
A Temporal Logic Approach to the Specification of Reconfigurable
Component-based Systems�

Nazareno Aguirrey Tom Maibaum
Department of Computer Science, King’s College, Strand, London WC2R 2LS, United Kingdom

aguirre@dcs.kcl.ac.uk, tom@maibaum.org

Abstract

We propose a formal specification language for dynam-
ically reconfigurable component-based systems, based on
temporal logic. The main aim of the language is to al-
low one to specify behaviours of component-based systems
declaratively, with special emphasis on behaviours in which
the architectural structure of the system changes dynami-
cally.

Due to the semantics and organisation of our language,
it is straightforward to hierarchically build reconfigurable
systems in terms of subsystems and basic component parts,
and reason about them within the language. Despite its ex-
pressive power, the language is rather simple.

1 Introduction

In component-based systems, the notion of architecture
has come to play a key role. Special specification lan-
guages, called architecture description languages (ADLs),
were proposed to describe and analyse properties of (some-
times evolving) architectures [9]. Many of these are able to
deal with what is called dynamic reconfiguration, i.e., with
the description of operations which may modify the sys-
tem’s structure at run time. While ADLs provide constructs
for modelling the architecture of a system, they often do not
support a language for reasoning about possible system evo-
lution. In other words, ADLs support the definition of com-
ponents, interconnections and transformation rules or oper-
ations for making architectures evolve, but any kind of rea-
soning about behaviours is often performed in some ”meta-
language”. We are interested in specifying and reasoning
about the increasingly important problem of dynamic re-
configuration of component based systems. To our knowl-
edge, approaches to the specification of reconfigurable sys-

�This work was partially supported by the Engineering and Physical
Sciences Research Council of the UK, Grant Nr. GR/N00814.

yOn leave from Departamento de Computación, FCEFQyN, Universi-
dad Nacional de Rı́o Cuarto, Rı́o Cuarto, Córdoba, Argentina.

tems are either informal, making reasoning about system
properties very hard(!), or are either operational (e.g., graph
grammar based mechanisms) [2][11] or chemical abstract
machine based [6], in either case forcing the specifier to rea-
son about reconfiguration properties outside the language,
in some (informal) meta-language.

We wish, then, to be able to specify and reason about the
consequences of using certain reconfiguration operations in
a declarative manner, adding abstraction to what, to our un-
derstanding, can be operationally specified by ADLs such
as the ones described in [2][11]. We choose to use temporal
logic as the formal basis for our language.

The language is organised around: the notion of com-
ponents, which are represented by classes that define tem-
plates for these components; the notion of connector type,
which we call associations, which are then used to define
the potential ways in which components may communicate
in a system; the notion of subsystem, the new notion that
defines the unit of modularity from which reconfigurable
systems are built, and which conveys the information about
what components, what associations and what reconfigura-
tion operations are used to define the module. By providing
a calculus to support each level of subsystem construction,
we are able to reason about individual components, individ-
ual associations and about modules built out of such com-
ponents and associations. In particular, we are able to assert
and prove dynamic reconfiguration properties of specified
systems.

2 Specifying Classes

Classes are the basic building blocks in the language.
They describe templates of the most basic components,
since more complex kinds of components can also be de-
fined. In analogy with object-oriented languages, classes in
our language are units of modularisation that contain data
and behaviour (actions). However, our classes are different
from classes in OO languages. The main difference is that
we do not consider classes as valid types of class attributes.

1

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

Attributes in a class definition must be of basic type, for-
bidding any kind of references to components inside other
components. As usual in some ADLs, communication be-
tween components is achieved by means of architectural
connectors [2], external to the definition of components.

Assuming that an algebraic specification ADT =
(�; E) for datatypes is given, a class signature consists of
a finite set of read variables, a finite set of attribute symbols
and a finite set of action symbols. Both read variables and
attribute symbols have an associated type, i.e. a sort in �.
Action symbols have arguments, each of which has a type
from �.

A class signature defines the extra-logical symbols used
in the vocabulary for the class. Using these symbols and
some logical symbols, we build formulae to specify the in-
tention of the actions of the class. A class specification then
is simply a class signatureC and a finite set of temporal for-
mulae over C, called the axioms of the specification. For a
description on how these formulae are constructed, see [1].

Consider the following class specification:
Class Printer

Exports print(); load(string); ready
Attributes

ready : boolean
job : string

Actions

print()
load(string)
print-el(char)

Axioms

1. BEG ! job = []

2. 8s 2 string : load(s)! job = []

3. 8s 2 string : load(s)!(job = s)

4. print()! job 6= []

5. 8j 2 string : print() ^ job = j ! print-el(head(j))

6. 8j 2 string : print() ^ job = j !(job = tail(j))

7. job 6= []! 3(print())

8. ready = T $ job = []

EndofClass

Axioms indicate the intention of the actions of the class,
i.e., their effect on attributes. Since the extra-logical sym-
bols used for these axioms are based on the signature of
the class, a “linguistic” locality is enforced: nothing “out-
side” the class can be mentioned. The intuitive use of the
temporal operators to provide meaning to actions is easy to
understand. For instance, the first axiom states that in the
initial state of an instance, denoted by BEG, the attribute
job is empty; the second one says that the action load can
only take place when there is no job already in the printer;
the third one says that if load(s) takes place, then s becomes
the current job of the instance (in the next state).

Read variables are a special kind of attribute. They are
used by the components to get information from the envi-
ronment, in the same way input variables are used in Com-
mUnity [5]. Consider the following class specification:

Class Server
Exports enqueue(string); print()
Read Variables

p-ready : boolean

Attributes

p-queue : list(string)

Actions

enqueue(string)
print()
send(string)

Axioms

1. BEG ! p-queue = []

2. 8s 2 string 8q 2 list(string) :

enqueue(s) ^ p-queue = q !(p-queue = q ++s)

3. print()! p-queue 6= []

4. 8q 2 list(string) : print() ^ p-queue = q !

[send(head(q)) ^(p-queue = tail(q))]

5. p-queue 6= []! 3(print())

6. 8s 2 string : send(s)! p-ready = T

7. 8s 2 string : send(s)! print()

EndofClass

Server is the specification of a print server, with a printing
queue and basic operations. The read variable p-ready tells
the server whether the system is ready to print or not (see
Axiom 6). From the point of view of the component, read
variables belong to the “outside world”, and therefore they
can change their state arbitrarily.

2.1 Proving Properties of Classes

We use as a basis for our logic the one given by Manna
and Pnueli for reactive systems [7]. One of the extensions
to it is that we consider a starting point in time, denoted, as
shown previously, by BEG. Also, the reasoning concerning
datatypes is performed outside this logic, using equational
logic from algebraic specifications. This could be consid-
ered another level of the language, lower than that of class
specifications. The standard inference rules are extended,
in order to be able to import datatypes properties into the
logic.

The way properties are expressed using temporal logic
is clear from the axioms of the above specifications. In
fact, the use of temporal logic as a specification language
of state-based systems is well-known. The theory obtained
by closing the axioms of a class C, the explicit and some
implicit ones defined in [1], under the inference rules rep-
resents the set of all (expressible) provable properties of

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

the instances of C. Since classes denote standard tempo-
ral logic theories, we can give a model-theoretic semantics
by simply interpreting these theories in the standard way,
using Kripke structures.

3 Specifying Associations

Once classes are described, interactions between classes
can be defined. The interaction between class instances is
achieved via action synchronisation and attribute sharing,
in the style used in [3][4]. The syntax of associations is
simple— we only need to state which actions must syn-
chronise, and which attributes or read variables in the par-
ticipants are identified. An association then consists of a
finite (and nonempty) set of participating identifiers, each
of which has an associated class name, and a finite set of
synchronisation definitions, of the form x:a! y:a0, where
x; y are participants of classes Cx and Cy respectively; a; a0

are either attributes of Cx and Cy respectively, or action
symbols of the corresponding classes. Further restrictions
on synchronisations are defined in [1].

Consider the following association between printers and
servers:
Association USES

Participants

SRV : Server
PR : Printer

Connections

SRV:p-ready! PR:ready
8j 2 string : PR:load(j)! SRV:send(j)

EndofAssoc

Associations are like templates of connectors [2], in the
same way that classes are considered templates of compo-
nents in our language. They are characterised by formulae
in the next layer of the language, the subsystems layer.

4 Specifying Subsystems

A subsystem is a new unit of modularisation in our lan-
guage, which is needed to put together associations and
classes. Each subsystem specifies which instances of each
of the classes are present in it, and how they are related, via
association instances. Operations that modify the state of
the subsystem can be defined at this stage. These changes
can be either creation or deletion of instances, or changes
in the architectural configuration of it, that is, relating un-
related components, or disassociating related ones. Con-
sider the following subsystem specification, where we put
together servers and printers:
Subsystem Multiple Printers

Initial State

S : Server
P1 : Printer
USES(S; P1)

Operations

change(y : Printer)
add(y : Printer)

Axioms

1. 8s; p1; p2 : USES(s; p1) ^ USES(s; p2)! p1 = p2

2. 8p : change(p)!(USES(S; p))

3. 8p : :change(p)! [8x; y : USES(x; y)$USES(x; y)]

4. 8p : change(p)! (S:p-ready = T)

5. 8p : add(p)$ [(:Printer(p)) ^Printer(p)]

6. 8s : Server(s)$Server(x)

7. 8p : Printer(p)!(Printer(p))

EndofSubsystem

Axioms in subsystems are used in the same way they are
used in classes. For instance, the first axiom states an in-
tegrity constraint for association USES, which specifies that
a server can be using at most one printer at a time; Axiom
2 says that the occurrence of change(p) makes server S to
use p.

4.1 Some Properties of Subsystems

There exist several properties of subsystems that are not
explicitly specified in a specification, but instead are charac-
terised by a set of automatically generated axioms, to be in-
cluded in the theory associated with the subsystem. As can
be seen from the axioms of the previous subsystem, special
predicates (see axioms 5 and 6 in the subsystem) are used
to characterise the live instances. In our case, predicates
Server(x) and Printer(y) indicate that x is a live server and
y a live printer, respectively. Some of the generated axioms
characterise properties of these predicates. Axioms regard-
ing the typing conditions of associations and actions are also
given. For our association USES, we have the following:

8x; y : USES(x; y) ! Server(x) ^ Printer(y)

The “initial state” declaration indicates which instances are
considered live when the subsystem is created. Special for-
mulae are also incorporated in the theory of a subsystem to
give meaning to this clause. For a description of the formu-
lae necessary for this and other characterisations see [1].

Associations are also interpreted as automatically gen-
erated temporal formulae in the language of subsystems.
For our association USES, the corresponding formulae to
include in any subsystem using it are the following:

8x; y : USES(x; y)! (8j 2 string : x:send(j)$ y:load(j))
8x; y : USES(x; y)! (x:p-ready = y:ready)

A component may be associated to many other com-
ponents via associations. In a case where several objects
are related to certain object A via an association R, we as-
sume that the synchronised actions (with respect toR) in the
client objects cannot occur at the same time. In other words,
A has a built-in mutual exclusion mechanism with respect
to actions synchronised by R. Again, this is expressed by
means of further temporal formulae [1].

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

4.2 Proving Properties of Subsystems

The proof calculus for subsystems is similar to the one
for class specifications. The only difference is that we pro-
vide an extra inference rule, which allows us to promote
properties from the classes into the subsystem, as proper-
ties of the instances.

If C is a class definition, and `A P , then in any
subsystem Sub, the following holds:

8x : C(x) ! x:P

where x:P denotes the translation of formula P
to the language of the subsystem Sub (recall that
all formulae coming from classes are relativised
to the corresponding instance when considered in
a subsystem).

Intuitively, this inference rule says that, if x is a live instance
of class C, then it has all the properties that can be proved
in class C.

For instance, this rule allows us to promote axiom 6 from
Server to the following property in Multiple Printers:

8x : Server(s) ! (8s 2 string : x:send(s) ! x:p-ready = T)

4.2.1 Sample Properties

Temporal logic provides an expressive and declarative lan-
guage to state properties. Consider for example the follow-
ing properties, which were proved to be consequences of
the previous subsystem definition:
Property 1: “During the lifetime of a Multiple Printers
subsystem, S is the only server”. It can be stated easily:

8x : Server(x) ! (x = S)

Property 2: “If a printer is being used by a server, then
it continues to be used by the same server until the cur-
rent print job is finished”. It is expressed using association
USES, as follows:

8x; y : USES(x; y) ! [USES(x; y)U(y:job = [])]

5 Conclusions

We have presented a language for declarative specifica-
tion and reasoning of component-based systems. The way
in which associations are represented in the language, stan-
dard in ADLs [8][9], allows it to express properties con-
cerning the architecture of the system in a declarative way.
Hence, operations that may change the topology of the sys-
tem can be easily specified in the formalism. The semantics
of the language is defined in terms of a logic based on the

combination of first-order and temporal logics. Their proof
calculi can be used to prove properties of the system, in-
cluding dynamic reconfiguration properties. Our formalism
could be used to provide both semantics and proof mecha-
nisms for ADLs.

Our work is based on the logical and semantic founda-
tions of [3][4], and therefore our formalism is closely re-
lated to the one described in [10][11], for dynamic archi-
tecture reconfiguration. That work is based on graph gram-
mars, to provide semantics for reconfiguration, as opposed
to ours, almost completely based on temporal logic. We
think our work complements the one in [10][11] and other
ADLs [2][6], by providing a uniform language to state and
prove properties, that could then be related to specifications
in ADLs.

References

[1] N. Aguirre and T. Maibaum, Reasoning about Reconfig-
urable Object-Based Systems in a Temporal Logic Setting,
in Proceedings of IDPT 2002.

[2] R. Allen and D. Garlan, Formalizing Architectural Connec-
tion, in Proceedings ICSE ‘94, Sorrento, Italy, 1994.

[3] J. Fiadeiro and T. Maibaum, Temporal Theories as Modular-
isation Units for Concurrent System Specification. Formal
Aspects of Computing, vol. 4, No. 3, Springer-Verlag, 1992.

[4] J. Fiadeiro and T. Maibaum, Design Structures for Object-
Based Systems. In Formal Methods and Object Technology,
S. Goldsack and S. Kent (eds), Springer-Verlag, 1996.

[5] J. Fiadeiro and T. Maibaum, Categorical Semantics of Par-
allel Program Design, Science of Computer Programming
28(2-3), 1997.

[6] P. Inverardi and A. Wolf, Formal Specification and Analysis
of Software Architetures using the Chemical Abstract Ma-
chine, IEEE Transactions in Software Engineering, 1995.

[7] Z. Manna and A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems, Springer-Verlag, 1991.

[8] N. Medvidovic, ADLs and Dynamic Architecture Changes,
in Proceedings of the Second Int. Software Architecture
Workshop (ISAW-2), 1996.

[9] N. Medvidovic and R. Taylor, A Framework for Classify-
ing and Comparing Architecture Description Languages, In
ESEC-FSE’97, 1997.

[10] M. Wermelinger and J. Fiadeiro, Algebraic Software Ar-
chitecture Reconfiguration, in ESEC/FSE’99, LNCS 1687,
Springer-Verlag, 1999.

[11] M. Wermelinger, A. Lopes and J. Fiadeiro, A Graph
Based Architectural (Re)configuration Language, in
ESEC/FSE’01, V.Gruhn (ed), ACM Press, 2001.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

