
FLACK: Localizing Faults in Alloy Models

Guolong Zheng‡, ThanhVu Nguyen¶, Simón Gutiérrez Brida∗†,
Germán Regis∗, Marcelo Frias†§, Nazareno Aguirre∗†, Hamid Bagheri‡

∗Department of Computer Science, FCEFQyN, University of Rı́o Cuarto, Argentina
†National Council for Scientific and Technical Research (CONICET), Argentina

‡Department of Computer Science & Engineering, University of Nebraska-Lincoln, USA
§Department of Software Engineering, Buenos Aires Institute of Technology, Argentina

¶Department of Computer Science, George Mason University, USA

Abstract—Fault localization can help developers identify buggy
statements or expressions in programs. Existing fault localization
techniques are often designed for imperative programs (e.g., C
and Java) and rely on tests to compare correct and incorrect
execution traces to identify suspicious statements. In this demo
paper, we present FLACK, a tool to automatically locate faults
for models written in Alloy, a declarative language where the
models are not executed but instead converted into a logical
formula and solved using a SAT solver. FLACK takes as input an
Alloy model that violates some assertions and returns a ranked
list of suspicious expressions contributing to the violation. The
key idea is to analyze the differences between counterexamples,
i.e., instances of the model that do not satisfy the assertion
and instances that do satisfy the assertion to find suspicious
expressions in the input model. An experiment with 157 Alloy
models with various bugs shows the efficiency and accuracy
of FLACK in localizing the causes of these bugs. FLACK and
its evaluation benchmark and results can be downloaded from
https://github.com/guolong-zheng/flack. The video demonstration
is available at https://youtu.be/FKa2ohqIUms.

Index Terms—Alloy, fault localization, specifications, models

I. INTRODUCTION

The Alloy specification language [1] has been used for

various software modeling and analysis tasks such as program

verification [2], test case generation [3], network security [4],

and security analysis of IoT and Android platforms [5], [6].

Similar to developing programs in an imperative language like

C or Java, developers can make subtle mistakes when using

Alloy in modeling system specifications, especially those that

capture complex systems with non-trivial behaviors. However,

traditional fault localization techniques for imperative pro-

grams do not directly apply to a specification language such

as Alloy, in which there are no control flow graphs or program

execution traces often used to aid debugging.

To aid developers in debugging Alloy models, in [7] we

introduce the FLACK technique for automatically localizing

Alloy buggy expressions causing assertion violations. Given an

Alloy model and properties specified by assertions, FLACK first

queries the Alloy Analyzer for a counterexample, an instance

of the model that does not satisfy the property. Next, FLACK

uses a partial max sat (PMAXSAT) solver to find an instance

that does satisfy the property and is as close as possible

to the counterexample. FLACK then determines the relations

and atoms that are different between the counterexample and

the satisfying instance. These differences explain how the

counterexample violates the assertion. Finally, FLACK analyzes

these differences to identify possible buggy expressions. Ex-

perimental evaluation of FLACK on 157 Alloy models with

a wide variety of bugs shows that FLACK efficiently and

consistently ranks buggy expressions in the top 2% of the

suspicious list results.

FLACK is different than AlloyFL [8]—the only other Alloy

fault localization technique currently available—in that Al-

loyFL relies on unconventional unit tests while FLACK uses

assertions that are natural in the development practices in

Alloy. Also, instead of statistically analyzing the effects of

tests as in AlloyFL, FLACK relies on counterexample and

satisfying instances generated by constraint solving, which are

the main underlying technology in Alloy.

In this paper, we focus on the demonstration, implementa-

tion, and usage of FLACK. FLACK is highly automatic: the user

only needs to provide an assertion to specify the expected be-

haviors, and FLACK automatically analyzes potential assertion

violations and returns a ranked list of expressions based on

their suspicious level to the violations. The source code and

dataset of FLACK are publicly available at [9]. The full details

of FLACK are available in the research paper [7].

II. THE ALLOY ANALYZER

Alloy [1] is a declarative language based on first-order logic,

with an analysis engine that relies on a SAT solver. To check

that an Alloy model conforms to given assertions, the Alloy

Analyzer automatically converts the model and assertions into

a boolean formula and uses a SAT solver to search for potential

counterexamples violating the assertions.

We now introduce key Alloy terminologies and concepts

using the address book model in Figure 1. This model first

declares three types (sig) Address, Name and Book. The

type Book has two fields entry and listed, where entry
is a set of Name and listed maps entry to a set of

Address and Name.

On lines 8– 10, the model defines the function (fun)

lookup, which finds all Address and Name associated with

a Name in a Book. Next, on lines 11– 15, the model has a

fact constraint that specifies that each Book’s entry maps

to at most one Name or Address. The user makes a mistake

on line 14 that uses lone (at most one) instead of some (at

least one), which violates the assertion on lines 29– 32. The

1218

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-6654-0337-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ASE51524.2021.00140

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

87
40

http://crossmark.crossref.org/dialog/?doi=10.1109%2FASE51524.2021.9678740&domain=pdf&date_stamp=2022-06-24

1 abstract sig Listing { }
2 sig Address extends Listing { }
3 sig Name extends Listing { }
4 sig Book {
5 entry: set Name,
6 listed: entry ->set Listing
7 }
8 fun lookup [b:Book, n:Name] : set Listing {
9 n.ˆ(b.listed)

10 }
11 fact {
12 all b:Book | all n:b.entry |
13 // Fix: replace "lone" with "some".
14 lone b.listed[n]
15 }
16 fact {
17 all b:Book | all n,l:Name |
18 l in lookup[b,n] implies
19 l in b.entry
20 }
21 fact {
22 all b:Book | all n:b.entry |
23 not n in lookup[b,n]
24 }
25 fact {
26 one Book and one Address and #Name = 2
27 }
28

29 assert assert_1 {
30 all b:Book | all n:b.entry |
31 some (lookup[b,n]&Address)
32 }
33 check assert_1
34

35 pred pred_1 {
36 all b:Book | all n:b.entry |
37 some (lookup[b,n]&Address)
38 }
39 run pred_1

Fig. 1: Buggy Address Book Model

fact on lines 16– 20 specifies that all names reachable from

any name entry in the book are themselves entries; the fact on

lines 21– 24 specifies that name entries are acyclic; and the

fact on lines 25– 27 specifies that there should be exactly one

Book, one Address and two Names.

Fig. 2: A counterexample generated by the running check
command 33.

Alloy uses assert to specify assertions and the check

command to search for counterexamples violating the asserted

properties. For example, the assertion on lines 29– 32 specifies

that all name entries map to at least one address. This

assertion does not always hold, and thus the check on line 33

can generate counterexamples showing its violation, e.g., the

counterexample in Figure 2 shows an instance of the model in

which Name1 does not map to any Address. This violation

is caused by the overconstraint on line 14 that uses lone
(at most one) instead of some (at least one). In the next

section, we demonstrate how to use FLACK to locate the buggy

expression causing this violation.

Fig. 3: A satisfying instance.

Alloy uses pred to specify predicates and the run com-

mand to find instances satisfying the predicate properties. For

example, the predication on lines 35– 38 specifies the same

property that all name entries map to at least one address, and

the run on line 39 can generate instances that satisfy this

property (e.g., the instance in Figure 3 shows an instance in

which Name1 maps to Address).

III. FLACK

FLACK is built on top of Alloy 4.2 and is implemented

in about 8k LOC in Java. The tool takes as input an Alloy

model with assertions and returns a ranked list of suspicious

expressions contributing to the violations.

The key insight of FLACK is that the differences between

counterexamples and closely related satisfying instances can

help identify expressions causing the violation in the input

model. To achieve this, FLACK uses a specialized SAT solver

to find satisfying instances that are as close as possible to

the counterexamples (satisfying instances generated by Alloy

Analyzer are random and can be vastly different than the

counterexample, e.g., the satisfying instance in Figure 3 and

the counterexample in Figure 2). Next, FLACK analyzes the

differences between the counterexamples and the satisfying

instances to find expressions in the model that likely cause

the errors. Finally, FLACK computes and returns a ranked list

of suspicious expressions.

A. Implementation and Demonstration

Figure 4 gives an overview of the FLACK implementation,

which consists of four main phases described below.

Instance generation. This phase is used to obtain pairs

of counterexamples and closely similar satisfying instances.

FLACK analyzes and compares the differences among these

instances to identify likely buggy expressions in the model.

To generate satisfying instances similar to counterexamples,

we replace the Alloy’s backend SAT solver Kodkod [10]

1219

Alloy Model Alloy
Analyzer

Instance
Generation

Difference
Analysis Slicing Ranking

Suspicious
ExprsCEXs INSTs DIFFs EXPRs

Fig. 4: Workflow of FLACK.

with Pardinus [11], a PMAXSAT (Partial MAXimum SAT-

isfiability) solver building on top of Kodkod. We set the

Alloy specification with satisfying predicates as the hard

constraints and the counterexamples as the soft constraints.

The PMAXSAT solver finds a solution that satisfies all hard

constraints and maximum number of soft constraints, which

results in an instance that satisfies the properties specified by

the assertions and most similar to the counterexample.

For the address book model, given the counterexample in

Figure 2, FLACK generates the satisfying instance in Figure 5.

Notice that this instance is similar to the counterexample in

Figure 2, but has an extra edge from Book to Address
labeled with listed[Name1].

Fig. 5: A satisfying instance that is close to the counterexample

in Fig 2.

Difference Analysis. Given pairs of counterexamples and

satisfying instances, this phase finds the minimal differences

between each pair by comparing the atoms, tuples and re-

lations of each pair. The minimal differences represent the

minimal changes needed to convert a counterexample to a

satisfying instance, which provide essential information related

to the assertion violation.

For the instance pair in Figure 2 and Figure 5, FLACK

finds the difference listed:Book->Name1->Address,

i.e., the counterexample does not contain the tuple

Book->Name1->Address in relation listed. In other

words, the assertion violation is most related to the relation

listed and three atoms: Book, Name1 and Address.

FLACK uses this information to identify the errors in the

following steps.

Slicing. This phase selects expressions most related to

the error by collecting expressions that contain the related

relations and filtering out other expressions that only contain

unrelated relations.

In the address book example, all expressions in fun and

facts on lines 11– 24 are collected, as they all contain

the related relation listed. The expressions in fact on

lines 25– 27 are sliced out as it does not contain the relation

listed, thus are not closely related to the error.
Ranking. The step computes a suspicious score for all

collected expressions and their subexpressions and outputs a

ranking list, as shown in Figure 6. For each expression, FLACK

computes the score by iteratively calculating the scores of all

the subexpressions. The score is computed by first instantiating

each expression using the values from the differences, then

evaluating the instantiated expressions in both counterexam-

ples and satisfying instances, and finally computing the score

based on the differences between the evaluated results. Finally,

FLACK outputs a ranking list of all expressions and their

subexpressions based on the calculated scores.
It is worth noting that our implementation of FLACK does

not use the standard Alloy’s AST, which is designed for

generating instances and is hard to modify. Instead, we extend

the original Alloy AST with visitors to traverse and modify

AST nodes, so that we can analyze and instrument expressions

with concrete values (as used in the Slicing and Ranking

phases above).

IV. USAGE

FLACK can be used through the command line on operating

systems that supports Java. The Alloy Analyzer itself is also

a Java application; thus, FLACK and the Alloy Analyzer can

be used in the same development environment.
We demonstrate FLACK’s usage using the address book

example in Figure 1. In this example, the user writes the

address book model, with a mistake on line 14 that uses

lone instead of some. The user also inserts an assertion and

predicate on lines 29– 39 to specify the expected behaviors.
In the root directory of FLACK, the user asks FLACK to

locate errors using the command in Listing 1, where the -cp
./libs/*:path/to/flack option specifies the path to

all dependent libraries and the jar file of flack, the option -f
/path/to/addr.als tells FLACK the path to the Alloy

model, and the option -m 5 specifies the maximum number of

pairs of counterexamples and satisfying instances to generate.

1 java −Djava . l i b r a r y . path=so lve rs −cp
. / l i b s / * : path / to / f l a c k loc −f
/ path / to / addr . a l s −m 5

Listing 1: Command to run FLACK

Results: For this example, FLACK runs in 0.84 seconds

on a 2.2 GHz Intel Core i7 CPU with 16 GB memory,

and successfully points to the lone error by ranking it first

among the suspicious expressions. FLACK outputs a ranking

list as shown in Figure 6 1. RANK LIST lists of suspicious

1Due to randomness of Alloy analyzer and the back-end solver, the result
may be different.

1220

expressions ranked based on their suspicious score. Each

line in the ranking list consists of the ranking position and

an expression followed by a suspicious score calculated by

FLACK. For example, the first line in the ranking list shows

that FLACK correctly ranked lone ((n.(b.listed))) 2

first with a suspicious score of 1.31.
Additional Output: FLACK also outputs additional infor-

mation about the execution for further analysis. The example
generation time in Figure 6 records the time in seconds

used by the Alloy analyzer and the PMAXSAT solver to

generate all counterexamples and closely similar instances.

The analyze time(sec) records the total runtime of

FLACK.
The # rel and # val are the average numbers of different

relations and different values among all counterexamples and

satisfying instances, respectively. In this address book model,

there are averagely one relation and three atom values that are

different between counterexamples and satisfying instances.

The # Slice Out and # Total AST are the number of

sliced out and total AST nodes. In this example, FLACK sliced

10 AST nodes out of 74 nodes. The LOC is a rough calculation

of the lines of code in the model.
The evals records the total number of expressions instanti-

ated by the different values. In this example, FLACK evaluated

a total number of 368 instantiated expressions.
Note that FLACK is highly automated and uses only one

main parameter -m to specify the number of pairs of coun-

terexamples and satisfying instances generated. Increasing the

number usually results in a more accurate ranking result with

a longer execution time. In the usage example, FLACK suc-

cessfully ranks the buggy expression lone n.(b.listed)
first using the option -m 5. However, if we use -m 1 for

this example, an expression unrelated to the error l in
(b.entry) is ranked first with a runtime of 0.53 seconds.

V. EXPERIMENT

We evaluated FLACK on a benchmark consisting of 157

Alloy models with different kinds of bugs [7]. These include

the 152 Alloy models with real faults used in the AlloyFL

work [8] and 5 other Alloy models used in complex and

real-world applications (e.g., surgical robots [12], Android

permissions models [6], and Java program modeling and

verification [2]).
The experiment results show that FLACK is able to consis-

tently rank buggy expressions in the top 1.9%(average) of the

suspicious list. FLACK successfully rank the buggy expressions

for 147 out of 157 models, with 91 (58%) ranked in top 1, 38

(24%) ranked top 2 to 5, 10 (6.5%) ranked top 6 to 10, 8 (5%)

ranked above top 10 for 6 and 10 (6.5%) not in the ranking

list. For most of the models, FLACK finishes the execution

under a second, giving the user instant feedback about the

errors. The experiment results show that FLACK is general (can

accurately locate a wide variety of bugs) and scalable (can

handle complex, real-world Alloy models). The experiment

details are given in [7] and publicly available at [9].

2This is the syntax desugar of lone b.listed[n]

/flack/benchmark/addr.als:
example generation time:0.525

RANK LIST:
0: lone ((n . (b . listed))) 1.31
1: n in lookup[b,n] 1.30
2: (n . ˆ((b . listed))) 1.30
3: l in lookup[b,n] 1.30
4: !(n in lookup[b,n]) 1.30
5: l in (b . entry) 1.17
6: l in lookup[b,n] => l in (b.entry) 1.00

analyze time(sec): 0.84
rel: 1
val: 3
Slice Out: 10
Total AST: 74
LOC: 21
evals: 368
===================

Fig. 6: FLACK’s results obtained for the model in Figure 1.

VI. CONCLUSION

We present the implementation details and usage of FLACK,

a fault localization tool for Alloy based on assertions. The key

idea of FLACK is to compute counterexample and satisfying

instances of the model and compare their differences to locate

errors. FLACK is fully automated and the user only needs to

provide assertions to specify expected behaviors. The source

code of FLACK, its benchmark models, and experimental

results are publicly available at [9].

As can be seen, currently FLACK is a command line tool

that the user manually executes to identify faults. In future

work, we plan to integrate FLACK directly to the user interface

of the Alloy Analyzer (e.g., top ranked expressions and

suspicious components will be highlighted in the Alloy UI

using different colors). This would allow the Alloy users to

visually analyze faults in Alloy models and potentially help

them repair errors more effectively (by making changes to the

highlighted expressions).

ACKNOWLEDGMENT

We thank the anonymous reviewers for helpful comments.

This work was supported in part by awards W911NF-19-1-

0054 from the Army Research Office; CCF-1948536, CCF-

1755890, CCF-1618132 from the National Science Founda-

tion; and a Faculty Seed Award from UNL; and PICT 2016-

1384, 2017-1979 and 2017-2622 from the Argentine National

Agency of Scientific and Technological Promotion (ANPCyT).

1221

REFERENCES

[1] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., 2002.

[2] J. P. Galeotti, N. Rosner, C. G. López Pombo, and M. F. Frias, “Anal-
ysis of invariants for efficient bounded verification,” in International
Symposium on Software Testing and Analysis, 2010.

[3] P. Abad, N. Aguirre, V. S. Bengolea, D. Ciolek, M. F. Frias, J. P. Galeotti,
T. Maibaum, M. M. Moscato, N. Rosner, and I. Vissani, “Improving test
generation under rich contracts by tight bounds and incremental SAT
solving,” in International Conference on Software Testing, Verification
and Validation, 2013.

[4] F. A. Maldonado-Lopez, J. Chavarriaga, and Y. Donoso, “Detecting
network policy conflicts using alloy,” in International Conference on
Abstract State Machines, 2014.

[5] M. Alhanahnah, C. Stevens, and H. Bagheri, “Scalable analysis of
interaction threats in iot systems,” in International Symposium on
Software Testing and Analysis, 2020.

[6] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert: Compositional
analysis of android inter-app permission leakage,” IEEE Transactions on
Software Engineering, 2015.

[7] G. Zheng, T. Nguyen, S. Gutiérrez Brida, G. Regis, M. Frias, N. Aguirre,
and H. Bagheri, “Flack: Counterexample-guided fault localization for
alloy models,” in International Conference on Software Engineering,
2021.

[8] K. Wang, A. Sullivan, D. Marinov, and S. Khurshid, “Fault Localiza-
tion for Declarative Models in Alloy,” in International Symposium on
Software Reliability Engineering, 2020.

[9] FLACK repository, 2020. [Online]. Available: https://doi.org/10.6084/
m9.figshare.13439894.v4

[10] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in Tools
and Algorithms for the Construction and Analysis of Systems, 2007.

[11] A. Cunha, N. Macedo, and T. Guimarães, “Target oriented relational
model finding,” in Fundamental Approaches to Software Engineering,
2014.

[12] N. Mansoor, J. A. Saddler, B. Silva, H. Bagheri, M. B. Cohen, and
S. Farritor, “Modeling and testing a family of surgical robots: An
experience report,” in Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018.

1222

