | 54.18 | 54.51 | 5422 | 58.35 | 5775
Csv-16 SFC 7484 | 77.61 | 73.82 | 73.57 | 66.76 | 68.59 | 71.83 | 725 | 73.76 | 75.11
Random 5279 | 659 | 7151 | 7239 | 75.07 | 75.1 | 76.11 | 76.33 | 7621 | 77.48
JacksonCore-26 SFC 647 | 76.88 | 77.13 | 743 | 74.61 | 77.09 | 77.04 | 77.97 | 79.89 | 79.74
Random 5275 | 61.03 | 6247 | 65.74 | 67.07 | 6535 | 66.46 | 67.44 | 70.24 | 71.84
JacksonDatabind-112 SFC 98.74 | 947 | 9646 | 66.67 | 70.45 | 7537 | 73.66 | 76.94 | 74.61 | 77.16
Random  67.7 | 60.6 | 6141 | 56.82 | 58.07 | 60.6 | 57.28 | 62.66 | 64.74 | 68.29
Jsoup-93 SFC 69.96 | 72.65 | 64.08 | 6324 | 66.97 | 70.06 | 69.55 | 71.84 | 7247 | 73.97
Random 5154 | 5941 | 70.73 | 7096 | 702 | 70.96 | 71.88 | 72.15 | 74.33 | 74.68
IxPath-22 SFC 66.45 | 80.81 | 8344 | 87.07 | 73.54 | 70.6 | 74.86 | 73.83 | 70.13 | 69.01
Random 5653 | 7539 | 7621 | 70.77 | 73.34 | 76.69 | 78.97 | 72.31 | 743 | 76.9
Math-2 SFC 9451 | 97.25 | 98.17 | 8821 | 90.02 | 91.69 | 83.66 | 8571 | 8572 | 87.14
Random  7.01 | 46.06 | 58.63 | 48.69 | 44.11 | 46.69 | 54.31 | 60.02 | 63.27 | 65.45
Time-13 SFC 3842 | 69 | 792 | 7679 | 80.63 | 83.8 | 81.09 | 8341 | 85.28 | 8678
Random  57.03 | 6855 | 77.49 | 8322 | 86.63 | 837 | 86.07 | 7546 | 57.42 | 58.54

Times SFC > Random: 8 | 9 | 8| 8 | 6 | 5 | 4| 7| 6| 6

drops from 83.3 to 37.46, when growing from 50% to 60%.
While this may be counter intuitive, it is indeed possible. This
effect is due to new tests being added, that kill new mutants,
but do so with the latest tests in the selection order, thus
causing the average percentage of faults detected to drop. This
issue is also observed for random selection, where the APFD
drops from 83.14 to 44.72 when moving from 70% to 80%.

E. Real Fault Detection (RQ3)

To evaluate our metric’s impact on real fault detection, we
conduct the following experiment using Defects4] buggy ver-
sions with failing tests. We measure how many test executions
are needed to trigger a bug under two strategies: state field
coverage-based execution, where tests are ordered to maximize
state field coverage growth (as in RQ2), and random execution,
where tests are selected randomly (averaged over 10 runs).
From the initial 51 project versions, 38 (75%) have non-empty
type graphs (enabling state field coverage computation), 27 of
which (71% of 38) yield a positive state field coverage. We
focus our analysis on these 27 versions, since as discussed in
Section V, our metric cannot be computed for stateless classes.

Table II presents the results comparing test selection strate-
gies. For each project and bug id, we show the total tests avail-
able, and the number of tests needed to first trigger the bug
using state field coverage ordering, and random ordering. The
state field coverage ordering outperformed random selection
in 17/27 cases (63%), requiring 34.7x fewer tests on average.
In the remaining 10 cases, random selection performed mod-
estly better (1.8x fewer tests). This demonstrates our metric’s
potential to significantly improve fault detection efficiency by
prioritizing tests more likely to reveal bugs.

TABLE II: Test cases needed to first trigger Defects4] bugs,
when selecting tests based on State Field Coverage, and on
Random selection.

Tests needed to trigger the bug

Project Bug 1D #lests State Field Cov. Random
Chart 1 2,193 4 781.5
Chart 3 2,187 16 1,423.9
Cli 38 317 56 97.8
Closure 174 8,308 1,337 2,081.3
Closure 175 8,410 231 1,098.4
Closure 176 8,432 5,895 4,579.4
Collections 26 2,720 171 1,364.3
Compress 46 829 2 506.9
Compress 47 895 32 461.6
Csv 14 257 97 335
Csv 15 290 212 190
Csv 16 293 88 114.6
JacksonCore 26 585 275 333.7
JacksonCore 25 573 57 285.8
JacksonCore 24 580 109 58.6
JacksonDatabind 111 2,146 621 946.4
JacksonDatabind 112 2,148 2,145 973.5
Jsoup 92 689 317 135.8
Jsoup 93 690 309 377.5
JxPath 21 384 76 144.6
JxPath 22 386 347 168.7
Math 1 4,378 185 1,252.2
Math 2 4,350 3,000 2,463.4
Mockito 1 1,370 49 60.2
Time 1 4,041 2,258 1,696.8
Time 2 4,041 1,031 1,923.2
Time 13 3,916 3,705 2,035.2
Summary ‘Times better: 17 10

Average improvement: 34.7x 1.8x

F. Efficiency (RO4)

Finally, we evaluate the execution time required to (stat-
ically) compute state field coverage, and compare it with
mutation analysis and checked coverage. Our evaluation in-
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volves test assertions from the Defects4] projects. For the 17
projects analyzed, state field coverage computation required an
average of 5,164.0 seconds (~1.4 hours) per project, totaling
82,624.2 seconds (~22 hours) for all 83,032 test assertions
(~6 seconds per test). This contrasts with mutation analysis,
which averaged 72,902.9 seconds (~20 hours) per project and
exceeded 300 hours (~12.5 days) total due to its inherently
dynamic nature. Similarly, checked coverage (measured for the
6 projects for which the checked coverage tool could be run)
averaged 20,327.3 seconds (~5.6 hours) per project, totaling
121,964.1 seconds, with its dynamic slicing process contribut-
ing to the higher computation time. These results demonstrate
that static field coverage provides rapid, practical feedback on
oracle quality, enabling efficient preliminary assessment before
committing to more computationally expensive analyses like
mutation analysis.

V. LIMITATIONS

Our metric requires the target class to be stateful, containing
fields accessed by the class methods. Stateless classes (e.g.,
Cli-40, Codec-18, Gson—16, and Mockito—-22) with
no fields and only static methods yield empty type graphs and
consequently 0% state field coverage. However, this limitation
affects only a minority of cases: 38 of the 51 analyzed project
versions (75%) contained stateful classes with at least one
field, demonstrating our technique’s broad applicability. Also,
our current metric definition considers only the target class’s
fields and their direct and indirect dependencies, but excluding
types returned by methods. Consequently, assertions that only
verify method return values yield 0% state field coverage,
limiting the metric’s ability to assess such oracles. We plan to
extend the metric to include return type fields, which would
both address this limitation and resolve the stateless class
issue, by analyzing returned objects’ state. This enhancement,
part of our future work, would further broaden the metric’s
applicability to more oracle types and target classes.

Another limitation of our approach is the potential infea-
sibility of state fields as test requirements. Unlike mutation
testing, where infeasible requirements (e.g., equivalent mu-
tants) are inherent, state field coverage infeasibility would
correspond to fields that are unreachable from test oracles.
Such infeasibility highlights limitations in the testability of
the system under test (e.g., poorly exposed state), rather than
a flaw in the metric itself. This behavior is analogous to
unreachable code in statement coverage metrics and reflects
useful diagnostic information rather than a weakness.

VI. THREATS TO VALIDITY

A threat to external validity stems from our use of a
Defects4] subset rather than all available projects, limited by
mutation analysis costs. However, we included a representative
variety of 215 target classes. Implementation issues with
checked coverage also constrained our comparison, despite
best efforts to use available implementations.

For internal validity, potential threats include: (/) our static
implementation may conservatively include field access paths
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not executed at runtime, potentially inflating metric values;
(2) the observed correlation between state field coverage and
mutation score might indirectly stem from improved code
coverage; and (3) stochastic variations in our experiments
could inadvertently bias results. To address these threats,
we implemented the following mitigation strategies. For (7),
we developed a dynamic variant of state field coverage and
compared it against our static metric. The two agreed exactly
in 40% of cases and differed by <10% in the remaining
60%, demonstrating strong alignment. For (2), we conducted
controlled experiments by clustering tests with identical state-
ment coverage, then rerunning the state field coverage and
random selection strategies within these clusters. The results
reaffirmed our original correlation findings, isolating the effect
of state field coverage. For (3), we repeated randomized trials
and manually verified outcomes to minimize chance effects.
Summaries of the additional experiments can be found as part
of our replication package.

VII. CONCLUSION AND FUTURE WORK

Testing effectiveness ultimately resorts on oracle quality.
Existing techniques, such as mutation analysis, checked cov-
erage, and oracle deficiency, have advanced oracle assessment
but are computationally costly and often provide indirect, hard-
to-act-on feedback. We introduced state field coverage, a novel
metric for assessing oracle quality based on the premise that
oracles referencing more of the SUT’s state definition are more
effective at detecting faults. Our static approach to compute
this metric addresses a key limitation of dynamic techniques,
by avoiding their computational costs while maintaining strong
correlation with fault detection (as validated through muta-
tion analysis). Unlike existing methods, our metric directly
identifies uncovered state elements, providing developers with
actionable insights for oracle improvement. Future work in-
cludes extending state field coverage to additional oracle forms
(e.g., properties in property-based testing [13]), broadening
the empirical evaluation, and integrating state field coverage
as a fitness signal in evolutionary test generation (e.g., Evo-
Suite [17]) to favor tests whose assertions more thoroughly
predicate on program state.

VIII. DATA AVAILABILITY

Our current state field coverage implementation as well as
the scripts and data required to reproduce our experiments are
publicly available in our replication package [5].
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