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ABSTRACT
Programs that deal with heap-allocated inputs are difficult to an-
alyze with symbolic execution (SE). Lazy Initialization (LI) is an
approach to SE that deals with heap-allocated inputs by starting SE
over a fully symbolic heap, and initializing the inputs’ fields on de-
mand, as the program under analysis accesses them. However, when
the program’s assumed precondition has structural constraints over
the inputs, operationally captured via repOK routines, LI may pro-
duce spurious symbolic structures, making SE traverse infeasible
paths and undermining SE’s performance. repOK can only decide
the feasibility of fully concrete structures, and thus previous work
relied on manually crafted specifications designed to decide the
(in)validity of partially symbolic inputs, to avoid producing spuri-
ous symbolic structures. However, these additional specifications
require significant further effort from the developers.

To deal with this issue, we introduce SymSolve, a test generation
based approach that, given a partially symbolic structure and a re-
pOK, automatically decides if the structure can be extended to a fully
concrete one satisfying repOK. As opposed to previous approaches,
SymSolve does not require additional specifications. It works by
exploring feasible concretizations of partially symbolic structures
in a bounded-exhaustive manner, until it finds a fully concrete struc-
ture satisfying repOK, or it exhausts the search space, deeming the
corresponding partially symbolic structure spurious. SymSolve ex-
ploits sound pruning of the search space, combined with symmetry
breaking (to discard structures isomorphic to previously explored
ones), to efficiently explore very large search spaces.

We incorporate SymSolve into LI in order to decide the feasibility
of partially symbolic inputs, obtaining our LISSA technique. We
experimentally assess LISSA against related techniques over various
case studies, consisting of programs with heap-allocated inputs
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with complex constraints. The results show that LISSA is faster and
scales better than related techniques.
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1 INTRODUCTION
Symbolic execution (SE) [4, 20, 21] is a well known technique
for program analysis that has been successfully applied to soft-
ware verification [15, 18, 22] and automated test input generation
[2, 5, 14, 19, 29], among other applications [12, 16, 23, 26]. SE em-
ploys symbolic inputs instead of concrete ones and systematically
explores feasible (bounded) paths in a target program. To achieve
this, SE constructs a formula for each program path, called the path
condition, holding the constraints on symbolic inputs that concrete
inputs must satisfy to exercise the corresponding path. In this way,
a symbolically executed path can be thought of as representing an
often large set of concrete executions. Constraint solvers [6, 8, 10]
can then determine the feasibility of a path condition, and prune
those paths where the corresponding conditions become infeasi-
ble. Pruning infeasible paths is crucial for the performance and
scalability of SE.

Many programs take as input heap-allocated data, such as in-
stances of user-defined class-based data representations. Dealing
with such structures in a symbolic way is a major challenge, since
constraint solvers cannot directly handle constraints on these struc-
tures that are part of the program’s precondition. There exist many
approaches to tackle this problem [2, 3, 12, 18, 26, 28, 31]. One ap-
proach consists of initializing the heap as empty, and use a harness
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that non-deterministically populates the heap (satisfying program’s
precondition) before symbolically executing the target program.
This approach, however, significantly reduces SE automation, since
the harness has to be manually provided. Moreover, this approach is
“eager” in the sense that heap-allocated data is constructed prior to
the SE of the target program, and in principle without consideration
of what parts of the heap the target program will actually access.

In contrast, the so-called lazy initialization approach [18] ad-
dresses this problem by assuming that SE starts on a fully symbolic
heap, and non-deterministically initializes the heap on demand as
the target program accesses it. This approach favors an assume-
guarantee analysis, but it also comes with its own limitations: when
the assumed program’s precondition contains constraints over the
data representation being manipulated, usually a representation
invariant operationally captured via a repOK routine, then further
effort from the developer is required to effectively execute sym-
bolically the target program. The main issue in this situation is
how to determine if a partially symbolic input structure (incremen-
tally concretized during SE) can be extended to a fully concrete
one satisfying the assumed repOK. Otherwise, we say the partially
symbolic structure is spurious. When not identified properly, spu-
rious symbolic structures make LI waste resources in exploring
spurious paths, which is detrimental for LI’s efficiency. They also
might result in false positives in the analysis of the program.

Some techniques employ the so-called HybridRepOKs [18, 30],
i.e., user-crafted adaptations of given repOKs, to detect spurious par-
tially symbolic structures. Other approaches require the developer
to provide an additional specification, equivalent to the original
repOK, but written in a logical declarative language amenable to
constraint solving [3, 4, 26]. These additional specification efforts
are non-trivial, and reduce the automation of SE.

In this paper, we improve the above-described problems of lazy
initialization via a novel technique to efficiently identify spurious
symbolic structures. Our approach, called SymSolve (inspired by
the test input generator Korat [1]), receives a partially symbolic
structure and decides if this symbolic structure can be extended
into at least one fully concrete structure that satisfies the repOK. In
contrast to previous approaches, SymSolve does not require any ad-
ditional specification to be provided by the user. SymSolve employs
the operational repOK for concrete structures and user-provided
bounds on the maximum size allowed for the structures (often
called scopes, also required by LI). SymSolve explores the search
space of concrete structures that are concretizations of its partially
symbolic input, in a bounded-exhaustive manner. In this process,
SymSolve either finds out a witness showing that the symbolic
structure can be fully concretized into a structure satisfying repOK,
or the structure is deemed spurious.

We also define a symmetry breaking approach for SymSolve, to
efficiently get rid of isomorphic structures throughout SymSolve’s
search process. As shown in our experimental assessment, this
approach contributes significantly to SymSolve’s efficiency and
scalability to larger structures (see Section 4.3).

We implemented SymSolve and incorporated it as a solver for
heap-allocated partially symbolic structures in the LI engine of Sym-
bolic PathFinder (SPF) [21]. We call this SE approach LISSA. LISSA
employs SymSolve to identify spurious structures produced by LI,
and prune the corresponding spurious paths. We experimentally

Figure 1: dfs program and a fragment of its symbolic execu-
tion tree.

assessed LISSA against related techniques in several case studies.
The results show that for many programs dealing with complex
heap-allocated structures LISSA is faster, and scales better than
related techniques.

In summary, the main contributions of our paper are:
• SymSolve, an efficient solver for partially symbolic struc-
tures, that requires only a standard repOK and scopes for the
analysis.

• A symmetry breaking approach for SymSolve that signifi-
cantly contributes to its efficiency and allows it to scale up
to larger scopes.

• A SE approach, LISSA, that employs SymSolve to identify
spurious symbolic structures and prune spurious paths. Com-
pared to previous work, LISSA has lower specification re-
quirements (a standard repOK).

• An experimental assessment showing that, for programs
manipulating heap-allocated inputs with rich structural con-
straints, LISSA performs better than related approaches.

2 BACKGROUND
2.1 Symbolic execution with lazy initialization
In this section, we introduce lazy initialization (LI) [18] by means
of an example. Figure 1 shows the starting fragment of how LI
incrementally concretizes a partially symbolic structure during the
symbolic execution of method dfs, a depth-first search traversal of
a binary tree. LI starts by instantiating the receiver object thiswith
a Node object (N0) with all its fields initialized as symbolic. Symbolic
fields of partially symbolic structures are concretized when they
are first-accessed by dfs. LI considers all the feasible options for
initializing symbolic fields (of reference type): (1) the special value
null; (2) an object of the corresponding type already present in
the structure (allocated in previous lazy initialization steps); (3) a
newly allocated object of the corresponding type with all its fields
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initialized as symbolic. Fields of primitive types are dealt with as in
traditional SE.

The first LI step occurs when the target program checks whether
left != null. As N0.left is symbolic, the execution branches
for each of the aforementioned possibilities: (1) null (branch 1
in Fig. 1); (2) the only existing node at this point, N0 (branch 2);
(3) a new node (N1) with symbolic fields (branch 3). Continuing
with branch 3, as now N0.left != null, the program makes the
recursive call left.dfs. Then, dfs checks whether N1.left !=
null. This time, a LI step originates the four branches in the Figure:
N1.left is initialized to null (branch 4); to the previously created
nodes N0 (5) and N1 (6); and to a new node N2 (7).

As symbolic structures can grow infinitely large, the user needs
to specify a maximum number k of nodes to be created by LI. This
number is referred to as the scope of the analysis. The exploration
continues until all the feasible paths of dfs are executed, using
structures with up to k nodes.

The (partially) symbolic structure that LI maintains, and more
precisely its concrete part, captures the constraints that concrete
structures must satisfy for the program to exercise the correspond-
ing path. For example, to exercise branch 7 of Figure 1, the concrete
structures must satisfy N0.left=N1 and N1.left=N2.

Very often, programs under analysis require preconditions to be
met. Particularly, programs with heap-allocated objects as input
must satisfy the representation invariants of those objects, typically
captured by an operational repOK routine. We say that a partially
symbolic structure S is satisfiable (sat) if there exists at least one
fully concrete structure satisfying the constraints imposed by S for
which the repOK returns true. Otherwise, we call S spurious (or
unsatisfiable). For example, for the depth-first search traversal
of the binary tree, we assume the repOK shown in Figure 2 as the
precondition, which rules out non-tree structures (i.e. containing
cycles or with nodes with more than one parent). With this precon-
dition, branches 2, 5, and 6 (marked with a cross) in Figure 1 are
spurious given that they can’t be concretized into valid trees due
to the existing cycles.

Paths in the symbolic execution tree that lead to a spurious
structure are spurious paths. It is easy to see that the number of
spurious paths can grow exponentially with respect to the scopes,
as is the case in our example. Thus, efficiently identifying spurious
symbolic structures, and pruning their corresponding paths, is
essential to improve the performance of symbolic execution and to
avoid false positives.

Furthermore, spurious structures can generate infinite loops in
the target program, further degrading the performance of the SE.
For example, all the spurious branches depicted on figure 1 lead to
infinite recursions in dfs.

2.2 Representation Invariants as Decision
Procedures

As mentioned before, HybridRepOKs are manual adaptations of
traditional repOKs to support partially symbolic structures [18, 30].
Implementing good HybridRepOKs is not trivial, as they should be
able to identify invalid fields over the concrete parts of the symbolic
structure, and ignore symbolic fields for as long as possible.

Figure 2: A representation invariant for binary trees
1 public boolean isBinaryTree () {

2 Set <Node > visited = new HashSet <Node >();

3 List <Node > worklist = new LinkedList <Node >();

4 visited.add(this);

5 worklist.add(this);

6 while (! worklist.isEmpty ()) {

7 Node node = worklist.remove (0);

8 Node right = node.right;

9 if (right != null) {

10 if (! visited.add(right))

11 return false;

12 worklist.add(right);

13 }

14 Node left = node.left;

15 if (left != null) {

16 if (! visited.add(left))

17 return false;

18 worklist.add(left);

19 }

20 }

21 return true;

22 }

An algorithmic approach to derive a HybridRepOK from the Bi-
naryTree repOK of Figure 2 is to make a HybridRepOK that re-
turns true as soon as symbolic field is accessed. The resulting Hy-
bridRepOK is conservative, as it always returns true for satisfiable
partially symbolic structures, but it accepts many spurious struc-
tures. For example, for the symbolic structure in branch 2 of Figure 1,
it returns true when N0.right is accessed in line 8. For the same
reason, the spurious structures after branches 5 and 6 are incorrectly
classified as satisfiable.

This example illustrates that manual effort is needed to create
HybridRepOKs that are precise in identifying spurious structures.
An additional problem is that the use of HybridRepOK bears con-
siderable risk of introducing specification errors. Ensuring that a
HybridRepOK is sound with respect to the original specification is
a non-trivial problem.

2.3 Korat
Korat is a framework to automatically generate structurally com-
plex test inputs [1]. Given a boolean predicate in an imperative
programming language (repOK), and bounds on the size of the in-
puts, it exhaustively generates all the non-isomorphic inputs within
the bounds for which repOK returns true.

To use Korat, the user needs to provide a Finitization, an
imperative routine that specifies the maximum number of objects
allowed for each class. Korat uses the Finitization to create a
class domains, defining the sequence of objects of the class that
will be employed to generate structures. For instance, assuming a
maximum of 4 Node objects for our binary tree example, the class
domain for Node would be [null,N0, N1,N2,N3] (one can specify
whether to include null in class domains in the Finitization [1]).
Class domains are sorted in Korat, this is why we represent them
with sequences. Thus, specific values from class domains can be
accessed by indexing the sequence: null has index 0, N0 has index
1, and so on.

The user must also provide a field domain for each field in the
Finitization. A field domain defines the set of feasible values
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Figure 3: Two binary trees and their corresponding candidate
vectors

for the field, and is often defined as the union of one or more
class domains (concatenation of corresponding class domains’ se-
quences). Hence, the values of field domains are also sorted in Korat.
In our example, as fields left and right have Node type, we set
[null,N0,N1,N2,N3] as the domain for both fields.

Korat sorts the fields of every object within the bounds (that is,
in each class domain), and assigns each field a unique identifier.
Thus, Korat represents structures as vectors of integers, called
candidate vectors, mapping unique fields identifiers into indices of
the corresponding field domains. Figure 3 shows two binary tree
instances along with their corresponding candidate vectors. For
example, in Figure 3 a), we have that the field N0.left (unique
identifier 0) has value 2, meaning that N0.left references N1 (N1
has index 2 in the field domain). The values for the remaining fields
can be interpreted similarly.

2.3.1 Korat’s state space exploration. Korat explores the state space
of candidate vectors within the specified bounds. Initially, it starts
the exploration from a vector with all its fields set to zero, which
corresponds to the first index in all field domains (usually null for
reference types).

For each candidate vector, Korat runs repOK on the object rep-
resented by the vector, while saving the object’s accessed fields in
a stack (in the order they are accessed by repOK). Korat outputs
all structures for which repOK returns true and discards those for
which repOK is false. For instance, consider the invocation of repOK
in Figure 2 over the binary tree of Figure 3 a). The accessed fields
are [N0.right, N0.left, N1.right, N1.left] before returning
false, leaving the accessed fields stack with [1,0,3,2].

To obtain the next candidate, Korat backtracks on the sequence
of accessed fields. It pops the accessed field of the top of the stack
and increments its value in the candidate vector by 1, to make
the field point to the next feasible object for the field. If the new
value exceeds the limits of the domain, Korat resets the field to
zero and continues with the next field in the stack. Continuing
with our example, from the candidate vector of Figure 3 a) Korat
takes the last accessed field N1.left (with unique identifier 2),
and increments its value by 1. This gives to N1.left the value N2
, producing the next candidate shown in Figure 3 b). Notice that
this step prunes from the search all the candidate vectors with the

form [2,0,2,0,_,_,_,_], where underscores can be filled with
any value from the corresponding field domains (54 candidates).

Korat’s pruning mechanism is sound, as repOK did not access the
last four fields in the vector, it would have returned false irrespective
of the values assigned to those fields. This pruning approach allows
Korat to efficiently explore huge search spaces [1, 27].

Korat continues the search process described above until the
accessed fields stacks becomes empty. At that point, it is guaranteed
that all candidate vectors within the bounds satisfying repOK have
been explored.

2.3.2 Korat’s symmetry breaking approach. Symmetry breaking
avoids the generation of isomorphic structures [17, 24]. Two struc-
tures are isomorphic when they represent the same structure but
have different identifiers assigned to their nodes. For example, if
we assign identifier N3 to the node tagged N2 in Figure 3 b), we
obtain a structure that is isomorphic to the one we started with.
Node identifiers represent the memory addresses of nodes, but in
languages without explicit memory manipulation like Java these do
not add any useful information for program analysis. Thus, consid-
ering a single representative for each set of isomorphic structures
is enough from the analysis point of view. Efficiently choosing only
one representative for isomorphic structures is what symmetry
breaking is about.

To implement symmetry breaking, before increasing the value of
a field, Korat computes the largest value of the corresponding field
domain (according to the field domain ordering) that is present in
the structure. For this, Korat only has to explore the values of fields
in the accessed fields stack. The Korat search algorithm guarantees
that fields that are not in the stack either they are not part of the
structure or its value is not relevant to the structure’s validity. That
is, let 𝑓 𝑑 be the field domain of the field, let𝑚𝑓 be the largest value
from 𝑓 𝑑 present in the accessed fields stack, and let 𝑖 be the current
value of the field being considered. If 𝑖 <=𝑚𝑓 the value of the field
can be incremented by one to obtain a new candidate. Otherwise, it
means that increasing 𝑖 would lead to a candidate that is isomorphic
to the current vector, and thus Korat resets the value of the field to
zero and continues by backtracking on the stack of accessed fields.

3 LISSA
In this section we introduce our symbolic execution approach,
LISSA, implemented as an extension to SPF’s LI engine [21]. LISSA
symbolically executes the program under analysis using lazy ini-
tialization. After each LI step performed by SPF, LISSA encodes the
symbolic structure as a vector, and employs the specialized solver
SymSolve to decide about its satisfiability.

SymSolve explores the search space of possible concretizations
of its partially symbolic input, in a bounded-exhaustive manner.
In this process, SymSolve either finds out a witness showing that
the symbolic structure can be fully concretized into a structure
satisfying repOK, and returns sat, or the structure is deemed spuri-
ous, and returns unsat. In the latter case, the path being explored
is pruned, and the symbolic execution is forced to backtrack to
continue with the next path.

Below we introduce the contributions of this work in more de-
tail. We refer the reader to the literature for more information on
symbolic execution and lazy initialization [4, 18, 21]. Section 3.1
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Figure 4: Partially symbolic structure and the corresponding
candidate vector generated by createVector

explains how LISSA encodes symbolic structures as candidate vec-
tors. Then, Section 3.2 introduces the SymSolve solver for symbolic
structures. Finally, Section 3.3 discusses a novel symmetry breaking
approach for SymSolve, to significantly improve its performance
and scalability.

3.1 Encoding Symbolic Structures as Candidate
Vectors

As mentioned before, SymSolve requires an operational repOK and
bounds on the size of the structures. As Korat, it represents par-
tially symbolic structures as candidate vectors. However, to handle
partially symbolic structures, SymSolve makes the concrete part of
the structures fixed during the search. That is, SymSolve explores
the state space of concrete structures without allowing the search
to change the concrete part of the partially symbolic structure. For
instance, Figure 4 shows a partially symbolic binary tree along
with its vector representation, computed for a scope of 6 Node ob-
jects. Shadowed cells in the vector represent concrete fields of the
structure. Thus, the encoding process takes into account both the
resulting representation vector and the set of concrete fixed indices.

A pseudocode for the encoding algorithm, createVector, is
shown in Figure 5. We now run the algorithm over the symbolic
structure of Figure 4. createVector receives a reference to the
root of the symbolic structure to be encoded and the vector size
(computed from the provided bounds). First, the method creates
the candidate vector with the corresponding size, starting with
all its fields initialized to zero (line 2). It also initializes an empty
integer set to keep track of the concrete indices, which we call
fixedIndices (line 3). The encoding process must assign identi-
fiers to the objects visited during the traversal of the structure,
and given that structures can contain aliasing, it must also keep
track of the identifiers of previously visited objects. Therefore, the
routine builds a map between objects and identifiers, idMap (line 4),
and another map, maxIdMap, to keep track of the largest identifiers
assigned to objects of each class (line 5). The root is assigned iden-
tifier 0 (lines 6-7), and is added to workList to start the traversal
of the structure (lines 8-9).

createVector traverses the structure in breadth-first; the while
loop of lines 10-34 implements the traversal. For each visited object
(current in line 11), the loop at lines 12-33 traverses all its fields (in
the order they appear in candidate vectors). There is no technical

Figure 5: createVector algorithm: conversion of symbolic
structures to candidate vectors

1 (int[], Set <Integer >) createVector(Object root , int size) {

2 vector = new int[size];

3 fixedIndices = new Set <Integer >();

4 idMap = new Map <Object , Integer >();

5 maxIdMap = new Map <Class , Integer >();

6 idMap.put(root , 0);

7 maxIdMap.put(root.getClass (), 0);

8 worklist = new List <Object >();

9 worklist.add(root);

10 while (! worklist.isEmpty ()) {

11 current = worklist.remove (0);

12 for (Field field: current.sortedFields ()) {

13 fieldValue = field.getValue(current);

14 if (fieldValue.isSymbolic ())

15 continue; // already set to zero

16 index = uniqueIndex(field , current.getClass ());

17 fixedIndices.add(index);

18 if (fieldValue == null)

19 continue; // already set to zero

20 if (idMap.contains(fieldValue))

21 // previously visited object

22 vector[index] = idMap.get(fieldValue) + 1;

23 else { // first time visited

24 objectClass = fieldValue.getClass ();

25 id = 0;

26 if (maxIdMap.contains(objectClass))

27 id = maxIdMap.get(objectClass) + 1;

28 idMap.put(fieldValue , id);

29 maxIdMap.put(objectClass , id);

30 vector[index] = id + 1;

31 worklist.add(fieldValue);

32 }

33 }

34 }

35 return (vector , fixedIndices);

36 }

reason for using a breadth-first traversal (our approach would still
be sound under other traversal orders). The value to be stored in
the vector depends on the value of the field, which is stored in
fieldValue in line 13. In the following, we assume that all fields
are of reference type. If a field has a symbolic value, we have to set
vector[index] to 0 in the candidate vector for SymSolve to start
the exploration for the field from the first value of its field domain.
As the vector is already initialized with zeros from the beginning,
the algorithm just continues with the next field (lines 14-15).

If the field is not symbolic, then its unique index in the candidate
vector is retrieved by uniqueIndex at line 16, and added to the set
of fixed indices (line 17). If the field value is null, the algorithm
also proceeds with the next field (lines 18-19), as vector[index]
is already set to 0 (the index of null in field domains). If the field
value is a reference to an object, createVector checks whether
it has been visited before (line 20). For previously visited objects,
the previously assigned identifier is set as the field value in the
vector (line 22). Notice from Figure 4 that the field domain index
for node with identifier Ni is i+1 (since null has index 0). Thus,
we set vector[index] to idMap.get(fieldValue) + 1 in line 22.
The algorithm creates and assigns a new identifier for objects not
yet visited (lines 24-29). For the first object found for a given class,
id is set to 0 (line 25). Afterwards, the new identifier is obtained by
retrieving the largest identifier from maxIdMap and increasing it by
1 (line 26-27). The object is assigned the newly created identifier
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Figure 6: SymSolve’s algorithm
1 boolean SymSolve(int[] initialVector , Set fixedIndices) {

2 vector = initialVector;

3 while (vector != null) {

4 Object structure = buildObject(vector);

5 if (structure.repOK())

6 return true; // SAT!!

7 vector = getNextVector(vector , accessedIndices , fixedIndices);

8 }

9 return false; // UNSAT!!

10 }

11
12 int[] getNextVector(int[] vector , Set accessedIndices , Set

fixedIndices) {

13 while (! accessedIndices.isEmpty ()) {

14 int lastIndex = accessedIndices.pop();

15 if (! fixedIndices.contains(lastIndex)) {

16 FieldDomain fd = getFD(lastIndex);

17 Set u = union(fixedIndices , accessedIndices);

18 if (vector[lastIndex] < fd.size() &&

19 vector[lastIndex] <= maxId(fd, u)) {

20 vector[lastIndex ]++;

21 return vector;

22 }

23 vector[lastIndex] = 0; // Backtrack

24 }

25 }

26 return null;

27 }

(line 28), and maxIdMap is updated to include the new id (line 29).
The field value is set to id + 1 in the vector (line 30, for the same
reason explained above), and the object is added to workList to
continue the breadth-first traversal (line 31).

Continuing with the example of Figure 4, as the field N0.right
points to an object not visited previously, the else statement of line
23 is executed. The largest identifier for a node was 0 (assigned to
the root), thus id = 1 is created. Then, the value of the vector for
N0.right (index 1) is set to id + 1, leaving vector[1] = 2.

The algorithm ends when all the fields of the structure have been
traversed and returns the created candidate vector along with the
set of concrete indices (fixedIndices) (line 35).

3.2 SymSolve: A Satisfiability Solver for
Symbolic Structures

In this section we introduce SymSolve, our satisfiability solver for
symbolic structures. Figure 6 shows a pseudocode of the SymSolve’s
algorithm. SymSolve receives as inputs the encoding of a partially
symbolic structure as a candidate vector (initialVector), and the
set of concrete fields in the structure (fixedIndices), generated
by the createVector algorithm of the previous section.

The concrete fields of the partially symbolic structure will remain
fixed during the search. Intuitively, we want to find out whether the
constraints imposed by the partially symbolic structure, represented
by its concrete fields, are satisfiable. To decide about satisfiability,
SymSolve needs to figure out whether there exists a valuation for
the symbolic fields that makes repOK return true.

SymSolve starts the search from the candidate vector encod-
ing the partially symbolic input structure, initialVector (line 2).
SymSolve iteratively builds candidate vectors until the search space
of (bounded) concrete structures has been exhausted and no new
vector can be created (vector == null in line 3). At this point, no

valid concretization has been found for the partially symbolic input
structure, and SymSolve returns unsat (line 9).

For each explored candidate vector (variable vector in the code)
SymSolve creates the structure represented by the vector (line 4),
and invokes repOK over the structure (line 5), while monitoring the
structure’s accessed fields. As was the case with Korat, and was
explained in Section 2.3, the unique field identifiers representing
the fields are saved in a stack. We assume the accessed fields stack is
saved in global variable accessedIndices after executing repOK.

If repOK returns true, a valid concretization of the partially sym-
bolic input structure has been found, and SymSolve returns sat
(line 6). Otherwise, the search continues by invoking getNextVec-
tor to obtain the next candidate vector (line 7).

getNextVector (line 12) tries to create the next candidate vector
by backtracking on the stack of accessed fields, accessedIndices
(in the while loop of lines 13-25). If there are accessed fields in
the stack, the algorithm pops the index of the last accessed field,
lastIndex (line 14), and tries to increase the value of that field in
the vector, if feasible. As mentioned before, only non-fixed indices
are modified, so if lastIndex is fixed it is ignored (line 15) and
the search continues with the next index in the stack. Notice that
this helps SymSolve to prune large parts of the search space, as
it does not need to try out any other values for fixed fields. For
example, for the vector in Figure 4, repOK returns false and the
stack of accessed field indices is [1,0,3,2]. Then, as 2 is a fixed
index (it is shadowed in the Figure), the algorithm proceeds with
the next field in the stack.

For non-fixed indices, the algorithm needs to determine if it’s fea-
sible to increment the current value of the field with index lastIn-
dex to create a new candidate vector. There are two conditions that
must be satisfied for a new vector to be created. First, the new value
for the field must reference a valid object within the field’s domain
(vector[lastIndex] < fd.size() in line 18). Second, the new
value for the field must not generate an isomorphic input (lines
17 and 19). We leave the explanation of the symmetry breaking
algorithm of SymSolve for the next section.

If the next value for the field is feasible, SymSolve increases the
field value by 1 (line 20) and the newly created candidate vector is
returned (line 21). Otherwise, SymSolve backtracks by setting the
value of the field to 0 (line 23), and it continues with the next field
in the stack. Similarly to Korat, when SymSolve increases a field
value after repOK returns false for the current vector, large parts of
the search space are pruned (containing only invalid structures). An
example of this pruning was shown in Figure 3, Section 2.3. When
the accessedIndices stack becomes empty, no more vectors can
be created from the current vector (line 13). Then, getNextVector
returns null (line 26) and SymSolve’s search finishes.

Continuing further with our example of Figure 4, as the spuri-
ousness of the symbolic structure is caused by the loop in the fixed
field N1.left, SymSolve will exhaust the options for the non-fixed
fields (N1.right, N4.left, N4.right, N5.left, N5.right)
and will never be able to find a concrete structure satisfying repOK,
thus determining the input structure to be unsatisfiable.
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3.3 A Symmetry Breaking Approach for
SymSolve

Let us start by remarking that the symmetry breaking approach
of Korat does not work for symbolic structures. The reason is
that Korat’s exploration maintains the invariant that, for a given
candidate structure, the nodes traversed by the execution of repOK
are the only nodes reachable from the root of the structure. Thus,
Korat only needs to check the accessed fields stack to determine
if a structure is canonical (i.e., it does not break symmetries) or
not (see Section 2.3.2). However, when deciding the satisfiability
of a partially symbolic structure, the nodes referenced by the fixed
fields are also part of the structure, and repOK executions might not
access all of them (it might return false before reaching all of them).
Thus, when assigning a new value to a field, breaking symmetries
only considering repOK’s accessed fields may cause the search to
miss feasible assignments of values to fields.

For instance, the execution of repOK for the vector in Figure 4
returns false and leaves the following stack of accessed fields:
[1,0,3,2]. Notice that field N2.left (with index 4), that points
to N3, was not accessed. At this point, field with index 2 is popped
from the stack and ignored because is fixed, and field N1.right
(with identifier 3) is popped next, leaving the stack of accessed in-
dices with [1,0]. Now the algorithm has to decide whether making
N1.right point to the next node generates an isomorphic input
or not. Looking only at fields in the stack ([1,0]), N2 (index 3)
is the largest node identifier accessed for the field domain. Thus,
following Korat’s symmetry breaking approach, N3 (index 4) is the
largest node identifier that is allowed to be assigned to N1.right.
However, this would make SymSolve miss the valid possibility of
setting N1.right to N4 (index 5, which does not generate an iso-
morphic structure). Missing feasible assignment of values to fields
can lead to SymSolve reporting a symbolic structure as unsatwhen
it is in fact sat, which in turn can make the symbolic execution of
the program under analysis to prune feasible paths and miss faults.

To correctly break symmetries in SymSolve, we have to con-
sider fields in the stack and fixed fields when computing the largest
accessed node identifier for the field domain. Thus, SymSolve com-
putes the union of the set of fixed indices and the stack of ac-
cessed indices, called u (line 17), and then computes the largest
node identifier assigned to the fields in u (maxId(fd, u) at line
19). Then, the symmetry breaking condition allows increasing the
field (vector[lastIndex]) if it’s lesser or equal than maxId(fd,
u) (line 19). This symmetry breaking approach is sound, i.e., it only
prunes isomorphic structures.

In our previous example, N3 (index 4) is the largest node identi-
fier in the union of accessed and fixed fields (maxId(fd, u) = 4),
and therefore the value of N1.right can be incremented until it
receives N4 (index 5) as its value (line 20). Furthermore, the sym-
metry breaking algorithm does not allow N5 (index 6) as a value
for N1.right. This is correct, since the result would be a structure
isomorphic to the one with N1.right = N4.

4 EXPERIMENTAL ASSESSMENT
The goal of our experimental evaluation is to answer the following
research questions:

• RQ1: How does LISSA perform in comparison to existing ap-
proaches in the analysis of programs manipulating complex
heap-allocated structures with rich constraints?

• RQ2: How much does the proposed symmetry breaking
approach for SymSolve contributes to the performance of
LISSA?

4.1 Experimental Setup
Subject Programs. As case studies, we include several widely-

used data structure implementations from the Java standard library
(java.util).We analyze a linked list implementation (LinkedList);
red-black tree based implementations of sets and maps (TreeSet
and TreeMap, respectively); and a map implemented using a hash
table (HashMap). We also include five classes from different projects
of the SF110 benchmark [11], that are clients of the aforemen-
tioned data structure implementations. Template from the tem-
plateit project, which stores data in a LinkedList (of Param-
eter type), indexed by name using a HashMap. TransportStats
from the vuze project, which keeps track of bytes read and writ-
ten in two separate TreeMaps. DictionaryInfo from fixsuite,
which stores data (FieldInfo) indexed by name and by tag using
two different TreeMaps. SQLFilter from squirrel-sql, which de-
fines a HashMap of HashMap’s to store information about database
queries. CombatantStatistic from the twfbplayer project, de-
fines a HashMap of HashMap’s for storing game statistics. Finally,
we include a scheduler implementation, Schedule, from the well
known SIR benchmark [9] (implemented with four linked lists).

The experiments were run in a workstation with a Xeon Gold
6154 CPU (72 virtual cores running at 3GHz), and Debian Linux 11
OS. The assessed approaches only use a single CPU core, and were
executed with Java’s default maximum heap size of 4Gb. We set a
maximum time of 2 hours (7200 seconds) for each individual run.
Executions exceeding this time were interrupted, and we report
them as TO in Table 1.

Techniques. For this assessment, we considered related approaches
that do not require further specification effort beside writing a re-
pOK in the same programming language as the code under anal-
ysis. Thus, we ruled out approaches that require significant addi-
tional effort from the developer, like writing a manually tailored
HybridRepOK, or creating additional declarative specifications. Fol-
lowing this criteria, the approaches included in the evaluation are:

Driver. This is one of the most common approaches to symboli-
cally execute programs taking heap-allocated structures as inputs.
The user must write a “driver” program, that employs methods
from the API and non-deterministic constructs to populate the
heap before symbolic execution the program under analysis. For
completeness, the driver should generate all the valid structures
with up to k nodes (using symbolic values for fields of primitive
type in the structures). Notice that, if methods employed in the dri-
ver are correct, the generated structures satisfy the precondition of
the program by construction (repOK in our experiments). In many
cases, using a constructor and an insertion method suffices for the
driver. For example, a typical driver for TreeSet executes the con-
structor first, and then the add() method a non-deterministically
selected number of times, up to a maximum of k times. Drivers
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Class Method Scope LIHybrid Driver IFrepOK LISSA-NoSB LISSA LISSA-M
time paths (spurious) time paths time paths time (solving) paths time (solving) paths time (solving) paths

Te
m
pl
at
e

addParameter 2 6681 9118883 (9107843) 953 20263680 13 108512 6 (0) 11040 6 (0) 11040 5 (0) 11040
4 TO - TO - 1651 9573824 469 (406) 88480 222 (162) 88480 75 (17) 88480
5 TO - TO - 1697 (1505) 223136 289 (116) 223136
7 TO - 4656 (3314) 1266592

getParameter 2 166 224241 (224081) 45 1258000 1 6112 0 (0) 160 0 (0) 160 0 (0) 160
4 4997 3553521 (3552785) TO - 84 483008 42 (41) 736 1 (0) 736 1 (0) 736
5 TO - 545 2835440 3657 (3655) 1504 7 (5) 1504 3 (1) 1504
6 2898 13967904 TO - 40 (37) 3040 10 (7) 3040
9 TO - 3821 (3786) 24544 573 (542) 24544
11 TO - 5532 (5381) 98272

Tr
an
sp
or
tS
ta
ts

bytesRead 5 4341 7679696 (7679552) 355 80520 8 996 0 (0) 144 0 (0) 144 0 (0) 144
6 TO - 5141 890126 42 2396 2 (1) 232 1 (0) 232 1 (0) 232
8 TO - 1217 13024 210 (209) 360 11 (10) 360 6 (5) 360
9 TO - 5024 (5022) 360 50 (48) 360 24 (23) 360
11 TO - 2549 (2545) 856 1200 (1196) 856
12 TO - 6568 (6565) 856

bytesWritten 5 4359 7679696 (7679552) 354 80520 8 996 1 (1) 144 1 (0) 144 0 (0) 144
6 TO - 5173 890126 41 2396 19 (18) 232 6 (5) 232 3 (2) 232
7 TO - 210 5788 451 (450) 360 35 (33) 360 17 (16) 360
8 1198 13024 TO - 210 (208) 360 109 (107) 360
9 TO - 1174 (1172) 360 596 (594) 360
10 TO - 5389 (5387) 536

SQ
LF

ilt
er get 2 TO - 290 8487944 576 3866129 1 (0) 2001 1 (0) 2001 1 (0) 2001

3 TO - TO - 698 (690) 10033 225 (217) 10033 35 (28) 10033
put 1 TO - 17 336896 8 63105 2 (0) 6337 2 (0) 6337 2 (0) 6337

3 TO - TO - 1034 (805) 446657 456 (232) 446657 247 (26) 446657

D
ic
tio

na
ry
In
fo

addField 4 TO - 340 298485 10 4096 6 (3) 2209 5 (1) 2209 5 (2) 2209
6 TO - 662 129600 6095 (6061) 13225 386 (355) 13225 374 (345) 13225
7 6208 731025 TO - 3186 (3096) 32041 3145 (3054) 32041

getField 5 749 94 (72) 2019 2575096 32 2736 0 (0) 22 0 (0) 22 0 (0) 22
6 2444 190 (144) TO - 352 12240 0 (0) 46 0 (0) 46 0 (0) 46
7 TO - 4144 57285 2 (2) 46 0 (0) 46 0 (0) 46
9 TO - 1181 (1181) 46 5 (5) 46 5 (5) 46
12 TO - 1816 (1816) 94 1707 (1707) 94

Sc
he
du

le

quantumExpire 8 3 604 (561) 6265 4272461 6 4950 617 (617) 43 0 (0) 43 0 (0) 43
26 7105 604 (561) TO - 1581 323379 TO - 252 (251) 43 261 (261) 43
33 TO - 6034 794325 1332 (1331) 43 1423 (1423) 43
44 TO - 6586 (6586) 43 6582 (6582) 43

addProcess 7 0 10 (2) 5601 3784180 3 1650 0 (0) 8 0 (0) 8 0 (0) 8
34 0 10 (2) TO - 6836 369075 0 (0) 8 0 (0) 8 0 (0) 8
50 0 10 (2) TO - 0 (0) 8 0 (0) 8 0 (0) 8

Co
m
ba
ta
nt
St
at
is
tic

addData 1 125 198 (45) 4 366 9 1161 1 (0) 153 0 (0) 153 1 (0) 153
2 2844 1368 (351) 140 7494 TO - 14 (11) 1017 4 (0) 1017 3 (0) 1017
3 TO - 3736 160662 TO - 4195 (4182) 4869 2924 (2913) 4869

ensureTypExists 2 187 80 (0) 43 3512 2647 618104 0 (0) 80 0 (0) 80 0 (0) 80
3 994 176 (0) 1096 76344 TO - 1 (0) 176 1 (0) 176 1 (0) 176
4 4317 368 (0) TO - 3 (0) 368 3 (0) 368 3 (0) 368
8 TO - 910 (793) 6128 131 (4) 6128 129 (0) 6128
12 TO - 4110 (398) 98288 3794 (6) 98288

H
as
hM

ap

put 3 1754 352 (0) 618 97088 72 21616 1 (0) 352 1 (0) 352 1 (0) 352
5 TO - TO - 1908 567088 16 (7) 1504 10 (0) 1504 10 (0) 1504
7 TO - 2495 (2450) 6112 69 (19) 6112 54 (3) 6112
11 TO - 3732 (2645) 98272 1555 (327) 98272
12 TO - 3371 (764) 196576

remove 3 1743 655 (255) 134 97088 14 21616 0 (0) 400 0 (0) 400 0 (0) 400
4 TO - 3324 1907280 83 120752 1 (0) 848 1 (0) 848 1 (0) 848
7 TO - 7198 8578480 1240 (1226) 7120 22 (8) 7120 17 (3) 7120
12 TO - TO - 4870 (4112) 229328 1518 (772) 229328
13 TO - 3639 (1975) 458704

Tr
ee
M
ap

put 5 774 1233793 (1233722) 4 5316 1 152 0 (0) 71 0 (0) 71 0 (0) 71
7 TO - 582 598444 48 855 4 (4) 179 1 (0) 179 1 (0) 179
9 TO - 1697 3517 2237 (2236) 179 17 (16) 179 15 (15) 179
12 TO - TO - 5405 (5403) 427 4140 (4139) 427

remove 4 799 195975 (195888) 0 633 0 64 0 (0) 87 0 (0) 87 0 (0) 87
7 TO - 561 598444 47 855 9 (6) 1106 4 (1) 1106 4 (1) 1106
9 TO - 1692 3517 2368 (2360) 2804 36 (28) 2804 27 (19) 2804
11 TO - TO - 2165 (2133) 8482 1458 (1427) 8482

Tr
ee
Se
t

add 5 777 1233793 (1233722) 4 5316 2 152 0 (0) 71 0 (0) 71 0 (0) 71
7 TO - 586 598444 49 855 5 (4) 179 1 (0) 179 1 (0) 179
9 TO - 1667 3517 2442 (2441) 179 17 (17) 179 16 (16) 179
12 TO - TO - 5258 (5256) 427 5121 (5119) 427

remove 4 813 195975 (195888) 0 633 0 64 0 (0) 87 0 (0) 87 0 (0) 87
7 TO - 569 598444 47 855 8 (5) 1106 4 (1) 1106 4 (1) 1106
9 TO - 1646 3517 2443 (2435) 2804 32 (25) 2804 26 (18) 2804
11 TO - TO - 2193 (2160) 8482 1358 (1327) 8482

Li
nk

ed
Li
st add 12 0 3 (1) 0 13 0 12 995 (995) 2 0 (0) 2 0 (0) 2

50 0 3 (1) 0 51 0 50 TO - 0 (0) 2 0 (0) 2
remove 50 4047 48244 (48097) 2 1326 2 1275 9 (7) 147 7 (6) 147 7 (6) 147

Table 1: Comparison of symbolic execution approaches for programs manipulating complex heap-allocated structures
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employ symbolic values for primitive type parameters, like the
integer parameter of add() in a TreeSet of integers.

LIHybrid. This approach is SPF’s built-in lazy initialization ex-
ploration, augmented with a HybridRepOK that is automatically
derived from a concrete repOK (as explained in Section 2.2).

IFrepOK. This technique consists of symbolically executing re-
pOK using lazy initialization to generate all the bounded heap-
allocated structures with up to k nodes that satisfy repOK, previous
to the symbolic execution of the method under analysis. The ap-
proach can be summarized by the following simplified pseudocode:
if repOK(str) { M(str); }. Similarly toDriver, IFrepOK ends up
exhaustively enumerating all valid bounded structures and running
the code under test with all of them.

LISSA. The symbolic execution approach introduced in Section 3.
LISSA-M. It adds memoization capabilities to LISSA. LISSA-M

starts its execution with an empty cache. Each time it needs to
invoke SymSolve to decide about the satisfiability of a symbolic
structure, the cache is queried to find out if an answer for the
symbolic structure (i.e. sat or unsat) was already computed. If it
was, the stored result is returned and LISSA-M does not need to call
SymSolve, saving time. If it was not, LISSA-M invokes SymSolve
and stores the result in the cache. Notice that we do not share
SymSolve’s cache results across different executions of LISSA.

In theory, for each partially symbolic structure generated by
LISSA, we could also cache the results for the intermediate struc-
tures that are explored by SymSolve. However, this would greatly
increase the memory requirements of the approach (for each par-
tially symbolic structure an exponential number of intermediate
structures are generated in the worst case) and make it prohibitive
in many cases.

LISSA-NoSB. Same as LISSA, but using SymSolve with the sym-
metry breaking approach of Section 3.3 disabled, allowing Sym-
Solve’s search to explore isomorphic candidates.

All the approaches above were either built-in or implemented
by the authors in the (SPF) tool [21].

Metrics. We ran all the approaches in all our case studies for
increasingly large scopes, until a maximum scope of 50 is reached
or a timeout occurs. For each run, we report the runtime of the
approach (time columns in Table 1, displayed in seconds) and the
number of paths generated in its symbolic execution tree (paths
columns in Table 1)

With respect to symbolic paths generated, the fewer the better,
as all techniques only prune infeasible paths, although with differ-
ent degrees of precision. Basically, if a technique produces more
symbolic paths, it either explores redundant paths (due to treating
some data concretely) or infeasible paths, that do not represent any
concrete execution. Time is also highly relevant, as more precise
pruning techniques may not pay off due to their cost; the objective
here is to produce the fewer total paths possible (guaranteeing that
feasible paths are not missed, of course) in the least time possible.
Full symbolic path coverage is in fact a kind of worst case scenario
for symbolic execution, thus being the motivation of our evaluation.

LIHybrid is expected to be bad at identifying spurious struc-
tures and explore a large number of spurious paths (see Section

2.2). Thus, we report the number of spurious paths LIHybrid ex-
plores (spurious, in parentheses, in Table 1). As an oracle for spu-
rious structures, we run SymSolve on the structures at the end of
each path explored by LIHybrid. For LISSA and LISSA-M, we also
measured the time expended in SymSolve’s solving (solving, in
parentheses, in Table 1).

4.2 RQ1: LISSA vs. related approaches
Table 1 summarizes the results of the experiment. Due to space
reasons, we only display selected scopes, always including the
highest scope reached by each approach. The full experimental
results and a replication package can be found online [7].

LISSA vs lazy approaches. LIHybrid is the worst performing ap-
proach. The reason is that it does not identify many spurious struc-
tures and hence a high proportion of the paths it explores are
spurious. This makes LIHybrid explore a much larger number of
paths than the remaining approaches in most cases, when consider-
ing the same scope. This implies that the automatically generated
HybridRepOK precision is low in most cases.

In contrast, SymSolve’s effectiveness in pruning spurious paths
allowed LISSA to perform better and scale up to much higher scopes
than LIHybrid, as can be noticed by the much smaller number of
paths explored by LISSA (for the same scopes). Even if it’s more
costly than executing HybridRepOK, the additional overhead of
employing SymSolve greatly pays off. It is important to remark
that SymSolve is sound and it never prunes valid paths from the
program under analysis.

Finally, LISSA-M shows better performance than LISSA in most
cases, and it scales up to higher scopes for 6 out of 20 methods.

LISSA vs eager approaches. Eager approaches (Driver and IFre-
pOK) enumerate structure’s shapes before symbolic execution of
the code under analysis. First, notice that Driver explores a larger
number of paths than IFrepOK and performs worse in almost all
cases. We believe there are two reasons for this. First, most inser-
tion routines in our case studies carry out complex operations (like
balancing trees), and symbolically executing them is more costly
than symbolically executing repOK. Second, there are often many
ways of employing insertion routines to create exactly the same
structure shape (e.g. inserting the same element once and twice in
a set). This makes Driver invoke the program under analysis with
the same shapes many times, unnecessarily exploring redundant
program paths. Driver scales much worse than LISSA in all cases
but LinkedList (we discuss this case below).

A comparison of LISSA against IFrepOK remains. For the most
complex case studies, that involvemultiple data structures (Schedule,
DictionaryInfo, SQLFilter, TransportStats, Template and Com-
batantStatistic), LISSA is more efficient and scales much better
than IFrepOK, reaching several more scopes. We believe this is
because the more structures involved, the (much) larger number
of structures’ shapes to be enumerated by eager approaches, and
in particular by IFrepOK, and this number eventually becomes
intractable when the scopes grow sufficiently large.

For the most complex data structure implementations (HashMap,
TreeMap, TreeSet), LISSA also performs better than IFrepOK, scal-
ing up a few more scopes. The complexity of the repOKs of these
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structures make symbolically executing them difficult, and this
seems to be hampering IFrepOK’s performance.

For the simplest structure, LinkedList, and its remove method,
LISSA explores an order of magnitude less paths than IFrepOK
and Driver. Still, for scope 50 it takes LISSA 5 seconds to run, but
IFrepOK and Driver run in 2 seconds. LISSA is still very fast for
such a large scope in this case.

LISSA works best in cases where the method under test only
accesses a constant number of nodes in the input structure. For
example, addProcess from Scheduler appends a process at the
end of a linked list. As there is a field referencing the last element
of the list, appending involves setting the next field of the last
element to a newly created node, and updating the last reference.
The same happens with LinkedList’s add method. In such cases,
LISSA’s laziness makes it visit a constant number of paths, no
matter the scope, as opposed to eager approaches that generate all
the structure’s shapes for the scope.

From the results one can observe that LISSA often explores an
order of magnitude fewer paths than eager techniques. However,
SymSolve is a sound pruning technique, so it never prunes valid
paths (that arise from satisfiable partially symbolic structures) in
the symbolic execution of the program under analysis. The reason
for this much fewer number of explored paths is that LISSA is a
lazy approach, and thus it concretizes only the part of the structure
that is accessed by the program under analysis, leaving the rest
symbolic. In a sense, a symbolic path of LISSA (with a partially
symbolic structure) represents many symbolic paths with concrete
structures generated by eager techniques. That is, a symbolic path
of LISSA represents all those symbolic paths generated by eager
techniques with concrete structures that match the concrete part
of the partially symbolic structure. For example, while searching
for a key in a binary search tree LISSA only needs to concretize a
path from the root to a leaf in the input tree, leaving the remaining
fields of the tree symbolic. On the other hand, eager approaches will
create a large number of trees that match the symbolic tree (all the
feasible concretizations of the symbolic fields within the bounds),
and all of these trees would result in the (undesired) exploration of
the same symbolic path of the search method repeatedly.

4.3 RQ2: Impact of SymSolve’s symmetry
breaking

The experimental results show that SymSolve’s symmetry breaking
approach is crucial for the performance and the scalability of LISSA.
LISSA is faster, and reaches significantly higher scopes in all case
studies, compared to LISSA-NoSB. In most cases, LISSA-NoSB is
not able to outperform previous symbolic execution approaches
(such as IFrepOK). For instance, both LISSA-NoSB and IFrepOK
reach the same scope (9) in roughly the same time for TreeSet’s
remove and TreeMap’s put (see Table 1).

4.4 Discussion
The main advantage of symbolic execution is its capacity to collapse
large amounts of concrete paths into significantly fewer symbolic
paths. Lazy initialization extends this benefit to programs that ma-
nipulate dynamic heap-allocated structures, as a partially symbolic
structure often encodes a very large number of concrete structures.

The results in Table 1 show that LISSA is capable of leveraging this
advantage in many cases in practice, since it can explore a signif-
icantly smaller number of paths than related “eager” approaches,
and therefore it can be faster and reach larger scopes.

In the experiments reported in Table 1, we checked that the
programs under analysis do not crash (no exceptions are thrown
during symbolic execution). This kind of properties allow LISSA to
keep partially symbolic structures for the whole exploration, with-
out having to fully concretize them, which translates into the gains
shown in Table 1. Checking postconditions that do not require to
further concretize symbolic structures do not add significant run-
time overhead for LISSA. For example, for case studies TreeMap,
HashMap, LinkedList and Schedule, we checked as postcondition
of their corresponding insertion routines that the inserted element
belongs to the corresponding collection. These analyses had negli-
gible impact compared to the analysis times reported for LISSA in
Table 1. However, other postconditions that would imply further
concretization on partially symbolic structures might result in more
significant overhead, as that would force LISSA to explore more
paths. Studying this problem in greater detail is out of the scope of
this paper and will be investigated in future work.

It is important to remark that, due to the significantly smaller
path space explored and its efficiency in doing so, LISSA should per-
form better than related approaches for test generation of programs
manipulating complex heap-allocated structures. In particular, the
reduction in the amount of paths should be directly translated
into smaller test suites, but the coverage should still be maximized
(as LISSA never prunes feasible paths). This is also an interesting
research direction for future work.

A weakness of the current LISSA implementation is that it main-
tains two separate path conditions: one with the constraints on
dynamically allocated structures in the heap, and another with
constraints on variables of primitive types (this is in fact inherited
from LI). LISSA also employs SymSolve as a solver for partially
symbolic structures, and a different (SMT) solver for numerical con-
straints (Z3, as is often the case for traditional symbolic execution).
There might be cases in practice where both path conditions are
feasible, but they become infeasible when considered as a whole.
Currently, LISSA is not able to detect infeasible paths arising due
to an infeasible combination of both path conditions. In any case,
Table 1 shows that LISSA can be useful in practice as it is more effi-
cient than related approaches in the analysis of the analyzed target
programs, and it can identify a very large number of the infeasible
paths produced by standard lazy initialization (e.g., compare the
number of paths explored by LISSA and LIHybrid). We plan to study
better ways to address the problem of the separation of the path
conditions as part of our future work.

5 RELATEDWORK
Lazy initialization (LI) introduced a novel way of symbolically exe-
cuting programs manipulating heap-allocated inputs, and the idea
of employing user provided HybridRepOK routines to identify spuri-
ous symbolic structures [18]. The technique favorsmodular analysis
using symbolic execution, and has a number of limitations that we
have described earlier in this paper. Among the techniques that
improve LI, BLISS [26] is related to our approach, as it tackles the
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identification of spurious symbolic structures. The approach dif-
fers from ours in various aspects. First, BLISS precomputes bounds
on the feasible values for structure fields, as dictated by the rep-
resentation invariant [12]. Second, it combines the execution of
automatically derived HybridRepOK and SAT solving, for which it
requires a declarative specification of the representation invariant
(in addition to the repOK), in order to identify spurious structures
during LI. This allows BLISS to be faster and scale up to larger
scopes than LI, at the cost of requiring the user to provide an ad-
ditional declarative specification of the representation invariant.
HEX also improves over lazy initialization by introducing a new
specification language to describe properties of symbolic structures
[3]. The specification language allows the user to provide additional
information to aid symbolic execution to perform better. Both [26]
and [3] aim at improving lazy initialization by requiring a signif-
icant amount of extra effort from the user. The learning curve of
declarative languages for programmers has been shown to be steep
[27]. The addition of different types of specifications also bears
considerable risk of introducing errors. Ensuring that specifica-
tions in different languages describe exactly the same properties
is a non-trivial problem. In contrast with both BLISS and HEX,
LISSA improves LI without requiring additional specification effort,
besides a traditional repOK.

Other approaches exist that employ different specification styles
for dealing with complex heap-allocated structures. UDITA [13] is
a specification language that allows one to combine two different
specification styles: (i) generation of structures using operational
constructs and non-determinism, and (ii) filtering of structures that
do not satisfy a given operational property (e.g. a repOK). HyTeK
[25] supports specifications expressed as a combination of declara-
tive and operational predicates (e.g., a repOK). UDITA and HyTeK
are employed for specification-based black-box test case generation
[13, 25], while LISSA can be useful for program verification and
white-box generation. Both UDITA andHyTeK explore a state space
consisting of fully concrete structures (LISSA employs symbolic
execution instead), and require the user to learn specification lan-
guages outside the corresponding programming languages, that
are less popular among programmers.

Other symbolic execution based approaches deal with heap-
allocated structures in different ways. Pex, based on dynamic sym-
bolic execution, asks the user to manually provide a set of factory
methods that create the structures, and makes these participate in
the dynamic symbolic execution, thus implementing “eager” con-
cretization [29]. Seeker builds on Pex and tries to automatically
search for sequences of API method calls to build the heap-allocated
structures, using static and dynamic analysis to guide the genera-
tion [28]. Seeker targets programs in C#, and also performs eager
concretization. SUSHI also deals with the problem of searching for
API method sequences to build heap-allocated structures, and it
works with Java programs [2]. SUSHI builds on JBSE, and requires
specifications of the representation invariants in the HEX declara-
tive language, as opposed to the more traditional operational repOK.
In any case, both Seeker and SUSHI can be employed to solve a
problem that is complementary to symbolic execution (and thus
also to our technique LISSA), namely the problem of producing a
sequence of methods generating specific structures that symbolic
execution needs to cover program paths.

KLEE is an automated test input generator for C programs based
on symbolic execution [5]. KLEE does not implement lazy initial-
ization, but rather starts symbolic execution from an empty, fully
concrete heap. To the best of our knowledge, it is represented by
the Driver approach assessed in our experiments (see Section 4).

A former empirical study compared several constraint solvers
for complex heap-allocated structures with rich constraints [27].
The results showed that Korat was the most efficient one [27]. The
impressive efficiency of Korat in the study was an important factor
in motivating this work.

6 CONCLUSION
Symbolic execution is an important technique with many applica-
tions in software analysis, including test input generation and pro-
gram verification. As many programs need to handle heap-allocated
data, and this is known to be challenging to deal with for approaches
based on symbolic execution, improving the support for such data
is highly relevant for the effectiveness of symbolic execution.

We introduced LISSA, a technique that improves lazy initializa-
tion via an effective approach to detect spurious heap-allocated
symbolic structures (SymSolve). Detecting such structures is im-
portant, as it allows symbolic execution to deem program paths
infeasible, in a way similar to deeming path conditions unsatisfiable.
SymSolve, performs an efficient bounded-exhaustive exploration
over the space of concrete structures to decide if a partially sym-
bolic structure can be fully concretized in a way that satisfies struc-
tural constraints, given as an operational routine (e.g. a repOK). As
opposed to related techniques, LISSA does not require additional
efforts from the developer, such as ad-hoc harnesses for structure
construction, or logical specifications of the structural constraints.

We assessed LISSA on a benchmark of programs manipulating
complex heap-allocated data, including well-known implementa-
tions of data structures, as well as larger “client” programs of such
structures, taken from real-world projects. The results show that
maintaining a symbolic heap (i.e. a heap that is representative of
many concrete ones), as lazy approaches do, helps to significantly
reduce the number of symbolically executed paths that treat the
heap concretely. Moreover, the use of an efficient structural con-
straint solver (as LISSA does with SymSolve) to prune invalid lazy
initializations is critical to achieve more scalability; the time spent
in solving symbolic heaps amortizes the time costs of exploring
many concrete heaps or many spurious paths. Consequently, LISSA
constitutes a convenient mechanism for symbolically executing pro-
grams that handle heap-allocated data, especially in cases where
such data is assumed to satisfy structural constraints. This conve-
nience is associated with fewer requirements for its application,
and the efficiency of the resulting symbolic execution.
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