
Ranger: Parallel Analysis of Alloy Models by
Range Partitioning

Nicolás Rosner
Department of Computer Science,

FCEyN, UBA,
Argentina,

nrosner@dc.uba.ar

Junaid H. Siddiqui
Department of Computer Science,

LUMS School of Science and Engineering,
Pakistan,

junaid.siddiqui@lums.edu.pk

Nazareno Aguirre
Department of Computer Science,

FCEFQyN, UNRC,
Argentina,

naguirre@dc.exa.unrc.edu.ar

Sarfraz Khurshid
Department of Electrical and Computer Engineering,

The University of Texas at Austin,
USA,

khurshid@ece.utexas.edu

Marcelo F. Frias
Department of Software Engineering,

Instituto Tecnológico de Buenos Aires,
Argentina,

mfrias@itba.edu.ar

Abstract—We present a novel approach for parallel analysis
of models written in Alloy, a declarative extension of first-order
logic based on relations. The Alloy language is supported by
the fully automatic Alloy Analyzer, which translates models into
propositional formulas and uses off-the-shelf SAT technology to
solve them. Our key insight is that the underlying constraint
satisfaction problem can be split into subproblems of lesser
complexity by using ranges of candidate solutions, which partition
the space of all candidate solutions. Conceptually, we define a
total ordering among the candidate solutions, split this space of
candidates into ranges, and let independent SAT searches take
place within these ranges’ endpoints. Our tool, Ranger, embodies
our insight. Experimental evaluation shows that Ranger provides
substantial speedups (in several cases, superlinear ones) for a
variety of hard-to-solve Alloy models, and that adding more
hardware reduces analysis costs almost linearly.

Index Terms—Static analysis, Alloy, Parallel analysis, SAT.

I. INTRODUCTION

Declarative formal models of software are valuable at a
number of different stages of software development. They
are particularly useful during requirements elicitation, as a
means to express requirements in a language that is precise
and expressive enough to document the needs of stakeholders.
Moreover, declarative models allow us to document rationales
behind design decisions, and even to analyze properties of soft-
ware designs prior to implementation. During the implementa-
tion phase, declarative models allow programmers to document
expected properties of their classes and methods, e.g., using
class invariants, method contracts, and loop invariants, which
can also be exploited for different kinds of analyses.

A number of modeling languages today allow writing
formal, declarative models [18], [35], [26], [21], [2]. Our
specific focus is Alloy [18], a declarative extension of first-
order logic based on relations. Alloy’s concise yet expressive
notation, together with its fully automated, SAT-based Alloy

Khurshid’s work was funded in part by the US NSF grant #CCF-0845628.

Analyzer tool [3], make the language particularly appealing
for modeling and analysis. Indeed, Alloy has already been
used effectively in requirements [19], [40], design [25], [20],
testing [23], [1], and as an intermediate language in static
program analysis [10], [8], [13], [14], [28]. Section II provides
further details regarding Alloy and its analysis tool.

Alloy’s analysis technique, known as scope-bounded check-
ing, analyzes a model’s correctness with respect to a bounded
universe of discourse, by searching for violations of assertions
that the user may expect to hold in the model. The assertions
on a model are evaluated on model instances whose domains
are bounded in size. The bound on the size of model instances
is termed the scope, and is given by the user. Clearly, assertions
that pass the analysis are not necessarily valid in general –
they are valid for the given scope. Thus, to enhance their
confidence in the correctness of their models, Alloy users
must run their analyses for larger scopes. However, the cost
of the SAT-based analysis underlying Alloy is exponential in
those bounds, so, in many cases, the analysis is limited to
small scopes. This might not be an issue if Alloy is used
just as a convenient declarative language, with easy-to-use
automated analysis, to quickly check the validity of intended
properties on small model instances. But the versatility of
the language and the significant advances on SAT technology
are causing a shift from the above use of the tool to its
current use as an expressive specification language with a
powerful underlying analysis technique. Thus, Alloy users
are continuously demanding more efficiency from the tool,
as well as scalability (the possibility of running analyses for
larger scopes), without having to resign the declarativity of
the language. This is evidenced by the existence of a variety
of tools that use Alloy as a backend for sophisticated analyses
which push the limits of the Alloy Analyzer, and by the
increasing concern on employing suitable Alloy “idioms” in
modeling, that allow for more efficient analysis.

978-1-4799-0215-6/13 c© 2013 IEEE ASE 2013, Palo Alto, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

147

Our work in this paper is motivated by the aforementioned
demand on scalability of Alloy analysis, and is driven by
our desire to effectively leverage the increasing availability
of commodity hardware for effective parallelization schemes.
We present Ranger, a novel parallel analysis technique for
Alloy models, based on what we call range partitioning.
Essentially, the technique relies on the definition of a linear
ordering on the state space of an Alloy model. A partition
of the state space can then be defined by splitting the linear
ordering into non-overlapping intervals, called ranges. Each
restriction of the original problem to a particular range thus
becomes an independent subproblem, which can be analyzed
by a separate processor on a cluster of computers. Further
details are presented in Section III. We also discuss some more
technical, implementation-related issues in Section IV.

We perform an experimental evaluation of our approach for
range partitioning using a benchmark consisting of 10 hard-to-
analyze properties from 7 different Alloy models (Section V).
The benchmark includes unsatisfiable and satisfiable problems
from a variety of problem domains, from protocol specification
to complex test input generation. We show that, for 64 workers,
the average speedup over the hardest scopes that were still
tractable by the Alloy Analyzer within 10 hours was 41.76x,
and the maximum such speedup was 205.35x. More impor-
tantly, in all cases Ranger was able to push the tractability
barrier, successfully handling the assertions for scopes that
exceed the capabilities of the Alloy Analyzer; in some cases,
it was able to do so for scopes that stand no chance whatsoever
of being tractable by the Analyzer.

In Section VI we discuss existing techniques aimed at
improving the scalability of Alloy, including parallel analysis
tools and techniques related or applicable to Alloy. Finally, our
conclusions and some proposals for further work are presented
in Section VII.

In summary, this paper makes the following contributions:
• Range partitioning. We introduce the idea of distributing

an Alloy problem into several subproblems of lesser
complexity by defining ranges of candidate solutions;

• Parallel analysis for Alloy. We present Ranger, our
technique for effective parallelization of Alloy problems
using dynamic work stealing;

• Experimental evaluation. We embody Ranger into a
prototype implementation and present experimental re-
sults that show the effectiveness of Ranger in analyzing
a variety of Alloy models.

II. ALLOY AND THE ALLOY ANALYZER

Alloy is a declarative modeling language whose syntax
incorporates features that are ubiquitous in object orienta-
tion. This amenable syntax has a relational semantics whose
comprehension requires elementary concepts from discrete
mathematics. Formally, Alloy’s relational logic is an extension
of first-order logic with reflexive-transitive closure.

Let us introduce Alloy’s syntax and semantics through an
example, corresponding to an Alloy model for a heap allocated
binary tree data structure, shown in Figure 1. Data domains are

one sig null {}

abstract sig Object {}

sig BinTree extends Object { root : Node + null }

sig Node extends Object { left, right : Node + null }

pred Acyclic[t : BinTree] {
all n : t.root.*(left + right) |

n !in n.ˆ(left + right) &&
(n.(left) & n.(right)) in null &&
(n != null => (lone n.˜(left + right))) }

pred NumNodesEqualsNumEdgesPlusOne[t: BinTree] {
t.root != null =>

#(t.root.*(left+right)-null) =
#(left.Node)+#(right.Node)+1 }

pred NoUnreachableNodes[t : BinTree] {
t.root.*(left+right) = (Node + null) }

fact { all t : BinTree | NoUnreachableNodes[t] }

check { all t : BinTree |
Acyclic[t] <=> NumNodesEqualsNumEdgesPlusOne[t]

} for 0 but 1 BinTree, exactly 5 Node

Fig. 1. A sample Alloy model for binary trees.

defined using signatures (denoted by the keyword sig), which
are represented as sets. Signature Node, for instance, declares
a set of node objects. Akin to classes in object oriented
languages, signatures may extend other signatures, in which
case domains defined by the extending signatures are subsets
of the domains defined by the extended ones. A signature
may be abstract, meaning that its domain only contains
elements that belong to its extending signatures. Like classes,
signatures may contain fields, which are captured by relations.
For example, field root denotes a (total and functional) binary
relation contained in BinTree × (Node ∪ null). It is worth
emphasizing that Alloy fields may also denote relations of
arity greater than 2. Predicates allow us to name properties,
while functions name terms. They may be combined to write
axioms, which are called facts in Alloy.

Alloy expressions are built using set-theoretical and re-
lational operators and constants. Constants univ, iden and
none denote the set containing all elements, the identity
binary relation on such set, and the empty set, respectively.
Operations +, − and & denote set union, difference and
intersection, respectively. Relational operators include compo-
sition (called navigation in Alloy), transpose, and (reflexive-)
transitive closure. They are defined as follows:

R.S = {〈a1, . . . , an−1, b2, . . . , bm〉 : an = b1 ∧
〈a1, . . . , an〉 ∈ R ∧ 〈b1, . . . , bm〉 ∈ S} (navigation)

∼ R = {〈b, a〉 : 〈a, b〉 ∈ R} (transpose)

̂R =
⋃
i>0

Ri (transitive closure)

∗R =
⋃
i≥0

Ri (reflexive-transitive closure)

148

We define R0 = iden and Ri =

i times︷ ︸︸ ︷
R. · · · .R. Transpose and

closures are only defined for binary relations in Alloy.
Function # computes the cardinality of a relation. For

example, term #(t.root.∗(left+right)−null) in predicate
NumNodesEqualsNumEdgesPlusOne denotes the number of
nodes reachable from the root of tree t by traversing t along
fields left and right. Expression lone r requires relation r
to have at most one element.

Alloy formulas are built from the atomic predicate in

(inclusion), using standard connectives from first-order logic.
Java notation is used for propositional connectives. Quantifiers
are denoted by all (universal) and some (existential).

Our sample model also includes an assertion – a property
that is expected to hold in valid model instances (i.e., those
satisfying the structural constraints imposed by signature def-
initions, and facts). As explained in Section I, assertions are a
means to verify model correctness, and are analyzed using
the Alloy Analyzer within user-prescribed bounds. Check
commands are issued in the model, and set the bounds for
data domains. In this example, the Analyzer will analyze all
configurations with at most one tree and exactly 5 nodes
(and zero elements for other domains, except null, which
is constrained in the model to have exactly one element).

III. RANGE PARTITIONING

In this section we present range partitioning, our new tech-
nique for parallel analysis of Alloy models. As we will show
later on, this technique provides a substantial improvement
to the scalability of the SAT-based analysis, compared to the
sequential Alloy Analyzer.

The technique essentially consists of the following stages:
• Given an Alloy model, all candidate configurations that

would be explored by the Analyzer are linearly ordered.
This step establishes a linear ordering C1, C2, . . . , Cn

(notice that the number of configurations, although usu-
ally very large, is finite due to the imposed bounds).

• Some arbitrary configurations Cj1 , Cj2 , . . . , Cji are se-
lected, and the aforementioned ordering is split into
ranges using those arbitrary configurations as partition
points (note that we do not demand these configurations
to satisfy the model axioms). We then obtain ranges
[C1, C2, . . . , Cj1)[Cj1 , . . . , Cj2), . . . , [Cji , . . . , Cn].

• The Alloy model is constrained, yielding models that
correspond to the different ranges. These models are dis-
tributed to different processors and analyzed in parallel.

The above described process requires addressing the follow-
ing technical challenges:
• Define a linear ordering on the set of candidate configu-

rations.
• Provide an algorithm for selecting appropriate configu-

rations as partition points (ideally, we want ranges to
contain roughly the same number of configurations).

• Solve the distribution problem in an efficient way.
We will deal with each one of these challenges in Sections

III-A–III-C.

A. A Linear Ordering on Configurations
In order to explain how a linear ordering on configurations

can be defined, let us first describe how configurations are
internally handled by the Alloy Analyzer. This tool translates
models to Kodkod’s [37] language. From the scopes in the
check command, Kodkod generates a uniform naming for
domain elements, or atoms, as these are called. For the
example in Fig. 1, Kodkod produces the naming in Table I.

TABLE I
NAMING TABLE FOR THE MODEL FROM FIG. 1.

Sig scope naming
Object 1 Object$0
null 1 null$0
Node 5 Node$0,. . . ,Node$4

From the naming and other information (see Section IV-A),
Ranger builds a vector specification, i.e., a mapping

vecSpec : AtomNames × RelNames → P(AtomNames)

that, given an atom name n and a relation name R, retrieves the
atom names that may be considered as the result of computing
n.R. Hence, a vecSpec is used to capture the state space of
configurations. For the sake of simplifying the presentation, we
will restrict ourselves to total and functional signature fields.
Notice that, in the example from Fig. 1, all fields satisfy this
constraint. Figure 2 provides a graphical representation of the
vecSpec associated with the model from Fig. 1.

Object$0 null$0 Node$0 Node$1 Node$2 Node$3 Node$4

Object$0 nul
l$0

Node$0

Node$1

No
de$

2

Node$3

Node$4

root

left

right

Fig. 2. Graphical representation of a vecSpec.

In the figure, Object$0 may relate to null$0, Node$0,
. . . , Node$4 via relation root. No element relates (via any
relation) to Object$0. While a vecSpec describes the state
space, a configuration is a particular state. Configurations can
be described by choosing, for each entry in the vecSpec, one of
the possible values. In Fig. 3 we show a configuration vector
as well as the binary tree described by the configuration.

We take the ordering in which Kodkod lists atom names as
the strict linear ordering on atom names. We will denote this
ordering on atom names by <K . This ordering can be extended
to a lexicographical ordering between configurations (denoted
by <LC) as follows (notice that all vector configurations have
the same size, which we denote by s):

C <LC C ′ ⇐⇒
(∃i, 0 ≤ i < s)(C[0, i−1] = C ′[0, i−1] ∧ C[i] <K C ′[i]) .

149

Object$0 null$0 Node$0 Node$1 Node$2 Node$3 Node$4

No
de
$0

No
de
$1

No
de
$2

null$0
No
de
$3 null$0

No
de
$4 null$0 null$0 null$0 null$0-

Object$0 root

Node$0

Node$1 Node$2

null$0

Node$3

left right

left right

Node$4

rightleft

left leftright right

Fig. 3. Sample configuration for the model in Fig. 1.

THEOREM 1. Relation <LC is a strict total order on the set
of configurations.

Proof. We must prove that <LC is irreflexive, transitive and
total. Irreflexivity and totality follow from the irreflexivity and
totality of <K , respectively. Let us focus, then, on transitivity.
Let C1 <LC C2 and C2 <LC C3. Let i0, i1 be the values
such that C1[0, i0 − 1] = C2[0, i0 − 1] ∧ C1[i0] <K C2[i0]
and C2[0, i1 − 1] = C3[0, i1 − 1] ∧ C2[i1] <K C3[i1]. Let
I = min(i0, i1). Notice that C1[0, I − 1] = C3[0, I − 1].
If I = i0 < i1, C1[I] = C1[i0] <K C2[i0] = C3[i0]. If
I = i1 < i0, C1[I] = C1[i1] = C2[i1] <K C3[i1]. If I =
i0 = i1, then C1[I] = C1[i0] <K C2[i0] = C2[i1] <K C3[i1].
Thus, since <K is transitive, C1[I] <K C3[I], which implies
C1 <LC C3.

Theorem 1 allows us to adopt <LC as the strict linear
ordering on configurations.

B. Selection of the Partition Points

Partition points are configurations that serve as boundaries
between ranges. In this section we show how, given a range
R = [C1, C2] (with C1 <LC C2) and a positive number n, we
can select configurations X1, . . . , Xn−1 ∈ R such that ranges
[C1, X1], [nextConf (X1), X2], . . . , [nextConf (Xn−1), C2],
where nextConf (Xi) is the next configuration after Xi with
respect to <LC , are all contained in [C1, C2] and are balanced
with respect to the number of configurations they contain.
Alg. 1 presents the pseudocode for partitioning a range into
two subranges. It consists of finding an appropriate “mid
point” between the two end points of the range. Lines 1–15
describe the most frequent case, where the first position in
which the vectors corresponding to the end points of the
range disagree contains elements that are far apart enough
that a middle element can readily be found. The scenario, as
well as the result returned by Alg. 1, are illustrated in Fig. 4.

Notice that once a partition point has been found, the
source range [C1, C2] is split into the ranges [C1, C] and
[nextConf (C), C2]. Pseudocode for method nextConf , which
retrieves the next configuration according to ordering <LC , is
presented in Alg. 2. Intuitively, the behavior of Alg. 2 is quite
similar to adding 1 in elementary arithmetic – yet, instead of
using digits 0 through 9 (or those of any other fixed, uniform
base), the algorithm uses, for each cell of a vector, the sorted
list of options available for that cell according to the vecSpec.
The reader should keep in mind that the options for each cell
can be an arbitrary subset of the set of all atoms.

1 Config binRangePartition(lv, rv : Config, vs : vecSpec)
2 i = 0; // Skip common prefix
3 while lv[i] == rv[i] do
4 i = i + 1;
5 end
6 fdl , fdr = lv[i], rv[i]; // First values that differ
7 options = [x ∈ vs[i] : fdl <K x <K fdr]; // Sorted list
8 if options != ∅ then
9 midOption = options[(len(options)− 1)/2];

10 output [0, i− 1] = lv[0, i− 1];
11 output [i] = midOption;
12 for i < j < len(vs) do
13 output [j] = max(vs[j]);
14 end
15 return output ;
16 else

// Values at pos i differ by 1
// e.g., lv=[3,8,5,...], rv=[3,8,6,...]

17 if i = len(vs) then
18 return lv;
19 end
20 i = i + 1;
21 while lv[i] == max(vs[i]) && rv[i] == min(vs[i]) do
22 i = i + 1;
23 if i == len(vs) then

// e.g. lv=[3,8,5,9,9,9]
// and rv=[3,8,6,0,0,0]

24 return lv;
25 end
26 end
27 if lv[i] != max(vs[i]) then

// e.g. lv=[3,8,5,9,9,7,...]
// and rv=[3,8,6,0,0,x,...]

28 output [0, i− 1] = lv[0, i− 1];
29 for i ≤ j < len(vs) do
30 output [j] = max(vs[j]);
31 end
32 return output ;
33 else

// e.g. lv=[3,8,5,9,9,9,...]
// and rv=[3,8,6,0,0,3,...]

34 output [0, i− 1] = rv[0, i− 1];
35 for i ≤ j < len(vs) do
36 output [j] = min(vs[j]);
37 end
38 return output ;
39 end
40 end
41 end Algorithm 1: The binary partitioning algorithm.

1 Config nextConf (c : Config, vs : vecSpec)
// c must not be the last config.

2 i = len(vs)− 1;
3 output = c;
4 while true do
5 options = [x ∈ vs[i]]; // Sorted list
6 pos = position of options[i] in options;
7 if pos < len(options)− 1 then
8 output [i] = options[pos + 1];
9 return output ;

10 else
11 output [i] = options[0];
12 i = i − 1;
13 end
14 end
15 end Algorithm 2: Pseudocode for method nextConf.

Let us now focus on the generation of range partitions in
the general case. Algorithm 3 presents the pseudocode for the
actual partition algorithm. The algorithm starts from an input

150

Object$0 null$0 Node$0 Node$1 Node$2 Node$3 Node$4

No
de
$0

No
de
$1

No
de
$2

null$0
No
de
$3

null$0
No
de
$4

null$0 null$0 null$0 null$0-lv =

Object$0 null$0 Node$0 Node$1 Node$2 Node$3 Node$4

No
de
$0

No
de
$4

No
de
$0

null$0
No
de
$4

null$0
No
de
$4

null$0 null$0 null$0 null$0-rv =

Object$0 null$0 Node$0 Node$1 Node$2 Node$3 Node$4

No
de
$0

No
de
$2

No
de
$4

No
de
$4

No
de
$4-output =

No
de
$4

No
de
$4

No
de
$4

No
de
$4

No
de
$4

No
de
$4

Fig. 4. Application of partitioning (standard case).

1 List[Range] rangePartitioning(R : Range, n : int, vs: vecSpec)
2 L = addToEmptyList(R); // L = [R]
3 i = 0; // index for traversing the list
4 while len(L) < n && hasSplittableRanges(L) do
5 if splittable(L[i]) then
6 Config C1 = leftEndpoint(L[i]);
7 Config C2 = rightEndpoint(L[i]);
8 Config C3 = binRangePartition(C1, C2, vs);
9 removeRangeAtPos(L, i);

10 addRangeAtPos(L, i , [C1, C3]);
11 addRangeAtPos(L, i + 1, [nextConf (C3, vs), C2]);
12 if i < len(L)− 2 then
13 i = i + 2;
14 else
15 i = 0;
16 end
17 else
18 if i < len(L)− 1 then
19 i = i + 1;
20 else
21 i = 0;
22 end
23 end
24 end
25 end Algorithm 3: The range partitioning algorithm.

range, and iterates over a list of already generated ranges as
long as the requested number of ranges has not been reached
and there are still some ranges left to be split (ranges of the
form [C,C] cannot be split any further).

C. Parallel Range Analysis

In Section III-B we proposed a method to partition a range
into sub-ranges; we now explain how to use the aforemen-
tioned in order to parallelize the analysis of an Alloy model.

Our scenario for parallel analysis makes use of a cluster
of computers. Worker processes execute commands sent by a
master process, which runs on a dedicated processor. Actions
that workers can perform include: solving a task sequentially,
aborting the ongoing analysis, splitting the current task into a
given number of ranges (and locally enqueueing the resulting
subtasks), fetching a new task from the local queue, and
moving tasks between local and remote queues (requesting
and obtaining tasks from other workers). Further details on
Ranger’s implementation will be provided in Section IV.

In the remaining parts of this section we present two alter-
natives for parallelization, both based on range partitioning.
Before doing so, we discuss the impact of Alloy’s symmetry-
breaking predicates on the ranges generated by partitioning.

1) Range Partitioning and Symmetry Breaking: Atom
names are irrelevant when building an Alloy configuration:
given a configuration that satisfies (or not) the facts of an Alloy
model, any other configuration obtained by mere permutation
of atom names (while, of course, preserving typing constraints)
will behave in the same way. Symmetry-breaking axioms are
introduced by Kodkod [37] during the translation of the Alloy
model to a propositional formula, and greatly improve the
performance of the underlying SAT-solver by avoiding the
exploration of many such superfluous isomorphisms. There-
fore, symmetry breaking has a direct impact on what non-
superfluous configurations will look like. For example, for
the model in Fig. 1, field root can only relate to atom
names null$0 or Node$4. Hence, any ranges in which root

points to nodes Node$0, Node$1, Node$2 or Node$3
contain configurations that cannot satisfy the propositional
formula generated by Kodkod. For our sample Alloy model
from Fig. 1 (but using a scope of 10 Node, since 5 Node

is too easy), Table II shows how partitioning the full range
into increasingly large numbers of ranges yields very small
numbers of nontrivial subproblems. The remaining ranges can
all be proved unsatisfiable in under a millisecond each. As we
will see in Sections III-C2 and III-C3, the fact that a significant
number of the tasks resulting from a partition may become
trivial can lead to hardware being severely underused. In order
to measure the actual utilization of the assigned hardware
during parallel analysis, we define the metric

Hardware Use Efficiency =
Total non-idle seconds
Number of workers× t

,

where t is the wallclock runtime in seconds taken by the
whole parallel analysis (as perceived by the end user), and
the numerator is the sum, over all workers, of the number of
seconds during which some task was actually being analyzed.

TABLE II
RANGE PARTITIONING: NUMBER AND PERCENTAGE OF NONTRIVIAL

SUBPROBLEMS (OF THOSE GENERATED FOR BINTREES WITH 10 NODE).

Num. Ranges 512 1024 2048 4096 8192 16384
Nontrivial 10 20 35 56 66 90
Nontrivial % 0.019 0.019 0.017 0.013 0.008 0.005

2) Flat Range Partitioning: One way of parallelizing the
analysis based on range partitioning consists in determining a
large enough value of n (called the fan-out of the analysis),
and having a worker partition the full range into n ranges
using algorithm rangePartitioning. The n newly generated
tasks are then solved in parallel by the available workers.
Each worker receives a task and solves it sequentially until a
SAT/UNSAT verdict is obtained. Unfortunately, this approach
seldom performs as well as expected. In most cases the solving
time variance (hardest vs. easiest subproblems obtained after
initial partitioning) is very high. Thus, if the initial range is
only partitioned once, eventually only a few active workers
will remain, while (almost all) other workers will be idle until

151

the end of the run. Table III reports the HUE for the analysis
of the model in Fig. 1 when flat range partitioning is used.

TABLE III
EFFICIENCY RATES OBTAINED FOR FLAT RANGE PARTITIONING OF

BINTREE EXAMPLE, WITH 10 NODE , USING 64 WORKERS.

Num. Ranges 512 1024 2048 4096 8192 16384
HUE 0.04 0.04 0.11 0.11 0.12

3) Recursive Range Partitioning: The main drawback of
flat range partitioning is its static nature. Trying to balance the
number of candidate configurations in each range is indeed a
reasonable starting point, but we cannot predict, in the general
case, where the harder subranges might lie. A more dynamic
approach to determining the location of nontrivial subranges is
therefore desirable. In recursive range partitioning, the oldest
active subproblem (i.e., the oldest among those that are still
being SAT-solved) can be re-partitioned by its assigned worker.
This yields sub-subproblems, and so on, recursively. Recursive
partitioning of a range may occur under two circumstances:
• the UNSAT frequency, i.e., the number of UNSAT ver-

dicts per second, falls below a user-defined threshold, or
• there are idle workers.
The first condition aims at achieving progress during anal-

ysis by avoiding wasting time analyzing tasks that are still
too hard to be solved sequentially by a worker. The second
condition targets the HUE metric and strives to make good
use of resources by avoiding idle workers.

Unlike flat partitioning, where the fan-out must be large and
fixed beforehand, in recursive partitioning we use a small fan-
out; its value is set to the number of workers. For instance,
in the experiments reported in Section V, the fan-out is 64,
since that is the total number of worker cores in the cluster. In
this way, whenever many of the 64 tasks turn out to be trivial
(or shortly after idle workers start to abound) the recursive
partitioning process will react by “zooming in” (i.e., focusing
the computational effort) on the remaining nontrivial tasks.

Using recursive range partitioning, the HUE value for our
example (for the same 10-Node scope) becomes 0.84, which is
about 8 times higher than with flat range partitioning. Even if
we only count the time invested in successful solving attempts
as non-idle time (i.e., if partial solving attempts before re-
splitting were to be considered completely wasted effort), the
HUE value for this run would be 0.59 – still a significant
improvement over the low efficiency of flat partitioning.

The following theorem discusses the correctness of recur-
sive range partitioning. A detailed proof is omitted due to
space constraints.

THEOREM 2. Recursive range partitioning is sound and com-
plete, i.e., an Alloy model has a satisfying configuration if and
only if one can be found using recursive range partitioning.

Proof sketch: Recursive range partitioning splits ranges when-
ever tasks are aborted. Proving the theorem then requires
showing that each time a range is partitioned according to

Alg. 3, no configurations are lost. Algorithm 3 iteratively
splits a list of ranges using the binary split implemented in
Alg. 1. Then, given a range [C1, C2] visited by Alg. 3, it
suffices to show, according to program lines 10 and 11, that
[C1, C2] = [C1, C3] ∪ [nextConf (C3, vs), C2] (where vs is
the global vecSpec and C3 is the configuration returned by
Alg. 1). We now need to prove that C3 ∈ [C1, C2] and
that nextConf (C3, vs) indeed returns the next configuration.
The first proof is completed by considering the alternatives
provided by the guards in the algorithm. For instance, if the
set options is nonempty, the proof is immediate (see lines
9–15). Regarding the second property, we must prove that
Alg. 2 terminates, and that when it terminates it produces the
next configuration. Termination is guaranteed because index
i iterates from the back of the array until it finds a position
in the configuration in which the stored atom name is not the
maximum possible. Such a position must exist because the
input configuration is required not to be the largest possible
one. Proving that the configuration produced by Alg. 2 is
the next one according to ordering <LC reduces to showing
that if a configuration C exists such that C3 <LC C and
C ≤LC nextConf (C3, vs), then C = nextConf (C3, vs).

IV. IMPLEMENTATION DETAILS

A. Initial Model Translation and VecSpec Construction

Given a user-provided Alloy model, as a first step, Ranger
interfaces with the Alloy Analyzer to obtain a list of suitable
fields for range partitioning (currently, all functional binary
relations are used; see Section V-E) and to have the model
translated to CNF. During the translation, it also interacts with
Kodkod in order to obtain the necessary information to build
the vecSpec: a copy of the atom universe, details on which
atoms appear in each relevant relation’s domain and range,
and on which propositional variable is being used to represent
presence or absence of each tuple in each relevant relation.

The model is only translated once. The resulting CNF file is
broadcast by the master to all workers, along with a description
of the vecSpec, just before the distributed analysis phase starts.
All further range-related restrictions are to be injected by the
workers, directly at the clausal level, every time they load a
new task into their local sequential solver. This eliminates the
cost of re-running the Alloy translation toolchain, and allows
for subproblems to be very lightweight objects: each pending
task is represented by a pair of vectors (which require less
than a few hundred bytes each, even for the largest scopes
and models in our benchmark).

B. Clauses Added to Enforce SAT-Solving Within Range

In Alg. 4 we show pseudocode illustrating what each worker
does when loading a new subproblem. Three groups of clauses
are injected. The first group limits the search to candidate
configurations that are no smaller (as per <LC) than the left
endpoint of the range, whereas the second group requires that
they be no larger than the right endpoint. For the third group,
both vectors are scanned from left to right until the end of
their common prefix (if any) is found. A unit clause is added

152

for every cell that could only have one possible value (i.e.,
within the common prefix). At the first cell where left and
right values differ, an all-positive clause is generated.

The third group does not really add any new constraints:
its clauses could also be derived (with some effort) from the
first two groups and the rest of the translated model. However,
empirical evidence suggests that the presence of this positive
formulation often promotes faster propagation.

Let l be the vector length, and ci (with 0 ≤ i < l) the
number of choices for the i-th cell according to a vecSpec.
Then

∑
i (ci − 1) is a worst-case upper bound for the number

of clauses added by either of the first two groups; as for the
third group, it cannot add more than l clauses. In practice,
we have not seen any case where the total number of added
clauses reached 1% of the number of clauses in the CNF.

1 addRangeClauses(ss: SATSolver, R : Range, vs: vecSpec)
// Forbid anything smaller than left endpoint

2 Config lvec = leftEndpoint(R);
3 antecedent = []; // Empty list
4 for ith, atom in enumerate(lvec) do
5 options = vs.atoms[ith]; // Sorted list
6 position = options.indexOf (atom);
7 forbidden = options[0, position − 1];
8 for f ith, f atom in enumerate(forbidden) do
9 f pvar = vs.pvars[ith][f ith];

10 ss.addClause(antecedent ++ [−f pvar]);
11 end
12 atom pvar = vs.pvars[ith][position];
13 antecedent .append(−atom pvar);
14 end

// Forbid anything greater than right endpoint
15 Config rvec = rightEndpoint(R);
16 antecedent = []; // Empty list
17 for ith, atom in enumerate(lvec) do
18 options = vs.atoms[ith]; // Sorted list
19 position = options.indexOf (atom);
20 forbidden = options[position + 1, len(options)− 1];
21 for f ith, f atom in enumerate(forbidden) do
22 f pvar = vs.pvars[ith][f ith + position + 1];
23 ss.addClause(antecedent ++ [−f pvar]);
24 end
25 atom pvar = vs.pvars[ith][position];
26 antecedent .append(−atom pvar);
27 end

// Add a unit clause per common prefix cell
// and a clause for the first differing cell

28 atompairs = zip(lvec, rvec);
29 for ith, (latom, ratom) in enumerate(atompairs) do
30 options = vs.atoms[ith];
31 lpos = options.indexOf (latom);
32 rpos = options.indexOf (ratom);
33 if latom == ratom then

// still within common prefix
34 ss.addClause([vs.pvars[ith][lpos]]);
35 else

// first cell where values differ
36 ss.addClause(vs.pvars[ith][lpos, rpos]);
37 break;
38 end
39 end
40 end

Algorithm 4: Adding clauses to enforce ranged analysis.

V. EXPERIMENTAL RESULTS

In this section we first describe the hardware and software
setup (V-A). We then evaluate Ranger on a benchmark of

models that includes valid (V-B) and invalid (V-C) assertions.
In V-D we evaluate how the speedup achieved by Ranger
evolves as the amount of hardware used for the analysis varies.
Finally, in V-E we discuss some possible threats to the validity
of the presented experimental results.

A. Setup and Conventions

Ranger is a distributed application based on the MPI stan-
dard. Each of its worker threads runs the Minisat [11] solver,
version 2.2.0. All experiments were run in a cluster of 16
commodity PCs, each featuring an Intel Core i7-2600 4-core,
8-thread processor with a 3.40 GHz clock speed and 8 GB
DDR3 RAM, running Linux 3.2.0. All Ranger experiments
were run on 8x8 (8 nodes, each running 8 worker threads)
except where otherwise indicated. Each experiment was run 3
times; the reported timing is the average thereof.

All times are given in wallclock seconds. “TO” (timeout)
means failure to complete within 36,000 seconds (10 hours)
except where otherwise indicated. “OofM” (out of memory)
means failure to complete due to exhausting 8 GB of main
memory. “AA” (Alloy Analyzer) means that the same sequen-
tial SAT-solver used by Ranger (Minisat 2.2.0) was run on
the unmodified CNF translation of the source Alloy model.

B. UNSAT Cases (Valid Properties)

BINARYTREES is the model that we introduced as a run-
ning example in Section II. Property TWODEFSEQUIVALENT
asserts the equivalence of two different characterizations of the
binary tree structure. As shown in Table IV, its difficulty curve
is particularly steep: although the property can be proven for
scope 9 in under a minute, scope 10 requires over 7 hours.
Ranger can prove the latter in under 4 minutes – a 119x
speedup. It can also prove the property for scope 11 in under
an hour, whereas the Alloy Analyzer fails to prove it within
the 10-hour timeout. Note that in this case the speedup is
conservatively reported as being “>10.83”, since we do not
know how much longer than 10 hours the Analyzer would
need. The actual speedup is likely to be much higher.

LINKEDLISTS is a model involving singly linked lists. In
this case the goal is to verify that 3 different definitions are
equivalent. The model includes two separate properties to that
effect: PAIRWISE, which asserts that D1 ⇔ D2 ∧D2 ⇔ D3,
and CIRCULAR (i.e., D1 ⇒ D2 ∧ D2 ⇒ D3 ∧ D3 ⇒ D1).
Tables V and VI show similar behaviors for both properties,
with Ranger obtaining about 14x speedup on the largest scope
that the Alloy Analyzer can handle (within 10 hours), and then
being able to prove the properties for 2 additional scopes.

CHORD is a model of the Chord [36] distributed hash table
lookup protocol. It is one of the case studies bundled with the
Alloy distribution. The model contains one property, called
FINDSUCCESSORWORKS, that is particularly hard to prove.
Table VII shows a speedup of at least 103x (again, merely a
floor value) for the first scope that is not tractable sequentially.
It also shows that distributed analysis pushes the tractability
barrier another 2 scopes for this property.

153

STABLEMUTEXRING, another Alloy-bundled example, is a
model of Dijkstra’s K-state mutual exclusion algorithm for a
ring [9]. There are two hard-to-prove properties in this model.
Both use the notion of a “bad tick” – an instant in time
where two or more distinct processes try to run their critical
sections simultaneously. NOBADSAFETYTRACE asserts that
it is impossible to find a trace with a loop containing a bad
tick (such that the algorithm would never stabilize). CLOSURE
asserts that there can be no bad ticks if the first tick is “good”.
As seen in Tables VIII and IX, Ranger pushes the ten-hour
tractability limit 10 scopes (from 12 to 22) for the former, and
4 scopes (from 13 to 17) for the latter. At the last AA-tractable
scopes (12 and 13, respectively), the speedups exceed 200x for
NOBADSAFETYTRACE and 40x for CLOSURE.

FIREWIRE describes the behavior of the leader election
protocol used in the IEEE 1394 [17] standard for connect-
ing consumer electronic devices. This is another case study
included with the Alloy distribution. The hardest property in
the model is ATMOSTONEELECTED, which asserts that two
or more devices cannot be elected as leader in the same state.
As shown in Table X, distributed analysis yields nearly 20x
speedup for scope 5. For scope 6, where the Alloy Analyzer
fails to yield a result within 10 hours, Ranger proves the
property in under 4 hours.

C. SAT Cases (Invalid Properties / Instance Generation)

Many Alloy-borne SAT cases are easy; typically, when the
translation of an Alloy formula results in a satisfiable CNF,
finding a satisfying valuation is a quick and simple matter.
However, hard SAT problems do come up in practice, and
can be very challenging indeed. Therefore, we also evaluate
Ranger on some difficult SAT instances.

BINOMIALHEAP is the translation to Alloy of a Java
binomial heap class implementation, taken from [39]. One
of its methods, extractMin(), contains a bug that can
only be detected for some sufficiently large input structures.
Property EXTRACTMINCORRECT asserts the correctness of
said method. Its translation to CNF yields UNSAT problems
up to scope 12, but nontrivial SAT problems for scopes 13 and
above. Although the speedups obtained were modest (around
3x, on average), it was important for us to confirm that Ranger
did not miss the counterexample whenever one existed.

AVLTREES was originally written for automated test input
generation. The goal, for scope n, is to find some configuration
that represents a valid AVL tree of size n. An easy task for
small n, this becomes much harder as n grows. Table XII
shows that it took the Analyzer over one hour to produce an
AVL tree of size 19, while Ranger achieved the same in 138
seconds – a 27x speedup. At scope 22, sequential analysis
exhausted 8 GB of memory, whereas distributed analysis
succeeded in producing AVLs of sizes 22 and 23.

The FIREWIRE model also includes NOREPEATS, an in-
stance generation command. This is an auxiliary property: the
author of the model suggests running it repeatedly, increasing
the number of states, until no counterexample is found, to
determine how many states suffice for a certain scope. For

TABLE IV
BINARYTREES: TWODEFSEQUIVALENT

Scope AA Ranger Speedup
8 6.00 5.49 1.09
9 43.69 16.58 2.63

10 25,552.44 215.22 118.72
11 TO 3,324.20 > 10.83
12 TO TO

TABLE V
LINKEDLISTS: THREEDEFSEQUIVALENT (PAIRWISE)

Scope AA Ranger Speedup
13 24.25 14.56 1.67
14 86.15 37.57 2.29
15 346.48 91.09 3.80
16 1,862.96 197.98 9.41
17 11,580.27 819.81 14.13
18 TO 4,107.56 > 8.76
19 TO 22,845.55 >> 1.58
20 TO TO

TABLE VI
LINKEDLISTS: THREEDEFSEQUIVALENT (CIRCULAR)

Scope AA Ranger Speedup
13 22.17 14.73 1.50
14 74.94 35.61 2.10
15 360.01 85.65 4.20
16 1,602.04 189.79 8.44
17 11,484.27 859.62 13.36
18 TO 4,299.79 > 8.37
19 TO 24,077.44 >> 1.50
20 TO TO

TABLE VII
CHORD: FINDSUCCESSORWORKS

Scope AA Ranger Speedup
6 94.90 23.95 3.96
7 1,447.98 67.86 21.34
8 TO 349.76 > 102.93
9 TO 3,569.07 >> 10.09

10 TO TO

TABLE VIII
STABLEMUTEXRING: NOBADSAFETYTRACE

Scope AA Ranger Speedup
10 322.39 35.79 9.01
11 1,326.09 51.10 25.95
12 24,239.91 118.04 205.35
13 TO 330.74 > 108.85
14 TO 850.46 >> 42.33
15 TO 1,672.21 >>> 21.53
16 TO 3,802.20 >>>> 9.47
17 TO 5,263.09 >>>>> 6.84
18 TO 7,400.67 >>>>>> 4.86
19 TO 10,859.77 >>>>>>> 3.31
20 TO 16,404.06 >>>>>>>> 2.19
21 TO 23,982.52 >>>>>>>>> 1.50
22 TO 29,705.61 >>>>>>>>>> 1.21
23 TO TO

TABLE IX
STABLEMUTEXRING: CLOSURE

Scope AA Ranger Speedup
10 343.50 33.03 10.40
11 924.96 57.08 16.20
12 2,835.47 111.72 25.38
13 9,459.15 231.50 40.86
14 TO 707.88 > 50.86
15 TO 2,427.98 >> 14.83
16 TO 9,771.50 >>> 3.68
17 TO 30,607.91 >>>> 1.18
18 TO TO

TABLE X
FIREWIRE: ATMOSTONEELECTED

Scope AA Ranger Speedup
3 3.98 3.16 1.26
4 141.04 23.67 5.96
5 6,269.58 319.87 19.60
6 TO 14,297.74 > 2.52
7 TO TO

154

large scopes, finding such intermediate SAT instances becomes
a hard problem in its own right. We ran these analyses
sequentially for up to 16 states per scope, and for each
scope, re-ran the most demanding analysis using Ranger. As
shown in Table XIII, the distributed approach yielded over 40x
speedup for the last sequentially-tractable scope (22), and was
able to raise the tractability limit from 22 to 34.

TABLE XI
BINOMIALHEAP: EXTRACTMINCORRECT

Scope AA Ranger Speedup
8 102.10 40.56 2.52
9 185.05 106.64 1.74

10 243.12 132.81 1.83
11 563.47 196.93 2.86
12 700.69 239.04 2.93
13 80.41 31.20 2.58
14 122.87 60.84 2.02
15 251.49 80.29 3.13
16 349.60 187.09 1.87
17 847.28 270.93 3.13
18 483.16 116.55 4.15
19 542.40 381.70 1.42
20 1,022.42 149.97 6.82

TABLE XII
AVLTREES: GENERATEINSTANCE

Scope AA Ranger Speedup
15 47.09 13.87 3.40
16 121.76 51.12 2.38
17 195.37 81.05 2.41
18 1,703.20 125.95 13.52
19 3,715.74 137.69 26.99
20 3,839.97 241.02 15.93
21 17,588.57 1,422.13 12.37
22 OofM 4,993.58 ∞
23 OofM 13,654.49 ∞
24 OofM TO

TABLE XIII
FIREWIRE: NOREPEATS

Scope AA Ranger Speedup
16 148.97 17.01 8.76
18 334.40 28.48 11.74
20 497.93 41.12 12.11
22 765.93 18.21 42.06
24 OofM 46.20 ∞
26 OofM 63.52 ∞
28 OofM 100.62 ∞
30 OofM 89.99 ∞
32 OofM 95.79 ∞
34 OofM 171.11 ∞
36 OofM OofM

D. Adding More Hardware

For each of the aforementioned series, we took the hardest
scope that was tractable by Ranger on 8x8 and re-ran it using
half as much hardware, 50% more hardware, and twice as
much hardware (i.e., on 4x8, 12x8, and the full 16x8 capacity
of the cluster). The results are reported in Table XIV. In all
UNSAT cases, the actual runtimes were close to the linear
extrapolation (200%, 100%, 66%, 50%) of the 8x8 timing.

SAT cases are less predictable since, rather than exhausting
the search space, success depends on quickly finding the first
needle in the haystack. While AVL instance generation scaled
even better than expected, the other two cases did not do as
well, and SAT runs on 4x8 performed poorly in general.

TABLE XIV
ADDING MORE HARDWARE

Model/Property Scope 4x8 8x8 12x8 16x8
LinkedLists: Equiv. Pairwise 19 TO 22,846 14,446 10,197

100% 63% 45%
LinkedLists: Equiv. Circular 19 TO 24,077 14,368 10,059

100% 60% 42%
BinTrees: Equivalence 11 6,584 3,324 2,273 1,688

198% 100% 68% 51%
Chord: FindSuccWorks 9 7,041 3,569 2,270 1,807

197% 100% 64% 51%
SMRing: Closure 17 TO 30,608 18,806 12,848

100% 61% 42%
SMRing: BadSafetyTrace 22 TO 29,706 20,526 17,354

100% 69% 58%
FireWire: AtMostOneElected 6 27,680 14,298 8,843 6,707

194% 100% 62% 47%
BHeap: ExtractMinCorrect 19 1,989 382 322 272

521% 100% 84% 71%
AVL: instance generation 19 TO 13,654 5,516 4,958

100% 40% 36%
Firewire: NoRepeats 34 19,949 171 177 195

11,659% 100% 104% 114%

E. Threats to Validity

When building a vecSpec from an Alloy model, the current
Ranger implementation considers functional binary relations.
Note that this does not restrict input models to those that only
use such relations. Ranger can analyze Alloy models with
relations of arbitrary type and arity; it simply ignores non-
functional and/or ternary relations for the purposes of building
the vecSpec, and therefore, for those of range partitioning. So
far, this does not seem to be an impediment: most of the
models in the benchmark use nonfunctional and/or ternary
relations; some even use many of them, and comparatively
few functional binary ones. However, this does imply that if a
model uses no functional binary relations at all, it would not
be splittable by the current version of Ranger, as the vecSpec
would be empty. A binary nonfunctional relation R ⊆ A×B
can be seen as a ternary relation TR ⊆ A×B×{true, false},
where (a, b) ∈ R⇔ (a, b, true) ∈ TR. Therefore, the problem
reduces to handling ternary relations. We can see a ternary re-
lation T ⊆ A×B×C as a total function FT : A→ P(B×C),
where FT (a) = {(b, c) ∈ B × C | (a, b, c) ∈ T}. Note that
such functions would introduce a large number of options in
the vecSpec, but that each split reduces such options by half.

VI. RELATED WORK

As stated in Section I, scaling Alloy analysis to larger scopes
is necessary to improve the confidence levels attainable by
users when analyzing models. An important step in this direc-
tion is the inclusion of symmetry-breaking predicates during
the translation to propositional logic, significantly enhancing
analysis capabilities [30], [37]. Surprisingly, developments on
parallel and/or distributed analysis of Alloy models are scarce.

The first option to consider is using a parallel SAT-solver.
Multi-core SAT-solver research has gained a lot of momen-
tum. ManySAT [16] and plingeling [4] are award-winning
multithreaded SAT solvers. As shown on Table XV, Ranger
frequently outperforms both of them even when running on
a single machine (1x8), possibly due to the synergy between

155

TABLE XV
RANGER ON 1X8 VS. MULTITHREADED SAT-SOLVERS. (TO=30 MIN)

Model/Property Scope Ranger plingeling ManySAT
(1x8) v578f (1x8) v2.0 (1x8)

LinkedLists: Equiv. Pairwise 15 321.70 657.90 545.53
16 1,169.76 TO TO
17 TO TO TO

BinTrees: Equivalence 9 23.20 97.80 15.57
10 1,467.65 TO TO
11 TO TO TO

Chord: FindSuccWorks 6 33.87 173.80 51.34
7 269.88 1,514.10 606.86
8 TO TO TO

SMRing: Closure 11 221.37 837.50 361.60
12 639.62 1,657.60 1,039.99
13 TO TO TO

SMRing: BadSafetyTrace 11 180.05 TO 426.72
12 695.54 TO TO
13 TO TO TO

FireWire: AtMostOneElected 4 51.85 14.10 35.02
5 TO 71.80 1,529.32

BHeap: ExtractMinCorrect 14 65.15 435.50 12.89
15 445.18 506.70 139.19
16 TO 501.40 65.22

AVL: instance generation 15 20.07 8.10 15.95
16 175.42 12.90 31.65
17 TO 18.00 78.93

Firewire: NoRepeats 22 19.76 178.10 201.56
24 741.24 293.70 199.97
26 TO 502.50 450.80

range partitioning and Alloy’s symmetry breaking. But another
important advantage of Ranger is its distributed nature, which
makes it possible to add more machines and combine their
computational power. Multithreaded solvers heavily depend on
shared memory and are thus confined to a single computer.

Usable distributed SAT-solvers are hard to come by. PMSat
[15], a cluster-oriented version of Minisat, is available but
reports generally small speed-ups. GrADSAT [7] reported
experiments showing an average 3.27x and a maximum 19.9x
speed-up using various numbers of workers ranging between 1
and 34. C-sat [27] is a SAT-solver for clusters. It reports linear
speed-ups, but the tool is not available for experimentation.
Also, relying on a parallel SAT-solver prevents making use of
Alloy-level information that may contribute to better analyses.

In [29], the notion of transcoping is introduced as an aid
to improve parallel analysis of Alloy models. Since Alloy
analyses occur within given bounds, transcoping proposes to
explore small scopes first in order to extrapolate the best
way to distribute the analysis of larger scopes. Ranger may
contribute to the development of transcoping, given that it
introduces a new technique for distributing the analysis.

Although little research has been done on parallelizing its
analysis, Alloy has been used as an intermediate language by
different tools that parallelize code analysis. In [34], parallel
analysis of code is performed by splitting the program control
flow graph and using JForge [8] (which relies on Kodkod) to
analyze each slice. Note that, as in [33], parallelization occurs
at the code level, not at the intermediate Alloy representation
level. In [28], parallel analysis of Java code is performed by
translating complete methods to Alloy. The partitions needed
to parallelize the analysis are obtained from the intermedi-
ate Alloy representation. Unfortunately, the efficiency of the
technique depends on the presence of class invariants or the

lack of aliasing, concepts usually absent in more general Alloy
models such as the ones considered in this article.

The vector-based representation of Alloy configurations is
adopted from the candidate vectors of the Korat tool [5]
that performs a backtracking search for test generation using
imperative predicates. Two techniques implement Korat in
parallel – one technique [31] uses executions of the imperative
predicate to distribute the search during backtracking by
creating work items for parallel workers and the other tech-
nique [24] fast-forwards the search to create ranges for parallel
exploration without work stealing. The problems addressed by
Korat and Ranger (testing of imperative code and analysis of
Alloy models, respectively) as well as the respective partition
techniques are quite different.

Ranging techniques for symbolic execution [32] and explicit
state model checking [12] of imperative programs were intro-
duced recently in the context of the KLEE symbolic execution
tool for C [6] and the JPF model checker for Java [38],
respectively. Ranging to analyze declarative models in Alloy
is very different from ranging to analyze imperative programs
in C or Java. More precisely, ranges in symbolic execution
and model checking are based on program execution paths,
specifically sequences of control-flow branches. Such paths
do not exist in declarative models. Our technique for ranging
for Alloy defines a novel form of ranges – at the black-box
input space level, not white-box control-flow level.

VII. CONCLUSIONS AND FURTHER WORK

This paper introduced a novel technique for scaling Alloy’s
SAT-based analysis using ranging. Experiments using a variety
of hard-to-solve Alloy formulas showed that the technique is
very effective, especially for valid assertions, where the search
space needs to be exhausted. When dealing with difficult
invalid assertions, except for some situations with particularly
low quantities of available hardware, counterexamples were
always found in a timely fashion.

Our work opens a new direction in scaling the analysis of
declarative models. With the increasing availability of multi-
core and multi-processor systems, such parallel techniques
have a vital role to play in substantially enhacing our ability to
develop more reliable software. Our next step is to update the
implementation as discussed in Section V-E, so that models
can be range-partitioned on a wider class of relations. Also, the
fact that superlinear speedups were obtained implies that some
of the gain cannot stem from parallelism, but rather from the
partitioning itself – in some cases, merely splitting a problem
and solving the resulting subproblems sequentially would have
yielded some speedup. This surprising phenomenon deserves
further analysis. We also plan to explore the application of
ranging to other declarative domains, such as SMT solving
as well as deep static checking where the program and its
specification are represented together using a formula, which
captures a violation of the specification by the program for
goal-directed counterexample generation.

156

REFERENCES

[1] Abad P., Aguirre N., Bengolea V., Ciolek D., Frias M.F., Galeotti
J., Maibaum T., Moscato M., Rosner N., Vissani I., Tight Bounds
+ Incremental SAT = Better Test Generation under Rich Contracts,
in Proceedings of Sixth IEEE International Conference on Software
Testing, Verification and Validation (ICST) 2013.

[2] Abrial J. R.,. The B-Book: Assigning Programs to Meanings. Cambridge,
UK, Cambridge University Press, 1996.

[3] Alloy Analyzer, available at http://alloy.mit.edu/alloy/download.html.
[4] Biere A., Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT

Race 2010, in Solver description, Special Track 1 (Parallel
CNF), SAT-Race 2010, available at http://baldur.iti.uka.de/sat-race-
2010/descriptions/solver 1+2+3+6.pdf.

[5] Boyapati C., Khurshid S., Marinov D., Korat: automated testing based
on Java predicates. ISSTA 2002: 123-133.

[6] Cadar C., Dunbar D., and Engler D. R. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In
Proc. 8th Symposium on Operating Systems Design and Implementation
(OSDI), pages 209–224, 2008.

[7] Chrabakh W., and Wolski R., GrADSAT: A Parallel SAT Solver for the
Grid, in UCSB Computer Science Technical Report Number 2003-05.

[8] Dennis, G., Chang, F., Jackson, D., Modular Verification of Code with
SAT. in ISSTA’06, pp. 109–120, 2006.

[9] Dijkstra E. W., A belated proof of self-stabilization, Distributed Com-
puting, Vol. 1, Issue 1, pp.5–6, 1986.

[10] Dolby J., Vaziri M., Tip F., Finding Bugs Efficiently with a SAT Solver,
in ESEC/FSE’07, pp. 195–204, ACM Press, 2007.

[11] Een N., and Sörensson N., An Extensible SAT-Solver. In SAT 2003.
[12] Funes D., Siddiqui J. H., and Khurshid S. Ranged model checking. In

Proc. Java PathFinder Workshop (JPF), 2012.
[13] Galeotti J. P., Rosner N., López Pombo C., Frias M. F., Analysis of

invariants for efficient bounded verification. In proceedings of ISSTA
2010, pp. 25-36, 2010.

[14] Galeotti J. P., Rosner N., López Pombo C., Frias M. F., TACO: Efficient
SAT-Based Bounded Verification Using Symmetry Breaking and Tight
Bounds. IEEE Transactions on Software Engineering, to appear.

[15] Gil L., Flores P., and Silveira L. M., PMSat: a parallel version of
MiniSAT, Journal on Satisfiability, Boolean Modeling and Computation
6 (2008) 71-98.

[16] Hamadi Y., Jabbour S., and Sais L, ManySAT: a Parallel SAT Solver, In-
ternational Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), Volume 6, Special Issue on Parallel SAT, IOS Press, 2009.

[17] IEEE Standard for a High-Performance Serial Bus, available ar
http://ieeexplore.ieee.org/servlet/opac?punumber=4659231

[18] Jackson, D., Software Abstractions. MIT Press, 2006.
[19] Kang E., Jackson D., Formal Modeling and Analysis of a Flash

Filesystem in Alloy. in Proceedings of ABZ 2008, LNCS 5238, Springer,
294–308.

[20] Kim J. S., and Garlan D., Analyzing Architectural Styles, Journal of
Systems and Software, Vol. 83, Issue 7, Elsevier, 1216-1235.

[21] Leavens G.T.,, Baker A.L., and Ruby C. JML: a notation for detailed
design. In Behavioral Specifications of Businesses and Systems, Chapter
12, pp. 175-188, Amsterdam, Kluwer, 1999.

[22] Leino K. R. M., Mülcer P., Using the Spec# Language,
Methodology, and Tools to Write Bug-Free Programs,
Manuscript KRML 189, 17 September 2009, Available at
http://specsharp.codeplex.com/wikipage?title=Tutorial

[23] Marinov D., and Khurshid S. TestEra: A Novel Framework for
Automated Testing of Java Programs. In Proc. 16th IEEE Conference
on Automated Software Engineering (ASE), 2001.

[24] Misailovic S., Milicevic A., Petrovic N., Khurshid S., and Marinov
D. Parallel Test Generation and Execution with Korat In Proc. 6th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2007.

[25] Maoz S., Ringert J.O., and Rumpe B.. CD2Alloy: Class Diagrams
Analysis Using Alloy Revisited. In Proceedings of MODELS 2011,
LNCS 6981, Springer, 592-607.

[26] Object Management Group. OCL Specification V. 2.3.1. January 1st,
2012. Available at http://www.omg.org/spec/OCL/2.3.1/PDF/.

[27] Ohmura K., and Ueda K., c-sat: A Parallel SAT Solver for Clusters, in
SAT 2009, LNCS 5585, 2009.

[28] Rosner N., Galeotti J. P., Bermúdez S., Marucci Blas G., Perez De Rosso
S., Pizzagalli L., Zemı́n L., and Frias M. F., Parallel Bounded Analysis
in Code with Rich Invariants by Refinement of Field Bounds to appear
in Proceedings of ISSTA 2013, pp. 23-33, 2013.

[29] Rosner N., López Pombo C. G., Aguirre N., Jaoua A., Mili A., and Frias
M. F., Parallel Bounded Verification of Alloy Models by TranScoping,
in Proceedings of VSTTE 2013, to appear.

[30] Shlyakhter I., Generating effective symmetry-breaking predicates for
search problems. In Proceedings of LICS 2001 Workshop on Theory and
Applications of Satisfiability Testing, June 2001, Boston, MA. Henry
Kautz and Bart Selman (eds.), Electronic Notes in Discrete Mathematics,
Vol. 9, 2001.

[31] Siddiqui J. H., and Khurshid S., PKorat: Parallel generation of struc-
turally complex test inputs. 2nd International Conference on Software
Testing, Verification, and Validation (ICST 2009). Denver, CO. Apr
2009.

[32] Siddiqui J. H., and Khurshid S. Scaling symbolic execution using ranged
analysis. In Proc. 27th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), 2012.

[33] Shao D., Gopinath D., Khurshid S., Perry D. E., Optimizing Incremental
Scope-Bounded Checking with Data-Flow Analysis. ISSRE 2010: 408–
417.

[34] Shao D., Khurshid S., Perry D. E., An Incremental Approach to Scope-
Bounded Checking Using a Lightweight Formal Method. FM 2009: 757–
772.

[35] Spivey J. M., The Z Notation: A Reference Manual, 2nd ed. Upper
Saddle River, NJ, Prentice Hall, 1992.

[36] Stoica I., and Morris R., and Liben-Nowell D., Karge D., and Kaashoek
M. F., and Balakrishnan H, Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications, IEEE Transactions on Networking,
vol. 11, 2003.

[37] Torlak E., Jackson, D., Kodkod: A Relational Model Finder. in TACAS
’07, LNCS 4425, pp. 632–647.

[38] Visser W., Havelund K., Brat G., and Park S. Model checking programs.
In Proc. 15th Conference on Automated Software Engineering (ASE),
Grenoble, France, 2000.

[39] Visser W., Păsăreanu C. S., Pelánek R., Test Input Generation for Java
Containers using State Matching, in ISSTA 2006, pp. 37–48, 2006.

[40] Zave, P., Compositional binding in network domains. In Proceedings of
FM 2006. LNCS 4085, Springer, 332-347.

157

